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Non-equilibrium spectral phase transitions 
in coupled nonlinear optical resonators
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Alireza Marandi    1 

Coupled systems with multiple interacting degrees of freedom provide a 
fertile ground for emergent dynamics, which is otherwise inaccessible in 
their solitary counterparts. Here we show that coupled nonlinear optical 
resonators can undergo self-organization in their spectrum leading to a 
first-order phase transition. We experimentally demonstrate such a spectral 
phase transition in time-multiplexed coupled optical parametric oscillators. 
We switch the nature of mutual coupling from dispersive to dissipative 
and access distinct spectral regimes of the parametric oscillator dimer. We 
observe abrupt spectral discontinuity at the first-order transition point. 
Furthermore, we show how non-equilibrium phase transitions can lead 
to enhanced sensing, where the applied perturbation is not resolvable by 
the underlying linear system. Our approach could be exploited for sensing 
applications that use nonlinear driven-dissipative systems, leading to 
performance enhancements without sacrificing sensitivity.

Coupled systems are omnipresent, ranging from neuronal connections 
in biological brains, artificial neural networks, social networks, power 
grids, circadian rhythms and reaction-diffusion chemical systems1. The 
nonlinear dynamics and the ensuing collective behaviours of coupled 
systems are remarkably richer than isolated individual systems2–9. These 
networks are endowed with complex physics that can have profound 
consequences on sensing10 and computing11,12.

Emergent phenomena in complex systems are ubiquitous and 
some paradigmatic examples of these non-equilibrium phenomena 
includes synchronization13,14 and pattern formation15–21. Gain competi-
tion and/or energy exchange among the components of a many-body 
system on a microscopic scale can lead to emergent macroscopic 
behaviours22 including the appearance of Turing patterns23, coher-
ent oscillation24 and mode locking25,26. Understanding and engineer-
ing phase transitions in driven-dissipative systems constitutes a new 
frontier of many-body physics and non-equilibrium dynamics27,28. 
Non-equilibrium driven-dissipative systems open new possibilities and 
opportunities that are not present in their equilibrium counterparts. 
For instance, the time crystal is a non-equilibrium phase of matter that 
is believed to be realizable in out-of-equilibrium settings29,30. Photonics 
provides a congenial platform to engineer the drive and the dissipation 

for the exploration of non-equilibrium emergent phases and dynamical 
phase transitions2,15,31–33.

A phase transition is associated with the qualitative change in the 
system behaviour as a control parameter is varied across a critical and/
or transition point. An order parameter is often used to characterize 
systems exhibiting critical behaviours. A discontinuity in the order 
parameter and its derivative is a universal signature of first-order and 
second-order phase transitions, respectively27. Such abrupt discon-
tinuities have been leveraged in transition-edge sensors to perform 
ultra-sensitive measurements down to single-photon levels34. Engineer-
ing such discontinuities in driven-dissipative systems is highly desirable 
for the development of high-sensitivity transition-edge sensors that are 
governed by non-equilibrium dynamics and are, therefore, not impaired 
by the slow dynamics that limit their counterparts based on thermody-
namic equilibrium phase transitions35. A promising approach to quantum 
sensing involves the exploitation of quantum fluctuations in the vicinity of 
a critical point to improve the measurement precision. Theoretical stud-
ies indicate that sensors based on driven-dissipative phase transitions in 
parametric nonlinear resonators can be a useful resource in this regard36.

Nonlinearity can potentially endow superior sensing capabili-
ties that can attain performance enhancements of several orders 
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momentum conservation relations. The OPO exists in a trivial state 
(zero mean field) below the threshold, which loses stability leading 
to parametric oscillation as the gain is increased above the oscillation 
threshold. The oscillation proceeds via the modulational instability, 
and the OPO assumes a temporal frequency (fast-time-scale dynamics) 
(Ω = δω, centred around the half-harmonic), corresponding to the 
maximum growth-rate of perturbations (Supplementary Section 9). 
Here δω = 0 corresponds to the degenerate oscillation, while δω ≠ 0 
corresponds to the non-degenerate oscillation regime. The temporal 
mode with the zero effective detuning experiences the maximum 
parametric gain. This can happen even in the presence of non-zero 
cavity detuning, where the GVD-induced detuning counterbalances 
the linear cavity detuning Δϕ. This mutual interplay of cavity detuning 
and GVD leads to a second-order spectral phase transition as shown 
in Fig. 1b (ref. 15). The critical detuning (Δϕ = 0) marks a soft transi-
tion between the degenerate and the non-degenerate parametric 
oscillation regimes.

However, this rich spectral behaviour observed in a single OPO 
does not extend linearly with the increase in system size, that is, to a 
network of coupled OPOs (Fig. 1c). It is well known that, in the realm of 
parity–time symmetric non-Hermitian systems, increasing the system 
size increases the order of the exceptional point42. Strikingly, we show 
that it is possible to realize a hard-transition (first-order transition) in a 
system of coupled OPOs, where a single OPO is only capable of featur-
ing a soft transition (second-order transition). Our system of coupled 
OPOs represents a complex system enabling a rich interplay of nonlin-
earity, linear coupling (κ), multimode dynamics, dispersion, drive and 
dissipation. This can lead to an abrupt spectral discontinuity between 
the degenerate and non-degenerate oscillation regimes (Fig. 1d). We 
note that the phase transition considered here is of non-equilibrium 
nature, which is distinct from the typical thermodynamic transitions 
(see Supplementary Section 15 for further discussions).

of magnitude over those that rely on linear dynamics alone37–39. For 
instance, nonlinearity-induced non-reciprocity can amplify the Sagnac 
effect in the vicinity of a symmetry-breaking instability39. Similarly, 
it has been proposed that operating close to the region of bistability 
can lead to strong enhancement to refractive-index sensitivity40. How-
ever, experimental demonstrations of the aforementioned nonlinear 
advantage remain scarce.

In this work, we exploit the rich dynamics of coupled optical 
parametric oscillators (OPOs) to realize non-equilibrium phase tran-
sitions. We demonstrate first-order spectral phase transitions, and 
observe abrupt discontinuity at the transition point corresponding 
to the system’s sudden self-organization between degenerate and 
non-degenerate oscillation regimes. We show that the system of cou-
pled OPOs exhibits a qualitatively different behaviour with the altera-
tion of their mutual coupling from dispersive to dissipative. We also 
present nonlinearly enhanced sensing in the driven-dissipative system 
under consideration, where the applied perturbation remains unre-
solved by the underlying linear system. Our results on non-equilibrium 
behaviour in a system of coupled nonlinear resonators can have 
far-reaching consequences in the domains of sensing and computing.

Results
The building block of our coupled system is a doubly resonant OPO 
that is parametrically driven by a pulsed pump centred around 
2ω0, where ω0 is the frequency at degeneracy corresponding to the 
half-harmonic (Fig. 1a)41. The cavity hosts multiple longitudinal fre-
quency modes around the half-harmonic frequency, where the signal 
and/or idler resides. The distribution of these frequency modes is 
determined by the cavity group velocity dispersion (GVD, β2), while 
the interaction between them is facilitated by the quadratic nonlin-
earity (χ(2)). The energy exchange between the pump and the signal 
(ω0 + δω) and the idler (ω0 − δω) modes is governed by the energy and 
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Fig. 1 | Non-equilibrium phase transitions in single and coupled OPOs. 
a, Schematic of a single OPO showing the non-resonant pump (2ω0) and the 
resonant signal and/or idler (ω0) interacting via phase-matched quadratic (χ(2)) 
nonlinearity alongside the detuning (Δϕ) element and the intracavity dispersion 
β2. b, Existence of a second-order spectral phase transition in a single OPO 
where, at the critical detuning, the OPO transits between the degenerate and the 
non-degenerate oscillation regimes. c, Schematic of a coupled OPO system with 
the mutual coupling κ. d, Existence of a first-order spectral phase transition in 
coupled OPOs featuring an abrupt spectral discontinuity at the first-order  

transition point. e, Time-multiplexed implementation of the coupled OPOs 
consisting of a main OPO cavity (with a round-trip time of 4TR) that is twice 
as long as the linear coupling cavity. The cavity detuning is controlled using 
a detuning element (Δϕ) in the main cavity, while the detuning element in 
the coupling cavity affects the coupling phase θ. f, Illustration of the pulses 
circulating in the time-multiplexed implementation, where the pulse-to-pulse 
separation is given by the repetition period of the driving pump laser and the 
coupling exists between alternate pulses, thereby constituting a coupled  
OPO system.
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We implement coupled OPOs using time multiplexing11,12,43  
(Fig. 1e). This represents a synthetic dimension implementation, where 
the discrete time dimension provided by the equidistant pulses of a 
mode-locked laser has been utilized to realize a coupled OPO system 
without increasing the spatial complexity of realizing OPOs in two dif-
ferent cavities. In this two-cavity configuration the main cavity is twice 
as long as the coupling cavity. Specifically in our experiments, we chose 
the main cavity round-trip time to be four times the repetition period 
of the mode-locked laser (TR). This ensures that the coupling cavity 
executes coupling between alternate pulses. Thus pulses occurring at 
time instants given by (4n + 1)TR and (4n + 3)TR or (4n)TR and (4n + 2)TR 
(where n is an integer) constitute two sets of coupled OPOs (Fig. 1f) 
(Supplementary Section 12). Moreover, our time-multiplexed imple-
mentation allows us to mimic different types of coupling (dispersive, 
dissipative or hybrid)44, because the phase of the coupling path can be 
altered by modifying the detuning of the coupling cavity. The detuning 
elements in the main cavity and the coupling cavity control the cavity 
detuning parameter (Δϕ) and the coupling phase θ independently.

The first-order phase transition in coupled OPOs emerges from 
the interplay of the supermodes of the coupled cavities and para-
metric gain. The dispersive coupling κ leads to mode hybridization 
between the modes of the coupled cavities. These supermodes can 
be either symmetric when the resonant fields are in phase or antisym-
metric when they are out-of-phase. The frequency separation between 
them depends on the coupling strength κ. At a given excitation fre-
quency, there exists a range of cavity detunings, where one of the 
supermodes is close to resonance while the other one is off-resonant. 
In those circumstances, we can consider the dominant supermode 

only, and the dynamics of the coupled system resembles a single 
OPO, albeit now in the supermode basis. This results in second-order 
phase transitions around the mode-splitting points as shown in  
Fig. 2a. However, in the range of cavity detunings in which the contribu-
tion from the supermodes are comparable, there occurs a competition 
between the two second-order spectral phase transitions (one centred 
around the symmetric supermode and the other centred around the 
asymmetric supermode). This gain competition enforces a spectral 
self-organization of the coupled OPOs leading to a sharp transition 
between non-degenerate and degenerate oscillation regimes as shown 
in Fig. 2a. This proceeds via a first-order phase transition, when the gain 
of the non-degenerate branch of the symmetric supermode ceases 
to be greater than the gain experienced by the degenerate branch of 
the asymmetric supermode (Supplementary Sections 2 and 3). The 
experimental results (Fig. 2b) of the optical spectrum corroborate the 
theory and the numerical simulations (the coupling factor realized 
experimentally is lower than the value assumed in the simulation).

The non-equilibrium phase transitions in coupled OPOs are further 
characterized by the radio-frequency (RF) measurements (Fig. 2c). A 
sync-pumped doubly resonant OPO in the non-degenerate regime gen-
erates a signal and an idler frequency comb with two carrier-envelope 
offset frequencies, which can be measured through beating with a 
local oscillator. The abrupt spectral discontinuity of this beat-note 
measurement unequivocally confirms the occurrence of the first-order 
phase transition. For non-degenerate (near-degenerate) doubly reso-
nant OPO, the fCEO can be deterministically estimated based on the 
OPO cavity detuning45. The doubly resonance condition is satisfied 
simultaneously for the signal and the idler to achieve the maximum 
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Fig. 2 | First-order spectral phase transition in coupled OPOs. a, Numerical 
simulation of the optical spectrum (power spectral density (PSD)) of coupled 
OPOs as a function of cavity detuning featuring the second-order phase 
transitions at the mode-splitting locations and the first-order phase transition. 
b, Experimentally obtained optical spectrum as a function of cavity detuning 
highlighting the abrupt spectral discontinuity at the first-order transition point. 
The idler part of the spectrum is constructed by mirror reflection about the 
half-harmonic line. c, RF beat-note spectrum indicating the distinct degenerate 
and non-degenerate oscillation regimes demarcated by the second-order critical 
points and the first-order transition point. d, Numerical simulation of the OPO 

power as a function of the detuning. The power contained in the degenerate part 
of the spectrum (1 nm of bandwidth around the half-harmonic frequency ω0) 
is also plotted alongside showing two distinct degenerate oscillation regimes 
flanked by non-degenerate oscillation regimes. e, Coupled OPO power as a 
function of detuning obtained experimentally. The power contained in the 
degenerate regime has been extracted using a bandpass filter centred around 
the half-harmonic frequency. f, The order parameter (the derivative of the gain 
function) shows a discontinuity at the transition point, suggesting the existence 
of a first-order phase transition.
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parametric gain. This fixes the carrier phase velocity, leaving the fCEO 
to be determined by the effective group velocity of the signal and idler 
envelopes. The effective group velocity comprises the linear compo-
nent that arises due to the material dispersion, and the contribution 
due to the nonlinear acceleration of the pulses arising because of the 
cavity nonlinear dynamics. The constraint to satisfy fCEO,p = fCEO,s + fCEO,i 
(where the subscripts p, s, and i denote pump, signal, and idler, respec-
tively) along with the fixed frequency splitting relationship (the maxi-
mum gain principle described above) fixes the respective fCEO of the 
signal and idler pulses uniquely to the cavity detuning. The output 
power of the coupled OPOs as a function of detuning is representative 
of the parametric gain, and leads to maximum conversion efficiencies 
at the second-order critical points at which the supermodes are reso-
nant. This can be seen from the simulation and experimental results in  
Fig. 2d,e. The power contained in the spectrum centred around degen-
eracy is indicative of the degenerate regime of operation. The OPO 
output after passing through a bandpass filter centred around the 
half-harmonic frequency is also shown in Fig. 2d,e, which indicates the 
presence of two distinct degenerate regimes of operation separated by 

the non-degenerate oscillation regime. The order parameter (defined 
as the derivative of the gain parameter with respect to the detuning) 
exhibits a behaviour typical of a first-order phase transition with 
the characteristic discontinuity at the first-order transition point  
(Fig. 2f). The gain parameter (λ) reveals the underlying gain competi-
tion between the two supermodes.

The eigenvector composition of the supermodes can be unveiled 
from the pulse-pattern measurements in the time domain as illus-
trated in Fig. 3a. When the coupling phase (θ) equals π/2, the antisym-
metric eigenmode has a higher frequency (corresponding to larger 
detuning) than its symmetric counterpart (Supplementary Section 2).  
The symmetric and the antisymmetric supermodes have distinct 
carrier-envelope offset frequencies as is evident from the RF spec-
trum (Fig. 3b). The pulse pattern is measured using a one-pulse 
delayed Mach–Zehnder interferometer (Fig. 3c) to infer the phases 
of the OPO pulses constituting the coupled OPOs. The coupled OPOs 
in the symmetric supermode-dominated degenerate regime (1) fea-
tures OPO pulses that are in phase (Fig. 3d). In the antisymmetric 
supermode degenerate regime (2), the OPO pulses comprising the 
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Fig. 3 | Supermodes of the coupled OPOs. a, Illustration of the supermodes  
and their associated manifestation in the time-multiplexed implementation.  
b, RF beat-note spectrum as a function of detuning in the presence of dispersive 
coupling with coupling phase θ = π/2. c, The corresponding pulse pattern at the 
output of a single-pulse delayed Mach–Zehnder interferometer. The OPO power 
in the degenerate band is also plotted. d, The interferometric pulse pattern in 
the degenerate regime (marked as 1) shows that the OPO pulses are in phase, 
representing the symmetric supermode. e, The pulse pattern in the degenerate 

regime (marked as 2) shows that the OPO pulses are out of phase, representing 
the antisymmetric supermode. f,g, Similarly, the case with the dispersive 
coupling and coupling phase θ = 3π/2 is considered, where the RF spectrum and 
the interferometer pulse pattern are displayed in f and g, respectively. h,i, The 
degenerate regime (marked as 1) shows that the OPO pulses constituting the 
coupled OPO are out of phase, implying the antisymmetric supermode (h), while 
the degenerate regime (marked as 2) shows that the OPO pulses are in phase 
indicating the symmetric supermode (i).
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coupled OPOs are out of phase (Fig. 3e). When the coupling phase is 
3π/2, the frequency spectrum of the supermodes is reversed, with 
the symmetric supermode now associated with larger detuning. This 
is revealed in the corresponding measurements shown in Fig. 3f–i. 
This agrees with the results obtained from numerical simulations 
(Supplementary Section 2).

The spectral behaviour of the coupled OPOs drastically differs 
with the alteration of the nature of mutual coupling (κ). Modification 
of the coupling phase (θ) enables us to mimic dispersive (π/2 or 3π/2), 
dissipative (0 or π) or hybrid (intermediate phases) coupling schemes 
(Supplementary Sections 4 and 12). Dispersive coupling results in split-
ting in the real part of the eigenvalues (that is, mode splitting) where 
the supermodes experience an identical rate of dissipation (the imagi-
nary part of the eigenvalue is the same) (Fig. 4a). This leads to spectral 
and temporal features resembling the aforementioned discussions  
(Fig. 4b,c). In stark contrast, dissipative coupling leads to splitting in 
the imaginary part of the eigenvalue where the supermodes experience 
disparate dissipation44 (Fig. 4d). This property of the dissipative cou-
pling is at the heart of the operation of optical coherent Ising machines12 

and recent demonstrations of topological dissipation43. Consequently, 
the absence of mode splitting is also reflected in the spectral (Fig. 4e) 
and the power (Fig. 4f) characteristics of dissipatively coupled OPOs. 
Dissipative coupling precludes the occurrence of a first-order spec-
tral phase transition and shows the mere presence of a second-order  
phase transition.

The presence of non-equilibrium phase transitions with charac-
teristic discontinuities opens up new opportunities in the domain of 
sensing. High-quality (Q)-factor optical resonators have been utilized 
for highly sensitive refractive-index perturbation measurements46. 
However, the requirement of a high quality factor for enhanced sen-
sitivity results in an unavoidable trade-off with the bandwidth and 
hence limits the sensing speed. The non-equilibrium phase transition 
in coupled OPOs can circumvent this trade-off. Figure 5a shows the 
transmission of coupled optical resonators with different round-trip 
losses. The mode splitting is observed in the regime of high-Q (lower 
round-trip loss), while low-Q (high-bandwidth) resonators cannot 
resolve the mode-splitting structure. Remarkably, this mode splitting 
can be revealed even in the low-Q regime in the nonlinear case, where 
the coupled resonators are parametrically driven as coupled OPOs  
(Fig. 5b). The sensing parameter can be the phase detuning in the 
coupling cavity of the time-multiplexed architecture leading to a 
perturbation (δθ) in the coupling phase (θ). In the presence of this 
coupling-phase perturbation, coupled high-Q linear resonators will 
respond with asymmetric mode splitting, where the degree of the 
asymmetry depends on the strength of the perturbation (Fig. 5c). The 
asymmetry also reflects the sign of the phase perturbation, which is 
an added advantage over high-Q linear cavity-based simple sensing 
arrangements, where the sensors can suffer from directional ambigu-
ity47. This asymmetric mode-splitting behaviour cannot be resolved 
by low-Q coupled linear resonators. However, low-Q coupled OPOs 
can extract these features, which is shown in Fig. 5d,e by displaying 
the power contained in the degenerate part (using a bandpass filter). 
Results obtained from our low-Q (high gain and bandwidth) experimen-
tal setup agrees well with the simulations (Supplementary Section 1).

We quantify the sensitivity of the system using a normalized 
sensitivity metric and benchmark its performance in comparison 
with linear high-Q resonator-based sensors. Our sensing protocol is 
described in Fig. 6a, which constitutes a photodetector that registers 
the bandpass-filtered (centred around degeneracy) output signal. 
The system should be biased near the spectral phase transition critical 
points to exploit the maximum sensitivity, which can be ensured by 
active locking means48. The change of detected power y in the response 
of a detuning (Δϕ) perturbation ϵ can be drastically enhanced in the 
vicinity of the spectral phase transition point owing to the transition 
from degeneracy to the non-degenerate regime, which lies outside the 
spectral acceptance bandwidth of the bandpass filter. Our simplified 
sensing scheme is compatible with high-bandwidth measurements 
and does not involve the complex process of laser frequency scanning 

and/or sweeping. The normalized sensitivity is defined as: S = 1
ymax

dy
dΔϕ

. 

The sensitivity at the first-order transition point (Fig. 6c) is much 
higher as compared to its second-order counterpart (Fig. 6b)35. The 
enhanced sensitivity near the first-order transition point comes at a 
cost of drastically reduced dynamic range as compared to that based 
on the second-order critical point. Our simulation agrees with the data 
obtained experimentally (Fig. 6d). We provide further details on the 
experimental approaches to access such sensitivities in the Supple-
mentary Information (Supplementary Section 17). The observed sen-
sitivity enhancement is equivalent to a critically coupled linear high-Q 
cavity-based sensor with a Finesse of approximately 250 (a quality fac-
tor of 1 million at 1,550 nm with a cavity of 50 GHz free spectral range). 
This represents a dramatic enhancement of more than three orders 
of magnitude in terms of the sensitivity compared to the cold-cavity 
system, which had a Finesse of ~0.5. The sensitivity for a linear high-Q 
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based sensor is shown in Fig. 6e as a reference. With a combination 
of proper dispersion engineering and system design it is possible to 
exhibit sensitivity that is equivalent to a linear high-Q-based system 
with a Finesse exceeding 104. This is extremely important in circum-
venting the difficulties associated with achieving high-quality-factor 
cavities in an integrated platform when interfacing with sensing tech-
nologies49. Our work highlights the possibility of achieving sensitivity 
levels that are on a par with state-of-the-art sensing systems using 
easily accessible low-Q-based systems. The other alternative in terms 
of sensing scheme is to resort to RF domain measurements (Fig. 2c), 
where the signal-to-noise ratio can be improved by performing coher-
ent averaging at the cost of reduced sensing bandwidth. These results 
indicate the potential of non-equilibrium spectral phase transitions for 
enhanced sensing (Supplementary Section 14).

Discussion
In summary, we have demonstrated the occurrence of first-order 
non-equilibrium phase transitions in coupled OPOs. We have experi-
mentally characterized the spectral and the temporal features asso-
ciated with this phase transition, and also revealed the eigenvector 
composition of the supermodes. We have highlighted the distinct 

spectral behaviours of coupled OPOs in the presence of dispersive 
and dissipative couplings. Finally, we have demonstrated the poten-
tial of these phase transitions in coupled OPOs for enhanced sensing. 
The results presented here can be directly relevant to other systems, 
including Faraday waves in hydrodynamics and parametrically forced 
mechanical or chemical systems. With the recent progress in the nano-
photonic lithium niobate platform50–52, exploration of extended lattices 
can become feasible, paving the way towards the study of emergent 
nonlinear phenomena in soliton networks and higher-dimensional 
lattices (Supplementary Section 8)53. The demonstrated phase transi-
tion can be modelled using the universal coupled Swift–Hohenberg 
equation and can be implemented also in Kerr nonlinear resonators54,55. 
The abrupt discontinuity at the first-order transition point and the 
associated spectral bistability can open new possibilities in the domain 
of precision sensing (Supplementary Section 6). The semiclassical 
regime considered in this work can be probed below the oscillation 
threshold56, where a quantum image of the above-threshold spectral 
phase transition exists, which may lead to the co-existence of a quantum 
phase transition (Supplementary Section 7)57. Our study mainly focuses 
on the adiabatic regime, where the control parameter is varied gradu-
ally. Introduction of non-adiabaticity can lead to the Floquet dynamics 
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with enriched phase diagrams (Supplementary Section 13)58. Intriguing 
dynamics is also expected in the case of nonlinearly coupled resona-
tors59. Analysis of noise mechanisms that could possibly constrain the 
achievable precision will be the subject of future studies. Our work lays 
the foundation for the exploration of emergent dynamics and critical 
phenomenon beyond the single-particle description and insinuates 
potential advances in sensing and computing.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods
Experimental setup
The simplified experimental schematic is shown in Fig 1e, a detailed ver-
sion of which is presented as Supplementary Fig 1 (Supplemental Sec-
tion 1). The OPO pump is derived from a mode-locked laser (1,550 nm at 
250 MHz) through second-harmonic generation in a bulk periodically 
poled lithium niobate (PPLN) crystal. The main cavity repetition rate 
is a quarter of the repetition rate of the mode-locked laser and is com-
posed of a PPLN waveguide (a reverse proton exchange waveguide that 
phase matches the interaction between pump photons at 775 nm and 
signal and/or idler photons around 1,550 nm)60,49 with fibre-coupled 
output ports, a piezo-mounted translation stage (to provide the cav-
ity detuning), a free-space section (to match the pump repetition rate 
to be a multiple of the free spectral range of the cavity), an additional 
fiber segment to engineer the cavity dispersion (dispersion compen-
sating fibers) and a couple of beam splitters (which provide the output 
coupling and interface with the coupling cavity). The coupling cavity 
repetition rate is half the repetition rate of the mode-locked laser and 
comprises several gold mirrors and a piezotranslation stage (to adjust 
the coupling phase). Additional details pertaining to the experimental 
setup and methods are provided in the Supplementary Information 
(Supplemental Section 1).

System modelling
The parametric nonlinear interaction in the PPLN waveguide  
(length L) is governed by:

∂a
∂z

= [−α(a)
2 − i

β(a)2
2!

∂2

∂t2
+…]a + ϵa∗b (1)

∂b
∂z

= [−α(b)
2 − u ∂

∂t
− i

β(b)2
2!

∂2

∂t2
+…]b − ϵa2

2 (2)

The evolution of the signal (a) and the pump (b) envelopes in the 
slowly varying envelope approximation are dictated by equations (1a) 
and (1b), respectively41. Here u represents the walk-off parameter, α 
denotes the attenuation coefficients and the GVD coefficients are 
denoted by β. The effective second-order nonlinear coefficient (ε) is 
related to the second-harmonic generation efficiency41. Additionally, 
the OPO fields experience the effect of the coupling and the cavity 
feedback every round trip:

a′1 = √1 − |κ|2a1 + |κ|eiθa2 (3)

a′2 = √1 − |κ|2a2 + |κ|eiθa1 (4)

where the subscripts 1 and 2 refer to the OPO1 and the OPO2, respec-
tively, comprising the coupled OPO. The coupling strength is denoted 
by ∣κ∣, and θ is the coupling phase:

a(n+1)(1,2) (0, t) = ℱ−1 {G
− 1

2
0 eiϕ̄ℱ {a′(n)(1,2)(L, t)}} (5)

ϕ̄ = Δϕ + lλ(a)
2c (δω) + ϕ2

2! (δω)
2 +… (6)

Equations (5 and 6) includes the round-trip loss, which is lumped 
into an aggregated out-coupling loss factor G0, the GVD (ϕ2) of the 
cavity and the detuning (Δϕ) (Δϕ = πl, where l is the cavity length detun-
ing in units of signal half-wavelengths) of the circulating signal from 
the exact synchrony. The round-trip number is denoted by n. ℱ denotes 
the Fourier transform operation. The equations are numerically solved 
adopting the split-step Fourier algorithm.
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