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Abstract: We demonstrate Bloch oscillations in a dissipatively-coupled network of time-
multiplexed resonators, and experimentally measure the topological invariants in open sys-
tems. This reveals the complex interplay between topology and dissipation with potential 
applications in quantum/classical photonics. 

Recently, there has been a great deal of interest in the emerging field of topological physics, which aims to
understand and harness unique properties originally encountered in condensed matter physics. While topological
phenomena are typically studied in closed systems, recent works on open systems has led to an array of intriguing
effects ranging from robust topological lasing [1,2] to the emergence of non-Hermitian bulk-edge correspondence
[3]. Despite growing theoretical efforts on dissipative systems, experimental measurements of geometric phases
and their associated topological invariants have almost exclusively [4] occurred in systems with conservative
couplings. Given the fundamental significance of such invariants in proving topologically nontrivial behaviors in
open systems, experiments for the direct measurement of such quantities are of great importance.

Fig. 1: Experimental demonstration of Bloch oscillations (BO) in a network of time-multiplexed res-
onators (a) Schematic diagram of a network of time-multiplexed resonators, where each resonator is represented by an individ-
ual pulse. (b) By imposing a uniform phase gradient between successive pulses (pulse-to-pulse phase shift of φ0), equivalent
to an effective force, the Bloch momentum shifts by ∆k = φ0 per cavity roundtrip, leading to BOs. (c) Experimental measure-
ments where in the absence of the effective force (φ0 = 0) light undergoes dissipative discrete diffractions in this synthetic
lattice (top). However, when a nonzero phase gradient is established, optical power exhibits an oscillatory pattern with a Bloch
period equal to NB = 8 (bottom).

Here, we use a network of time-multiplexed optical resonators to implement photonic lattices with purely dissi-
pative couplings. In accordance with our theoretical predictions, we experimentally demonstrate Bloch oscillations
(BOs) in such open systems. We then use these BOs to directly measure the geometric Zak phase and the winding
number associated with the different dimerizations of a dissipative Su-Schrieffer-Heeger (SSH) model.

Our time-multiplexed photonic resonator network, as shown schematically in Fig. 1(a), consists of a main fiber
loop (the “Main Cavity”), which supports N = 64 resonant pulses separated by a repetition period, TR. Each pulse
represents an individual resonator, the dynamics of which is governed by the following Lindblad master equation:

d
dt

ρ̂ = L ρ̂ ≡−i[Ĥ, ρ̂]+∑
j

D [L̂ j]ρ̂, (1)

where ρ̂ denotes the system density operator, Ĥ is the system Hamiltonian and D [L̂ j] = L̂ jρ̂L̂†
j − 1/2{L̂†

j L̂ j, ρ̂}
is the dissipator resulting from the nonlocal jump operators L̂ j acting on the lattice site j. By properly choosing
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D [L j], the Lindbladian of Eq. 1 supports Bloch eigenstates exhibiting bands of dissipation rates in the reciprocal
space [5].

To experimentally demonstrate BOs, we construct a 1D lattice with uniform nearest-neighbor dissipative cou-
plings (Fig. 1(b)) using jump operators L̂ j =

√
Γ(ĉ j + ĉ j+1), where ĉ(†)j represents annihilation (creation) operators

associated with site j. To implement the jump operators L̂ j, we use delay lines which are equipped with intensity
modulators that control the strengths of the dissipative couplings (Fig. 1(a)). We incorporate a phase modulator
(PM) in the main cavity to realize the Hamiltonian ĤBO =

−→
F .−̂→r , where

−→
F represents a constant effective force

along the lattice, necessary for BOs. We excite a single lattice site in the network and monitor its evolution under
different pulse-to-pulse phase gradients φ0, corresponding to different BO periods (see Fig. 1(b)). As shown in
Fig. 1(c), upper panel, when φ0 = 0, we observe in the experiment that the initial excitation undergoes dissipative
discrete diffraction, corresponding to the spread of the energy in the lattice. However, when φ0 = 2π/8 which
corresponds to a Bloch period of 8 network roundtrips, the initial excitation experiences periodic spreading and
refocusing (Fig. 1(c) lower panel), which is the hallmark of BOs.

We use BOs to measure the topological winding number associated with an open SSH lattice. For this purpose,
the intensity modulators in the delay lines are programmed to implement the staggered couplings of the SSH model
L̂A, j =

√
ΓA(ĉA, j+ ĉB, j) and L̂B, j =

√
ΓB(ĉA, j+1+ ĉB, j), where A and B represent the two sublattices in the structure.

The resulting Lindbladian exhibits a dissipative band structure that features a topologically nontrivial bandgap
(Fig. 2(a)). We examine the geometric phase acquired by a Bloch eigenstate as it moves across the Brillouin zone
in the upper band with the intracavity PM programmed to impart a pulse-to-pulse phase shift of φ0 = 2π/8. After a
complete Bloch period, we measure the amplitudes and phases of the lattice sites using a 90◦ optical hybrid. Since
the dissipative dynamics of our system do not impart a dynamical phase to the eigenstates, the relative phases
between the final state and that of the originally launched pulses provide a direct measurement of the upper-band
Zak phase. Figure 2(b) shows experimentally measured values of the Zak phase for different dimerizations of the
SSH model. Based on these results, when ΓA = 2ΓB, we observe φZ1 ≈ 0.49π and φZ2 ≈ −0.46π for the two
possible dimerizations D1 and D2 depicted in Fig. 2(b), respectively. Therefore, the absolute value of the Zak
phase in this open topological system is measured to be φZ = φZ1 − φZ2 ≈ 0.95π , which is in agreement with
the theoretically expected value of φZ = π for a topologically nontrivial SSH model, corresponding to a winding
number of W = 1.

Fig. 2: Experimental measurement of the geometric Zak phase in a dissipative SSH model using Bloch oscilla-
tions (a) Schematic diagram of an SSH lattice with two different couplings ΓA = 2ΓB together with its associated dissipation
bands. (b) Experimentally measured Zak phases associated with the upper band when ΓA = 2ΓB and for two different dimer-
izations shown in each case. Each data set represents various unit cells (shown in dashed boxes) within a single measurement.

In summary, we have experimentally demonstrated Bloch oscillations and the direct measurement of the geo-
metric Zak phase and the winding number associated with a dissipative SSH model using a network of dissipatively
coupled time-multiplexed resonators. Our results can open new avenues for implementing topological phases in
open, dissipative systems in the quantum and classical regimes.
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