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Abstract: We experimentally realize a topological actively mode-locked laser by cou-
pling the pulses with intracavity delay lines. Our work reveals a new regime of nonlinear
topological photonics and has potential applications to short-pulse lasers. © 2022 The Author(s)

Mode-locked lasers play an important role in modern science and technology and have myriad applications
in both fundamental research and in industry. While the exceptional behaviors of topological lasers [1], includ-
ing lasing in arbitrary cavity geometries, enhanced slope efficiencies, and improved spatial coherence, have been
realized in the CW regime, mode-locked topological lasers have only been studied theoretically [2]. Here we syn-
thesize the notions of point-gap topology, dissipative couplings, and active mode-locking to experimentally realize
robust topological supermodes in a mode-locked laser. Our work reveals new opportunities to study fundamental
non-Hermitian and nonlinear topological physics and provides a potential mechanism to enhance the peak powers
of short-pulse actively mode-locked lasers.

A schematic of our topological mode-locked laser is shown in Fig. 1(a). Note that this system is similar to that
used in our previous work to study topological dissipation in the linear regime [3]. The system consists of a laser
cavity (labeled the “Main Cavity”) and two delay lines, which introduce programmable time-delayed and time-
advanced dissipative couplings between the pulses of the laser. We sinusoidally modulate the intensity modulator
(IM) in the main cavity to produce N = 64 actively mode-locked laser pulses with pulse widths of ~ 100 ps [see
Fig. 1(b,c)] and a repetition period of Tiep =~ 4 ns; and we set the lengths of the delay lines to produce nearest-
neighbor couplings between the pulses. Because the lifetime 7 of the erbium ions in our EDFA gain is much longer
than the roundtrip time Tgr of our laser cavity (7/Tgr =~ 10%), the EDFA gain saturates due to the average power
in the cavity. In this collective gain saturation regime, we find that the steady-state temporal supermode of the
mode-locked laser is the lowest-loss linear eigenstate defined by the dissipative couplings between the pulses. By
engineering these couplings to implement point-gap topological lattice models [4], we drive our system into the
quasi-edge modes and domain-wall modes that are characteristic of these non-Hermitian lattices. Moreover, the
nonlinear process that drives this localization may be decomposed into nonlocal nonlinear interactions between the
mode-locked laser pulses through the EDFA gain. Such nonlinear interactions have been challenging to achieve
in photonics, and therefore our topological mode-locked laser presents opportunities to study a new regime of
nonlinear topological photonics.

To highlight the ability of our topological mode-locked laser to expand the scope of what has be studied in
topological photonic systems, we study a topological phase transition in the Hatano-Nelson (HN) model, which
consists of a 1D chain with asymmetric nearest-neighbor couplings w and v [see inset of Fig. 1(g)]. This has not
previously been realized in a photonic system. We program our dissipative couplings to realize the HN model with
w/v = v/2 and periodic boundary conditions (PBCs), for which the system has a nontrivial topological winding
number. In the presence of PBCs, the power in the laser is evenly distributed among the pulses [see Fig. 1(f)].
We then abruptly switch the boundary conditions from PBCs to open boundary conditions (OBCs), for which
the HN lattice exhibits the non-Hermitian skin effect (NHSE). Upon switching the boundary conditions, the laser
undergoes a series of oscillations before finally settling into the lowest-loss quasi-edge mode of the HN lattice
[Fig. 1(d)]. As shown in Fig. 1(e), the theoretical and experimental quasi-edge modes are in excellent agreement.
In addition, the flexibility of our laser’s dissipative couplings enables us to study the localization of the HN quasi-
edge mode for boundary conditions intermediate to OBCs and PBCs. In Fig. 1(g), we plot the measured inverse
participation ratio (IPR) of the steady-state quasi-edge mode as a function of the boundary conditions for an HN
lattice with w/v = V2.

Next, we study domain wall localization in the HN model. First, we program the laser’s dissipative couplings
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Fig. 1: (a) Schematic of mode-locked laser. (b) Mode-locked pulse in the time-domain. (¢) Power spectral density
of mode-locked pulse. (d-f) Non-Hermitian topological phase transition. (g) Quasi-edge mode localization vs.
boundary conditions. (h,i) HN domain wall lasing with no additional disorder. (j) Mean IPR as a function of
disorder. (k) Example of localization with disorder level f = 100. (I) Depiction of an HN domain wall.

to realize a domain wall between two inverted HN lattices [see Fig. 1(1). In this case, we find that the power in
the mode-locked laser localizes in the pulses centered at the domain wall [see Fig. 1(h,i)]. We then introduce
disorder into each of our dissipative couplings by adding disorder drawn from Unif(0, fw), where f is the level
of the disorder. Note that this disorder, which is drawn independently for the two delay lines, is fundamentally
non-Hermitian. Moreover, this type of disorder stands in stark contrast to previous studies of non-Hermitian dis-
order [5], which considered disorder in the on-site gain and loss. As we increase the level of coupling disorder,
we find that the domain wall localization gives way to disorder-induced localization. Evidence of this transition
is shown in Fig. 1, where we show how the average localization of the laser steady-state changes as a function
of disorder [see Fig. 1(j)] as well as an experimental observation of lasing in a lattice with strong disorder [see
Fig. 1(k)]. Note that the localized state in Fig. 1(k) is no longer located at the domain wall, which indicates that
the localization is a result of the coupling disorder and not the NHSE.

In summary, we have introduced topological mode-locked laser with intracavity couplings and experimentally
demonstrated novel nonlinear topological phenomena. Our results expose new possibilities for the study of non-
linear topological physics and may have practical applications to the design of short-pulse lasers.
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