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Abstract: We propose a resource-efficient scheme to generate various non-Gaussian states 
including binomial code states and truncated Schrödinger cat code states using coherent 
photon subtraction from a two-mode squeezed state followed by photon-number-resolving 
measurements. 
OCIS codes: 270.5585, 270.5570, 270.5290

Continuous-variable quantum information processing through quantum optics offers a promising platform
for building the next generation of scalable fault-tolerant information processors. To achieve computational advan-
tages and fault tolerance with quantum error correction, non-Gaussian resources are essential [1]. Non-Gaussianity
can be achieved with photon-number-resolved measurements (PNRD) [2,3], non-Gaussian gates such as the cubic
phase gate [4], or by the inclusion of non-Gaussian quantum states such as binomial states [5], Schrödinger cat
states [6], and Gottesman-Kitaev-Preskill (GKP) states [7]. While the binomial codes and truncated Schrödinger
cat codes have been proposed and demonstrated in the microwave domain to protect against finite photon loss
errors, their implementations in the optical domain have remained elusive. Such codes belong to a large class of
rotation-symmetric bosonic codes, which have been shown to implement fault-tolerant universal quantum com-
putation [8]. Here, we introduce an all-optical method to generate rotationally symmetric states with 4-fold and
2-fold symmetry in the phase space, in particular, the binomial code states and truncated cat code states [9].

Our method, shown in Fig. 1, starts by preparing by a two-mode squeezed vacuum (TMSV) state by inter-
fering two orthogonal single-mode squeezed vacuum (SMSV) states produced by optical parametric amplifiers
(OPAs) at the first balanced beamsplitter labeled as BS1 in Fig. 1. This is followed by two highly unbalanced

Fig. 1. The proposed scheme for generating rotation-symmetric error-correcting codes. A two-mode
squeezed vacuum (TMSV) state is generated by combining two orthogonal single-mode squeezed
vacuum (SMSV) states at the first balanced beamsplitter (BS1). Photons are subtracted from each
modes of the TMSV state using highly unbalanced beamsplitters (BS 2). The subtracted photons
are then interfered at the second balanced beamsplitter followed by PNR measurements on three
output modes, which prepares the fourth mode in the desired code state for a certain measurement
combination of n1,n2, and n3. The dotted red box represents the coherent photon subtraction process.
A particular case shown here considers [n1,n2,n3] = [1,1,4], resulting in |ψ〉 ∝ |2〉+ |6〉 with 4-fold
rotational symmetry as evident in the displayed Wigner function. OPA: Optical parametric amplifier.
BS1: Balanced beamsplitter. BS2: Unbalanced beamsplitter for photon subtraction. EOM: Electro-
optic modulator.

beamsplitters (BS 2) used for photon subtractions from each mode of the TMSV state. Next, a balanced beam-
splitter (BS 1) is placed to interfere the subtracted photons in order to erase the information about from which
mode the subtracted photons originated. As a result, this combination of photon subtractions and the balanced
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Fig. 2. Wigner functions and photon-number distributions of codewords with 4-fold and 2-fold phase
space symmetry. (a) and (c) are the binomial codewords generated for logical states |0L〉 and |1L〉
with fidelity F = 1, when [n1,n2,n3] = [1,1,2] and [n1,n2,n3] = [1,1,4], respectively. (c) and (d)
are two orthogonal codewords with mean photon-number n̄≈ 4.6 for the measurement outcomes of
[n1,n2,n3] = [0,2,5] and [n1,n2,n3] = [0,1,5], respectively.

interference allows one to coherently subtract photons from the TMSV state. Finally, photon-number-resolving
(PNR) measurements are performed on three output modes which prepares the desired state |ψ〉 in the fourth
mode for a certain configuration of PNR measurement outcomes.

In Fig. 2, two particular cases with 4-fold and 2-fold symmetry are considered with perfect PNR measure-
ment, i.e., the quantum efficiency η = 1. In (a) and (b), we show the Wigner functions of the generated binomial
codewords |0L〉 ∝ |0〉+ |4〉 and |1L〉 ∝ |2〉+ |6〉, where the initial TMSV state has squeezing of 10.63 dB and
6.08 dB, respectively. In (c) and (d), truncated cat code words are generated with 6.42 dB of initial squeezing
with shown PNR distributions. The Wigner functions exhibit strong negativity, which will be required for fault-
tolerance, and both of these codes offer to correct for single-photon losses, a prominent source of error in optical
quantum information processing. Such error correcting codes have exact orthogonal codewords in a finite dimen-
sional Hilbert space, which makes them hardware-efficient and amenable for high fidelity unitary operations.

Our proposal allows one to generate these code words with rates of KHz-MHz by pairing up with state-of-
the-art PNR detectors and can be readily realized with already demonstrated squeezing levels and high quantum
efficiency PNR detection [2, 10].
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