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Abstract: We present a split-step framework for simulating nonlinear propagation of mul-
timode quantum noise and entanglement in ultrafast pulses, beyond conventional linearized-
noise approximations. We apply our method to model state-of-the-art dispersion-engineered 
devices on thin-film lithium niobate. 

Traditionally, the high intensities required to trigger nonlinear optical phenomena have largely restricted the
operation of nonlinear photonic devices to regimes in which the scale of quantum fluctuations are very small
relative to the scale of the mean field (typically millions of photons or more). In these regimes—which include the
generation of squeezed light or entangled photons in bulk or fiber nonlinear media—quantum fluctuations and their
correlations (e.g., multimode entanglement) are conventionally treated as linear perturbations to the mean-field
dynamics [1–3]. However, with the advent of dispersion-engineered waveguides on novel material platforms like
thin-film lithium niobate (TFLN), the threshold for observing coherent nonlinear dynamics is rapidly approaching
levels involving only dozens to hundreds of photons even in single-pass waveguides [4–6].

In approaching this “mesoscopic” regime of nonlinear optics, the interplay between quantum noise and the
mean-field dynamics can become non-trivial, and in general, non-Gaussian features such as Wigner-function neg-
ativity emerge in the deeply quantum (i.e., “microscopic”), ultra-low-loss limit. But near the classical-quantum
transition, especially with moderate amounts of loss, we expect Gaussian-state approximations [2] or mixtures
thereof to provide relevant information about the nonlinear system dynamics, even when linearized approaches
show significant discrepancies [4]; e.g., see Fig. 1(a). In fact, even in a non-Gaussian full-quantum theory, we ex-
pect such “nonlinear Gaussian models” to help facilitate efficient reduced quantum representations [4]. With this
context, we present here a split-step, Gaussian-state framework for modeling pulse propagation that distinctively
features nonlinear noise dynamics despite its Gaussian-state nature.

While our approach is general, we focus here on χ(2) pulse propagation under a co-propagating Hamiltonian
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where φ̂z and ψ̂z are, respectively, the fundamental-harmonic (FH) and second-harmonic (SH) annihilation op-
erators at pulse-envelope coordinate z, obeying
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corresponding wavespace operators as Φ̂k :=
∫

e−ikz φ̂z dz (and similarly for Ψ̂k). This Hamiltonian generates prop-
agation along time coordinate t, which can be expressed as quantized coupled-wave equations (CWEs)

∂t φ̂z = εψ̂zφ̂
†
z − iΩ1(−i∂z)φ̂z, and ∂tψ̂z =−ε

2
φ̂

2
z − iΩ2(−i∂z)ψ̂z. (2)

The first and second terms of the Hamiltonian (and the CWEs) describe the nonlinear and linear (dispersive) parts
of the evolution, respectively, and they do not commute in general. Classically, similar CWEs can be efficiently
solved using Fourier split-step methods, and the same can be done for the quantized theory, provided we can
efficiently compute the two differential steps. The linear dispersive step is trivial under a split-step formulation, so
we focus only on the nonlinear (first) terms in (2), which we denote with the shorthands Ṅφ̂z and Ṅψ̂z, respectively.

Our central interest is the evolution of the quantum fluctuations δ φ̂z := φ̂z −⟨φ̂z⟩ and δψ̂z := ψ̂z −⟨ψ̂z⟩. In a
conventional linearized approach to quantum noise [1], we first assume the mean fields obey the classical CWEs
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z ⟩, and Ṅ⟨ψ̂z⟩ ≈ −ε

2
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which are solved, e.g., with a classical split-step method. An additional linearized approximation then gives
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, and Ṅδψ̂z ≈ Ṅψ̂z − Ṅ⟨ψ̂z⟩ ≈ −ε⟨φ̂z⟩δ φ̂z. (4)
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Fig. 1. (a) Linearized (orange) vs nonlinear (cyan) Gaussian approximations to a non-Gaussian state. (b) Para-
metric florescence dynamics in a TFLN waveguide (Model 1; see Ref. [5]), showing pump depletion and devia-
tions from linearized predictions (dashed). (c) Two most major squeezing supermodes [1] produced by Model 1
(real vs imag parts: thick vs thin lines; antisqueezing in parentheses). (d) Supercontinuum generation in a TFLN
waveguide (Model 2; see Ref. [6]), including beat note spectrum. (e) Covariances ⟨δ Φ̂kδ Ψ̂k′⟩ (arb. units) be-
tween FH and SH spectral components produced by Model 2. We assume FH losses of ∼ 30dB/m throughout.

Because these equations of motion are linear, they can be straightforwardly solved assuming the solution to (3).
It is worth noting there is conceptual inconsistency in the linearized approach, as the mean-field dynamics (3)
assume the field is in a coherent state, while (4) can in general produce, e.g., multimode squeezed states.

In mesoscopic regimes, however, nonlinear interactions may become strong enough for this separation of scales
to fail. To address this issue, we turn to a more systematic approximation in which we assume the system is in an
arbitrary multimode Gaussian state [2], in which we still assume all operator correlations can be reduced to means
and covariances, but we do not assume linear fluctuation dynamics. In this case, we have, without approximations,
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while for the covariances, we have in general six equations of motion. For the terms directly appearing in (5),
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where the only approximations made above are that third-order central moments of the form ⟨δ âδ b̂δ ĉ⟩ = 0,
which is true for all Gaussian states. Similar equations can be obtained for the four other covariances ⟨δ φ̂ †

z δ φ̂z′⟩,
⟨δ φ̂zδψ̂z′⟩, ⟨δψ̂zδψ̂z′⟩, and ⟨δψ̂†

z δψ̂z′⟩. It is worth noting that (5) and (6) are coupled, nonlinear equations of
motion, where the means drive the evolution of the covariances, but also vice versa. Numerically, they are efficient
to solve using Fourier split-step methods, only requiring O(N2 logN) cost for N simulation bins.

A particularly striking example of nonlinear quantum noise dynamics is the depletion of an SH pump via intense
parametric fluorescence in FH, violating undepleted-pump (linearized) approximations conventionally employed
to analyze squeezing [3]. Using similar parameters to recent demonstrations [5] of ultrabroadband parametric
amplification in dispersion-engineered TFLN, Fig. 1(b) shows that our model successfully captures this pump
depletion effect. Furthermore, with access to the complete covariance matrices ⟨δ φ̂zδ φ̂z′⟩ and ⟨δ φ̂ †

z δ φ̂z′⟩, we can
calculate squeezing supermodes as shown in Fig. 1(c), which can aid in the design of ultrabroadband TFLN-based
squeezers; compared to semiclassical Monte-Carlo simulations [5], our approach requires integrating only one
trajectory (of O(N2) variables). Finally, to demonstrate the versatility of our method, we also show in Fig. 1(d,e)
simulations of χ(2) supercontinuum generation based on ultrabroadband second-harmonic generation [6]; such
results may be useful, e.g., in exploring the quantum-noise limits of TFLN-based devices for f −2 f detection.
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