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The realization of deterministic photon–photon gates is a central goal in optical quantum computation and engineering.
A longstanding challenge is that optical nonlinearities in scalable, room-temperature material platforms are too weak
to achieve the required strong coupling, due to the critical loss-confinement trade-off in existing photonic structures. In
this work, we introduce a spatio-temporal confinement method, dispersion-engineered temporal trapping, to circum-
vent the trade-off, enabling a route to all-optical strong coupling. Temporal confinement is imposed by an auxiliary trap
pulse via cross-phase modulation, which, combined with the spatial confinement of a waveguide, creates a “flying cav-
ity” that enhances the nonlinear interaction strength by at least an order of magnitude. Numerical simulations confirm
that temporal trapping confines the multimode nonlinear dynamics to a single-mode subspace, enabling high-fidelity
deterministic quantum gate operations. With realistic dispersion engineering and loss figures, we show that temporally
trapped ultrashort pulses could achieve strong coupling on near-term nonlinear nanophotonic platforms. Our results
highlight the potential of ultrafast nonlinear optics to become the first scalable, high-bandwidth, and room-temperature
platform that achieves strong coupling, opening a path to quantum computing, simulation, and light sources. © 2022
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1. INTRODUCTION

Photons are ideal carriers of quantum information, enjoying
minimal decoherence even at room temperature and propagating
long distances with low loss at high data rates. These advantages
render optics essential to quantum key distribution [1], network-
ing [2], and metrology [3,4], and have led to significant progress
towards optical quantum computation [5–7]. The main challenge
to the latter lies in realizing on-demand entangling gates between
optical qubits, in light of the weak photon–photon coupling in
most materials. The dominant paradigm—linear optical quantum
computing (LOQC)—circumvents this problem via the inherent
nonlinearity of measurements [8], but as the resulting gates are
probabilistic [9], LOQC relies on the creation of entangled ancillae
[8] or cluster states [10–12], which suffer from large resource
overheads in terms of the number of photons and detectors per gate
[13–16].

The inherent difficulty of probabilistic gates has fueled sus-
tained interest in so-called nonlinear-optical quantum computing
(NLOQC), where deterministic gate operations are implemented
coherently through a nonlinear-optical interaction [17,18]. Here,
high-fidelity gates are possible in the strong-coupling regime when
the nonlinear interaction rate g exceeds the decoherence rate κ ,

i.e., g /κ� 1. Strong coupling is readily achieved in cavity QED,
where resonant two-level systems such as atoms mediate strong
optical nonlinearities [19–23], but such systems require vacuum
and/or cryogenic temperatures, and challenges with fabrication,
yield, and noise remain daunting despite decades of research. By
contrast, bulk material nonlinearities such as χ (3) and χ (2) are
robust, scalable, and room temperature, but the optical interaction
is much weaker, imposing very demanding requirements on the
optical loss (quality factor Q) and confinement (mode volume
V ). Moreover, to support nonlinear interactions among multi-
ple frequency bands, e.g., in χ (2) systems, one has to overcome
the challenge of realizing high-Q resonances separated by a large
frequency, for which guided-wave (e.g., ring, disk) resonators are
favorable options compared to photonic crystal (PhC) cavities.
Great progress has been achieved to this end in ultralow-loss thin-
film LiNbO3 (TFLN) [24,25] and indium gallium phosphide
(InGaP) nanophotonics [26], which has rendered plausible a
near-strong coupling regime g /κ ∼ 1 with ring resonators in the
near future. Even with these developments, however, g /κ� 1
remains a challenge owing to the ring’s large mode volume, as the
axial dimension remains unconfined. To reach strong coupling,
field confinement in the transverse dimensions is not enough. We
also need a means to confine light in the third direction—time.
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This paper introduces the temporal trap, a nonlinear-optical
mechanism to confine light in time as well as space. To facilitate
trapping, a strong non-resonant “trap pulse,” which co-propagates
with the target fields, introduces a nonlinear phase shift through
cross-phase modulation (XPM). Analogous to an optical soliton
[27], the trap pulse creates a flying photonic cavity that supports
a bound mode formed by the competition between dispersion
and nonlinearity, with a mode volume reduced by the trap duty
cycle. With appropriate dispersion engineering [28], the bound
mode is strongly detuned from the remaining cavity degrees of
freedom, ensuring single-mode dynamics that circumvent the
inherent challenges of pulsed nonlinear quantum gates highlighted
in Refs. [29,30]. As a result, we show that high-fidelity two-qubit
entangling gate (i.e., controlled-Z gate) operation is possible,
providing a roadmap to fully deterministic NLOQC. The tight
temporal confinement also significantly increases nonlinear cou-
pling strength, with g /κ & 10 plausible for realistic nonlinearities
and propagation losses on TFLN photonics. While we focus on
χ (2) systems as a case study in this work, our proposal is generic and
compatible with existing proposals in NLOQC using χ (3) nonlin-
ear interactions as well [17,18,31], where it both provides a means
to resolve the otherwise unavoidable multimode interactions and
also enhances nonlinear coupling strength. Additionally, our pre-
scription using temporal traps supports time multiplexing [32,33],
enabling significant parallelism in a single cavity.

2. OPTICAL QUANTUM COMPUTING IN A
TEMPORAL TRAP

Single-photon qubits are a leading approach for optical quantum
computation [7]. The dual-rail basis, which encodes a state in
polarization [34], time-bin [35], or path [36,37], is a particularly
attractive choice, since all single-qubit gates reduce to linear optics

[Fig. 1(a)]. To complete the gate set, we also need a two-qubit
entangling gate, e.g., a controlled-Z (CZ) gate. The most com-
mon prescription, shown in Fig. 1(b), implements CZ with a
Mach–Zehnder interferometer (MZI) that encloses a Kerr-phase
interaction:

Ûπ [c 0|0〉 + c 1|1〉 + c 2|2〉] = c 0|0〉 + c 1|1〉 − c 2|2〉, (1)

where |n〉 represents the n-photon Fock state. This circuit exploits
the Hong–Ou–Mandel effect [38] to ensure that two photons are
incident on the Ûπ gate only when the qubits are in the logical state
|1̃1̃〉, implementing theπ -phase shift exclusively for this state.

To implement Ûπ [Fig. 1(c)], one can employ the Knill–
Laflamme–Milburn (KLM) scheme, which forms the basis for
LOQC [8,9]. KLM suffers from a low success probability of 2/27
for the CZ gate, and deterministic operations require the prepara-
tion of an initial highly entangled state, e.g., a cluster state [10,11],
at significant overhead [14]. In light of these difficulties, here we
focus on NLOQC, which aims at deterministic gate operations
using coherent nonlinear dynamics [17,18]. For instance, unitary
evolution under a single-mode Kerr nonlinearity Ĥgate =

1
2χ â †2â2

for time tπ = πχ−1 implements Ûπ . In this work, we instead
consider a single-mode degenerateχ (2) Hamiltonian:

Ĥgate =
g
2
(â2b̂†

+ â †2b̂), (2)

where â and b̂ are annihilation operators for the fundamental
(FH) and second harmonic (SH) modes, respectively. As shown in
Fig. 1(d), the Hamiltonian Eq. (2) mediates interactions between
the two-photon FH state |20〉 and the single-photon SH state
|01〉 with coupling strength g > 0, resulting in a Rabi oscilla-
tion between these two states. Importantly, for an initial state of
|20〉, the system oscillates back to the same state after a period of

Fig. 1. Universal QC is realized on a dual-rail qubit basis with (a) single-qubit gates based on passive linear optics and (b) a CZ gate constructed from a
Kerr-phase interaction Ûπ inside a Mach–Zehnder interferometer. (c) Potential realizations of Ûπ in LOQC and NLOQC. (d)χ (2)-mediated Ûπ gate: cou-
pling between the FH state |20〉 and the SH state |01〉 leads to Rabi oscillations, imparting a nonlinear phase shift on the signal field. (e) Temporal trap: the
χ (2) interaction between FH and SH fields is enhanced when confined to ultrashort pulses through trap-pulse XPM. Untrapped dynamics are either (f ) cw
and single-mode or (g) pulsed and multimode, depending on the dispersion. (h) Temporal trapping imposes single-mode dynamics by breaking the degen-
eracy between trapped and untrapped modes, the former protected by an energy gap1.
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tπ =
√

2π g−1 with an opposite sign, i.e., −|20〉. As a result, for
an initial FH state of c 0|0〉 + c 1|1〉 + c 2|2〉 and a vacuum pump
state, unitary evolution under Eq. (2) for time tπ implements Ûπ

deterministically. Such a nonlinear-optical implementation of
Ûπ is also considered in Refs. [18,39–41], which motivates us to
employ this as a reference protocol for evaluating the performance
of our proposal.

Now, the problem of implementing a CZ gate reduces to the
realization of the single-mode χ (2) Hamiltonian Eq. (2) with
strong coupling, for which we sketch three possible realizations in
Fig. 1(c): a PhC cavity, a micro-ring resonator, and our proposed
scheme using an ultrashort pulse. For resonators, the cooperativity
figure of merit g /κ = g /

√
κaκb depends on the Q factor and

mode volume as follows:

g
κ
=

√
4π~c d2

eff

n3ε0λ4

Qa Qb

Ṽ
, (3)

where n is the refractive index of the medium, and Ṽ = V/(λ/n)3

is the normalized volume, with V = |n3
∫

E ∗b (Ea )
2d3
Ex |−2

defined in terms of the mode overlap integral between FH and
SH modes. Effective quadratic susceptibility of the medium deff

is related to the native quadratic susceptibility d33 via deff = d33

and deff = (2/π)d33 for critical phase matching and quasi-phase
matching, respectively (see Supplement 1 for details).

Table 1 reveals the trade-off between Q and V in resonator
design. In terms of their generic properties, a PhC cavity lever-
ages a wavelength-scale mode volume V . (λ/n)3 with modest
Q ∼ 106 (Q ∼ 107 is in principle possible, but at low yield [42–
48]). However, as PhCs rely on Bragg scattering for confinement,
simultaneous resonance of octave-spanning modes is very diffi-
cult, leading to lower quality factors Q . 104 at the SH [49–52].
On the other hand, the light in ring resonators is guided by total
internal reflection, a geometric effect that is only weakly wave-
length dependent. Therefore, rings can readily resonate modes
spanning an octave, with Q factors limited only by waveguide
loss. With ion-sliced TFLN, losses of 3 dB/m (Q = 107) have
been achieved [24], and there is a pathway to reach Q = 108 with
process improvements [53–55], which is close to the bulk mate-
rial limit [56–59]. For the Kerr effect, PhC cavities offer better
performance; however, the native nonlinearity is still too weak
in standard materials to observe strong coupling with reasonable
cavity designs (see Supplement 1). More sophisticated engineering
methods, e.g., coherent photon conversion [18,60], could provide
further enhancement to the nonlinearities on χ (3) platforms. For
χ (2), ring resonators are the superior option. Recent experiments
have demonstrated g /κ ∼ 0.01 on ultralow-loss TFLN [25] and

Table 1. Typical Estimates of Q, V, and Cooperativity
for Competing Confinement Mechanisms

a

Qa Qb Ṽ deff g/κ Modes

PhC
b

106 103 1 33 pm/V 0.03 1
Ring

c
107 107 2000 21 pm/V 0.1 1

Pulse
d

107 107 40 21 pm/V 0.8 � 1
aLiNbO3, λ= 1.55 µm.
bDoubly-resonant PhC based on intersecting nanobeams, BIC, or nanopil-

lars [49–52].
cRing circumference 2 mm, quasi-phase-matched deff = (2/π)d33, loss α =

3 dB/m, and Q = 5× 106 at λ= 1.59 µm [24].
dPulse of width 100 fs, dispersion engineered waveguide.

InGaP [26] micro-ring resonators; however, the strong-coupling
regime g /κ� 1 remains challenging due to the ring’s large mode
volume.

This paper studies the third approach: nonlinear enhancement
with trapped pulses. The approach is shown in Fig. 1(e), where in
addition to the resonant FH and SH fields, we introduce a non-
resonant “trap” field, generated by an external pulse train, which
forms a temporal potential for the resonant, quantum modes. The
Hamiltonian for this system takes the form [61]

Ĥ =
r
2

∫
dτ
(

â †2
τ b̂τ + â2

τ b̂†
τ

)
︸ ︷︷ ︸

ĤNL

+

∑
u∈{a ,b}

∫
dτ û†

τGu(τ )ûτ︸ ︷︷ ︸
Ĥa ,L,Ĥb,L

, (4)

with periodic boundary conditions on−T/2≤ τ ≤ T/2, where T
is the cavity round-trip time (see Supplement 1).

Here, âτ and b̂τ are, respectively, FH and SH field operators
with commutation relations [âτ , â †

τ ′
] = [b̂τ , b̂†

τ ′
] = δ(τ − τ ′),

defined in terms of the fast-time coordinate τ [62] in a co-
propagating frame synchronous with the trap field. ĤNL

represents the χ (2) interaction, while Ĥa ,L and Ĥb,L are the
respective linear terms for the FH and SH. For the latter,
Gu(τ )= Du(−i∂τ )+ Vu(τ ) is a function of the dispersion
operator Du and the trap potential Vu , with u ∈ {a , b}. The χ (2)

nonlinear coupling constant r = vg
√
~ωb,0η0 is related to group

velocity vg, SH frequency ωb,0, and normalized SH generation
(SHG) efficiency η0 with units [power−1

· length−2
]. As the trap-

ping potential is mediated by XPM, the shape of the temporal
trap Vu(τ )=−(n2/n)ωu, 0|c τ |2/A is determined by the sig-
nal frequency ωu, 0, trap-pulse power |c τ |2, nonlinear index n2,
and mode area A. Taking into account dispersion up to second
order and assuming group velocity matching between FH and
SH, Du(s )=ωu,0 −

1
2 (βu,2/β1)s 2, where the first and second

terms represent the carrier frequency and group velocity dispersion
(GVD), respectively. The eigenstates of Ĥu,L consist of excitations
of normal modes 9u,m(τ ) governed by competition between
the trap-pulse XPM and GVD, and they are found by solving an
eigenmode problem:(

ωu,0 +
βu,2

2β1
∂2
τ + Vu(τ )

)
︸ ︷︷ ︸

Gu (τ )

9u,m(τ )= λu,m9u,m(τ ). (5)

In the absence of a trap (Vu(τ )= 0), Eq. (5) admits continu-
ous wave (cw) eigenmodes 9u,m(τ )∝ e 2π imτ/T , i.e., the usual
normal modes of a cavity. In a typical nanophotonic cavity with
nonvanishing βu,2 [Fig. 1(f )], large energy gaps (∝ βu,2T−2)
between eigenmodes ensure that the nonlinear dynamics involve
only a single FH/SH mode pair [25]. This scenario properly
realizes Hamiltonian Eq. (2), but with weak coupling strength
due to the large mode volume. Conversely, appropriate dis-
persion engineering to achieve βu,2 ≈ 0 [Fig. 1(g)] makes all
modes nearly degenerate, allowing the cavity to support ultra-
short pulses. However, this modal degeneracy leads to a major
problem: although the nonlinear coupling is increased by the
pulse confinement, ĤNL is generally all-to-all, as no mechanism
imposes a target pulse shape, leading to intrinsically multimode
dynamics unsuitable for high-fidelity qubit operations [29,30].
These limits highlight the trade-offs between gate fidelity and
coupling rate in χ (2) resonators driven by pulses. Resonators with

https://doi.org/10.6084/m9.figshare.21354357
https://doi.org/10.6084/m9.figshare.21354357
https://doi.org/10.6084/m9.figshare.21354357
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large βu,2 driven by long pulses may realize high-fidelity gates
with low coupling rates, and conversely, resonators with small
βu,2 driven by short pulses may realize large coupling rates at the
cost of reduced gate fidelities. The trap potential eliminates these
trade-offs between gate fidelity and coupling rate [see Fig. 1(h)]:
with anomalous dispersion βu,2 < 0, Eq. (5) admits at least one
bound eigenmode 9u,0, localized in time and protected by an
energy gap 1u = |λu,1 − λu,0|. As a result, all spurious couplings
to higher-order eigenmodes are suppressed as off-resonance
(i.e., phase-mismatched), and the single-mode dynamics of
Eq. (2) are recovered, but with a nonlinear coupling boosted by the
temporal confinement of9u,0.

The importance of single-mode dynamics to high-fidelity
gate operation is highlighted in Fig. 2, where we show the
propagation of a signal instantiated in a two-photon FH pulse
|20〉= 2−1/2(â †)2|0〉, where â =

∫
dτ9∗(τ )âτ is the annihila-

tion operator for mode 9(τ). To illustrate the limitations of the
untrapped case, we first implement Ûπ using an input Gaussian
waveform9(τ) with Vu(τ )= 0. Here, the pulse width and chirp
are chosen to maximize the gate fidelity given a finite gate time (see
Supplement 1), but we observe a rapid decay of Rabi oscillations
even for such optimized pulse parameters [see Fig. 2(b)]. This
observed leakage out of the computational subspace is due to the
intrinsically multimode structure of the nonlinear polarization,
which couples photons into parasitic temporal modes. These
results provide evidence that generic quantum nonlinear propaga-
tion of a pulse cannot be described by a single-mode model such as
Eq. (2), posing a nontrivial challenge for NLOQC. This problem
is often overlooked in the community, with most proposals assum-
ing a single-mode model without discussing how single-mode
interactions are implemented [17,18,63,64].

Turning on the temporal trap resolves this problem, restoring
effective single-mode dynamics. To show this, we consider the case
of a soliton trap Va (τ )= Vb(τ )/2=−(|βa ,2|/β1τ

2
0 )sech2

(τ/τ0)

with width τ0, which supports a single bound mode 9a ,0 =

9b,0 = (2τ0)
−1/2sech(τ/τ0). Here, the finite energy gap

1a =1b/2= |βa ,2|/2β1τ
2
0 protects the computational sub-

space spanned by the bound modes from decoherence, acting as a
phase mismatch (i.e., detuning) that prevents the nonlinear polari-
zation induced by each bound mode from driving continuum
modes. For simplicity, we have assumed the dispersion relation-
shipsβa ,2 = βb,2/2 in this work, but departure from this condition
does not qualitatively change the results. The χ (2) interaction
between the FH and SH bound modes becomes phase-matched
(i.e., resonant) when ωb,0 − 2ωa ,0 = 0, which can be achieved,
e.g., by temperature tuning. As a result, effectively single-mode
physics reproducing Eq. (2) is realized between the bound FH and
SH modes with the coupling constant given by

g =
πr

4
√

2τ0
, (6)

which scales as τ−1/2
0 (see Supplement 1). In Fig. 2(a), we show

the evolution of a two-photon state instantiated in the FH
bound mode, where the photons in the trap are well localized
and propagate without dispersing apart from an initial transient.
In addition, the dynamics of the SH [Fig. 2(b)] exhibit near-
complete Rabi oscillations even for a modest trap with 1/g = 1,
where 1=1a =1b/2. These high-contrast oscillations pro-
vide strong evidence of effective single-mode dynamics, which
can be further quantified as follows. Ideally, the gate dynamics
are confined within the computational subspace spanned by
|20〉= 2−1/2(â †)2|0〉 and |01〉 = b̂†

|0〉, so we can directly pro-
ject the system evolution onto span(|20〉, |01〉) in Fig. 2(c). The
fact that nearly all of the state amplitude remains in the subspace
implies that we have realized the desired single-mode dynamics,
i.e., a 180◦ rotation in the Bloch sphere, picking up a π phase shift
after returning to the initial state |20〉.

Gate fidelity scales favorably even for moderate trap depths. In
Fig. 2(d), we plot the error E of a CZ gate as a function of the gap,
showing a favorable scaling of E ∝ (1/g )−2. For a reference input
state, we observe that gate operation with fidelity>99% is possible
with 1/g & 3. To visualize the nature of the gate errors, we also

Fig. 2. Two-photon Kerr-phase gate Ûπ with and without temporal trap acting on an initial two-photon FH state |20〉: (a) initial state and FH/SH power
〈â †
τ âτ 〉, 〈b̂

†
τ b̂τ 〉 as a function of time. (b) Rabi oscillations visualized in terms of the total SH photon number as well as (c) a Hilbert-space projection onto

span(|20〉, |01〉) and rotations on the pseudo-Bloch sphere characterized by the pseudo-Pauli operators X̂ = (â †2b̂ + â 2b̂†)/
√

2, Ŷ = (â †2b̂ − â 2b̂†)/
√

2i ,
Ẑ = 1

2 â †2â 2
− b̂†b̂ (these project onto Pauli matrices in the two-state subspace). Here we subtract trivial phase rotations induced by the linear dynamics;

see Supplement 1. (d) Gate error of a CZ gate acting on a reference state 1
2 (|0̃〉 + |1̃〉)1 ⊗ (|0̃〉 + |1̃〉)2 as a function of the energy gap1/g , where subscripts

represent the index of qubits. Insets show deviation of output field from the target (input) FH waveform. For all simulations, we use β2,a = β2,b/2 and
ωb,0 − 2ωa ,0 = 0 with a large enough system size T to avoid boundary effects. See Supplement 1 for a full discussion on numerical simulations.

https://doi.org/10.6084/m9.figshare.21354357
https://doi.org/10.6084/m9.figshare.21354357
https://doi.org/10.6084/m9.figshare.21354357
https://doi.org/10.6084/m9.figshare.21354357
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show the temporal distribution of the photons; for a shallow trap,
photons leak out as dispersive waves, which effectively act as deco-
herence channels, and incomplete conversion leads to residual SH
power. Deepening the trap increases the confinement to the bound
mode, suppressing these dispersive waves. Further, the interaction
time tπ ∝ τ

−1/2
0 required to implement the gate also shortens for

larger trap depth.

3. DISPERSION ENGINEERING AND
EXPERIMENTAL PROSPECTS

Having established that temporal trapping enables high-fidelity
quantum gates with enhanced coupling rates, we now discuss
the prospects for experimental realizations in presently available
nanophotonics platforms. In realistic situations, photon loss is the
primary decoherence channel for quantum gate operations, and
to achieve high gate fidelity, the nonlinear coupling rate g has to
be larger than the characteristic loss rate κ , which we define as the
geometric mean of the FH and SH losses κ =

√
κaκb . This choice

is motivated by analogy to the cooperativity C ∝ g 2/κcavityγatom in
cavity QED systems [65].

For a ring resonator, the nonlinear coupling between the nomi-
nal cw modes is

g cw =
vg
√
~ωb,0η0
√

T
, (7)

where we have used r = vg
√
~ωb,0η0. The round-trip length

of the resonator is given by L = vgT, and a smaller L enhances
g cw via tighter modal confinement. While micro-ring resonators
with radii . 100 µm have been realized, bending losses make
it challenging to significantly reduce the mode volume further,
limiting g cw to the order of few megahertz. The same limitation
exists for whispering-gallery-mode resonators (WGMRs). While
PhC cavities can realize much smaller wavelength-scale modal
confinement and thus stronger coupling, it is challenging to realize
high-Q resonances spanning over an octave, which compromises
the overall loss κ and results in g /κ similar in order of magnitude to
ring resonators.

In this context, our prescription allows us to circumvent this
trade-off between the mode volume and the loss: the temporal
trap forms a smaller “flying cavity” inside a ring resonator, which
confines the light further in the axial (temporal) dimension, so that
nonlinear interactions between photons benefit from both small
mode volume and low loss. Specifically, the nonlinear coupling of
the temporally trapped pulses takes the form

g trap =
πvg

√
~ωb,0η0

4
√

2τ0
=

π

4
√

2

√
T/τ0g cw, (8)

where the width of the trap τ0 plays the role of the size of an effec-
tive cavity. Comparing g trap to the cw coupling rate of the same
resonator, we find that the coupling is enhanced by the factor pro-
portional to the square root of the pulse duty cycle. Because g trap

is independent of T, temporal trapping may realize large coupling
rates for resonators of arbitrary length.

For concreteness, Fig. 3 shows a design of a TFLN resonator
optimized for implementing our scheme. To couple the quan-
tum states in and out of the resonator with high efficiency, we
assume that the coupling between the resonator and the bus
waveguide is dynamically controlled, e.g., via nonlinear optical

Trap pulses

Input stateOutput state

FH

Control signalDynamical
coupling

Fig. 3. Design of a microresonator implementing Ûπ with a temporal
trap. (a) The FH and trap are coupled into and out of the cavity though
two bus waveguides. We assume that the trap pulse is renewed in every
round trip, and that quantum input/output states are switched in and out
from the cavity by dynamical coupling [69–72]. (b) Waveguide geometry
and TE00 field distributions associated with each interacting wave; SH
(780 nm), FH (1560 nm), and trap pulse (2494 nm). (c), (d) Group
velocity mismatch (β1 − β1,a ) and group velocity dispersion (β2) as a
function of wavelength. Shaded gray region: avoided crossing between
TE00 and TM10 modes. With a suitable choice of waveguide geometry,
we may realize both group velocity matching between the FH and SH,
and anomalous dispersion for both harmonics. For the ridge geometries
considered here, anomalous dispersion may occur at short wavelengths
by choosing the location of the avoided crossing to be red-detuned from
the SH.

processes [66–68]. There exist multiple possible implemen-
tations of dynamical coupling [69–72] (potentially with their
own geometrical constraints and loss considerations), so we keep
the following discussions independent of the specific realiza-
tion. The resonator simultaneously supports a group velocity
matched FH (λa = 1560 nm), SH (λb = 780 nm), and trap
pulse (λtrap = 2494 nm). The GVD of both of the harmonics are
designed to be anomalous, supporting localized bound modes
using bright-pulse XPM. The minimum trap width τ0 is lim-
ited by the dispersion of the trap pulse, for which we assume
τ0 = 100 fs to ensure the pulse waveform does not disperse over
the propagation through the trapping region. With an estimated
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SHG efficiency of η0 = 40 W−1cm−2, we obtain a coupling rate
of g trap/2π = 11.7 MHz. For a 2 mm ring cavity (T ≈ 15 ps),
this is an order larger than the corresponding g cw obtained with-
out trapping. Moreover, the energy gap of 1/g ≈ 40 provides
sufficient isolation of the trapped modes from the continuum.
Regarding the loss, α = 0.7 m−1 [3 dB/m] has been achieved in
TFLN [24], which through the relation κ = αvg corresponds to
κ/2π = 14.4 MHz. These numbers highlight the potential to
reach a near-strong-coupling regime g /κ ∼ 1 using ultrashort
pulses with technologies available at present. Note that temporal
trapping has allowed us to employ a reasonably large resonator
size that minimizes the bending loss and sidewall roughness loss,
which we expect to make it easier to achieve the loss figure assumed
above. Even with propagation loss of 30 dB/m (corresponding to
g cw/κ ∼ 0.01), we can achieve g /κ ∼ 0.1.

Further improvements to g /κ may be possible in next-
generation devices by leveraging the scaling of g with both ω
and τ0, and by improvements to fabrication processes to reach the
material-limited loss rates for κ . Reductions of the GVD associated
with the FH, SH, and trapping pulse enable corresponding reduc-
tions of trap pulse duration τ0, thereby enhancing g trap. Ultimately,
few-cycle operation (τ0 ≈ 4π/ωtrap) may be made possible with
new approaches to dispersion engineering that reduce the GVD
of the trapping pulse. Short-wavelength operation increases g trap

through both the explicit ω1/2
b,0 scaling of g cw and the η0 ∼ω

4

[28] scaling associated with the tighter transverse confinement
attainable at shorter wavelengths. Recent demonstrations include
η0 = 330 W−1cm−2 in a TFLN waveguide at λb = 456.5 nm
[73], and in principle, devices with η0 > 1000 W−1cm−2 are
possible for FH pulses centered around Ti:sapphire wavelengths
[28]. Moreover, the pulse width can be made shorter with a shorter
wavelength, i.e., τ0 ∼ω

−1, amounting to a favorable scaling of
g trap ∼ω

3. Assuming λb = 400 nm, which we choose to be below
the Urbach tail associated with the material bandgap [74], these
scalings anticipate the possibility to achieve g trap/2π = 184 MHz,
corresponding to g /κ > 10.

In addition, process improvements may reduce losses from
the present 3–6 dB/m [24,75] by more than an order of mag-
nitude [53–55], limited primarily by bulk material absorption
[56–59,76]. For known absorption-limited losses of 0.01 m−1,
0.04 m−1, and 1 m−1 at 1600, 800, and 400 nm, respectively
[76], we find κ/2π = 0.4 MHz for SHG of telecom photons,
and κ/2π = 4 MHz for SHG of 800 nm photons. The large cou-
pling rates made possible by temporal trapping, when combined
with absorption-limited losses, provide a pathway to g /κ > 30
at telecom wavelengths and g /κ > 40 at visible wavelengths. We
compare these numbers against the current state of the art in a
variety of material systems and waveguide geometries in Fig. 4. To
date, the highest recorded g /κ based on optical nonlinearities is
g /κ ≈ 10−2 in a 1550 nm pumped InGaP microresonator [26].
In principle, short-wavelength operation and reductions in res-
onator loss may push conventional cw-pumped nonlinear devices
toward g /κ = 0.1− 1. In contrast, the g /κ enabled by nonlinear
resonators using temporal trapping may exceed these limits by two
orders of magnitude.

4. CONCLUSION

In this work, we show that temporal trapping can realize strong
photon–photon coupling by simultaneously leveraging both

Fig. 4. Figure of merit g /κ shown for various material platforms
and geometries, where the filled and unfilled markers represent experi-
mental and theoretical results, respectively [25,26,51,55,81–90]. When
g is not explicitly characterized, we use experimental measures of χ (2)

nonlinearity, e.g., SHG conversion efficiency, to estimate the coupling
(see Supplement 1 for a full discussion and references). We assume criti-
cal coupling, phase-matching between the harmonics, and κa = κb/2
when the corresponding information is not provided. Stars represent
numbers estimated for temporally trapped ultrashort pulses at telecom
(λa = 1560 nm) and near-visible (λa = 800 nm) FH wavelengths.

temporal and spatial field confinement. The energy gap created
between the trapped mode and the remaining cavity modes sup-
presses undesired multimode interactions, realizing effective
single-mode dynamics necessary for high-fidelity quantum gate
operations. Our full-quantum simulations confirm that coher-
ent nonlinear dynamics of temporally trapped ultrashort pulses
can realize high-fidelity two-qubit entangling gates in a deter-
ministic manner. This resolves the longstanding concern first
raised by Shapiro that pulsed nonlinear optics cannot implement
high-fidelity quantum gates [29,30].

Temporal trapping significantly brightens the prospects of
achieving strong coupling in existing photonic platforms [40,41].
By reducing the effective cavity volume by the pulse duty cycle, g /κ
can be increased by over an order of magnitude. Notably, numeri-
cal modeling based on realistic dispersion-engineered waveguide
designs shows that g /κ ∼ 1 is possible on existing TFLN plat-
forms, and true strong coupling g /κ� 1 is plausible with realistic
assumptions on wavelength scaling and loss, proposing a unique
route towards deterministic optical quantum computation using
ultrashort pulses.

Our generic prescription of using temporal trapping to realize
enhanced single-mode nonlinear coupling can, in principle, be
applied to a broad range of scenarios beyond discrete-variable
NLOQC. For example, continuous-variable implementations
of optical quantum computing [77,78] suffer from the same
trade-off between linearity and determinism. Applied to these
systems, strong photon–photon coupling can enable deterministic
non-Gaussian gate operations and resource state preparations
[79,80], circumventing the need for probabilistic implementations
using measurement and feedback. Combined with the ability to
manipulate temporal mode structures with optical pulse gating
[66,67], deterministic quantum operations on arbitrary photon
temporal modes could be realized. Our scheme is compatible with

https://doi.org/10.6084/m9.figshare.21354357
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intra-cavity time-multiplexing [32,33] and traveling-wave imple-
mentations, enabling unprecedented scalability, qubit uniformity,
and operation bandwidth. We expect our work to shed light on the
potential to harness ultrafast pulse dynamics for coherent quantum
computation and engineering, guiding ongoing experimental
and theoretical efforts towards this unique frontier of broadband
quantum optics.
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42. Q. Quan and M. Lončar, “Deterministic design of wavelength scale,
ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19,
18529–18542 (2011).

43. T. Asano and S. Noda, “Iterative optimization of photonic crystal
nanocavity designs by using deep neural networks,” Nanophotonics
8, 2243–2256 (2019).

https://doi.org/10.6084/m9.figshare.21354357
https://doi.org/10.1103/PhysRevLett.117.190501
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1103/PhysRevLett.88.203601
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1126/science.aay2645
https://doi.org/10.1126/science.1142892
https://doi.org/10.1038/35051009
https://doi.org/10.1103/PhysRevA.66.052306
https://doi.org/10.1103/PhysRevA.66.052306
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.93.040503
https://doi.org/10.1038/s41567-018-0347-x
https://doi.org/10.1063/1.5115814
https://doi.org/10.1103/PhysRevX.5.041007
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1063/1.4976737
https://doi.org/10.1103/PhysRevA.52.3489
https://doi.org/10.1103/PhysRevA.52.3489
https://doi.org/10.1038/nature10463
https://doi.org/10.1038/nature03119
https://doi.org/10.1038/nature03804
https://doi.org/10.1038/nature06234
https://doi.org/10.1038/nature18592
https://doi.org/10.1103/PhysRevLett.93.233603
https://doi.org/10.1364/OPTICA.4.001536
https://doi.org/10.1364/OPTICA.403931
https://doi.org/10.1364/OPTICA.440383
https://doi.org/10.1088/2515-7647/ac1729
https://doi.org/10.1103/PhysRevA.73.062305
https://doi.org/10.1088/1367-2630/9/1/016
https://doi.org/10.1103/PhysRevLett.62.2124
https://doi.org/10.1038/nphoton.2016.68
https://doi.org/10.1103/PhysRevLett.119.120504
https://doi.org/10.1038/ncomms1570
https://doi.org/10.1103/PhysRevLett.111.150501
https://doi.org/10.1038/s41566-018-0236-y
https://doi.org/10.1038/nature02054
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1364/OE.15.004677
https://doi.org/10.1103/PhysRevLett.96.057405
https://doi.org/10.1103/PhysRevLett.96.057405
https://doi.org/10.1103/PhysRevB.87.235319
https://doi.org/10.1364/OE.19.018529
https://doi.org/10.1515/nanoph-2019-0308


Research Article Vol. 9, No. 11 / November 2022 / Optica 1296

44. H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crys-
tal nanocavity with a Q-factor of 9 million,” Opt. Express 22, 916–924
(2014).

45. M. Minkov and V. Savona, “Automated optimization of photonic crystal
slab cavities,” Sci. Rep. 4, 5124 (2014).

46. T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic
crystal nanocavity with a Q factor exceeding eleven million,” Opt.
Express 25, 1769–1777 (2017).

47. D. Dodane, J. Bourderionnet, S. Combrié, and A. de Rossi, “Fully
embedded photonic crystal cavity with Q=0.6 million fabricated within a
full-process CMOS multiproject wafer,” Opt. Express 26, 20868–20877
(2018).

48. Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical
studies of photonic heterostructure nanocavities with an average Q
factor of three million,” Opt. Express 19, 11916–11921 (2011).

49. K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant photonic
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