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BACKGROUND: Electromagnetic (EM) waves
underpin modern society in profound ways.
They are used to carry information, enabling
broadcast radio and television, mobile tele-
communications, and ubiquitous access to
data networks through Wi-Fi and form the
backbone of our modern broadband internet
through optical fibers. In fundamental physics,
EM waves serve as an invaluable tool to probe
objects from cosmic to atomic scales. For ex-
ample, the Laser Interferometer Gravitational-
Wave Observatory and atomic clocks, which
are some of the most precise human-made
instruments in the world, rely on EM waves
to reach unprecedented accuracies.
This has motivated decades of research to

develop coherent EM sources over broad spec-
tral rangeswith impressive results: Frequencies
in the range of tens of gigahertz (radio and
microwave regimes) can readily be generated
by electronic oscillators. Resonant tunneling

diodes enable the generation of millimeter
(mm) and terahertz (THz) waves, which span
from tens of gigahertz to a few terahertz. At
even higher frequencies, up to the petahertz
level, which are usually defined as optical fre-
quencies, coherent waves can be generated
by solid-state and gas lasers. However, these
approaches often suffer from narrow spectral
bandwidths, because they usually rely on well-
defined energy states of specificmaterials,which
results in a rather limited spectral coverage.
To overcome this limitation, nonlinear

frequency-mixing strategies have been devel-
oped. These approaches shift the complexity
from the EM source to nonresonant-based ma-
terial effects. Particularly in the optical regime,
a wealth of materials exist that support effects
that are suitable for frequency mixing. Over
the past two decades, the idea of manipulat-
ing these materials to form guiding structures
(waveguides) has provided improvements in

efficiency, miniaturization, and production
scale and cost and has been widely imple-
mented for diverse applications.

ADVANCES: Lithium niobate, a crystal that was
first grown in 1949, is a particularly attractive
photonicmaterial for frequencymixingbecause
of its favorablematerial properties. Bulk lithium
niobate crystals and weakly confining wave-
guides have been used for decades for access-
ing different parts of the EM spectrum, from
gigahertz to petahertz frequencies. Now, this
material is experiencing renewed interest owing
to the commercial availability of thin-film lith-
ium niobate (TFLN). This integrated photonic
material platform enables tight mode confine-
ment, which results in frequency-mixing effi-
ciency improvements by orders of magnitude
while at the same time offering additional de-
grees of freedom for engineering the optical
properties by using approaches such as dis-
persion engineering. Importantly, the large
refractive index contrast of TFLN enables,
for the first time, the realization of lithium
niobate–based photonic integrated circuits on
a wafer scale.

OUTLOOK: The broad spectral coverage, ultra-
low power requirements, and flexibilities of
lithium niobate photonics in EM wave gen-
eration provides a large toolset to explore
new device functionalities. Furthermore, the
adoption of lithium niobate–integrated pho-
tonics in foundries is a promising approach to
miniaturize essential bench-top optical systems
using wafer scale production. Heterogeneous
integration of active materials with lithium
niobate has the potential to create integrated
photonic circuits with rich functionalities.
Applications such as high-speed communica-
tions, scalable quantum computing, artificial
intelligence and neuromorphic computing,
and compact optical clocks for satellites and
precision sensing are expected to particu-
larly benefit from these advances and provide
a wealth of opportunities for commercial ex-
ploration. Also, bulk crystals and weakly con-
fining waveguides in lithium niobate are
expected to keep playing a crucial role in the
near future because of their advantages in
high-power and loss-sensitive quantum optics
applications. As such, lithium niobate pho-
tonics holds great promise for unlocking the
EM spectrum and reshaping information tech-
nologies for our society in the future.▪
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Lithium niobate (LN), first synthesized 70 years ago, has been widely used in diverse applications
ranging from communications to quantum optics. These high-volume commercial applications have
provided the economic means to establish a mature manufacturing and processing industry for
high-quality LN crystals and wafers. Breakthrough science demonstrations to commercial products have
been achieved owing to the ability of LN to generate and manipulate electromagnetic waves across a
broad spectrum, from microwave to ultraviolet frequencies. Here, we provide a high-level Review of the
history of LN as an optical material, its different photonic platforms, engineering concepts, spectral
coverage, and essential applications before providing an outlook for the future of LN.

T
he technological development of our
modern society is closely linked to our
ability to make use of electromagnetic
(EM) waves. The wide EM spectrum,
spanning from radiowaves and micro-

waves through infrared radiation, visible light,
and ultraviolet (UV) radiation up to high-
energy x- and γ-rays, has transformed the
way we record images, carry information, and
transmit energy. Driven by the sophisticated
control of EM waves, the past few decades
have witnessed notable breakthroughs in a
wide range of areas such as high-speed com-
munication (1, 2), ultraprecision time-frequency
metrology (3–5), bioimaging (6–8) andquantum-
information science (9, 10).
The generation and manipulation of EM

waves lies at the heart of all scientific and
technological explorations. Depending on the
frequencies, there are several main strategies
for generation and processing: Radio fre-
quency (RF) (<~100 GHz) signals can readily
be produced by microwave oscillators and

then manipulated through conventional com-
plementarymetal-oxide-semiconductor (CMOS)
electronics. Signals with frequency greater
than 100 GHz (typically referred to as milli-
meter waves) up to a few THz can be generated,
for example, by resonant tunneling diodes and
processed by high-speed electronics that use
silicon or III-V semiconductors. For higher fre-
quencies (10 THz to 1 PHz) in the optical regime,
the most commonmethods for EM wave gen-
eration use solid-state, fiber, gas, and semicon-
ductor lasers. Although these strategies have
successfully enabled many applications, each
platform individually can only offer a limited
spectral coverage because of the specific plat-
form’s dependence dependence on well-defined
energy bands or levels of solid-state materials,
atoms, and molecules.
To overcome this limitation, another impor-

tant strategy, parametric nonlinear frequency
mixing, was introduced. Starting from optical
frequencies (hundreds of THz), this process
leverages broadband parametric nonlinear
effects for multiwave mixing to unlock previ-
ously inaccessible EM frequencies on demand.
This approach shifts the complexity from a
custom EMwave source to nonresonant ma-
terial effects, which can be engineered with
additional degrees of freedom, allowing access
to a much broader part of the EM spectrum
(THz to PHz) with unprecedented control and
performance. In addition to nonlinear fre-
quencymixing, the GHz to THz part of the EM
spectrum can be bridged through microwave-
to-optical conversion, enabling the efficient pro-
cessing of EMwaves throughwell-established
CMOS electronics.
These prospects spurred the development of

a wide range of nonlinear and electro-optic
material platforms over the past few decades.
Among these platforms, lithium niobate
(LiNbO3, or LN), which has been described as

the “the silicon of photonics” (11), turns out to
be particularly suitable for the generation and
manipulation of EM frequencies because it
offers a rare combination of advantageous
properties: (i) large electro-optic, piezoelectric,
and nonlinear-optic material coefficients; (ii)
engineerability of velocity matching through
quasi–phase matching (QPM) and waveguide
dispersion; (iii) broad transparency (400 nm to
5 mm); (iv) long-term stability; and (v) wide-
spread commercial availability of large, low-
cost, optical-quality wafers. This makes LN
one of the key photonic materials that has the
potential to expand access to an ultrawide part
of the EM spectrum and support the next gen-
eration of scientific breakthroughs and com-
mercial products.

LN platforms

LN is a ferroelectric crystal and was first syn-
thesized in 1949 (12) in its polycrystalline form.
From this discovery, it took 15 years until further
studies identified thematerial’s characteristic
electro-optical (13) and second-order nonlinear-
optical (14) properties. The growth of single-
crystalline LNusing the Czochralski technique
(15, 16) represented a breakthrough; this tech-
nique is still in use today and is able to produce
optical-qualitywafersup to adiameterof 150mm
(6 inches), and several crystal compositions—
suchas congruent, near-stoichiometric, or doped
with alkaline or transition metals—are avail-
able commercially. Over the decades, threemain
LN photonic platforms have emerged, namely
bulk crystals, weakly confiningwaveguides, and
tightly confining waveguides, whose evolution
can be found in Fig. 1.

Bulk LN crystals

Bulk LN crystals have found wide adoption
for generation and manipulation of EM waves
owing to their compatibility with free-space
optical setups, ability to handle high optical
power, ease of fabrication, and low cost. Such
crystals are typically millimeter- to centimeter-
scale blocks of LN with optical-grade polished
facets (see right side of Fig. 1).
Early demonstrations in bulk LN crystals in-

clude electro-opticmodulation (13) and second-
harmonic generation (SHG) (14). Abreakthrough
discovery occurred when it was observed that
the spontaneous polarization of LN crystals
could be inverted locally by applying a high
electric field at room temperature (17). This
process, referred to as “electric-field poling,”
opened a reliable path for engineering the
phase-velocity matching (i.e., momentum con-
servation) between different waves and made
previously explored domain-inversionmethods
that relied on high-temperature ionic diffusion
processes (18) obsolete. Photorefraction was
first discovered when investigating LN for non-
linear devices (19), which later provided the
means for high-density data storage in LN (20).
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Bulk crystals have also been formed in the
shape of discs or ring cavities, by careful
polishing of their facets (21–23). Such discs can
form so-called whispering gallery resonators
(24), with quality factors reaching hundreds
of millions (25), making them attractive for
highly coherent optical wave or microwave
sources and nonlinear-optical applications.
Recently, it was shown that ferroelectric do-
main engineering can also be achieved in
three dimensions by using femtosecond laser
pulses that are focused into the crystal (26).
This demonstration opens opportunities for a
new class of wave-mixing devices that were not
previously feasible, such as three-dimensional
nonlinear photonic crystals.
Bulk crystals are particularly attractive in

optical cavity configurations such as parame-
tric oscillators (27, 28) (see Fig. 2) to enhance
the nonlinear interaction. They are also at-
tractive for high-power applications, for use
inside laser cavities (Q-switch, intracavity
SHG), or when using ultrashort, high–peak
power laser pulses.

Weakly confining LN waveguides

Weakly confining LN waveguides maintain
interacting fields over centimeter-length dis-
tances in small-mode volumes at high inten-
sities (Fig. 1), thereby increasing nonlinear
mixing efficiencies by two to three orders of

magnitude when compared with bulk crystals.
This relaxes the optical power requirements
and enables efficient EM wave generation at
moderate optical powers in the range of milli-
watts (continuous-wave) or few nanojoules
(pulsed).
Weakly confining LN waveguides can be

formed by slightly altering thematerial com-
position or structure to locally increase the
refractive index to form the guiding core. The
first weakly confining waveguides were dem-
onstrated by lithium out-diffusion (29), which
was followed shortly thereafter by titanium
in-diffusion (30) and later proton exchange
(31) and femtosecond laser writing (32). Ti-
tanium in-diffusion and proton exchange re-
main common fabricationmethods and require
increased temperatures to drive the diffusion
processes (~1100°C for titanium in-diffusion
and ~200°C for proton exchange), which in-
crease the extraordinary refractive index of
LN by a few times 10−3 (33) and ~0.1 (34),
respectively. To form low-loss, nonlinear-active
waveguides through proton exchange, an an-
nealing step at ~300°C is used, which reduces
the index contrast to ~0.02. Such waveguides
have been used for a number of frequency-
mixing demonstrations such as the first im-
plementation of QPM (see Fig. 3) for SHG in
LN (35, 36) and integrated erbium lasers (37).
Importantly,whenused as low-loss, high-speed

electro-optic modulators, such waveguides
were a key component for long-haul commu-
nication systems (38). This platform has been
explored for low-loss quantum-optical appli-
cations, for example, up-conversion to near-
visiblewavelengths for single-photondetection
(39) and on-chip entangled photon-pair gen-
eration by spontaneous parametric down-
conversionandcontrol of the generatedphotons
(40). A large body of work in this field is re-
viewed in Gil-Lopez et al. (41).
Weakly confining waveguides are attrac-

tive because their mode volume is naturally
close to that of standard optical fibers, which
enables low interface losses (<0.5 dB at near-
infrared wavelengths) between waveguide
and fiber. Thus, a wide range of optical equip-
ment that has been developed for high-speed
optical communication can readily be con-
nected to these waveguides, providing a large
range of linear and nonlinear optical signal
processing functionalities (42). These wave-
guides can be inexpensively produced on a
wafer scale and only require standard litho-
graphic tools with readily available micro-
meter resolution.

Tightly confining LN waveguides

Tightly confiningLNwaveguides are a relatively
new class of LN structures with even smaller
mode volumes that reach subwavelengthmode
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diameters. This results in frequency mixing
efficiencies that are nearly two orders of mag-
nitude higher than those of weakly confining
waveguides, in addition to offering broad inte-
gration and dispersion-engineering opportunities.
Such strongly confining waveguides (43)

use a thin film of LN on a lower-index cladding
layer, akin to the silicon-on-insulator platform,
which can be manufactured at scale with good
film uniformity and quality. Optical wave-
guides are typically made by dry etching (44)
the LN film to form ridge waveguides or by
strip-loading with amaterial that has a refrac-
tive index that is higher than that of the top
cladding (45); however, methods such as laser
ablation and diamond-blade scoring have also
been explored. The opticalmodes in suchwave-
guides are tightly confined because of the
subwavelength waveguide dimensions and
the high refractive index contrast between the
guiding core and cladding, which enables
dense integration using low-loss small-radius
bends (46). This high index contrast has led to
highly efficient and compact frequency-mixing
and frequency-generating components such as

frequency doublers (45, 47, 48), electro-optic
modulators (49, 50), optical frequency comb
(OFC) generators (51–53), and lasers and am-
plifiers based on Er doping (54, 55).
The thin-film LN (TFLN) platform enables

photonic integration at a scale and density ap-
proaching that available on semiconductor
platforms (56). This is a highly attractive pro-
position because thematerial properties of LN
allow for the homogeneous integration of im-
portant active and passive photonic functions,
often eliminating the need for additional ma-
terials. To incorporate lasers and detectors on
TFLN, building blocks based on III-V semi-
conductormaterials still require heterogeneous
integration (57), which may be accomplished
using techniques developed for other popular
integrated-photonic platforms such as silicon
and silicon nitride (58).
Because TFLN combines high confinement

and high nonlinearity, it is particularly suit-
able for low-power continuous-wave and low-
energy pulsed applications (59). For high-power
or high-energy pulsed excitation, confinement
or nonlinearity are less critical, andmany other

bulk materials such potassium titanyl phos-
phate (KTP) and b-BaB2O4 (BBO) are frequently
used. However, one advantage of thin-film plat-
forms, such as TFLN, over bulk solutions is the
flexibility of engineering the waveguide geom-
etry, and hence dispersion, which results in
greater flexibility of phase and group velocity
matching, enabling tailoring of components
within integrated systems to access previously
unachievable operating regimes.

Material properties and engineering concepts
for bridging the EM spectrum

LN is one of several materials that has many
attractive properties for generating and ma-
nipulating EM waves, including large non-
linear-optic, electro-optic, and piezo-electric
coefficients, as illustrated in Fig. 2. LN can also
support various engineering concepts to fur-
ther enhance these effects, as shown in Fig. 3.

Nonlinear-optical effects

Nonlinear-optical effects can be used to gener-
ate new EMwaves through second-order [c(2)]
and third-order [c(3)] nonlinear-optical processes.
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Below the Curie temperature of LN (1150°C),
its crystal structure is noncentrosymmetric,
giving rise to a large second-order nonlinearity.
Meaning that an EMwave polarized along one
crystal axis can cause a phase shift in another
EM field with a certain polarization. The full
set of such interactions is called the nonlinear

tensor. For LN the strongest component is
where both EMwaves are polarized along the
axis of crystal asymmetry(termed d33) and is
27 pm/V at 1064 nm. Common second-order
nonlinearprocesses include SHG, sum-frequency
generation (SFG), anddifference-frequency gen-
eration (DFG) (Fig. 2A). Third-order nonlinear

optical processes in LN use its nonlinear re-
fractive index (n2) of 1.8 × 10−19 m2/W (60),
which is similar in strength to that of Si3N4

(2.5×10−19m2/Wat 1.55 mm), enabling efficient
four-wave mixing processes that are suitable
for applications such as optical frequency comb
(Fig. 2B).
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Linear electro-optic effect
The linear electro-optic effect (or Pockels effect)
changes the refractive index of LN proportional
to an applied electric field, which can be used
to modulate EM waves that pass through the
crystal, generating new frequencies around the
injected wave spaced by a single or multiple
of the electrical modulation frequency (Fig.
2C). LN’s largest electro-optic coefficient is
crystal-axis dependent (closely related to the
nonlinear tensor) with the largest component
being on the order of 30 pm/V and typically
requires interaction lengths of several milli-
meters up to a few centimeters to achieve the
desired phase shifts with reasonably low volt-
ages. The effect has been used tomodulate and
manipulate EM waves with electrical signals
from static or very low frequency to hundreds
of gigahertz. A key advantage of LN is that the
electro-optic effect only changes the phase of
light with no change to absorption. This is in
contrast to silicon and other semiconductors
where it is difficult to achieve independent
phase and amplitude control.

Photo-elastic effect

The photo-elastic effect changes the refractive
index of LN as a function of strain, which can
be used formodulating and frequency-shifting
EM waves by interacting with periodically
sheared or compressed LN caused by the ex-
citation of acoustic waves via the piezoelectric
effect (Fig. 2D). Typically, operation frequen-
cies of acousto-optical devices in LN are in
the megahertz to single-digit gigahertz range,
mainly because of practical considerations
such as the size of the crystal and manufactur-
ability of the electrodes.

Advantages of LN

Amore detailed description of these effects and
their use in LN can be found in several other
review papers (60–65). Important to note is
that LN does not necessarily exhibit the stron-
gest material effects when compared with other
materials. Indeed, there are many other ma-
terials such as KTP, BBO, GaAs, and InP that
have attractive material properties. However,
LN distinguishes itself by its maturity, stability,
commercial availability,wide transparency range,
and engineerability with respect to the cou-
pling between EM frequencies within a wide
spectral range, making their generation more
efficient and tailorable.

Velocity matching

Velocity matching is used for one of the most
common optical components in LN, namely
broadband electro-optic traveling-wavemodu-
lators (Fig. 3A). For efficient electro-optic in-
teraction of the RFwavewith the optical wave,
the phase velocity of the single-frequency RF
wave and the group velocity of the optical
wave should ideally be identical. This can be

achieved by engineering waveguide and elec-
trode dimensions as well as material disper-
sion. In the weakly confined LN waveguide
platform, the relatively high dielectric constant
(x11,22 = 44, x33 = 27.9) of LN at microwave
frequencies results in a velocitymismatch,which
can be addressed by using thick electrodes (a
fewmicrometers) to increase the phase velocity
of the RF wave. The lower dielectric constant of
SiO2, which is a common buffer layer for tightly
confining waveguides, increases the phase ve-
locity of the RF wave, overcoming the need for
thick electrodes for velocity matching.

Dispersion engineering

Dispersion engineering uses the material
stack and waveguide dimensions as degrees
of freedom to engineer the modal dispersion.
Waveguide dispersion is determined by the
wavelength-dependent field distribution in
the core and cladding of the waveguide (Fig.
3B). This waveguide (or geometric) dispersion
can become an important factor in the overall
dispersion, otherwise solely determined by
the material properties, by providing control
over the group-velocity mismatch and group-
velocity dispersion (59, 66). Within the LN plat-
forms mentioned above, meaningful dispersion
engineering is usually only available in TFLN
because of the large index contrast between
core and cladding.

QPM

QPM is a technique that compensates for the
phase-velocity (i.e., momentum) mismatch of
different waves. This can be achieved by either
periodically inverting the spontaneous polar-
ization of the crystal when the phasemismatch
reaches 180° [after a distance called the coher-
ence length LC (17)] (Fig. 3C) or, in guided-wave
platforms, by periodically perturbing the mag-
nitude of the nonlinear coupling throughmod-
ifications of the waveguide dimensions (67). In
the small signal conversion regime, this results
in a unidirectional energy flow over the entire
propagation length. The periodic reversal of
the spontaneous polarization can be achieved
by using well-developed optical, thermal, and
electrical domain-engineering methods (68),
amongwhich the electric-field polingmethod
is the most widely adopted one and has been
applied to all three LN platforms to generate
periodically and aperiodically poled LN crys-
tals with periods reaching submicron dimen-
sions (69). Because of the Fourier-transform
relationship between the QPM grating and
the device’s transfer function (70–72), a non-
trivial frequency response can also be readily
engineered (73). It is important to note that
electric-field poling and QPM engineerability
are not available in most other optical material
platforms, which is one of the main reasons for
the wide adoption of LN for nonlinear optical
applications.

LN photonics for unlocking the EM spectrum
LN’s combination of material properties and
engineerability provides the means to generate
EM frequencies over a range that covers nearly
five orders of magnitude (53, 74–77), span-
ning from UV light to microwaves. Figure 4
illustrates the breadth of frequencies that have
been experimentally generated and manip-
ulated using LN as a linear and nonlinear
frequency-mixing platform.

Visible and UV light

Visible and UV light (400 to 900 THz) expe-
riences very low material losses in LN owing
to the 3.93-eV-wide bandgap (~950 THz) (78)
of LN. Light in this spectral range is required
for applications such as virtual reality (79) and
probing atomic transitions for optical clocks
or magnetic field sensors (80), as well as for
molecules and cells for bioimaging (6). Visible
frequencies can be generated in LNbymaking
use of the material’s second- and third-order
optical nonlinearities in combination with well-
developed near-infrared light sources. For ex-
ample, the second-order optical nonlinearity
has enabled the generation of blue (17, 81–83),
green (82, 84), yellow (82), orange (82, 85), and
red (82) frequencies by using either SHG, which
increases the EM frequency by one octave; SFG;
or a combination thereof. The highest EM fre-
quencies that can be generated by such non-
linear optical processes are only limited by the
UVabsorption edge of LN (~950THz, or 315nm)
and can reach up to 800 to 900 THz (77, 82) in
the near UV spectral range.
Supercontinuum generation (SCG) provides

another means to generate visible light in LN
by generatingEM frequencies over a very broad
spectral bandwidth that possibly covers the
entire visible spectrum and can reach all the
way to 850 THz (59, 76, 86). SCG typically uses
the third-order nonlinearity in dispersion-
engineered waveguides. However, in LN, the
second-order optical nonlinearity can further
help to push the generated spectrum toward
shorter wavelengths through SHG and SFG
(76). Furthermore, the cascading of two second-
order processes can result in a large effective
third-order nonlinearity, which exceeds the
material’s third-order nonlinearity andwhose
sign can be controlled through the choice of
the sign of the phase mismatch. (87, 88).

Near-infrared frequencies

Near-infrared frequencies (150 to 400 THz)
are of particular interest because they are low
enough for Rayleigh scattering to be minimal
but high enough such that molecular absorp-
tion can be avoided in specific windows, which
enables low loss transmission through optical
fibers and on photonic integrated circuits
(PICs). Thismakes themparticularly attractive
for applications such as optical communications
(1, 2), microwave photonics (89), and quantum
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optics (9, 10), as well as for free-space applica-
tions that operate outside the visible spectrum,
such as light detection and ranging (LiDAR)
and deep-space communication (90). Depend-
ing on the application, near-infrared frequencies
can be generated in LN through awide range of
approaches, including Raman lasing andDFG,
which are processes that generate one or two
new EM frequencies, as well as Kerr micro-
combs, SCG, and electro-optic combs, which can
generate tens to hundreds of new EM frequen-
cies in the form of OFCs. For example, the
generation of photons at 185 THz was demon-
strated using Raman lasing in a high–Q-factor
TFLN resonator (91) pumped at 192 THz. A pop-
ular approach for the generation of widely tun-
able EM frequencies is the use of an optical
parametric oscillator (OPO). Here, two EM
waves are generated, the signal and idler, which
can be tuned by adjusting the phase-matching
condition to enable the generation of frequen-
cies between 200 and 268 THz (signal) and 110
and 178 THz (idler) (92). Such OPOs, operating
with either continuous-wave or pulses of light,
are commercially available and offer wide spec-
tral tunability, which is difficult to achieve by
other means. Squeezed light sources have also
been demonstrated in the near-infrared spec-
tral range as fundamental building blocks for
quantum sensing and computing using degen-
erate parametric down conversion (93–95).
Applications that require the generation of

many closely spaced EM frequencies can use
OFCs. These combs have been demonstrated

at near-infrared wavelengths using high–Q-
factor, dispersion-engineered Kerr micro reso-
nators in TFLN (51, 52, 96), which use the
third-order optical nonlinearity of LN or cas-
caded second-order optical nonlinearities (97).
Optical pump frequencies in the center of the
C-band (~192 THz) are often used because of
the availability of inexpensive light sources,
such as narrow-linewidth and mode-locked
lasers and high-power fiber amplifiers. An
alternative way to generate near-infraredwave-
lengths is to use SCG (similar to the process
outlined for visible-frequency generation),
which has been used for generating OFCs that
cover the full near-infrared frequency range
and even reach into the visible (600 THz)
and mid-infrared (100 THz) regions (59, 98).
Electro-optic combs provide another power-
ful tool to generate OFCs—hundreds of comb
lines from 183 to 192 THz spaced by 25 GHz
have been demonstrated (53, 99–101).

Mid-infrared frequencies

Mid-infrared frequencies (10 to 150 THz) expe-
rience low losses in LN for frequencies above
~55 THz, when the phonon absorption starts to
take place (102). Mid-infrared frequencies are
attractive because they can be used to excite
vibrational states ofmolecules (103) and hence
are useful sources for spectroscopic sensors in
applications such as air-quality monitoring in
cities or for process monitoring of chemical
plants and emissions from pipelines. Such fre-
quencieshavehistoricallybeengenerated inOPOs

by using bulk periodically poled LN (PPLN)
crystals. Use of this process has enabled the
generation of EMwaves from near-infrared fre-
quencies down to 56 THz in the mid-infrared
region (104–106), which is at the edge of the
transparencywindowof LN.More recently,mid-
infrared frequencies generated by DFG have
beendemonstrated inweakly confining (107, 108)
as well as TFLN waveguides, with continuous
wave conversion efficiencies improving by one
to two orders of magnitude. TFLN waveguides
can also be used to efficiently translate near-
infrared frequency combs to the mid-infrared
region owing to the large conversion band-
width afforded by dispersion engineering (109).
Kerrmicrocombs (110) and SCG (98, 111) have

both been used to generate OFCs in the mid-
infrared region, with the former relying on
high–Q-factor TFLN ring resonators to generate
an OFC from 139 to 162 THz (96). The frequen-
cy combs generated by SCG have a wider spec-
tral width and can reach all the way to 60 THz
(111), a value limited by the phonon absorption
of LN. In the TFLN platform, the material
absorption of the silica cladding layer under-
neath the LN thin film can also limit the gen-
erated frequencies, which has recently been
overcome by using sapphire as a low-index
cladding material (109) or by undercutting the
waveguide region (112).

THz frequencies

THz radiation (0.3 to 10 THz) can penetrate
paper, plastics, and fabric and is therefore
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attractive for standoff sensing and security
imaging, such as at airports. LN crystals are
attractive for the generation of narrow-band,
high-intensity THz frequencies by optical rec-
tification, which is a second-order nonlinear-
optic process and can also be described by
intrapulse DFG. In this process, the spectral
frequency components of ultrashort optical
pump pulses interact with each other and
generate newEM-frequency components. This
process can generate frequencies up to the
difference between the blue and red edges of
the pulse spectrum, so that a 10-fs pulse cen-
tered at 800 nm, for example, could generate
frequencies up to ~44 THz (6.8 mm).
The pump pulses that have been used for

optical rectification in bulk LN crystals are in
the near-infrared region owing to the avail-
ability of high-power, ultrashort optical light
sources, which commonly generate pulsed THz
radiation with frequencies ranging from 0.2 to
4 THz (75, 113–116), although higher frequency
generation is possible, as indicated above. Pulse
energies up to 1.4 mJ at 0.4 THz have been
demonstrated by operating bulk PPLN crystals
at cryogenic temperatures and using chirped
laser pulses (75), with conversion efficiencies
reaching up to 0.9% (117). The generation
of continuous-wave THz radiation, tunable
from 1.34 to 1.70 THz and 3.06 to 3.59 THz,
has also been demonstrated using cascaded
optical parametric processes in a singly reso-
nant OPO using a bulk PPLN crystal for phase
matching (104).

Microwave frequencies

Microwave frequencies (0.3 to 300 GHz) are
used in applications such as 5G and 6G com-
munication, radar, and radio astronomy. In
recent years, “RF photonics” has become a
widely used term to describe applications such
as the generation of ultrastable microwave
sources or the low-loss remoting of source and
transmitter, which uses light to carry modu-
lated signals to an antenna and subsequent
conversion to microwaves. In the nonlinear
optic context, suchmicrowave frequencies can
be generated directly through a DFG process
in a whispering gallery mode resonator for
the optical and microwave mode (118) or by
using TFLN-superconductor hybrid electro-
optic systems (119).
However, in most RF photonics applications,

LN is used to translate microwave frequencies
onto an optical carrier, which can then be trans-
mitted and manipulated in the optical do-
main and subsequently generate microwave
frequencies using a photodetector with an
appropriate bandwidth. The main mecha-
nisms of conversion frommicrowave to optical
frequency rely on the electro-optic and acousto-
optic effect in LN (see Fig. 2, B and C). Electro-
optic modulators have been demonstrated
in bulk crystals weakly confining waveguides

(38), and strongly confining TFLN waveguides
(49), with the latter being particularly attractive
because of the attainable high modulation
speeds and low drive voltages. The bandwidth
of these electro-optic modulators can reach
over 100 GHz (49, 64, 120, 121) and even ap-
proach THz levels (122). Acousto-optic devices
have also been demonstrated in bulk crystals,
weakly confining waveguides (123) and strong-
ly confining TFLNwaveguides (124, 125), with
interaction frequencies typically ranging from
MHz to GHz levels. Such acousto-optic devices
are traditionally used to induce small frequency
shifts, as beam deflectors, as well as moderate-
ly fast switches and power regulators (123–126).
More recently, they have enabled quantum trans-
duction for superconducting qubits (119, 127),
which is attributable to the small acousticmode
volume in nanophotonic resonators fabricated
in TFLN.

Future of LN technology

LN, in all three modalities (bulk LN crystals,
weakly confining, and strongly confining LN
waveguides), iswidely used for nonlinear optic,
acoustic, and electro-optic processes to gen-
erate and manipulate EM frequencies over
a wide spectral range. Since LN’s inception,
thematerial andmanufacturing processes have
matured, resulting in mostly discrete compo-
nents that perform well-defined functions. In
the future, bulk LN crystal components will
remain important forEM-frequency generation
across the spectrum, particularly for applica-
tions that require high optical powers, such
as in high-power OPOs, free-space acousto-
optic and electro-optic modulators, and Q-
switches in laser cavities. However, for the LN
waveguide platforms, we foresee a rapid accel-
eration of developments across two dimensions:
(i) complexity and (ii) spectral breadth (Fig. 5).
Complexity will transition from millimeter-
scale single components on chip to micrometer-
scale nanophotonic circuits followed by complex
multilayer networks in which diverse materials
are heterogeneously integrated with LN and co-
packaged with electronic circuits. The spectral
breadth of these devices will transition from
operating primarily at near-infrared frequen-
cies to generating and manipulating EM fre-
quencies from visible to microwave frequencies
on demand.

Near-term

In the near-term (next 5 years), bulk crystals
and weakly confining waveguides will remain
essential platforms for the generation of EM
frequencies, particularly in the near-infrared
and visible frequency region because they offer
mature fabrication and packaging processes.
The high-power handling capability and the low
interface loss of such commercially available
products make them particularly attractive for
serving as individual devices in system demon-

strations, for example, as part of self-referencing
systems for optical clocks, in which the LN com-
ponents canbe connected to other sophisticated
photonic infrastructure. Furthermore, the low-
loss interfacing of weakly confined waveguides
is important for quantum optics applications,
for example, for the generation of photon pairs
by spontaneous parametric down-conversion as
well as for frequency translation between quan-
tum nodes and long-haul fiber networks, in
addition to heterogeneous intranode conver-
sion. Although LN is a well-studied material,
more work is needed to investigate the opti-
mization of light-induced absorption changes
(photochromic effect), particularly for opera-
tions at short wavelengths (128).
The wider adoption of tightly confining LN

waveguides is, at present, mainly hampered
by two shortfalls: (i) the poorly understood
uniformity, repeatability, and reliability of
the commercially available starting material
and (ii) the lack of low-loss interfaces to stan-
dard optical fibers. Although there has been
someprogress in solving the interface problem
for submicron waveguides in LN (129, 130),
they still require specialized fibers and high-
precision multistep e-beam lithography and
etching, whichmay not be practical or econom-
ical for large-scale, fully packaged solutions.
A high-volume application, such as optical

short-distance data communication, will pro-
vide the commercial means to address both
the shortfalls and maturation of TFLN tech-
nologies. It will also drive the reduction of
TFLNwafer and manufacturing costs as well
as increase diversity in TFLN suppliers. This
high-volume communication application is
motivated by the ever-increasing need for
data center and cloud infrastructure, which
requires increased speed, reduced power con-
sumption, and lower cost for next-generation
communication systems. Indeed, TFLN is an
ideal candidate because of its low drive volt-
age, compatibility with CMOS electronics (49),
and high bandwidth. Long-haul telecom appli-
cations may also become commercial drivers
to mature the TFLN platform because the
major challenge for this application is per-
formance, where TFLN’s demonstrated data
(symbol) rate of 120 gigabaud and beyond is
highly attractive (49). These devices can be
drop-in replacements for existing guided-wave
LN electro-optic modulators, allowing for low
threshold commercial adoption while offering
performance advantages. For LiDAR appli-
cations, the recent breakthrough of Pockels
cavity lasers (131) by integrating III-V semi-
conductor gain sections with TFLN-based
external cavities offers unrivaled frequency
modulation speed and reconfigurability to
integrated lasers; injection locking of a laser
diode into an external LN ring modulator can
also achieve fast frequency modulation while
the wavelength tuning range is limited (132).

Boes et al., Science 379, eabj4396 (2023) 6 January 2023 7 of 12

RESEARCH | REVIEW



An alternative approach is the adiabatic fre-
quency conversion using LN-based resonators
(133). These approaches can potentially provide
a chip-based, low-cost solution to frequency-
modulated continuous-wave LiDAR. Fur-
thermore, phase modulation with minimal
intensity modulation in LN can be used to
tune the emission angle of the light beam,
without sensitivity degradation during the
scanning. Addressing these near-term indus-
trial applications with relatively simple, high-
yield designs will help tomature the platform
and achieve the statistical understanding of
issues such as device yield, uniformity, repeat-
ability, and reliability. They will also provide a
better understanding of photorefractive and
charging effects (e.g., bias drift in electro-
optical modulators) in TFLN, which can have
detrimental impacts on the performance and
stability of LN PICs, particularly when their

scale becomes large. We anticipate that in the
next 5 years, substantial investments will be
made in this space, which will build the foun-
dation of the wide-scale adoption of tightly
confining LN waveguide circuits as commer-
cial devices.
At the same time, we foresee rapid progress

in the development of TFLN at the device level
for high-efficiency frequency mixing applica-
tions, such as miniaturized OPOs and optical
phase arrays (OPAs) using integrated PPLN-
basedwaveguides ormicrocavities,where earlier
commercial adoption is feasible. For these ap-
plications, several devices can be manufactured
on the same chip with parameter sweeps to ac-
count for uniformity and fabrication-tolerance
issues, such that the best devices can be isolated
and packaged (i.e., “hand-picked”). These de-
vices will be of high value because they can
provide ultrabroadband, ultrahigh parametric

gains that reach an octave using microwatt av-
erage powers or femtojoule-level pump ener-
gies (66, 134). The same approach can be used
to develop widely tunable, on-chip oscilla-
tors for challenging spectral regimes, such as
the visible and mid-infrared spectral ranges
for addressing atomic and molecular systems
used for metrology and spectroscopy, or ef-
ficientmm-wave andTHz generation for wire-
less communication and sensing. Along this
track of integrated OPOs and OPAs, squeezed-
state generation for continuous-variable quan-
tum computing, quantum random number
generation, and quadratic dissipative soliton
formation operating in a strongly nonlinear
regime can be implemented.
One essential trend we expect to happen in

the next 5 years is the development of het-
erogeneous integration on the TFLN platform.
Based on wafer-bonding, LN waveguides will
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be interfaced with different materials at the
wafer scale, among which the integration of
III-V semiconductormaterials as laser sources,
amplifiers, and detectors will be crucial. An-
other trend that we expect will be developed is
the co-packaging of photonic and electronic
circuits, which is crucial for the control and
monitoring of large-scale LN circuits. Al-
though these initial efforts will be mainly at
the research level, they will pave the way for
future wafer-scale heterogeneous platforms
with full control and monitoring and commu-
nication functionality.

Mid-term

In the mid-term (5 to 10 years), we anticipate
that bulk crystals and weakly confining wave-
guides will continue to be used as individual
components for low-volume, price-sensitive
visible to mid-infrared frequency applica-
tions. Emerging applications such as 6G or
THz sensing will benefit from the high power-
handling capability of these devices for efficient
microwave and THz generation. However,
the relatively high material losses at the THz
spectral region (135, 136) can be detrimental
for device performance and require the gen-
eration of the THz radiation near the LN-air
interface (75, 137).
In parallel, we predict that improved low-

loss optical interfaces to submicron wave-
guides and fabrication processes that are
developed for high-volume data communi-
cation applications will result in an increased
uptake of tightly confining TFLN waveguide
circuits for near-infrared frequency applica-
tions. One of the challenges to be overcome in
the mid-term is the reproducibility of nano-
photonic components. For example, networks
of virtually identical degenerateOPOswould be
highly valuable for wavelength agile informa-
tion processing. However, the high sensitivity
of the nonlinear function of OPOs to the pre-
cise dispersion throughout the device imposes
stringent requirements on the fabrication tol-
erance (waveguide widths and etch depth),
wafer uniformity (film thickness, both within
a single wafer as well from wafer-to-wafer) and
also defect control. Active tuning and post-
processing might hold solutions to these chal-
lenges. Hence, similar to silicon photonic
circuits, one could rely on thermal heaters
for tuning, which is not attractive for energy
efficiency reasons, or the integration of ad-
vanced refractive index tunablematerials (138).
Where available, noncritical designs should be
implemented to increase dimensional toler-
ances (139, 140). This may be achievable when
expanding the design space by considering
sophisticated cladding structures, such asmul-
tilayer stacks.
Along with the improved fabrication pro-

cesses and reproducibility of nanophotonic
components, we anticipate that data commu-

nication applications will push forward the
co-packaging of photonic and electronic circuits
and the heterogeneous integration of active
materials for near-infrared light sources and
detectors (57), thereby transferring the fab-
rication processes that have been developed
for silicon photonic circuits (141) to the TFLN
platform. The integration of lasers and detec-
tors will also be highly appealing to numerous
applications that demand large-scale, fully inte-
grated PICs, such as analog microwave pho-
tonics, LiDAR, and artificial intelligence (AI).
Although at this stage the scalability of OPAs
or optical neural networks (ONNs) might not
be as vast as that available in silicon photonics,
these applications will benefit immensely from
the TFLN technology because of the substan-
tially reduced drive voltage, increased band-
width, and low insertion loss. Additionally,
it is plausible to anticipate that complex and
high-performance analog systems, including
6G mm-wave systems, RF spectrum analyzers,
and photonic analog-to-digital converters, will
be realized on TFLN. Importantly, these appli-
cations can benefit from the reduced cost by
using the matured, near-infrared components
to make the dream of the wide adoption of
photonic-based,wideband-RF systems a reality.
Additionally, we envision a more complex

system that operates from microwave wave-
lengths down to visible wavelengths and is
enabled by further integration of electro-optic,
acousto-optic, and all-optical signal-processing
components. One of the foreseeable areas where
LN can make a revolutionary impact is in OFC
technology. As a material with both second-
order and Kerr nonlinearity along with high-
bandwidthmodulators, LN is extremely suitable
for realizing integrated self-referenced OFCs
on a single nanophotonic platform with laser
sources, amplifiers, and high-speed photodetec-
tors that are heterogeneously integrated, where
ultraefficient nonlinear broadening and SHG
are readily accessible functions. In addition,
the realization of cascading a series of low–
switching voltage, high-bandwidth electro-
optic modulators would promise, among many
other applications, frequency-agile, electro-optic
frequency combs with a considerable versatility
in center wavelengths and repetition rates as
well as direct synthesis of femtosecond-class
pulse sources withoutmode locking (142). Such
sources naturally operate at repetition rates
that are compatible with on-chip resonators
and thus open a wide range of opportunities
in highly efficient nonlinear frequency con-
version using pulsed pumping schemes. Other
mid-term applications might involve dynamic
beamforming based on electro- or acousto-
optic devices, which is essential for LiDAR,
augmented and virtual reality displays, and
trapped-ion quantum computing systems. The
major challenge in themid-term is to establish
innovative system architectures that can use

different light-matter interactions (between
microwave, mechanical, and optical subcom-
ponents) without paying a substantial price in
performance and manufacturing complexity.

Long-term

In the long-term (10 years and beyond), TFLN
will be based on a large-scale (beyond 200-mm
diameter wafer) foundry process with diverse
heterogeneously integrated materials and co-
packaged electronic circuits. Such a platform
will be an excellent choice for scaling up op-
tical networking schemes in which large arrays
of classical or quantum light sources or pro-
cessing units need to be coupled, often in a
programmable way. This will enable funda-
mentally innovative applications such as fully
integrated LiDAR and ONNs, quantum com-
puting, fully integrated frequency synthesizers,
massive RF signal processing networks, and
advanced sensors. For example, photonic AI
accelerators require an array of low–energy
cost electro-optic modulators and nonlinear
photonic activation components. In addition
to neural networks, other photonic architec-
tures for optical computing such as coherent
Isingmachines also demand a large number of
photonic-based artificial spins connected by
a reconfigurable all-to-all coupling matrix. Re-
gardless of whether a time or spatially multi-
plexed approach is used, TFLN devices are
critical to realizing photonic spins based on
degenerate OPOs as well as spin-spin coupling
based on delay lineswith amplitude and phase
modulators or a Mach-Zehnder interferometer
mesh.Topological studies in synthetic dimensions
could also be interesting in such coupled reso-
nator networks.
A grand challenge in quantumengineering is

to achieve extreme optical nonlinearity (ideally
at the single-photon level) where both improve-
ment of material processing and nanoengin-
eering are required. We do see benefits from
gradual improvements in optical nonlinearity
using LN in future quantum PICs. This will
benefit quantum photonic systems in which
spatially multiplexed spontaneous parametric
down-conversion sources with fast feedback
optical switches are required for the imple-
mentation of near-deterministic single-photon
sources or large scale continuous-variable com-
putation inwhich high-quality squeezing states
are required. Regarding quantum communica-
tion networks and all-optical signal processing,
we envision that spectrotemporal shaping and
quantum transduction techniques will have
to be used to overcome the inhomogeneity of
quantum emitters or to bridge the spectral
difference between heterogeneous quantum
systems. Furthermore, LN’s fast modulation
capability with low loss based on the electro-
optic effect will be essential in almost all the
quantum systems to increase processing speed
and reduce system losses.
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Fortunately, LN is an all-around high-
performance optical material that is able to
generate and manipulate EM frequencies on
demandover a spectral range that covers nearly
five orders of magnitude with a proven history
of reliability and an ever-growing diverse port-
folio of near- to long-term applications based
on its nanophotonic platform. It is important
to note that we anticipate that PICs that make
use of TFLN will require heterogeneous inte-
gration to enable the integration of the attractive
material properties of LN with efficient light
sources and detectors. This may be realized by
heterogeneously integrating such PIC elements
on the TFLN waveguide platform (57) or by
integrating thin films of LN onto other PIC
material platforms (143). Independent of its
modality (bulk crystal, weakly confined, or
tightly confined waveguides) or, indeed, inte-
gration method, LN is in a great position to
overcome the outlined challenges to become
the material platform of choice for unlocking
the EM spectrum and to continue to revolu-
tionize optical science for years to come.
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