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Conventional computers have particular difficulties in 
solving hard combinatorial optimization problems. Such 
problems typically involve finding an optimal configu-
ration, defined by a cost function, among a very large 
number of potential candidate configurations. Examples 
of such problems include the travelling salesman prob-
lem, Boolean satisfiability (SAT) problems and MaxCut, 
to name a few. In a practical setting, such combinatorial 
optimization problems are of relevance to applications 
such as planning, logistics, manufacturing, financial 
portfolio management, computer vision, artificial 
intelligence, machine learning, bioinformatics, drug 
design and a variety of chemical and physical materials 
problems1–4.

In many cases, such combinatorial optimization 
problems are instances of non-deterministic polynomial- 
time-complete (NP-complete) problems, which repre-
sent the hardest problems within the NP class. However, 
if there were a way of solving any combinatorial opti-
mization problem in the NP-complete class with an 
improvement over conventional computing methods, 
the impact for a large number of practical applications 
would be enormous. This is because a well-known result 
states that it is possible to map any problem in NP to an 
NP-complete problem in polynomial time5,6.

To give an example of such an NP-complete problem, 
consider MaxCut (Fig. 1a). One starts with a graph, in 
which some of the vertices are connected via edges (that 
is, links). The aim is to group the vertices into two types 
such that the number of edges between the two groups 
is as large as possible. MaxCut is of direct relevance to 

problems such as circuit design7,8, machine learning9 
and computer vision10,11, and therefore even without 
any mapping is an important problem in its own right. 
A brute-force solution of MaxCut requires checking 
every possible grouping of vertices; the number of such 
groupings is exponential in the number of vertices. The 
MaxCut problem can be recast in physics language as a 
spin glass problem (Fig. 1b). To do so, a binary-valued 
spin σi ∈ ± 1 is put on each vertex, and the interaction 
constant Jij = 1 between the connected vertices and 0 
otherwise. The value of spin then encodes which group a 
vertex is in, and lowers the overall energy for connected 
spins i and j if they are in different groups (that is, if 
σiσj = −1). This can be written as an Ising Hamiltonian
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where N is the number of vertices or spins. A linear hi 
term is included for generality, although for MaxCut it is 
not required. Finding the minimum energy of equation 
(1) is then equivalent to solving MaxCut. We note that 
the Ising Hamiltonian (1) can be related to a quadratic 
unconstrained binary optimization (QUBO) problem 
under a simple change of variables σi = 1 − 2xi, xi ∈ {0,1}, 
and hence they can be regarded as equivalent problems.

Such optimization problems are commonly solved 
on large-scale high-performance classical comput-
ers, using variants of Monte Carlo methods. With the 
demise of Moore’s law, it is of interest whether alternative 
methods — perhaps based on unconventional methods 
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of computing — could be used to solve such optimi-
zation problems. Alternatives to Turing’s concept of a 
deterministic digital computing machine12 have a long 
history, particularly the analogue computers used for 
physical simulators to investigate complex problems13. 
In an analogue computer, the computation is performed 
using coupled physical systems that evolve continuously 
according to their physical dynamics. They are imple-
mented by analogue electronics or mechanical systems, 
for example. Analogue computers were used predom-
inantly in the first half of the twentieth century when 
digital computing speeds were insufficient, and they 
continued to be used for several decades for specialized 
applications such as flight simulation, although even 
these applications have been now rendered obsolete.

Interest in the field of quantum simulation14–16 in 
many ways mirrors this development of classical ana-
logue computers and led to a resurgence of interest 
in realizing analogue simulators of the Ising model. 
Quantum simulation was in fact one of the early moti-
vations for realizing a quantum computer, based on 
Richard Feynman’s conjecture that a quantum com-
puter could simulate quantum systems more efficiently 
than classical computers14 — proven over a decade 
later17. Although a large-scale, fault-tolerant quantum 
computer is still a challenging goal, technologically, 
advances in the manipulations of many-body quantum 
systems using cold atoms, ions or artificial qubits poten-
tially allow for a way of simulating complex quantum 
systems without requiring the full controllability of a 
quantum computer15,16,18–22. This insight led to the idea 
that Ising models might be realizable using a quantum 
simulation approach23,24, in which alternative models 
of computation could be used to find the ground state 
more efficiently. The first large-scale physical implemen-
tation of the quantum approach was a 128-qubit quan-
tum annealer realized by D-Wave Systems, followed 
by larger-scale systems25,26. Today, there are numerous 
approaches, incorporating a variety of techniques (both 
classical and quantum), which will be described and 
compared in this Review.

In the classical realm, one of the main drawbacks of 
analogue computers compared with digital computers 
is that they are more susceptible to error, owing to the 
analogue storage of information. Nevertheless, analogue 

computers can have several advantages over digital com-
puters. First, the operation of the analogue computer is 
typically highly parallelized. For a system consisting of 
many coupled systems that encode information, each 
system evolves in parallel, in contrast to digital comput-
ers in which parallelization is performed across multi-
ple processors. Second, there is no additional overhead 
arising from the implementation of digital logic. In 
many cases the time evolution of a physical system is 
continuous, but in a simulation on a digital computer 
it is discretized and evolved in a step-wise sequence, 
which requires additional resources not required in 
analogue simulation. Analogue computing is in many 
ways analogous to the way the brain operates: there is 
no predefined algorithm, and its operation is inherently 
massively parallel and asynchronous. This ‘natural com-
puting’ approach has intrigued researchers for decades, 
both from the point of view of improvements over cur-
rent computing, and for understanding how biological 
systems compute.

In this Review, we survey hardware devices that 
have been developed with the aim of solving the Ising 
model; we call such devices ‘Ising machines’. An impor-
tant caveat is what exactly we mean by solving the Ising 
model. In many applications, suboptimal but still good 
solutions are acceptable in practice; hence we consider 
primarily heuristic and approximate solvers. We focus 
on discussing their underlying operating principles27 and 
introduce the types of technologies that have been used 
to implement them. The technologies include variations 
of classical thermal annealers, quantum annealers, and 
dynamical system-based solvers including the coher-
ent Ising machine, which have attracted interest in the 
past decade. We also describe other types of computing 
devices such as those based on hybrid quantum–classical 
systems. We discuss the performance of the investigated 
devices, focusing on the scaling with regard to the size 
of the Ising problem.

Operating principles of Ising machines
Classical thermal annealing
One of the fundamental concepts that is encountered 
in connection to solving the Ising model — and opti-
mization problems in general — is annealing. Inspired 
by concepts in statistical mechanics, the configurations 
corresponding to the lowest values of a cost func-
tion (or energy, in the context of physics) are found 
by gradually lowering the effective temperature of a 
system. The basic observation is that at thermal equi-
librium, a classical physical system follows statistics 
according to a Boltzmann (or Gibbs) distribution

( )
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, kB is the Boltzmann constant, 

T is thermodynamic temperature and En is the energy 
of each of the 2N spin configurations of the Ising model 
(1), labelled by n = {σ1,…,σN}. The lowest-energy states 
appear with higher probability, and the probability of 
obtaining the ground state, that is, the desired solution 

Key points

•	Dedicated	hardware	solvers	for	the	Ising	model	are	of	great	interest,	owing	to	their	
many	potential	practical	applications	and	the	end	of	Moore’s	law,	which	motivate	
alternative	computational	approaches.

•	Three	main	computing	methods	that	Ising	machines	use	are	classical	annealing,	
quantum	annealing	and	dynamical	system	evolution.	A	single	machine	can	operate		
on	the	basis	of	multiple	computing	approaches.

•	Today,	Ising	hardware	based	on	classical	digital	technologies	is	the	best	performing	
for	common	benchmark	problems.	However,	the	performance	is	problem-dependent,	
and	alternative	methods	can	perform	well	for	particular	classes	of	problems.

•	For	particular	crafted	problem	instances,	quantum	approaches	have	been	observed	to	
have	superior	performance	over	classical	algorithms,	motivating	quantum	hardware	
approaches	and	quantum-inspired	classical	algorithms.

•	Hybrid	quantum–classical	and	digital–analogue	algorithms	are	promising	for	future	
development;	they	may	harness	the	complementary	advantages	of	both.
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of the Ising model, increases as the temperature is low-
ered. To produce such a state at thermal equilibrium, the 
system evolves according to a master equation, typically 
of the form

p

t
w p w p

d

d
= − + , (3)n

nm n mn m

where pn is the probability of being in the nth energy 
state and wnm is the rate for transition from the nth to 
the mth state. The rates are taken such that in the limit 
that time t → ∞ the probability distribution follows (2). 
Evolving equations (3) long enough guarantees obtain-
ing the low-energy solutions for a sufficiently low tem-
perature. The main problem is that particular energy 
landscapes require extremely long times before thermal 

equilibrium is reached, owing to the possibility of getting 
trapped in a local minimum (Fig. 1c). The solution to this 
problem is to gradually lower the temperature or anneal 
the system such that at each temperature the system has 
a chance to equilibrate. By reducing the temperature 
with an inverse logarithmic dependence on time, one is 
guaranteed to obtain the ground state28.

As a classical computer algorithm, simulated anneal-
ing (SA) remains one of the most popular algorithms 
that can be applied to optimization problems. On a 
classical digital computer, it is preferable to perform an 
equivalent stochastic sampling approach, rather than 
run equation (3) directly, owing to the exponential 
resources required. As such, typically one uses a Monte 
Carlo algorithm employing the Metropolis–Hastings 
algorithm29,30, such that the desired Boltzmann distri-
bution is obtained. Substantial improvement over SA 
is obtained by more sophisticated classical algorithms, 
such as parallel tempering31,32, population annealing33 
and isoenergetic cluster moves34, to mention a few. For 
both parallel tempering and population annealing, mul-
tiple copies of the system are prepared in random initial 
states. For parallel tempering, each copy has a different 
temperature parameter. The temperature is increased for 
the copies that perform poorly and is decreased for the 
ones that perform successfully. In population annealing, 
poorly performing copies are probabilistically removed 
and those that perform successfully are replicated, while 
reducing the temperature35,36.

Simulated annealing has also been implemented in 
dedicated hardware using digital hardware accelerators 
and analogue natural computing approaches, providing 
the chance to exploit the parallelization of such hard-
ware. For analogue computation, numerous physical 
implementations of Ising and related models have been 
realized or proposed, including magnetic devices37–45, 
optics46–48, memristors49,50, spin-switches51, quantum 
dots52, single atoms53, microdroplets54 and Bose–Einstein 
condensates24,55 (Fig. 2). For example, stochastic magnet 
tunnel junctions can act as probabilistic bits, which ther-
mally fluctuate between either parallel or antiparallel 
mutual orientations of magnetic domains37,38,40 (Fig. 2a). 
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Fig. 1 | combinatorial problems, the ising model,  
and its energy landscape. a | Examples of combinatorial 
optimization problems. In the travelling salesman problem 
(top), the aim is to find the shortest possible route that visits 
each city exactly once and returns to the origin city. The 
travelling salesman problem can be mapped onto the Ising 
model by encoding the information of the city and its route 
ordering as a spin variable. The total number of spins 
required is the square of the number of cities. For MaxCut 
(bottom), the the optimal division is indicated by the 
dashed line. b | An example of an eight-spin Ising model, 
equivalent to the MaxCut problem in part a. On each node 
is a two-valued spin (arrow). Edges correspond to assigning 
an coupling between spins i and j of Jij = 1. c | Schematic 
energy landscape of the Ising model and some mechanisms 
used in Ising machines to overcome local minima: thermal 
excitations used in classical thermal annealing, quantum 
tunnelling in quantum annealing, the minimum gain 
principle in coherent Ising machines, and attractors in 
dynamical system evolution.

Nature reviews | Physics

R e v i e w s



0123456789();: 

An arbitrary Ising interaction between the coupled bits 
is realized by measuring the orientation of the bits and 
adjusting the barrier energy between the two orientations. 

This set-up was used to factor integers by an adiabatic 
procedure39. In another approach, memristors have been 
used to perform an analogue matrix multiplication of the 
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Fig. 2 | Example technologies used to realize various types of ising machines. a | Stochastic magnetic tunnel junctions 
such as a probabilistic bit (p-bit; right) have a lower energy barrier ΔE between parallel (P) and antiparallel (AP) orientations 
of the magnetic layers, compared with conventional magnetoresistive random-access memory (MRAM; left). b | Memristor 
crossbar array to perform matrix-vector multiplication49. c | Metal–insulator VO2 system to realize coupled electrical oscillators. 
d | Complementary metal–oxide–semiconductor (CMOS) chip with 28-nm transistors, which realizes a 1-million-spin 
Boltzmann machine. e | In a Boltzmann machine realized using Co atoms (grey dots) on the surface of black phosphorus 
(blue dots) interacting with a scanning tunnelling microscope, spins s1 and s2 switch stochastically whereas spin k remains 
fixed. The gate voltage V is above the threshold Vth for stochastic switching. f | Spatial light modulator (SLM)-based photonic 
annealer. g | Coherent Ising machine measurement–feedback loop. PSA, phase-sensitive amplifier. Part a is adapted with 
permission from reF.39. Part c is adapted with permission from reF.100. Part d is adapted with permission from reF.69. Part e is 
adapted with permission from reF.53. Part f is adapted with permission from reF.46. Part g is adapted with permission from reF.223.
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Ising matrix to evaluate the energy; using the intrinsic 
hardware noise, they performed a highly parallelized 
implementation of a Ising model annealer49 (Fig. 2b). In 
optical systems, the Ising model was realized by encod-
ing the spins using the phase of the light, and a recur-
rent feedback network was used to produce the Ising 
couplings46–48 (Fig. 2f). This system converges towards the 
Boltzmann distribution (2), with the primary advantage 
being the fast parallelized spin updates.

For digital-electronic approaches, hardware acceler-
ators using CMOS application-specific integrated cir-
cuits (ASICs)56–60 and field-programmable gate arrays 
(FPGAs)61–65 have been investigated to solve the Ising 
model as a type of domain-specific computing. For 
example, complementary metal–oxide–semiconductor 
(CMOS) circuits have been used to implement 2 × 104 
Ising spins; each spin interacts with up to five local 
spins56. Random thermal effects were introduced by 
either introducing random spin-flips during calcula-
tion of spin values or applying a low supply voltage to 
the memory cells, which also introduces randomness 
at the level of the hardware. In another approach, an 
8,192-spin Ising machine with full connectivity was real-
ized, based on a digital-CMOS-chip implementation of 
SA, where spin updates are performed in parallel57,58,61,62. 
The parallelization allows for a large speed-up in com-
parison to a serial implementation of SA. We note that 
in the context of machine-learning accelerators66, hard-
ware implementations of Boltzmann machines have been 
investigated with CMOS ASICs67–69 (Fig. 2d), FPGAs70–75 
and graphics processing units (GPUs)76,77. The similarity 
of the underlying energy model of Boltzmann-machine 
hardware accelerators suggests that such technologies 
could be adapted to act as Ising solvers. For instance, 
an FPGA implementation of the restricted Boltzmann 
machine’s stochastic sampling algorithm to solve the Ising 
problem has been demonstrated64. In this case, the prob-
lem is mapped to a bipartite version and each group of 
spins is updated by applying parallel SA60,78. The inherent 
parallelism of this architecture allows parallel sampling, 
which provides substantial improvement over SA.

Dynamical system solvers
In a thermal annealer, at any given point of time dur-
ing the evolution, the system is ideally in a state that is 
at thermal equilibrium, following the Boltzmann dis-
tribution. Likewise, as discussed below, in a quantum 
annealer the system ideally remains in the ground state 
of the instantaneous Hamiltonian. To ensure these con-
ditions, annealing must proceed sufficiently slowly to 
maximize the probability that the minimum energy 
state of the Ising model is obtained. In contrast to such 
annealing-based approaches, alternative strategies exist, 
in which the system evolution is much faster than ther-
mal equilibriation and adiabatic timescales. In such 
dynamical system approaches, the state of the system 
is driven towards the lowest energy state of the Ising 
model. An early example of such a dynamical solver 
used electronic circuits to realize equation (1)79,80. In 
this section, we explain three types of dynamical system 
solvers: coupled oscillators, coherent Ising machines and 
chaotic systems.

Oscillator-based computing. Dating from the 1950s, the 
‘parametron’ computer is a pioneering type of analogue 
computer, based on coupled oscillators81–83. The state 
information, such as the configuration of an Ising spin, 
is represented by the phase of an oscillator. In the pres-
ence of a nonlinearity, an oscillator with resonant fre-
quency ω0 can be phase-locked with a pump frequency 
2ω0 with two possible stable phases, 0 or π, that repre-
sent the digital information. In its original conception, 
information processing in the parametron computer 
occurs as a sequence of logical gates. However, it was 
also shown that a computation can be performed in a 
more parallel, natural computing approach (as reviewed 
in reFs84,85). Such coupled oscillators can be used for 
solving combinatorial optimization problems, such as 
the Ising model.

The basic idea of oscillator-based computing can be 
captured by the Kuramoto model, which describes a sys-
tem of oscillators mutually coupled by an interaction86–88. 
Consider N oscillators, labelled by index i, that oscillate 
with frequency ω0. Denote the phase of the ith oscillator 
by ϕi. Mutually coupling the oscillators, the dynamical 
system can be described by

∑ (4)
ϕ
t

ω K J ϕ ϕ Kh ϕ ω t
d
d

= + sin( − ) + sin( − ),i

j
ij i j i i0 0

where K is a coupling parameter that controls the overall 
contribution of the Ising dynamics. In the rotating frame, 
the ϕ ϕsin( − )i j

 factor has two steady-state solutions 
= 0

ϕ

t

d

d
i , where the phases are either in or out of phase. 

The ϕ ω tsin( − )i 0  term is also stable when ϕi − ω0t = 0,π. 
Thus, the system converges to a particular configuration 
of phases; in a simulation of the Ising model a spin read-
out can be performed from this configuration. For the 
case of constant Jij and hi = 0, the Kuramoto model can be 
analytically solved to show a dynamical phase transition 
between unsynchronized and synchronized oscillators, 
for particular interaction strengths. This type of dynam-
ics has been applied to numerous artificial intelligence 
problems, such as image processing, pattern recognition 
and generation84,85.

Such oscillators, implemented as a system of coupled 
LC circuits, have been proposed as a means to solve 
the graph colouring problem89,90. The aim is to colour the 
vertices of a graph with k colours such that no adja-
cent vertices have the same colour; for k ≥ 3 this is an 
NP-complete problem. For k = 2, the oscillator scheme 
is able to correctly find solutions, but for the more dif-
ficult k = 3 case the scheme only succeeded for a subset 
of problem instances89. The approach was theoretically 
further developed, including explicitly extending to the 
case of solving Ising problems and analysing various 
possible physical implementations91–96. Oscillator net-
works have been experimentally demonstrated with sys-
tems such as bulk analogue electronic oscillators93,97–99, 
the VO2 insulator-to-metal transition100–102 (Fig. 2c), 
spin oscillators103,104 and integrated CMOS electronic 
oscillators105–107. These systems have been used to solve 
problems such as graph colouring, maximum independ-
ent set and the Ising model. In several of these studies, 
the network was enabled to find low-energy solutions 
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of the Ising model by adding noise and turning on the 
interactions smoothly.

A related approach called memcomputing uses 
networks of Boolean logic gates as a dynamical sys-
tem solver. These have conceptual similarities with 
oscillator-based Ising machines, even if they are not 
explicitly constructed from networks of oscillators108,109. 
Such approaches have been applied successfully to 
frustrated-loop Ising model instances110,111.

Coherent Ising machine. Oscillator-based Ising machines 
of a particular class, dubbed ‘coherent Ising machines’ 
(CIMs), are naturally suited to being implemented with 
optical oscillators112–121 (Fig. 2g). Each Ising spin σi in a 
CIM is encoded in the phase ϕi of light in an optical 
mode. To enforce binary spin values ϕi = 0,π, CIMs use 
degenerate optical parametric oscillators (DOPOs), 
which are a form of parametric oscillator in which 
phase-sensitive gain yields oscillations either in-phase 
or out-of-phase with respect to the oscillator’s pump 
light113,122. Each DOPO represents a single spin and is 
part of a network of DOPOs that are coupled together 
such that the coupling between a pair of DOPOs is pro-
portional to the Ising spin–spin coupling Jij. Several 
ways to realize couplings have been proposed24,113–116, 
but for the experimental demonstrations performed thus 
far, the details of the coupling scheme are not crucial for 
understanding the Ising-solving capability of each CIM 
implementation.

Modelling DOPOs as classical oscillators, the time 
evolution of a CIM can be modelled by the following 
system of coupled differential equations in the rotating 
frame113,117:

∑ (5)
a
t

γa ra κ a a g J a gh n
d
d

= − + * − − − + ,i
i i i i

j
ij j i i

2∣ ∣

where each ai is a complex number representing the opti-
cal field in the ith mode, γ is the decay rate of the pho-
tons from each mode, r is the amplification provided by 
DOPO gain, κ is the coefficient of nonlinear loss due to 
OPO gain saturation, g is a coupling constant determin-
ing the strength of the Ising interactions, and ni are 
Langevin noise operators associated with the photon 
decay and nonlinear gain. The notation * denotes complex 
conjugation. The effect of the Ising terms −g∑jJijaj − ghi  
can be thought of as additional loss terms that act on 
the ith mode.

The key differences between these equations of motion 
and those for Kuramoto oscillators (4) are that the oscil-
lator amplitudes are explicitly considered, in addition to 
their phases, and there are loss and gain terms; it is these 
terms that are responsible for DOPOs having an oscil-
lation threshold. For a single DOPO, the loss and gain 
terms result in the DOPO being bistable: above thresh-
old, a DOPO oscillates either exactly in-phase or exactly 
out-of-phase. Because the Ising terms can be interpreted 
as spin-configuration-dependent loss, one can interpret 
the DOPO network as having a collective-oscillation 
threshold that is lowest when the Ising terms are small-
est, and hence when the represented spin configuration 
has minimum energy. If the CIM is operated such that the 

gain is slowly increased from 0 (where the DOPO net-
work is below threshold) to ever-higher values — that is, 
r is not a constant, but rather a monotonically increasing 
function of time — then, in the absence of noise ni, the 
DOPO configuration with the lowest loss should oscillate 
first (see the minimum gain principle illustrated in Fig. 1c) 
and the solution to the Ising problem can be read out by 
measuring the phases of the light from each DOPO. An 
important point to note is how slowly r can be increased 
and have the CIM still oscillate in the ground state for 
a length of time sufficient to allow measurement: even 
in the complete absence of noise (which is not experi-
mentally realistic, but can be programmed in a computer 
simulation), the CIM does not find the exact solution to 
arbitrary Ising problems in polynomial time. An impor-
tant technicality that arises in the CIM model (5), and in 
other oscillator-based Ising machines in which the oscil-
lators have both amplitude and phase degrees of freedom 
(as opposed to just phase), is that if the amplitudes ∣ ∣ai  of 
the oscillators are not equal, then the system tends to min-
imize the energy of an Ising instance with a different Jij 
matrix from the desired one. This phenomenon is some-
times referred to as a broken mapping due to amplitude 
heterogeneity. An intuitive fix is to add a feedback mech-
anism that forces the amplitudes ∣ ∣ai  to be equal, as has 
been studied for XY machines123 and Ising machines118.

The classical description of a CIM (equation (5)) is 
sufficient to explain the results obtained so far in experi-
mental demonstrations114–116,119,124–126, because these  
experi ments have used DOPOs with relatively large 
round-trip (photon) loss. However, with sufficiently 
low loss, each DOPO can generate an appreciable 
amount of quadrature squeezing, and in this regime the 
CIM’s dynamics are more faithfully modelled quantum 
mechanically117. An interpretation for CIM operation that 
arises in the quantum-mechanical formulation is that each 
DOPO begins in a squeezed state that is approximable by 
a coherent superposition of in-phase and out-of-phase 
coherent states ∣ ⟩ ∣ ⟩α α+ − , so the below-threshold state 
of the CIM is one in which every spin configuration 
is represented in superposition. When the CIM goes 
through threshold, one of the configurations is selected. 
It is an open question to what extent quantumness of the 
DOPO network may improve (or impair) the computa-
tional performance of a CIM120. A quantum model for a 
machine conceptually similar to a quantum-regime CIM, 
in which superpositions α α+ −∣ ⟩ ∣ ⟩  are also formed, has 
been studied127. The machine acts as an adiabatic quan-
tum computer when the pump rate (the equivalent of r 
in the CIM model) is increased from 0 sufficiently slowly. 
This theoretical connection suggests that insights into 
the solution mechanisms of quantum annealers might be 
helpful for understanding CIMs, especially CIMs in which 
the coupling between DOPOs is conservative rather than 
dissipative, and vice versa.

Besides the CIM, there have been proposals and 
demonstrations of several types of optical and opto-
electronic Ising and Ising-like machines in addition to 
those cited in the subsection on thermal annealers: sys-
tems based on coupled lasers128–131, optoelectronics132, 
exciton-polaritons92,133–136 and electromechanical 
systems137,138.
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Chaos in dynamical system solvers. In an ergodic sys-
tem, the dynamics are such that the system visits all 
parts of configuration space. This is an attractive idea 
in the context of solving the Ising model, since in many 
approaches getting trapping in local minima is the cause 
of the exponential slowdown. Numerical studies study-
ing thermal relaxation have showed that the process is 
strongly non-ergodic, and does not visit all parts of con-
figurational space139. Several studies have suggested that 
modifying the dynamics to include chaos would yield an 
improvement in performance118,140–142.

Limit-cycle-free dynamical systems have been 
designed with fixed-point attractors that are the solu-
tions of a given optimization problem140; in particu-
lar, k-SAT, which is — like the Ising problem — an 
NP-complete decision problem with an NP-hard opti-
mization version. The formulation of the dynamical sys-
tem involved both state variables si corresponding to the 
variables in the k-SAT problem (analogous to spin varia-
bles for an Ising problem) and auxiliary variables ai. The 
dynamical system has an appealing theoretical property: 
it avoids becoming stuck in local minima of the k-SAT 
cost function. However, this comes at a price: the aux-
iliary variables grow exponentially in time. As a result, 
an analogue hardware implementation of the dynami-
cal system requires an exponentially growing amount of 
energy to operate (a prototype CMOS demonstration143 
for problems with up to 50 variables artificially capped 
the signals representing the auxiliary variables at 1 V). 
In addition, a digital hardware implementation that 
integrates the differential equations requires exponen-
tially small timesteps because the differential equations 
become stiff140,141.

Numerical simulations indicate that the dynamical 
system undergoes a transient period of chaos when 
solving difficult instances of the k-SAT problem, but not 
when solving easy instances140. It was therefore suggested 
that chaos might be unavoidable in approaches to solv-
ing hard optimization problems. A discrete-map opti-
mization algorithm144 applied to solving both k-SAT and 
Ising problems also exhibits chaotic dynamics. The gen-
eral approach in reF.140 for designing a limit-cycle-free 
dynamical system that avoids being trapped in k-SAT 
local minima through the use of auxiliary variables 
has been adopted for Ising solving118, and has been 
implemented and benchmarked with an FPGA142.

Quantum approaches
Quantum annealing. Quantum annealing (QA)4,145–147 is 
a heuristic algorithm based on the quantum adiabatic 
theorem as proposed in reF.148 and has been studied in 
the context of the Ising model149. In this algorithm, the 
system is initially prepared in the known ground state 
of a Hamiltonian H0. A common choice for this initial 
Hamiltonian is

∑H σ= − , (6)
i

N

i
x

0
=1

where N denotes the number of qubits, σi
x denotes the 

Pauli x operator on the ith qubit, and the ground state is 
the uniform superposition of all possible configurations 

+ N⊗ , where + = ( 0 + 1 )/ 2 . The Hamiltonian 
is gradually re-weighted to the desired problem 
Hamiltonian HP according to

H λ t H λ t H= (1 − ( )) + ( ) , (7)0 P

where λ(t) ∈ [0,1] is the annealing schedule. The anneal-
ing process can be viewed as H0 introducing quantum 
fluctuations originating from the non-commutability 
of HP and H0. These fluctuations are gradually reduced 
to reach the low-energy configuration of the classical 
energy function HP. Based on the quantum adiaba-
tic theorem, for a sufficiently slow sweep, the system 
remains in its instantaneous ground state throughout 
the evolution145,150. The sweep time for which adiabatic-
ity can be achieved is proportional to a negative power 
of the minimum energy gap between two lowest-energy 
levels during the sweep151–154.

The use of quantum fluctuations in QA has been 
hypothesized as a potential resource for a speed-up 
over classical methods. Quantum tunnelling allows 
the system to pass through energy barriers (Fig. 1c). 
However, despite several decades of investigation, the 
computational role of coherent tunnelling in providing 
speed-up is not completely understood145,155,156. Part of 
the reason for this is the difficulty of simulating QA 
on classical computers due to the large computational 
overhead. The only quantum hardware that has so far 
been able to directly test QA with a large number of 
qubits is that developed by D-Wave Systems. Although 
this technology still suffers from limitations such as the 
presence of decoherence, control errors and limited 
connectivity, several studies have shown that quantum 
effects do play a role in the D-Wave machine157–159. For 
problem instances that possess tunnelling barriers, QA 
and quantum-inspired classical algorithms that mimic 
tunnelling157 have been shown to have an advantage 
over SA.

Hybrid quantum–classical algorithms. The aim of var-
iational quantum algorithms160 is to solve classical and 
quantum optimization problems by combining a para-
metrized quantum circuit with a classical optimizer to 
obtain the variational parameters. The parametrized 
quantum circuit can be thought of as preparing a var-
iational quantum state, which is optimized to give the 
lowest-energy state of a given Hamiltonian. These algo-
rithms are believed to be strong candidates to achieve a 
practical quantum advantage on noisy intermediate-scale 
quantum (NISQ) devices161. In the context of combina-
torial optimization problems, the quantum approximate 
optimization algorithm (QAOA)162 has particularly 
attracted a lot of interest, partially as a result of the exist-
ence of theoretical guarantees on the approximation ratio 
that it can achieve for certain classes of optimization 
problems162,163.

The QAOA algorithm can be viewed as a Trotterized 
version of QA with a parametrized annealing pathway164. 
The system is initially prepared in + N⊗ , the ground 
state of the Hamiltonian (6). The parametrized quan-
tum circuit transfers the initial state to the ground state 
of the target problem Hamiltonian (in the ideal case) by 
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alternately applying the unitary operator correspond-
ing to the problem Hamiltonian e γ H−i j P and the unitary 
operator e β H−i j 0. This sequence generates the following 
quantum variational state

(8)ψ β γ( , ) = e e e e + ,β H γ H β H γ H N−i −i −i −ip 0 p P 1 0 1 P∣ ⟩ ⋯ ⊗

where ⋯ ∈γ γ γγ = ( , , , ) [0, 2π]p
1 2 p  and ⋯β β ββ = ( , , , )1 2 p   

∈[0, π]pare 2p variational parameters and p determines 
the circuit depth. Next, a classical optimizer is applied 
to find the optimal β,γ that optimizes the energy expec-
tation E ψ H ψβ γ β γ β γ( , ) = ( , ) ( , )P  by updating the 
variational parameters iteratively. Various approaches 
have been applied for this classical optimization step 
such as brute-force grid search162, gradient descent 
methods165 and machine learning166. A key feature of 
QAOA is that the computational power increases with 
p (reFs164,167) in contrast with QA, in which the perfor-
mance does not always improve with annealing time162. 
Under reasonable complexity-theoretic assumptions, 
QAOA with p = 1 cannot be efficiently simulated with 
classical computers168, or it implies that P = NP. This 
result has led to speculations that QAOA may be able 
to demonstrate a quantum computational advantage in 
the context of an optimization problems on near-term 
quantum computers168. However, the class of problems 
that can be solved efficiently with shallow circuits may 
not be representative for problems of practical inter-
est. For example, for all-to-all connected Ising mod-
els and MaxCut, it has been shown that deep circuits 
may be required169. Therefore, benchmarking compu-
tational advantages of QAOA against classical algo-
rithms requires going far beyond problems that can be 
solved with a shallow circuit and instead exploring the 
power of QAOA at intermediate depths. However, at 
current technological levels such circuits are prone to 
decoherence and gate errors169.

QAOA has been demonstrated at the small scale on 
platforms such as superconducting qubits169, photonics170 
and trapped ions167. So far, no large-scale (that is, 
N > 50) demonstrations of QAOA have been experi-
mentally performed. We note that classical simulations 
showing expectation results for single-layer (p = 1) 
QAOA on problems with up to N = 105 spins have been 
performed171, but as is the case with quantum annealers, 
it is expected that large-scale quantum hardware will be 
needed to properly evaluate the performance of QAOA 
in general.

Other quantum algorithms. Several other quantum algo-
rithms have been proposed to solve combinatorial opti-
mization problems172. These include using approaches 
based on amplitude amplification, and quantum sim-
ulated annealing (not to be confused with simulated 
quantum annealing below). In these approaches, the aim 
is to prepare the quantum Gibbs state, a superposition 
state with Boltzmann probabilities (2) as the amplitudes. 
The quantum Gibbs state is attained by performing a 
quantum walk such that after many iterations the desired 
coherent Gibbs state is obtained173–175. Then, in a similar 
way to thermal annealing, the temperature is gradually 
lowered to obtain a low-energy state.

Other classical algorithms
Quantum-inspired classical algorithms. Inspiration 
from quantum algorithms has led to proposals for new 
types of classical algorithms. Such quantum-inspired 
algorithms are run on conventional computing hard-
ware or on digital hardware accelerators, and hence are 
classical approaches, but use concepts that originate 
from quantum mechanics in the algorithm. We briefly 
summarize several approaches in this direction.

In simulated quantum annealing (SQA), quantum 
Monte Carlo is applied to estimate the low-energy states 
of the QA Hamiltonian176–178. To perform the quantum 
Monte Carlo, a stoquastic QA Hamiltonian is mapped 
to a classical Hamiltonian by introducing an extra spa-
tial dimension, corresponding to imaginary time. A 
stoquastic Hamiltonian is characterized by having only 
non-positive off-diagonal elements in the computational 
basis. The new Hamiltonian has equivalent equilibrium 
properties to the original QA Hamiltonian179. The map-
ping can be implemented either in discrete time by 
applying the Trotter–Suzuki decomposition, or in con-
tinuous time by applying a path integral179. Quantum 
Monte Carlo in the continuous time limit samples the  
equilibrium thermal state of a quantum system (as 
opposed to directly simulating its unitary time evolu-
tion) and can generate Boltzmann-distributed states (2).  
At sufficiently low temperatures, SQA can mimic  
tunnelling effects. SQA can also generate entangled 
ground states that occur during the adiabatic evolution. 
It can thus faithfully predict the performance of QA for 
stoquastic Hamiltonians.

Several other quantum-inspired classical algorithms 
based on dynamical system evolution have been pro-
posed. In simulated CIMs, the equations modelling the 
CIM are simulated on a classical computer, and used as 
an algorithm to solve the Ising model. It has been shown 
that such a simulation has a speed-up compared to a 
physical implementation of a CIM applying FPGA180 and 
GPU181. The key observation here is that such simula-
tions are described by a set of coupled equations of the  
form (4) or (5), which scale with the number of spin vari-
ables N, rather than the configurational space 2N. Thus, 
a simulation of the coupled-oscillator system is efficient.

Another approach is simulated bifurcation (SB), 
which is based on simulating adiabatic evolutions 
of classical nonlinear Hamiltonian dynamical sys-
tems. This algorithm is the classical counterpart of 
bifurcation-based adiabatic quantum computation127. 
Two branches of the bifurcation in each nonlinear 
oscillator represents two states of each Ising spin. In 
2019, Toshiba developed an FPGA- and GPU-based SB 
machine showing excellent performance due in part to 
its high parallelizability182,183. The operational mecha-
nism of the SB algorithm operates based on an adiaba-
tic and ergodic search. Later, two other variants of SB 
were introduced, called the ballistic simulated bifurca-
tion algorithm (bSB) and the discrete simulated bifur-
cation algorithm (dSB)184, which far outperform the 
original SB in terms of both speed and solution accu-
racy. These new algorithms apply new approaches, 
such as a quasi-quantum tunnelling effect. Recently, a 
multi-chip architecture using a partitioned version of the 
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SB algorithm was implemented with FPGAs, showing 
that the method can handle large-scale Ising problems185. 
Both CIM simulations and the SB algorithm are paral-
lelizable, by simultaneously updating at each time step N 
coupled-oscillator variables. In contrast, SA canonically 
involves sequential updates of spins, with simultaneous 
updates allowed only for isolated spins.

Yet another quantum-inspired algorithm involves 
tensor networks, which are a powerful framework that 
provides representations of complex quantum states 
based on their entanglement structure186. Tensor net-
works have been applied as an ansatz to solve optimi-
zation problems186,187. Such an approach was used in the 
context of dynamic portfolio optimization, which can be 
encoded as an Ising problem188.

Machine-learning approaches. Meanwhile, owing to 
the synergy between machine learning and combina-
torial optimization algorithms, a new era at the inter-
face of both fields is growing to take the best of both 
and develop new methods to deal with combinatorial 
optimization problems. In particular, the emergence 
of methods that are more sample-efficient makes them 
more scalable to large-scale problems. Machine-learning 
algorithms can be applied to either boost the perfor-
mance of traditional classical solvers and quantum 
algorithms189–191 or can work as a stand-alone solver187. 
For example, some machine-learning algorithms have 
been applied to accelerate Monte Carlo simulations190,191. 
Deep-learning-based methods applying reinforcement 
learning192,193, graph neural networks194–196 and neural 
attention mechanism197 have also been investigated as 
solvers for combinatorial optimization problems.

Computational complexity
How do the computing approaches discussed in this 
Review relate to computational complexity? What are 
the prospects for devising an Ising machine that can 
solve Ising problems efficiently (that is, in polynomial 
time)? Although the P =? NP  question remains an 
open problem, it is widely conjectured that P ≠ NP, in 
other words, that certain problems in NP, including the 
Ising problem, are fundamentally more difficult to solve 
than those in P. Indeed, decades of work in computer sci-
ence, physics, mathematics and operations research has 
failed to find a polynomial-time algorithm that solves 
any NP-complete problem. The explosion of interest in 
quantum computing since the 1990s was kicked off by 
the discovery that integer factorization could be per-
formed in polynomial time on a quantum computer198. 
It is thus conjectured that the BQP complexity class — 
decision problems that a quantum computer can solve in 
polynomial time with an error probability of at most 1/3 
— is a larger class than P, that is, P ⊆ BQP. The associated 
class for a probabilistic Turing machine, the BPP class, 
is meanwhile conjectured to be equivalent to P, that is, 
P = BPP. This conjecture in general remains unproven, 
but is true if a suitable pseudorandom number generator 
is available199. Although there is no proof that quantum 
or probabilistic computers cannot solve NP-complete 
problems such as the Ising problem in polynomial time, 
it is considered unlikely200.

The complexity-class arguments above concern solv-
ing the Ising problem in the sense of being able to find 
the exact ground state for all possible problem instances 
(all possible Jij,hi in equation (1)). However, as mentioned 
in the Introduction, an approximate solution with an 
energy close to the true ground state is often acceptable 
for practical applications. Three approaches for solving 
combinatorial optimization problems, such as the Ising 
problem, are exact algorithms, approximation algorithms 
and heuristic algorithms. Exact algorithms are designed 
to find solutions in a way that guarantees that the 
returned solutions are exactly optimal. Approximation 
algorithms return solutions that are not necessarily opti-
mal but are guaranteed to be within a certain distance of 
optimality. Heuristic algorithms return solutions without 
any guarantee on their quality; because of this lack of 
theoretical guarantee, the primary basis for trusting an 
heuristic algorithm is from previous empirical (bench-
marking) results. Both approximation and heuristic 
algorithms tend to be practical to run on large problems.

One consideration for approximation algorithms is 
what solution quality (formally, approximation ratio) can 
be guaranteed. The MaxCut problem, and hence the Ising 
model, is approximable-hard (APX-hard). Consequently, 
assuming P ≠ NP, there exists no polynomial-time approx-
imation algorithm for the Ising problem that guarantees a 
solution arbitrarily close to the exact solution201. However, 
there does exist a polynomimal-time approximation algo-
rithm for MaxCut that finds solutions a fixed distance 
from the optimal solution: the Goemans–Williamson 
algorithm is guaranteed to find solutions within about 
12% of the optimal value202. It is also known that it is 
NP-hard to approximate MaxCut with solutions guaran-
teed to be closer than about 6% to the optimal203, so it 
is expected (assuming P ≠ NP) that no polynomial-time 
approximation algorithm that achieves this approxima-
tion closeness is possible. In many practical settings, it 
is desirable to find solutions to MaxCut problems that 
have distance from the optimal solutions better than 
~12% or even ~6%, which motivates the use of heuristic 
algorithms to solve MaxCut in practice.

Most Ising machines are heuristic solvers — that is, 
they can be thought of as physical machines that realize 
heuristic optimization algorithms. As such, they typi-
cally do not provide any approximation-ratio guaran-
tees. The potential advantages of Ising machines largely 
lie outside the realm of complexity theory: there is the 
possibility that Ising machines have a polynomially 
improved scaling or constant-prefactor advantage over 
existing heuristic algorithms running on conventional 
processors. In other words, it is generally expected that 
Ising machines, regardless of their underlying algorithm 
or practical hardware implementation, still require expo-
nential runtimes to achieve near-optimal solutions, but 
the exponent or the constant factor in front of it may 
be smaller than for a conventional solver. A small dif-
ference in the exponent can make a large difference in 
runtimes for large problem sizes; the fast clock speeds 
of various physical implementations, which give rise 
to constant-factor improvements, could lead to signif-
icant practical speed-ups compared with conventional 
state-of-the-art solvers.
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Computation performance comparisons
Because the utility of any Ising machine is in its ability 
to solve a given Ising problem both quickly and accu-
rately, an important task is to benchmark performance 
and compare competing methods. We direct our atten-
tion particularly to various Ising solvers that have been 
experimentally tested for relatively large systems N ≥ 50. 
We consider only large systems as it is difficult to extract 
any scaling relation for smaller systems. Choosing 
experimentally realized systems directs our focus onto 
technologies that are relatively near to maturity. For 
the figures of merit, we focus on two of the most com-
monly used quantifiers: the success probability and the 
time-to-solution. We first define each of these.

The success probability is defined as the probability 
that the exact ground state of the Ising model is obtained 
in a single run of the Ising machine. The success proba-
bility depends inherently on algorithmic parameters. For 
annealing methods under ideal conditions, longer anneal-
ing times generally result in higher success probabilities, 
and the success probability can be made arbitrarily close 
to 1 in the ideal case. However, practical considerations 
typically prohibit approaching unit success probabil-
ity. For example, in quantum annealers, maintaining a 
quantum superposition requires the annealing time to 
be within the coherence time. In this sense, the success 
probability still has meaning, because it often involves 
a trade-off with practical considerations. For our com-
parison of success probabilities, we generally quote the 
best-performing value available in the literature.

One of the limitations of the success probability as 
a figure of merit is that it does not take into account of 
how long a single run of the Ising machine takes. An 
Ising machine typically performs multiple runs when 
attempting to solve a problem, and Ising machines are 
often optimally operated for a choice of run parameters 
for which the success probability for a single run is not 

maximized, but each run takes only a short time. The 
time-to-solution is another figure of merit that takes into 
account both the time to perform a single run on a given 
Ising machine and the success probability. If r runs of a 
particular scheme are performed, each having a success 
probability psuc of obtaining the ground state, then the 
collective probability of getting at least one successful 
run is p1 − (1 − )r

suc
. For a given target collective proba-

bility, say 99%, the time-to-solution is then related to the 
success probability as

T τ
p

= ln 0 01
ln(1 − ) (9)sol

suc

.

where τ is the time taken for each run. This measure 
takes into account the different clock speed of various 
approaches, and allows for various approaches to choose 
their optimal parameters such that the best performance 
of the machine can be extracted.

In Fig. 3 we show the performance of various Ising 
machines, quantified by the success probability for ran-
dom instances of Sherrington–Kirkpatrick (SK) prob-
lems and dense MaxCut problem instances. We note 
that although the same types of models are used for the 
comparison in Figs 3 and 4, the same problem instances 
were not necessarily used, as we have compiled results 
from different studies. Although the comparisons are 
not perfect, we hope that these figures nevertheless give a 
sense of state of the art of various approaches. In numer-
ous works, the general scaling behaviour is observed to 
follow the relation

∝p e , (10)bN
suc

−

where b is a fitting parameter. Keeping in mind the inter-
pretational caveat mentioned above about how the suc-
cess probability can for some Ising-machine approaches 
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Fig. 3 | success probability comparison of ising machines. a,b | The probability of obtaining the ground state is shown 
for the Sherrington–Kirkpatrick (SK) problem (a) and dense MaxCut problem (b). For the SK problem, the coupling Jij 
between spins i and j is chosen from ±1 with equal probability. The MaxCut problem is mapped onto the Ising model  
by setting Jij to 0 and 1 with equal probability. In both cases, the external field hi = 0. The labels for each line and their 
references are given in Table 1. Error bars on original data where present have been omitted for clarity. CIM1, CIM2, 
CIM3, DWAV and RBM are benchmarked on the same problem instances. The asterisks denote data reported for 
theoretical predictions rather than directly measured from a hardware implementation.
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be made high at the expense of long runtimes in a way 
that is ultimately not useful, the results in Fig. 3 sug-
gest that at current technological levels, SA-based 
approaches, such as the restricted Boltzmann machines 
(RBMs), implemented on digital hardware give the 
best scaling with N. One of the reasons for the high 
success probability of RBMs is the inherent parallelism 
of this architecture which allows parallel SA updating. 
However, we note that this figure does not include results 
from state-of-the-art dynamical systems algorithms such 
as the CIM with amplitude-heterogeneity correction118,142 
and SB184. Based on these algorithms’ excellent perfor-
mance on the G-set MaxCut instances, one may antic-
ipate that they would be competitive with RBM-based 

solvers. It is notable that the quantum annealer has a 
particularly poor performance in comparison to other 
methods. This can be understood119 as a consequence 
of the benchmarked D-Wave machine having quantum 
bit (qubit) connectivity given by a low-degree (Chimera) 
graph that cannot natively implement either the dense 
MaxCut or SK models (see Table 1). An embedding 
procedure that requires ∝N2 physical qubits is used to 
realize the equivalent graph, and this puts the D-Wave 
annealer at a disadvantage compared with the other 
listed approaches, which feature all-to-all spin connec-
tions. It is for this reason that the success probability 
for the D-Wave machine has a relation which more 
resembles ∝p e bN

suc
− 2
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Fig. 4 | Time-to-solution (TTs) comparison of ising machines. The time to 
obtain a 99% success probability of obtaining the ground state is shown for 
the Sherington–Kirkpatrick (SK) problem (a); dense MaxCut problem (b); 3R3X 
problems (c); and logical-planted (dashed lines) and deceptive cluster loops 
(solid lines) instance classes (d). For the SK and MaxCut cases, the Ising model 
definitions are as in Fig. 3. The 3R3X, logical-planted, and crafted problem 
definitions can be found in reF.208, reF.157 and reF.211, respectively. The labels 
for each line and their references are given in Table 1. Error bars on original 

data where present have been omitted for clarity. For both SK and MaxCut, 
CIM1, CIM2, CIM3, DWAV and RBM are benchmarked on the same problem 
instances. For each reference, the best time to solution quoted is taken for 
each N. For results showing multiple annealing times, we have taken results 
optimized over annealing times. Data reported for theoretical predictions, 
rather than being directly measured from an hardware implementation, are 
labeled with *. 3R3X data are from reF.208. Logical-planted data are from 
reF.157. Deceptive cluster loops data are from reF.211.
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Table 1 | Types of ising machine examined in Figs 3 and 4

ising machine/
algorithm

Acronym Operating principle hardware hardware 
connectivity

Parallelizationa Benchmark 
problem

Referencec

Breakout local 
search

BLS Local search and simulated 
annealing algorithm

CPU All-to-all No SK Fig. 3a142

Chaotic amplitude 
control

CAC Dynamical chaotic 
algorithm

FPGA All-to-all Yes SK Fig. 3a142

Coherent Ising 
machine (NTT)

CIM1 Dynamical oscillator Hybrid (optical/
FPGA)

All-to-all Yes MaxCut, SK Fig. S6119

Coherent Ising 
machine (Stanford)

CIM2 Dynamical oscillator Hybrid (optical/
FPGA)

All-to-all Yes MaxCut, SK Fig. S6119

Coherent Ising 
machine

CIM3 Dynamical oscillator 
algorithm

Predictedb All-to-all Yes MaxCut, SK Fig. S10119

D-Wave quantum 
annealer 2Q

DWAV1 Quantum annealer Superconducting 
qubits

Chimera Yes MaxCut, SK Fig. 3b,4c119

D-Wave quantum 
annealer 
Advantage1.1

DWAV2 Quantum annealer Superconducting 
qubits

Chimera Yes 3R3X Fig. 2208

D-Wave quantum 
annealer 2KQ

DWAV3 Quantum annealer Superconducting 
qubits

Chimera Yes LP Fig. 2157

D-Wave quantum 
annealer 2KQ

DWAV4 Quantum annealer Superconducting 
qubits

Chimera Yes Deceptive Fig. 1211

Fujitsu digital 
annealer

FDA1 Simulated annealing 
algorithm

ASIC All-to-all Yes SK Fig. 7a58

Fujitsu digital 
annealer

FDA2 Simulated annealing 
algorithm

ASIC All-to-all Yes 3R3X Fig. 2208

Hamze–de- 
Freitas–Selby

HFS Tree sampling CPU All-to-all No Deceptive Fig. 1211

Memcomputing MEM Dynamical logic gate 
algorithm

CPU All-to-all Yes 3R3X Fig. 2208

Memristor 
annealing

MRT Simulated annealing 
algorithm

Predictedb All-to-all Yes MaxCut Fig. 6a, 6b49

Photonic recurrent 
Ising sampler

PRIS Oscillator-based annealer Predictedb All-to-all Yes MaxCut Fig. 2b48

Parallel tempering PT1 Simulated annealing 
algorithm

CPU All-to-all No MaxCut, SK Fig. S12119

Parallel tempering PT2 Simulated annealing 
algorithm

CPU All-to-all No SK Fig. 7a58

Parallel tempering PT3 Simulated annealing 
algorithm

CPU All-to-all No SK Fig. 3a142

Parallel tempering PT4 Simulated annealing 
algorithm

CPU All-to-all No 3R3X Fig. 2208

Isoenergetic 
cluster moves plus 
parallel tempering

PT+ICM Monte Carlo algorithm Digital-CPU All-to-all Yes Deceptive Fig. 1211

Restricted 
Boltzmann machine

RBM Simulated annealing 
algorithm

FPGA All-to-all Yes MaxCut,SK Fig. 3,464

Simulated 
annealing

SA1 Simulated annealing 
algorithm

CPU All-to-all Yes SK Fig. 3a142

Simulated 
annealing

SA2 Simulated annealing 
algorithm

CPU All-to-all No SK Fig. 7a58

Simulated 
annealing

SA3 Simulated annealing 
algorithm

GPU All-to-all Yes LP Fig. 2157

SAT on GPU SAT SAT algorithm GPU All-to-all Yes 3R3X Fig. 2208

Simulated 
quantum annealing

SQA1 Quantum Monte Carlo 
algorithm

GPU All-to-all Yes LP Fig. 2157

Toshiba bifurcation 
machine

TBM1 Discrete simulated 
bifurcation algorithm

FPGA All-to-all Yes SK Fig. 3c184

Toshiba bifurcation 
machine

TBM2 Discrete simulated 
bifurcation algorithm

GPU All-to-all Yes 3R3X Fig. 2208

aParallelization column indicates approaches in which simultaneous updates of Ising spins are performed. bIf the results of Fig. 3 and 4 are for theoretical 
predictions, rather than being directly measured from a hardware implementation, the hardware type is quoted as being “Predicted”. cFigure numbers are those in 
the cited references. ASIC, application-specific integrated circuit; CPU, central processing unit; FPGA, field-programmable gate array; GPU, graphics processing 
unit; LP, logical-planted; SK, Sherrington–Kirkpatrick model; 3R3X, 3-regular 3-XORSAT.

www.nature.com/natrevphys

R e v i e w s



0123456789();: 

Figure 4a,b shows the time-to-solution metric for 
the MaxCut and SK models. The best-performing  
methods for the SK model use classical digital hardware, 
for which RBMs and Toshiba bifurcation machines 
(TBMs) show the lowest time to solution. For the MaxCut 
problem, RBMs achieve the lowest time-to-solution for 
a physically implemented machine. We note that the 
memristor annealing (MRT), photonic recurrent Ising 
sampler (PRIS) and coherent Ising machine (CIM3) 
curves involve theoretical prediction of the time-to- 
solution, rather than a direct measurement of the  
time. Most of the curves follow the phenomenological  
scaling relation

.T e (11)c N
sol ∝

where c is a constant. However, if the range of available 
data is too small, the square-root behaviour may not yet 
be visible. The D-Wave results are better approximated 
by an exponential relation Tsol ∝ ecN which requires ∝N2 
physical qubits, owing to the limited chimera connec-
tivities of the qubits. One should note that the D-Wave 
results arise from a hardware implementation limita-
tion that gives a different scaling and not the compu-
tational mechanism itself, and may be improved in the 
future204–207. For problem instances with sparse connec-
tivity, the scaling of D-Wave was improved119. These 
results show that the connectivity is an important factor 
that determines the performance of an Ising machine 
— Table 1 gives the hardware connectivity of different 
Ising machines.

In Fig. 4c, we show results from reF.208, which com-
pare Ising machines for 3R3X problems. These prob-
lems have a golf-course energy landscape structure 
with known exact solutions. This class of problem can 
be solved in polynomial time using Gaussian elimina-
tion, but scales exponentially for general solvers such as 
quantum annealers209. The best-performing approach in 
this case is the SATonGPU approach, which is a highly 
parallelized version of a SAT algorithm implemented 
on a GPU. The Fujitsu Digital annealer and Toshiba 
bifurcation machine achieve similar scaling, but have 
a larger prefactor than the SATonGPU approach. The 
memcomputing results are based on classical simula-
tion of a proposed system, hence dedicated hardware 
might result in some performance improvement208. 
Although there are fewer studies performed for this 
problem class, these results again suggest that the 
best-performing solvers today are based on digital 
computing hardware.

To show the potential of quantum approaches, we 
also discuss additional problem classes for which it is 
expected that QA has advantages over a class of clas-
sical methods157–159 despite the above-mentioned limi-
tations of D-Wave. Figure 4d compares the optimum 
time-to-solution for the class of logical-planted (LP) 
problems that are constructed such that they promote 
the presence of tunnelling barriers. For these problems, 
it is expected that barriers can be traversed more effec-
tively by quantum, rather than thermal fluctuations. 
Here, D-Wave and SQA shows a scaling advantage 
over SA157.

The superior performance of SQA implies that tunnel-
ling through barriers may not be considered the exclusive 
advantage of quantum hardware. However, one should 
note that SQA cannot be applied for non-stoquastic 
Hamiltonians that have a sign problem, and as such the 
power of QA for non-stoquastic Hamiltonians requires 
further exploration. Non-stoquastic Hamiltonians 
are important from a computational complexity per-
spective because adiabatic quantum computation with 
non-stoquastic Hamiltonians is equivalent to the cir-
cuit model of quantum computing210. Therefore, they 
can simulate other universal models with a resource 
overhead that is, at worst, polynomial. The fact that 
D-Wave outperforms SA confirms the presence and 
advantage of quantumness, but the superior perfor-
mance of SQA suggests that current QA hardware is 
still dominated by classical dynamics and needs to 
be improved. We note that for the LP problem class, 
there are classical algorithms that outperform or have 
comparable performance with D-Wave157. A sepa-
rate study211 compared D-Wave with classical heu-
ristic algorithms for another class of specially crafted 
problem, called the deceptive cluster loop problem 
(Fig. 4d). For this problem class, D-Wave outperforms 
the best-known heuristic algorithms, such as paral-
lel tempering Monte Carlo with isoenergetic cluster 
moves (PT+ICM) and Hamze–de Freitas–Selby (HFS), 
with approximately two orders of magnitude shorter 
time to solution. However, no scaling improvement 
is evident.

Numerous other benchmarking studies of Ising 
machines have been performed49,58,64,119,142,169,180,182,184,212. 
For example, in reF.212, the performance of the D-Wave 
hybrid solver, TBM, FDA and SA was benchmarked for 
three different classes of problem instances including SK. 
The results highlight the fact that the performance of 
machines is problem-dependent. In particular, for the 
SK model, TBM showed the best performance. In reF.169, 
the performance of QAOA was benchmarked on SK and 
MaxCut problems for problems up to 23 qubits.

Outlook
Comparing the performance of Ising machines, most 
approaches tend to have similar scalings in terms of the 
error probability and the time-to-solution metrics as a 
function of the number of spins, despite the different 
approaches and technologies used to realize them. The 
complexity of all approaches scales exponentially with 
the system size, with the difference being the power 
within the exponent and the prefactors. This scaling is 
expected given the NP-complete complexity of the Ising 
problem — the battle between competing approaches is 
with respect to the exponents that are achievable. A small 
difference in the exponent makes a large difference in 
time-to-solution for large system sizes.

Although Figs 3 and 4 suggest that classical digital 
methods are still the best-performing approaches at 
the time of writing, analogue and quantum computing 
technologies are rapidly developing, and the technol-
ogy landscape may undergo a revolution. Some of the 
best-performing approaches are based on classical dig-
ital technology, which have had the benefit of decades 
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of development and in many cases can be highly par-
allelized. In comparison, QA approaches have only 
recently been developed to a scale where they can be 
tested, either theoretically or experimentally, and often 
have hardware limitations such as limited connectivity 
and the presence of decoherence. The specific form of 
the Ising instance being solved (for instance, the struc-
ture of the coupling matrix) can strongly affect the per-
formance. It may be that in the future, much like various 
numerical algorithms are chosen based on the compat-
ibility of a particular problem, different Ising machines 
will be used according to their suitability for the given 
problem. For example, whereas problem instances with 
small spectral gaps are known to be hard for QA, they 
may not limit the performance of QAOA164. A further 
step would be to explore hybrid quantum–classical and 
digital–analogue algorithms to gain the complementary 
advantage of each213.

One point of active debate has been the role that quan-
tum mechanics plays in CIMs and in D-Wave’s quantum 
annealers. There exist models of the operation of CIMs 
that treat them quantum mechanically113,117, including, 
for example, a description of the initial state as being in 
a coherent superposition of all logical states117. However, 
experimental realizations of CIMs thus far114–116,121,125 
have been in regimes of high photon loss, where purely 
classical models can accurately describe the pertinent 
dynamics of the systems. The clearest indication of 
this effective classicality is that similar performance 
to demonstrated CIMs may be achieved by simulating 
the mean-field dynamics119,180,181,214. However, with suf-
ficiently high nonlinearity to loss in their constituent 
DOPOs, CIMs can be firmly in the quantum regime215 
and have a strong connection with quantum annealers127. 
Exploring how to construct experimental CIMs in which 
quantum effects play a crucial role, and designing them 
so that quantum effects improve the performance of the 
machine, are two topics of active investigation120.

For QA, the computational advantage of incoherent 
tunnelling over certain classical methods (typically SA35 
and the Hamze–de Freitas–Selby algorithm216,217) for 
certain classes of problems has been shown145,156–159,211. 
However, for any real-world problem of interest, no 
evidence has been found of an unqualified quantum 
speed-up (as defined in reF.218). Perhaps the most com-
pelling results with the D-Wave QA so far are for a spe-
cially crafted problem class, known as deceptive cluster 
loops, for which the QA was found to outperform in 
terms of time-to-solution for all classical heuristics that 
were tested, including parallel tempering34. The speed-up 
was of an approximately constant-factor nature, with no 
strong evidence of a scaling advantage211.

Another disadvantage of QA algorithms is that they 
cannot sample uniformly all low-lying states, unlike other 
heuristic algorithms such as SA-based algorithms219,220. In 
SA, after many repetitions and starting from different 
initial states, one can record all the configurations that 
minimize the problem Hamiltonian. For an optimiza-
tion machine, such an ability to sample fairly is benefi-
cial because having different solutions for a problem is 
often useful. Furthermore, it is not yet well understood 
what the role of entanglement in QA is and whether it 
contributes to a quantum speed-up221. Although vari-
ous aspects of quantumness, including entanglement, 
may or may not aid the performance of CIMs or QAs, 
this uncertainty has inspired the proposal of interesting 
quantum-inspired classical algorithms related to CIMs 
and QAs, which is a fruitful development in its own right.

Looking to the future, there is much room for 
development for Ising machines. For many classical 
algorithms, the time-to-solution and other metrics are 
known to several decimal places; the scaling of Ising 
machines should likewise be quantified with precision 
so that competing methods can be compared. Figures 3 
and 4 are extremely preliminary in this regard. With 
improved quantification and investigation for different 
classes of problems, a better understanding of the suita-
bility of various approaches for a particular problem can 
be known in advance. Another interesting direction is to 
compare the performance of the different Ising machines 
for finding an approximate solution with different lev-
els of accuracy, since for many applications finding a 
high-quality solution, rather than the exact solution, is 
sufficient222. Several forms of Ising machine that either 
rely on or can be enhanced by quantum-mechanical 
mechanisms have been proposed and demonstrated. 
However, constructing large-scale quantum machines 
with high connectivity and low decoherence remains an 
outstanding challenge for the field of quantum informa-
tion processing in general, and further progress in this 
direction is needed for experimental exploration of the 
benefits that quantum-mechanical methods may bring 
to solving Ising problems. This is in contrast with classi-
cal approaches, especially digital ones, which often have 
little difficulty in supporting full connectivity. Given 
the demand for faster methods of solving optimization 
problems in society, and the maturity of conventional 
algorithms and processors, it seems likely that the devel-
opment of specialized Ising machines will continue well 
into the future, featuring an exciting interplay between 
hardware engineering, computer science, statistical 
physics and quantum mechanics.
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