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ABSTRACT
Question Answering (QA) in clinical notes has gained a lot of atten-
tion in the past few years. Existing machine reading comprehension
approaches in clinical domain can only handle questions about a
single block of clinical texts and fail to retrieve information about
multiple patients and their clinical notes. To handle more complex
questions, we aim at creating knowledge base from clinical notes to
link different patients and clinical notes, and performing knowledge
base question answering (KBQA). Based on the expert annotations
available in the n2c2 dataset, we first created the ClinicalKBQA
dataset that includes around 9K QA pairs and covers questions
about seven medical topics using more than 300 question templates.
Then, we investigated an attention-based aspect reasoning (AAR)
method for KBQA and analyzed the impact of different aspects of
answers (e.g., entity, type, path, and context) for prediction. The
AAR method achieves better performance due to the well-designed
encoder and attention mechanism. From our experiments, we find
that both aspects, type and path, enable the model to identify an-
swers satisfying the general conditions and produce lower precision
and higher recall. On the other hand, the aspects, entity and context,
limit the answers by node-specific information and lead to higher
precision and lower recall.
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1 INTRODUCTION
Electronic Health Records (EHR) provide comprehensive informa-
tion that can assist doctors with their clinical decision making.
Traditionally, doctors retrieve the information of patients via ac-
cessing structured databases with rule-based systems and reading
their clinical notes. Recently, several attempts have been made to
build Question-Answering (QA) systems on EHR [23, 30, 37] so that
doctors can get answers for their questions more efficiently. Gener-
ally speaking, QA systems can be grouped into several categories
according to the format of data sources. For example, machine read-
ing comprehension (MRC) performs QA on plain text data [25].
Text-to-SQL problem performs QA on database [39, 40]. Knowledge
Base QA (KBQA) [8] aims at finding answers from the underlying
Knowledge Base (KB), such as Freebase [5]. In our previous work
[37], we introduced a MIMICSQL dataset for Text-to-SQL gener-
ation on MIMIC III database [37], which is limited to retrieving
answers from a database, which does not cover information that are
not quantified or structured, such as family history and discharge
conditions. Pampari et al. [23] proposed an emrQA dataset for MRC
on clinical notes. However, it only supports the task of accessing
information from a single block of text, which is not practical for
doctors who may be interested in retrieving information from a
collection of clinical notes.

In this work, we present ClinicalKBQA, a dataset for QA on
clinical KB (ClinicalKB) constructed from clinical notes, which alle-
viates the problems encountered with emrQA by allowing doctors
to access information across different notes. ClinicalKBQA is com-
posed of two subsets, namely, Clinical Knowledge Base (ClinicalKB)
and Question-Answering (QA) pairs, both of which are constructed
by leveraging existing annotations of clinical notes that are avail-
able for various NLP tasks in n2c21 (previously known as i2b2).
ClinicalKB integrates advantages of both structured database and
unstructured clinical notes. On the one hand, the intrinsic graph
structure of ClinicalKB connects the information of different pa-
tients and clinical notes via relations/edges, which allows it to
answer questions associated with many patients and clinical notes
(e.g.,Q3, Q4 in Table 1). On the other hand, ClinicalKB includes com-
prehensive patient information as in clinical notes, which makes it
possible to answer questions not covered in database (e.g., Q2, Q4
in Table 1).

To tackle the KBQA challenges in ClinicalKBQA dataset, we
investigated an attention-based aspect reasoning (AAR) approach.
Specifically, for each input question, we represent each candidate
answer as four aspects, including entity, type, path, and context,
and analyze the matching scores between the input question and

1https://n2c2.dbmi.hms.harvard.edu/
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Table 1: Comparisons of the answerable questions over differ-
ent types of EHR, including Clinical Notes (CN), Structured
Tables (ST) and Knowledge Base (KB). The symbol “✓" indi-
cates that the questions are answerable.

Questions CN ST KB
Q1: What medications has patient P939003 ever
been prescribed?

✓ ✓ ✓

Q2: What does patient P961115 take ibuprofen for? ✓ ✓
Q3: Which patients have been diagnosed with both
Gout and GERD?

✓ ✓

Q4: What are the obese indicators of heart disease
in all medical records of patient P258?

✓

candidate answers based on their embeddings. Through the analy-
sis of our results, we found that the impact of different candidate
aspects on retrieving final answers tends to be different. Two as-
pects, entity and context, provide the node specific information,
which helps to retrieve nodes that satisfy the constraints specified
in the questions. While the general information included in the
other two aspects, type and path, is helpful for the model to filter
out more nodes that satisfy the constraints about the node type and
path. In summary, our major contributions are: (1) Created a dataset
for knowledge base question answering in healthcare. It consists of
two sets: (i) ClinicalKB: a comprehensive clinical knowledge base
created based on the expert annotations in n2c2 dataset, and (ii)
QA pairs: a large-scale question answering dataset on ClinicalKB.
(2) Investigated an attention-based aspect-level reasoning (AAR)
method for KBQA. (3) Conducted experimental analysis on Clin-
icalKBQA dataset to analyze the performance of AAR model and
the significance of different aspects in providing accurate answers.

2 RELATED WORKS
Question-Answering (QA) aims at automatically answering natu-
ral language questions about data sources in a variety of formats,
including free text [25], knowledge base [11], and database [40].
Knowledge base question answering (KBQA) has gained a lot of
attention in recent years with the rapid growth of large-scale knowl-
edge bases, such as YAGO2 [16] and Freebase [5]. Advances in deep
neural networks also allowed KBQA models to be trained in an
end-to-end manner [6, 9, 15] and achieve competitive performance
compared to traditional semantic parsing based methods [1, 20].

QA in the healthcare domain is still an underexplored research
topic, especially due to the lack of large-scale annotated datasets
and patient privacy issues [18]. Traditional biomedical QA depends
on rule-based or heuristic feature-based methods [2]. Recently,
several datasets have been created for machine reading comprehen-
sion (MRC), including BioASQ for semantic indexing and QA [31],
CliCR for MRC on clinical case reports [30], PubMedQA for MRC
on biomedical research texts [17] and emrQA for MRC on clinical
notes [23]. MIMICSQL [37] was created for QA on structured EMR
data by translating questions to SQL queries. These datasets allow
researchers to handle unique challenges present in the healthcare
domain. There are several works about knowledge base in health-
care. SNOMED [14] is a KB with standard clinical terminologies
for healthcare documentation. Unified Medical Language System
(UMLS) [4] is an integration of medical terminology, classification

and coding standards including SMOMED. Rotmensch et al. [27]
learnt a knowledge graph of symptom and disease from EMR by
considering the importance measure between terms.

For KBQA modeling, Generally speaking, there are two groups
of methods [21], i.e., semantic parsing-based [3, 22, 26] and infor-
mation retrieval-based (IR-based) [7, 10, 13, 38] methods. Semantic
parsing-based methods parse the input questions into a logical for-
mat, which is the syntactic representation of the input questions. To
predict the answers, the logical format is aligned with the KB struc-
tures and further executed against the KB. IR-based approaches
first directly identify and rank the candidate answers from the KB
by considering the information in the natural language questions,
and then perform the reasoning by learning the representation of
the input questions and analyzing the semantic matching of the
questions and candidate answers. As an important category of IR-
based KBQA methods, embedding-based approaches [6, 15] map
questions and answer candidates onto a common embedding space
and directly calculate their matching scores. Then, ranking tech-
niques are adopted to search answers from KB for given questions.
The survey papers [12, 21] provide a comprehensive analysis and
summary about the KBQA task.

3 THE CLINICALKBQA DATASET
ClinicalKBQA consists of two subsets, i.e., ClinicalKB and QA pairs.
In this section, we will explain how we created the clinical knowl-
edge base and the question answering dataset.

3.1 ClinicalKB
The n2c2 challenge data provide fine-grained document-level ex-
pert annotations of clinical records for various NLP tasks in clinical
domain. We leverage the annotations about seven tasks to build
the clinical knowledge base, including smoking status classification
[34], identification of obesity and its comorbidities [32], medication
extraction [35], relations extraction [36], co-reference resolution
[33], temporal information extraction [29], and risk factors pre-
diction [28]. The narrative blocks in clinical notes, such as family
history, provide more detailed clinical information from different
aspects and can be efficiently extracted with rule-based methods as
additional annotations.

Grounded on domain expert annotated clinical notes in the n2c2
challenge data, we construct clinical KB following two steps: (1)
Identify entities. An entity is represented by its name and type.
(2) Build triples, i.e., (subject, predicate, object). Here, both subject
and object are entities, and predicate is a relation between them.
In addition, we have also fixed some problems in the annotations
during pre-processing, such as pronouns like “this/that/his/her"
and irrelevant punctuation.

3.2 Question-Answer (QA) Pairs
3.2.1 Question Collection. We first collect a set of questions by
polling real interests of physicians and considering existing clinical
question resources, including emrQA and MIMICSQL, and further
identify questions that can be answered by ClinicalKB. Compared
with QA on structured tables [37] and clinical notes [23], the ques-
tions on ClinicalKB cover a much wider range of topics (see Table 1).
Some questions are not answerable by structured tables or a single
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Table 2: Statistics of ClinicalKB and QA pairs created based on the n2c2 dataset. Here, QuesLen, GoldAns, and CandAns represent
question length, gold-standard answers, and candidate answers, respectively.

Metric Smoking Obesity Medications Relations Co-reference Temporal Risk
# Patients 502 1,103 261 426 424 310 119
# Entities 6,160 17,861 28,821 20,031 1,581 127,772 6,984
# Entity types 49 42 46 7 7 20 15
# Triples 9,730 42,474 53,519 30,401 1,378 276,513 24,553
# Relations 5 8 14 11 7 13 11
# Question Templates 26 37 59 74 18 29 79
# QA pairs 600 1,126 1,847 2,389 444 626 1,920
Min/Max/Avg QuesLen 4/10/8 5/14/9 5/17/10 6/21/11 8/17/12 8/19/11 8/21/17
Min/Max/Avg # GoldAns 1/82/5 1/816/27 1/111/10 1/29/3 1/2/2 1/239/19 1/69/5
Min/Max/Avg # CandAns 5/2,665/999 3/8,686/2,261 2/6,240/68 4/679/79 3/6/4 5/1,543/175 2/74/17

clinical note. Take Q4 as an example, “indicators of diseases” are
usually not included in structured tables, and the term “all medical
records” indicates that answers cannot be found in a single note.

We then manually identified specific entities in the selected ques-
tions and replace them with generic placeholders to normalize and
form question templates. In total, we generated a set of 322 ques-
tion templates, including various paraphrases of questions with
the same meanings. For example, the template for Q2 in Table 1
is “What does patient |PatientID| take |Medication| for?", where the
generic placeholders |PatientID| and |Medication| are the topic enti-
ties of the question that need to be replaced by the corresponding
ClinicalKB entities during question generation. We believe that the
questions we collected from domain experts and the existing clini-
cal question sources recognized by the community will provide a
helpful resource of QA for researchers in the scientific community.

3.2.2 QA Pairs Generation. This step focuses on populating ques-
tion templates and identifying corresponding answers. Since patient
private information is de-identified in n2c2, we use patient IDs in-
stead of names in patient-specific questions. Each question template
may have multiple ways to populate. For example, the template of
Q2 mentioned previously can be populated with different combina-
tions of |PatientID| and |Medication|. However, we do not need to
enumerate all possible questions for it. In practice, we applied two
constraints to limit repetitions: (1) Set a threshold to the total num-
ber of questions generated for each template. (2) Remove questions
without answers. When generating questions, the corresponding
answers to each question is simultaneously extracted from clinical
notes based on the human annotation and ClinicalKB.

3.3 Data Analysis
3.3.1 Basic Statistics. The statistics of ClinicalKB and QA pairs are
presented in Table 2. The ClinicalKB covers seven important medi-
cal topics in n2c2. The total number of QA pairs is 8,952. We created
more question templates and QA pairs for Medications, Relations,
and Risk because their annotations are more comprehensive. The
average question length is 12 in terms of tokens. Each question has
at least one gold-standard answer and a lot of questions have mul-
tiple answers. In this work, we refer to the collection of ClinicalKB
and QA pairs as the ClinicalKBQA dataset. The number of entities
in golden and candidate answers are 9 and 402 on average, respec-
tively. The number of golden and candidate answers for questions

about Co-reference is relatively small since the variety of annotated
terms with the same meaning are small in n2c2.

3.3.2 Question Types. Our primary goal of knowledge base ques-
tion answering on clinical notes is to extract patient information
from unstructured clinical text. Therefore, all questions included
in our ClinicalKBQA dataset are factoid questions which aim to
seek reliable and concise medical history information about pa-
tients. We analyzed the quantitative percentage of various question
types in ClinicalKBQA data and find that the questions starting
with “What”, “List/Search/Give/Provide”, and “Which” account for
a large proportion of the dataset and aim to ask for detailed medical
facts, such as prescribed medications and the smoking status. The
questions starting with “Why” and “How” tend to be open-ended
in many open-domain question answering datasets. However, in
the ClinicalKBQA dataset, the “Why” and “How” types of questions
are mainly included for retrieving attribute facts about medication,
including prescribed reason, dosage, frequency, and duration. In
addition, the question type “When” are included for extracting the
admission and discharge time of patients.

3.3.3 Question Coverage. Table 1 provides a comparison of ques-
tions that can be answered on different types of EHR data. We can
observe that knowledge base about patient clinical information is
able to answer the basic questions that are answerable by QA on
both clinical notes and structured tables. It also has the ability to
combine the advantages of free-text clinical notes and structured
tables to handle more complex questions. For example, for the ques-
tion Give me all diseases that are revealed by non contrast head ct
scan on patient P0126, even if there are lab test information included
in the structured data, the diseases that are actually revealed by each
test are not specified.While, for questionQ3 in Table 1, the machine
reading comprehension on emrQA cannot provide answers since
these questions are related to multiple clinical notes. ClinicalKB is
able to integrate the information from different clinical notes or
about different patients into a general network structure, which
makes it feasible to handle more complex type of questions.

4 THE KBQA MODELING
4.1 Candidate Generation
It will be computationally expensive for KBQA models to directly
search answers from ClinicalKB. Therefore, we first generate a
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candidate subgraph for each question in two steps: (1) We identify
one of the entities in the question template as the topic entity (root),
and collect all entities connected to it within 3-hop as a candidate
subgraph. Each entity in the subgraph except the root is viewed
as a candidate answer. For the ClinicalKBQA dataset, the answers
to all questions are reachable within 3-hop of their topic entities.
(2) We treat the remaining entities in the question as constraints
to the candidate sub-graph, and further prune the graph to ensure
that paths to the topic entity satisfy the constraints and include
entities with expected answer type. We show the basic statistics of
candidate answers in Table 2.

4.2 Attention-based Aspect Reasoning (AAR)
Motivated by [6, 15], we implemented an embedding-based end-to-
end model on ClinicalKBQA dataset that incorporates an attention
mechanism between question representations and aspect-level an-
swer candidate representations to calculate matching scores. There
are mainly four components in the AAR model.

Question Representations. The question encoder is composed
of a word-embedding layer followed by a bi-directional LSTM layer,
which encodes a question 𝑞 = (𝑞1, 𝑞2, . . . , 𝑞 |𝑞 |) into a sequence of
hidden states𝐻𝑞 = (ℎ𝑞1 , ℎ

𝑞

2 , . . . , ℎ
𝑞

|𝑞 |), where 𝑞𝑖 and ℎ
𝑞

𝑖
represent the

𝑖𝑡ℎ token and its corresponding hidden state, respectively. |𝑞 | is the
length of the input question.

Graph Representation. To encode candidate subgraphs, we
first convert each subgraph to a candidate answer set, where each
element (i.e., node) in the set represents an entity in the subgraph,
which has four aspects of information: 1) Entity (ℎ𝑒

𝑘
) represents

the embedding of the node 𝑘 in a KB. 2) Type (ℎ𝑡
𝑘
) denotes the

entity type of the node 𝑘 . It provides important clue for finding an
answer. 3) Path (ℎ𝑝

𝑘
) represents a path from the topic entity node of

a subgraph to the current candidate node. Thus, the path provides
relationships between the topic entity and the candidate answer. 4)
Context consists of all neighboring nodes of the current candidate
node 𝑘 . We encoded the context of each candidate answer 𝑐𝑘 =

(𝑐𝑘1 , 𝑐𝑘2 , . . . , 𝑐𝑘𝑐 ) as a list of hidden states 𝐻𝑐
𝑘
= (ℎ𝑒

𝑘1
, ℎ𝑒

𝑘2
, . . . , ℎ𝑒

𝑘𝑐
),

where 𝑐𝑘𝑖 is the 𝑖
𝑡ℎ context node in the context of node 𝑘 , and

ℎ𝑒
𝑘𝑖

represents its corresponding entity embedding. For simplicity,
we will use ℎ𝑒 , ℎ𝑡 , ℎ𝑝 , and 𝐻𝑐 to represent ℎ𝑒

𝑘
, ℎ𝑡

𝑘
, ℎ𝑝

𝑘
, and 𝐻𝑐

𝑘
,

respectively.
Attention Mechanisms. The attention mechanisms can dis-

cover underlying correlations between a question and different
features/aspects of any candidate node. Here, we will use the atten-
tion between aspect “type" and the input question, namely type-
to-question attention, to illustrate how the attention mechanism
works. Given the question representation 𝐻𝑞 = (ℎ𝑞1 , ℎ

𝑞

2 , . . . , ℎ
𝑞

|𝑞 |),
and the type embedding ℎ𝑡 , the alignment score 𝑢𝑡2𝑞 and attention
weight 𝛼𝑡2𝑞 are calculated as 𝑢𝑡2𝑞

𝑖
= (ℎ𝑡 )𝑇 𝑡𝑎𝑛ℎ(𝑊𝑡2𝑞ℎ

𝑞

𝑖
+ 𝑏𝑡2𝑞)

and 𝛼
𝑡2𝑞
𝑖

=
𝑒𝑥𝑝 (𝑢𝑡2𝑞

𝑖
)∑|𝑞 |

𝑗=1 𝑒𝑥𝑝 (𝑢
𝑡2𝑞
𝑗

)
, respectively. Here 𝑊𝑡2𝑞 and 𝑏𝑡2𝑞 are

model parameters. Finally, the type-related question representa-
tion, namely type-to-question representation, is obtained by 𝑟𝑡2𝑞 =

∑ |𝑞 |
𝑗=1 𝛼

𝑡2𝑞
𝑗

ℎ
𝑞

𝑗
where 𝑟𝑡2𝑞 is a question representation which incor-

porates type information. Similarly, we can obtain such representa-
tions for other aspects, including path, entity, and context. Hereafter,
they are denoted as 𝑟𝑒2𝑞 , 𝑟𝑝2𝑞 and 𝑟𝑐2𝑞 , respectively.

Scoring Answers. The prediction of answers is made based
on the similarity score between the input question and each an-
swer candidate, which is a weighted average score of distances
between questions and different answer aspects of each candidate.
For each aspect, we first calculate the similarity of its embedding
and aspect-to-question representation as 𝑠𝑡𝑞 = (ℎ𝑡 )𝑇 𝑟𝑡2𝑞 . Since
different aspects of candidate answers are not equally important
to the final predictions, we also calculate the weight of each as-
pect as 𝑤𝑡𝑞 = (𝐻𝑞

𝑎𝑣𝑔)𝑇 𝑟𝑡2𝑞 , where 𝐻
𝑞
𝑎𝑣𝑔 represents the question

representation obtained by performing average-pooling over the
sequence of hidden states of the question 𝐻𝑞 = (ℎ𝑞1 , ℎ

𝑞

2 , . . . , ℎ
𝑞

|𝑞 |).
Therefore, the final score of each candidate answer will be 𝑆 (𝑞, 𝑎) =
𝑤𝑒𝑞𝑠𝑒𝑞 +𝑤𝑡𝑞𝑠𝑡𝑞 +𝑤𝑝𝑞𝑠𝑝𝑞 +𝑤𝑐𝑞𝑠𝑐𝑞 . During testing, candidate an-
swers are ranked based on their scores.

4.2.1 Training and Inference. In the ClincalKBQA task, we treat
the answer retrieval problem as a ranking problem and adopt a
pair-wise strategy to train the model. Intuitively, ground truth an-
swers should have higher scores than the other candidate answers.
Therefore, during training, for each ground-truth answer node 𝑎
(positive example), we randomly select a candidate node (not an
answer) 𝑎′ as a negative example. The training loss is a max-margin
hinge loss defined as 𝐿 =𝑚𝑖𝑛 1

|𝐵𝑞 |
∑

(𝑎,𝑎′ ) ∈𝐵𝑞 [𝛾+𝑆 (𝑞, 𝑎)−𝑆 (𝑞, 𝑎
′)]+,

where 𝑆 (𝑞, 𝑎) and 𝑆 (𝑞, 𝑎′) are the final scores of 𝑎 and 𝑎′, respec-
tively. 𝛾 ∈ (0, 1) is a real number that indicates the margin between
the positive and negative examples. [·]+ represents the hinge loss,
which is defined by𝑚𝑎𝑥 (0, ·). Here, 𝐵𝑞 denotes a set of positive-
negative example pairs (𝑎, 𝑎′), and |𝐵𝑞 | is the batch size. Intuitively,
the hinge loss function increases the margin between the positive
and negative examples and allows us to select multiple answers
from a set of candidate answers instead of the best answer only.

During the testing, for each input question, we first retrieve a
set of candidate answers 𝐶𝑞 from the corresponding knowledge
base, and then calculate the score for each candidate answer 𝑎 ∈
𝐶𝑞 . The best answer is obtained by 𝑎𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔 max𝑎∈𝐶𝑞 𝑆 (𝑞, 𝑎).
Usually, there are multiple answers for each question, therefore,
the candidate answers whose scores are close to the highest score
within a margin can also be considered as answers. This inference
process can be formulated as 𝑓 (𝑞, 𝑎) = 1 if 𝑆 (𝑞, 𝑎) > 𝑆 (𝑞, 𝑎𝑏𝑒𝑠𝑡 ) −𝛾 .
Otherwise, 𝑓 (𝑞, 𝑎) = 0. Here 𝑓 (𝑞, 𝑎) = 1 indicates that node 𝑎 is the
answer to the question 𝑞.

5 EXPERIMENTS AND ANALYSIS
5.1 Experimental Settings
We implemented the AAR model along with its several variants.
Following prior work, we adopted micro-averaged precision, recall,
and F1 score to evaluate different models. In our experiment, we
split the data into training/development/testing sets with a pro-
portion of 5952/1000/2000. We implemented the AAR model using
Pytorch [24] and the best set of parameters are selected based on the
development set. We set the size of embeddings for words, entities,



Attention-based Aspect Reasoning for Knowledge BaseQuestion Answering on Clinical Notes BCB ’22, August 7–10, 2022, Northbrook, IL, USA

Table 3: Performance results onClinicalKBQAusing different
evaluation metrics. Here, “full” indicates the model consider-
ing all the four aspects. While the rows with specific aspects
indicate the model only considers these specific aspects.

Models Precision Recall Accuracy Micro-F1 Macro-F1
SGEmb (full) 0.7447 0.1249 0.5105 0.2139 0.6617
entity & sub-graph 0.3866 0.0750 0.2370 0.1256 0.3807
path 0.4870 0.7966 0.7260 0.6045 0.8583
AAR (full) 0.8072 0.1735 0.6525 0.2856 0.7973
entity & context 0.5964 0.1360 0.4725 0.2216 0.6645
type 0.1205 0.8908 0.3685 0.2123 0.6177
path 0.4780 0.7913 0.7665 0.5960 0.9057
type & path 0.6598 0.6616 0.7745 0.6607 0.8980

Figure 1: Attention heatmaps generated by the cross-
attention module. ASPW denotes weights for different as-
pects, which are path, type, entity, and context.

entity types, and paths to topic entities to 300. The word embed-
dings are learnt from scratch. We adopted a single layer Bi-LSTM
with the hidden size 150. All parameters were trained using ADAM
optimizer [19] with a constant learning rate of 0.0001 for 10 epochs.
In addition, we compare the performance of AAR with a subgraph-
based approach SGEmd [6], which first calculates embeddings of
words, entities, and path to topic entities. Then, each question
representation is obtained by applying average pooling to word
embeddings. Answer candidates are represented by entities, paths
to topic entities, and subgraphs. This method is known as subgraph
embedding. The ClinicalKBQA dataset and our implementation is
made publicly available at this website2.

5.2 Experimental Results
From Table 3 and Figure 2, we can observe that AAR achieves better
results than SGEmb, which is because AAR is equipped with a
better encoder, attention mechanisms, and entity type information.
To explore the impact of each aspect in our ClinicalKBQA, we
studied models with only one aspect of information. SGEmb-entity
& sub-graph and AAR-entity & context, which only leverage entity
embeddings, achieve relatively higher precision and lower recall,
and the number of predicted answers is much fewer than that
of the ground-truth. This is due to the fact that different answer
candidates have different entity embeddings and matching scores,
which makes the model favor the answer with the highest score.

On the other hand, models that only consider path and type
achieve relatively lower precision and higher recall since different
candidates may share common type and path embeddings and have

2https://github.com/wangpinggl/Clinical-KBQA

Figure 2: The impact of different aspects on the AAR model
prediction, including the number of predicted answers and
multiple evaluation scores. # of answers denotes the number
of answers predicted by models on testing set. The number
of ground-truth answers is 16,251. The results show that the
aspects type and path include general node information and
lead to more answers that satisfy such generic requirements.
However, the aspects entity and context include node specific
information and lead to less number of answers that only
satisfy such specific requirements.

the same matching score. Thus, the number of predicted answers
are much more than that of the ground-truth. Models with only
path information perform significantly better than other variants
with only one aspect, which indicates path is the most significant
factor for our ClinicalKBQA. Finally, AAR-type & path achieves the
best accuracy and Micro-F1 score.

We have also shown the heatmap based on the attention mech-
anism for an input question in Figure 1. The model gives more
weight to the aspect “type" among all four aspects, which indicates
that the aspect “type" of candidate answers is the most important
feature for the final prediction. For aspect-towards-question atten-
tion, all four aspects capture the keywords “tests" and “to check
cholestatic jaundice picture". These important keywords are serv-
ing as the query conditions to identify qualified candidate answers
whose node “type" is “test" and can be used “to check cholestatic
jaundice picture". This analysis of attention weights is helpful for
us to explain how the AAR model identifies correct answers for
an input question. It also provides us insights about the impactful
aspects of candidate answers to match the input questions on the
ClinicalKBQA dataset.

6 CONCLUSIONS
In this work, we introduced a dataset for question answering (QA)
on ClinicalKB, namely ClinicalKBQA, which is composed of two
subsets, i.e., ClinicalKB and QA pairs. ClinicalKB is built from expert
annotated clinical notes; thus, it allows doctors to ask questions
on a collection of notes for different patients. We have also in-
troduced a procedure for generating answer candidate subgraphs
from ClinicalKB for given questions. In addition, an attention-based
aspect-level reasoningmodel is investigated for KBQAon this newly
created dataset. Finally, we conducted experimental analysis and
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studied the significance of different aspects in providing accurate
answers. Based on the results, we find that KBQA can provide more
accurate answers and cover more complex questions. In addition,
the aspects type and path are two important factors in the clinical
KBQA task.

ACKNOWLEDGMENTS
This work was supported in part by the US National Science Foun-
dation grant IIS-1838730, Amazon AWS cloud computing cred-
its, and Pacific Northwest National Laboratory under DOE-VA-
21831018920.

REFERENCES
[1] Abdalghani Abujabal, Mohamed Yahya, Mirek Riedewald, and Gerhard Weikum.

2017. Automated template generation for question answering over knowledge
graphs. In Proceedings of the 26th international conference on world wide web.
1191–1200.

[2] Sofia J Athenikos and Hyoil Han. 2010. Biomedical question answering: A survey.
Computer methods and programs in biomedicine 99, 1 (2010), 1–24.

[3] Jonathan Berant and Percy Liang. 2014. Semantic parsing via paraphrasing.
In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 1415–1425.

[4] Olivier Bodenreider. 2004. The unified medical language system (UMLS): in-
tegrating biomedical terminology. Nucleic acids research 32, suppl_1 (2004),
D267–D270.

[5] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data. AcM, 1247–1250.

[6] Antoine Bordes, Sumit Chopra, and Jason Weston. 2014. Question Answering
with Subgraph Embeddings. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 615–620.

[7] Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. 2015. Large-
scale simple question answering with memory networks. arXiv preprint
arXiv:1506.02075 (2015).

[8] Antoine Bordes, Jason Weston, and Nicolas Usunier. 2014. Open question an-
swering with weakly supervised embedding models. In Joint European conference
on machine learning and knowledge discovery in databases. Springer, 165–180.

[9] Yu Chen, Lingfei Wu, and Mohammed J Zaki. 2019. Bidirectional Attentive
Memory Networks for Question Answering over Knowledge Bases. In Proceed-
ings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 2913–2923.

[10] Zi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jijnasa Nayak, and Lun-Wei Ku.
2019. UHop: An Unrestricted-Hop Relation Extraction Framework for Knowledge-
Based Question Answering. In Proceedings of NAACL-HLT. 345–356.

[11] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yangqiu Song, Seung-won Hwang,
and Wei Wang. 2019. KBQA: learning question answering over QA corpora and
knowledge bases. In Proceedings of the VLDB Endowment. 565–576.

[12] Dennis Diefenbach, Vanessa Lopez, Kamal Singh, and Pierre Maret. 2018. Core
techniques of question answering systems over knowledge bases: a survey. Knowl-
edge and Information systems 55, 3 (2018), 529–569.

[13] Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015. Question answering over
freebase with multi-column convolutional neural networks. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers). 260–269.

[14] K Donnelly. 2006. SNOMED-CT: The advanced terminology and coding system
for eHealth. Studies in health technology and informatics 121 (2006), 279–290.

[15] Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu He, Zhanyi Liu, Hua Wu, and
Jun Zhao. 2017. An end-to-end model for question answering over knowledge
base with cross-attention combining global knowledge. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 221–231.

[16] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, Edwin Lewis-Kelham,
Gerard De Melo, and Gerhard Weikum. 2011. YAGO2: exploring and querying
world knowledge in time, space, context, and many languages. In Proceedings of
the 20th international conference companion on World wide web. 229–232.

[17] Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu.
2019. PubMedQA: A Dataset for Biomedical Research Question Answering. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). 2567–2577.

[18] Qiao Jin, Zheng Yuan, Guangzhi Xiong, Qianlan Yu, Chuanqi Tan, Mosha Chen,
Songfang Huang, Xiaozhong Liu, and Sheng Yu. 2021. Biomedical Question
Answering: A Comprehensive Review. arXiv preprint arXiv:2102.05281 (2021).

[19] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. International Conference on Learning Representations (2015).

[20] Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke Zettlemoyer. 2013. Scaling
semantic parsers with on-the-fly ontology matching. In Proceedings of the 2013
conference on empirical methods in natural language processing. 1545–1556.

[21] Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang, Wayne Xin Zhao, and Ji-Rong
Wen. 2021. A survey on complex knowledge base question answering: Methods,
challenges and solutions. arXiv preprint arXiv:2105.11644 (2021).

[22] Chen Liang, Jonathan Berant, Quoc Le, Kenneth Forbus, and Ni Lao. 2017. Neural
Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervi-
sion. In Proceedings of the 55th AnnualMeeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 23–33.

[23] Anusri Pampari, Preethi Raghavan, Jennifer Liang, and Jian Peng. 2018. emrQA:
A Large Corpus for Question Answering on Electronic Medical Records. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing. 2357–2368.

[24] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. Proceedings of the 31st Conference on
Neural Information Processing Systems (2017), 1–43.

[25] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100,000+ Questions for Machine Comprehension of Text. In Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language Processing.
2383–2392.

[26] Siva Reddy, Mirella Lapata, and Mark Steedman. 2014. Large-scale semantic
parsing without question-answer pairs. Transactions of the Association for Com-
putational Linguistics 2 (2014), 377–392.

[27] Maya Rotmensch, Yoni Halpern, Abdulhakim Tlimat, Steven Horng, and David
Sontag. 2017. Learning a health knowledge graph from electronic medical records.
Scientific reports 7, 1 (2017), 1–11.

[28] Amber Stubbs, Christopher Kotfila, Hua Xu, and Özlem Uzuner. 2015. Identifying
risk factors for heart disease over time: Overview of 2014 i2b2/UTHealth shared
task Track 2. Journal of biomedical informatics 58 (2015), S67–S77.

[29] Weiyi Sun, Anna Rumshisky, and Ozlem Uzuner. 2013. Evaluating temporal
relations in clinical text: 2012 i2b2 Challenge. Journal of the American Medical
Informatics Association 20, 5 (2013), 806–813.

[30] Simon Suster and Walter Daelemans. 2018. CliCR: a Dataset of Clinical Case Re-
ports for Machine Reading Comprehension. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers). 1551–1563.

[31] George Tsatsaronis, Georgios Balikas, Prodromos Malakasiotis, Ioannis Partalas,
Matthias Zschunke, Michael R Alvers, Dirk Weissenborn, Anastasia Krithara, Ser-
gios Petridis, Dimitris Polychronopoulos, et al. 2015. An overview of the BIOASQ
large-scale biomedical semantic indexing and question answering competition.
BMC bioinformatics 16, 1 (2015), 138.

[32] Özlem Uzuner. 2009. Recognizing obesity and comorbidities in sparse data.
Journal of the American Medical Informatics Association 16, 4 (2009), 561–570.

[33] Ozlem Uzuner, Andreea Bodnari, Shuying Shen, Tyler Forbush, John Pestian,
and Brett R South. 2012. Evaluating the state of the art in coreference resolution
for electronic medical records. Journal of the American Medical Informatics
Association 19, 5 (2012), 786–791.

[34] Özlem Uzuner, Ira Goldstein, Yuan Luo, and Isaac Kohane. 2008. Identifying
patient smoking status from medical discharge records. Journal of the American
Medical Informatics Association 15, 1 (2008), 14–24.

[35] Özlem Uzuner, Imre Solti, and Eithon Cadag. 2010. Extracting medication infor-
mation from clinical text. Journal of the American Medical Informatics Association
17, 5 (2010), 514–518.

[36] Özlem Uzuner, Imre Solti, Fei Xia, and Eithon Cadag. 2010. Community annota-
tion experiment for ground truth generation for the i2b2 medication challenge.
Journal of the American Medical Informatics Association 17, 5 (2010), 519–523.

[37] Ping Wang, Tian Shi, and Chandan K Reddy. 2020. Text-to-SQL Generation for
Question Answering on Electronic Medical Records. In Proceedings of The Web
Conference 2020. 350–361.

[38] Xuchen Yao and Benjamin Van Durme. 2014. Information extraction over struc-
tured data: Question answering with freebase. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
956–966.

[39] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A Large-Scale
Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and
Text-to-SQL Task. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing. 3911–3921.

[40] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement Learning. arXiv
preprint arXiv:1709.00103 (2017).



Attention-based Aspect Reasoning for Knowledge Base Question Answering on Clinical Notes BCB ’22, August 7–10, 2022, Northbrook, IL, USA

A APPENDIX
A.1 Comparisons of QA on Different Types of

EMR Data
Table 1 in the main paper provides a comparison of questions that
can be answered on different types of EMR data including clinical
notes, structured tables and knowledge base. We can observe that
knowledge base of patient clinical information is able to answer the
basic questions that are answerable by QA on both clinical notes
and structured tables. In addition, it has the ability to combine the
advantages of free-text clinical notes and structured tables to handle
more complex questions. In addition, Table 4 shows a comparison
of the ClinicalKBQA to the existing datasets for QA in healthcare.

Table 4: Comparison of ClinicalKBQA with other datasets
for QA in healthcare domain.

Dataset Data Source QA Task Answer Type
BioASQ Biomedical Articles MRC Text Span
CliCR Clinical Reports MRC Text Span
PubMedQA Pubmed Abstracts MRC Text Span
emrQA Clinical Notes MRC Text Span
MIMICSQL Structured Tables Text-to-SQL Table Content
ClinicalKBQA Clinical Notes KBQA KB Entity

Figure 3: An example subgraph about prescribedmedications
along with their related information in medication dataset.

A.2 More Details about ClinicalKBQA
Here are the brief introduction about the annotations for various
NLP task in n2c2.
• Smoking status classification [34]: Each clinical record is anno-
tated with the smoking status from five possible categories (cur-
rent smoker, past smoker, non-smoker, smoker, and unknown)
along with the smoking-related facts mentioned in the records.

• Identification of obesity and its co-morbidities [32]: Each
clinical record is annotated with obesity and co-morbidities us-
ing both textual judgments (explicit) and intuitive judgments
(implicit).

Figure 4: An example subgraph about diagnosed diseases
and their comorbidity relationships in the Obesity dataset. A
question based on this subgraph will be “What is the comor-
bidities of diabetes for patient P1054?”. The corresponding
answers will be CAD and Hypertension.

• Medication extraction [35]: The medication-related informa-
tion including medication name, dosage along with the mode,
frequency, duration and reason of the administration, is anno-
tated in each clinical record.

• Analysis of relations of medical problems, tests and treat-
ments [36]: The annotations for concept, assertion, and relation
information are provided in each clinical record.

• Co-reference resolution [33]: Each clinical record is annotated
with concept mentions that are referring to the same entity.

• Temporal information extraction and reasoning [29]: The
clinically significant events and temporal expressions are anno-
tated along with the temporal relation between them in each
clinical record.

• Risk factors identification of heart disease [28]: Each clinical
record provides the annotation of medically relevant information
about heart disease risk factors including the status of smoking,
obesity, medication, and hypertension.

A.3 Subgraph Examples about ClinicalKB
We provide a subgraph example in Obesity dataset about diagnosed
diseases for patient P1054 and their comorbidity relationships in
Figure 4. Based on the clinical note of patient P1054, he/she has
been diagnosed with three diseases, including CAD, Diabetes and
Hypertension. Since the annotations in Obesity dataset focus on
the comorbidities relations of different diseases, we include such
comorbidity relation between these three diseases.

Figure 3 shows the relationships between patient P961115 and
the prescribed medications along with other detailed attribute in-
formation including dosage, frequency, duration, and reason. We
observe that not all attribute information is available for each med-
ication. For example, the duration is only mentioned for albuterol,
while the mode and dosage are mentioned only for ibuprofen. We
hope that these two subgraph examples can provide an overview
for understanding about patient information covered in ClinicalKB.
Detailed statistics about ClinicalKB are summarized in Table 2.
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(a) (b)

Figure 5: Distribution of questions by (a) the first two words in all questions and (b) the most common bigrams used in all
questions.

Table 5: Question types in ClinicalKBQA along with examples.

Question type Examples Percentage
What medications has patient P939003 ever been prescribed?

What What is the smoking status of patient P164? 38.29%
What is the dosage of colacefor patient P11995?
List all comorbilities of Asthma for patient P1225.

List/Search/Give/Provide Search for all the coreferenced tests of blood cultureon P727. 35.21%
Give me all patients whose smoking status is current smoker.
Provide me the discharge time of patient P76.
Which tests are conducted on patient P0161?

Which Which tests are conducted on patient P0161? 20.81%
Which medications can be prescribed for preventing creatinine?
Why is patient P74976 prescribed glucotrol?

Why Why is patient P280639 on coumadin? 2.21%
Why was ibuprofen originally prescribed for patient P961115?
How much aspirin does patient P920102 take per day?

How much/often/long How often does patient P439766 take regular insulin? 2.13%
How long has patient P652612 been taking levofloxacin?

When When was patient P130 admitted? 1.34%
When was patient P32 discharged?
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A.4 Question Distribution in ClinicalKBQA
Data

We group the questions in ClinicalKBQA dataset into different types
based on the starting words. The distributions of question types
showed in Figure 5(a) are generated based on the most common
first two starting words in all questions. In Figure 5(b), we also
show a distribution of the most common bigrams used in all ques-
tions in ClinicalKBQA dataset. It provides an overview about the
specific patient information that various questions aim to extract
from clinical notes. In addition, Table 5 provides the quantitative
percentage of various question types in ClinicalKBQA data.

A.5 Model Framework
Figure 6 shows the overall framework of the AAR model.

Figure 6: The overall framework of AAR model.
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