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Abstract—Linear discriminant analysis (LDA) is widely used
for dimensionality reduction under supervised learning settings.
Traditional LDA objective aims to minimize the ratio of squared
Euclidean distances that may not perform optimally on noisy
data sets. Multiple robust LDA objectives have been proposed
to address this problem, but their implementations have two
major limitations. One is that their mean calculations use the
squared �2-norm distance to center the data, which is not valid
when the objective does not use the Euclidean distance. The
second problem is that there is no generalized optimization
algorithm to solve different robust LDA objectives. In addition,
most existing algorithms can only guarantee the solution to be
locally optimal, rather than globally optimal. In this paper, we
review multiple robust loss functions and propose a new and
generalized robust objective for LDA. Besides, to better remove
the mean value within data, our objective uses an optimal way to
center the data through learning. As one important algorithmic
contribution, we derive an efficient iterative algorithm to optimize
the resulting non-smooth and non-convex objective function.
We theoretically prove that our solution algorithm guarantees
that both the objective and the solution sequences converge to
globally optimal solutions at a sub-linear convergence rate. The
experimental results demonstrate the effectiveness of our new
method, achieving significant improvements compared to the
other competing methods.

Index Terms—Linear Discriminant Analysis, Generalized Loss
Function, Robustness, Non-convex Optimization, Global Conver-
gence, Mean-Optimal.

I. INTRODUCTION

Dimensionality reduction plays an important role in pattern

classification and has been successfully applied to many real-

world applications, such as social media, business, computer

vision, bioinformatics, etc. [1]. Among the most widely used

supervised dimensionality reduction methods is the Linear

Discriminant Analysis (LDA) that aims to find the optimal

projection by simultaneously maximizing the between-class

variance and minimizing the within-class variance in the

projected subspace. The algorithm of solving the traditional

LDA objective is to optimize a trace ratio problem that

can be transformed into a tractable ratio trace form [2].

This transformation allows us to easily find a closed-form

solution by using the generalized eigenvalue decomposition

method [3]. Unfortunately, this solution often deviates from

the original objectives when outlier samples are present, which

can result in uncertainties within subsequent classification

procedures [2]. Another problem with this method is that

inverting a singular within-class variance matrix can cause

the LDA formulation to be ill-conditioned, and in fact this

is common when the training data are sampled from high-

dimensional space or there exist strong-correlated features.

The efforts to overcome these issues by optimizing the ratio

trace transformation cannot thoroughly solve this singularity

problem. Motivated to tackle the original trace ratio problem,

many existing works [4]–[6] studied how to directly optimize

the trace-ratio objective function.

One major limitation of the traditional LDA is its depen-

dency upon the squared �2-norm (�22) distance that is highly

vulnerable to the presence of outliers or noisy data. This

is because the least square criterion can remarkably enlarge

the effect of noise on the total loss. Unfortunately, noise

appears more or less everywhere in real-world applications.

Therefore, it is critical to improve the robustness of the model

when random noise or even adversarial attack are present in

the data. In contrast to regular noises that are usually small

in magnitude and sometimes even invisible to human eyes,

adversarial attacks are intentionally constructed by injecting

small perturbations into the original data such that the model

can be misled to output discouraged results [7]. A more

recently used adversarial attacks for modeling real-world data

are the adversarial patch attack that couples the original data

with a human-manipulated patch [8]. The effectiveness of such

attacks can be explained in terms of the black-box principle

where the attacker knows nothing about the configurations of

the studied model.

To enhance the robustness against noise, many LDA ob-

jectives changed to use other distance functions rather than

the �22-norm distance. Wang et al. [9] proposed to measure

the two variance matrices using a rotational invariant �1-

norm. However, the runtime of this method is as high as

the intractable memory cost of storing the representations

because the greedy learning strategy proceeds one projection

vector at a time. Tao et al. [10] proposed to select the

discriminative patterns by using a �2,1-norm regularization

that is a row-sparsity constraint on the transformation matrix.

Since this method fails to uncover the most important features

in the given tasks and the learned representations are largely

governed by the selected number of dimensions. Wen et al.
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[11] introduced an orthogonal matrix to connect the original

features and transformed features, in which the main infor-

mation of the original data can persevere in the discriminant

subspace. However, their optimization methods easily fall into

locally optimal solutions. Zheng et al. [12] tried to build a �1-

norm discriminant analysis (L1-LDA) using Bayes error bound

optimization, but the implementation of the Bayes error bound

is not easy as it requires each class to contain the same number

of samples.

Recently, there are also several efforts that focus on how

to develop robust lost functions [13]–[15]. Although these

methods are able to improve the robustness against noisy

data, their implementations are usually limited to two no-

torious problems. One is that some optimization algorithms

just simply guarantee the decrease of the objective value, but

not the algorithm convergence by nature. Another problem

is that the derived solutions using their methods can easily

get stuck in local minima rather than landing exactly on the

global minima. Moreover, these loss functions were developed

with their particular properties, each of which has its own

independent variables to adjust the robustness. Hence, in this

paper, we aim to provide a novel and robust objective for

LDA that has better generalization with a shared tractable and

efficient optimization algorithm.

We also noticed that most existing robust LDA objectives

do not tackle the mean calculation in a correct way. In

many cases, the mean of the data is not zero, and using

�22-based distance to calculate the mean value is incorrect

when the objective depends on other norm based distance

[16]. In this paper, we thus do not only propose a novel

generative LDA model that integrates a very broad family of

robust loss functions, but also embed the mean calculation

into the objective function that can remove the optimal mean

automatically during learning time. Since existing optimization

algorithms are not able to well handle our generative objective

with the non-smooth and non-convex property, as one impor-

tant algorithmic contribution, we further derive an efficient

solution algorithm that can guarantee both the objective and

sequence convergences. Through our mathematical analysis,

our proposed algorithm is proved to find a globally optimal

solution at a sub-linear rate. In our extensive experiments,

our proposed method outperforms several competitive dimen-

sionality reduction approaches and has a great advantage of

handling various noisy date or adversarial attacks.

II. FORMULATION AND ALGORITHM

Given the training dataset of X ∈ R
d×n, we can repre-

sent it using a few sub-design matrices X = [X1, ..., Xc],
where Xi = [xi

1, ..., x
i
ni
] ∈ R

d×ni(1 ≤ i ≤ c) corre-

sponds to a collection of data points belonging to the i-
th class. The traditional binary-class LDA method assumes

that, given data points Xi = [xi
1, ..., x

i
ni
] in the i-th class

and data points Xj = [xj
1, ..., x

j
nj
] in the j-th class, both

multivariate probability densities are multivariate Gaussian

distributions with arbitrary mean vectors μ and a covariance

matrix Σ, that is: p(x|μi,Σi) = e(−
1
2
[x−μi]

T Σ
−1
i

[x−μi])
(2π)n/2|Σi|1/2 , and

p(x|μj ,Σj) = e(−
1
2
[x−μj ]

T Σ
−1
j

[x−μj ])
(2π)n/2|Σj |1/2 , where μi is the mean

value of data points in class i, and μ is the mean value of the

whole data points. Due to the homogeneity assumption that

Σi = Σj = Σxx, the ratio of the two densities can be written

as:

p(x|μi,Σxx)

p(x|μj ,Σxx)
=

e(−
1
2 [x−μi]

TΣ−1
xx [x−μj ])

e(−
1
2 [x−μj ]TΣ−1

xx [x−μj ])
. (1)

Since the logarithms is a monotonically increasing function,

Eq. (1) follows that:

loge
p(x|μi,Σxx)

p(x|μj ,Σxx)
= [μi − μj ]

TΣ−1
xxx

− 1

2
[μi − μj ]

TΣ−1
xx [μi + μj ] = [μi − μj ]

TΣ−1
xx (x− μ),

(2)

where μ =
μi+μj

2 . Also, assume that given a randomly

selected data point x belonging to the i-th class, we have

the prior probability:P (x ∈ Xi) = πi. Using the Baye’s

theorem, we have the logarithms of the ratio of the posterior

probabilities:

L(x) = loge

(
p(x|μi,Σxx)πi

p(x|μj ,Σxx)πj

)
= w0 + wTx, (3)

where w = (Σ−1
xx )(μi − μj) and w0 = − 1

2 (μ
T
i Σ

−1
xxμi −

μT
j Σ

−1
xxμj)+loge(

πj

πi
). Since the function L(x) is a linear func-

tion of x, the classes i and j can be separated from the linear

combination, wTX , of the data matrix X . In other words, the

objective of binary-class Linear discriminant analysis (LDA) is

to find a projection w that can maximize the squared distance

of the two class means, w ∝ Σ−1
xx (μi − μj), comparing to the

within-class variation of that distance. From this point of view,

in multiclass LDA, we define the between-class scatter matrix

as Sb =
∑c

i=1 ni(μi − μ)(μi − μ)T and within-class scatter

matrix as Sw =
∑c

i=1

∑ni

j=1(x
i
j −μi)(x

i
j −μi)

T , where ni is

the total number of data points in class i, μi is the mean value

of data points in class i, and μ is the mean value of the whole

data points. The objective of multiclass Linear Discriminant

Analysis is to find a transformation matrix W ∈ R
d×m that

can minimize the squared distance of data points within the

same class and maximize the squared distance of data points

between different classes. We can thus represent the objective

function of multiclass LDA as:

max
WTW=I

Tr(WTSbW )

Tr(WTSwW )
=

∑c
i=1 ‖WT (μi − μ)‖2F∑c

i=1

∑ni

j=1 ‖WT (xi
j − μi)‖2F

.

(4)

Rather than measuring the between-class scatter matrix Sw, we

also need to measure the total scatter matrix St =
∑n

i=1(xi−
μ)(xi − μ)T , given the fact that St = Sw + Sb. The objective

function in Eq. (4) can be rewritten as:

min
WTW=I

Tr(WTSwW )

Tr(WTStW )
=

∑c
i=1

∑ni

j=1 ‖WT (xi
j − μi)‖2F∑n

i=1 ‖WT (xi − μ)‖2F
.

(5)
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However, this objective is challenging to optimize due to the

fact that the numerator is a minimization problem while the de-

nominator is a problem to maximize variance in the projected

space, maxWTW=I

∑n
i=1 ‖WT (xi − μ)‖2F . A smart way of

solving this challenge is to convert the maximization problem

into a minimization problem by using the reconstruction errors

[6], [17]. We can therefore change it into:

min
WTW=I

∥∥X − μ1T −WWT (X − μ1T )
∥∥2
F
. (6)

The �22-norm used in this objective is known as the Euclidean

norm. In many contexts, the �22 is undesirable because of the

great sensitivity to noisy data or outliers [18]. In addition, as

we discussed in the linear model L(x) in Eq. (3), this squared

error is motivated by the data with a Gaussian prior. However,

[19] proposed that if the linear model changes to build upon a

Laplace prior, this method can provide a more robust algorithm

and produce lower error rates than previous techniques with a

Gaussian prior. With this recognition, it is easy to see that the

problem in Eq. (6) with a Laplace prior distribution reduces

to the �1-norm optimization problem. We also note that the

fragile �22-norm distance can be replaced with multiple robust

loss functions (for example, Nie adaptive loss function [13],

Log-cosh loss function, Huber loss function [20], Cauchy

loss function or Lorentzian function [21], or Barron adaptive

loss function [14], etc., as shown in Table I, we propose to

combine the LDA objective with such robust loss functions. In

the most practical scenarios, optimization algorithms used for

solving such robust loss functions confront several intractable

challenges as discussed in the introduction section. We thus

aim to present a generalized LDA formulation that consists

of different loss functions, and meanwhile, this objective can

be solved using a shared and tractable optimization algorithm.

From this point of view, we define a generative loss function

L(·) that can be replaced by a family of loss functions like

�2, �1,Huber, etc, as listed in out Table 1, all of which is

required to fulfill an important property - Lipschitz continuous

gradient. Following intuitions above, Eq. (6) can be changed

into:

min
WTW=I

∥∥X − μ1T −WWT (X − μ1T )
∥∥
L(·). (7)

Likewise, the numerator in Eq. (5) can be changed into:

min
WTW=I

c∑
i=1

ni∑
j=1

‖WT (xi
j − μi)‖L(·). (8)

We can now view Eq. (7) as a constrained condition to

Eq. (8). Specifically, if L = I , this constraint changes back

to the Euclidean norm. If L = 0, all data points in this

constraint collapse into a single point, which is useless in real-

world scenarios. To avoid this collapse problem, we change

the formulation to an inequality constraint:∥∥X − μ1T −WWT (X − μ1T )
∥∥
L(·) ≥ c, (9)

where c is a positive constant. To obtain a more convenient but

equivalent problem, we observe that taking any positive values

of c just results in the L being replaced by c2L, meaning that

the inequality constraint in Eq. (9) can be simplified into an

equality constraint [22]. We can now write our optimization

problem as:

min
WTW=I

c∑
i=1

ni∑
j=1

‖WT (xi
j − μi)‖L(·),

s.t. ‖(I −WWT )(X − μ1T )‖L(·) = 1.

(10)

This constrained minimization problem can be solved by

constructing a Lagrange function, which is given by:

L(W,μi, μ, λ) =
c∑

i=1

‖WT (Xi − μi1
T
i )‖L(·)

+ λ
(∥∥(I −WWT )(X − μ1T )

∥∥
L(·) − 1 .

(11)

This leads to the optimization problem as below:

min
WTW=I

L(W,μi, μ, λ), (12)

where the new variable λ is a multiplier for the constraint.

It is worth noting that the terms μ and μi are often obtained

by μi =
∑ni

j=1 x
i
j and μ =

∑n
i=1 xi. However, the intuition

behind this calculation depends on the Euclidean distance, and,

as a result, can be invalid when the loss function is built upon

some robust norm based distance, such as �1-norm or �2,1-

norm, according to [16]. This is because that the mean of a set

of input data depends on the definition of distance. Different

distance metrics/loss functions lead to different mean. Also,

using different loss functions is equivalent to use to a different

distance. At this point, the mean in our method is a variable,

but not a fixed value like the traditional one which is defined

for the �2-norm distance, since our objective is designed for

representing a family of different robust loss functions. We

thus propose a novel generative LDA objective function that

can automatically remove the optimal mean from the data over

the iterations.

Learning Eq. (12) can be difficult in practice as the objective

is non-convex and non-smooth, which cannot admit closed

form solutions. Rather than minimizing L with respect to the

entire parameters simultaneously at each time step, we can

think of minimizing L alternatively with respect to a single

parameter at a time. For example, if we minimize L with

respect to the parameter W , then minimize it with respect

to μ and so on, repeatedly cycling through all parameters, we

are guaranteed to obtain an optimal minimum. This practice is

called as Alternating Minimization method (AM). As a result,

when applying the AM to the objective in Eq. (12), we obtain

the solution update rule as:

W(k+1) = L(W,μi(k), μ(k), λ(k)), W ∈ W,

μi(k+1) = L(W(k), μi, μ(k), λ(k)), μi ∈ Mi,

μ(k+1) = L(W(k), μi(k), μ, λ(k)), μ ∈ M,

λ(k+1) = L(W(k), μi(k), μ(k), λ), λ ∈ Λ,

(13)

where k is the time step index, and W,Mi,M,Λ are the

sequences of associated variables.
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TABLE I: Types of loss functions

Loss function Formula Gradient

Squared �2-norm L(y, ŷ) = (y − ŷ)2 ∇L = 2(y − ŷ)
�p-norm (1 < p < 2) L(y, ŷ) = (y − ŷ)p ∇L = p(y − ŷ)p−1

Huber loss L(y, ŷ) =

{
1
2
(y − ŷ)2 if |y − ŷ| ≤ δ,

δ|y − ŷ| − 1
2
δ2 otherwise.

∇L =

{
y − ŷ if |y − ŷ| ≤ δ,

δsgn(y − ŷ) otherwise.

Cauchy loss L(y, ŷ) = log
(
( y−ŷ

c0
)2 + 1

) ∇L =
2(y−ŷ)

c20+(y−ŷ)2

Log-cosh loss L(y, ŷ) = log
(
cosh(y − ŷ)) ∇L = tanh(y − ŷ) = e2(y−ŷ)−1

e2(y−ŷ)+1

Nie adaptive loss L(y, ŷ) =
(1+σ)(y−ŷ)2

|y−ŷ|+σ
∇L = 2(1 + σ)

|y−ŷ|+2σ

2(|y−ŷ|+σ)2
(y − ŷ)

Barron adaptive loss L(y, ŷ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

( y−ŷ
c0

)2
if γ = 2,

log
(
1
2
( y−ŷ

c0
)2 + 1

)
if γ = 0,

1− exp
(− 1

2
( y−ŷ

c0
)2
)

if γ = −∞,

|γ−2|
γ

(( ( y−ŷ
c0

)2

|γ−2| + 1
) γ

2 − 1
)

otherwise.

∇L =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y−ŷ

c20
if γ = 2,

2(y−ŷ)

(y−ŷ)2+2c20
if γ = 0,

y−ŷ

c20
exp

(− 1
2
( y−ŷ

c0
)2
)

if γ = −∞,

y−ŷ

c20

( ( y−ŷ
c0

)2

|γ−2| + 1
) γ

2
−1

otherwise.

The matrix factorization in Eq. (13) is still a non-convex

problem due to the constraint on each sequence set. An effi-

cient way that such a constraint can be used in the service of

regularizing the optimization function is by adding a proximal

regularization term to the update. This method has been used

primarily in the context of nonconvex and nonsmooth prob-

lems [23]–[25]. Using the proximal terms introduced in the

alternating linearized minimisation, we denote our regularized

optimization problems as:

W(k+1) = argmin < ∇L(W(k)),W −W(k) > +
α1

2
‖W −W(k)‖2F ,

μi(k+1) = argmin < ∇L(μi(k)), μi − μi(k) > +
α2

2
(μi − μi(k))

2,

μ(k+1) = argmin < ∇L(μ(k), μ− μ(k) > +
α3

2
(μ− μ(k))

2,

λ(k+1) = argmin < ∇L(λ(k)), λ− λ(k) > +
α4

2
(λ− λ(k))

2,

(14)

where ∇L(Wk) means the gradient of Eq. (11) at the point of

W(k), and < ∇L(W(k)),W −W(k) > means the dot product

between the gradient ∇L(W(k)) and the offset (W −W(k)).
Another important advantage of this method of adding the

proximal term to optimization problem is that the regulariza-

tion terms can avoid the updated solution being changed to

a value that differs significantly from the value of previous

solutions.

A. Algorithm

We now discuss the solution algorithm in more details,

with emphasis on its application to a variety of loss functions

defined in the generative loss function. Table I shows a set

of loss functions that can be incorporated into the generative

loss function, including, but not limited to the �22-norm, Huber

loss function [20], Nie adaptive loss function [13], Barron

adaptive loss function [14], etc. Many extensions to this

generative loss function are possible, as long as they remain

the Lipschitz continuous gradient. To give a sense of how

to update the solution given in Eq. (14), we need to define

two notations by simplifying Ai = WT (Xi − μi1
T
i ) and

B = (I −WWT )(X −μ1T ). The gradient of Ai and B with

respect to a variable is written as grad(Ai) and grad(B), each

of which is derived using the element-wise product. For exam-

ple, suppose we want to train our objective that incorporates

Barron adaptive loss function [14] with the use of λ = 0, the

general gradient listed in Table I (defined as grad(Y ) in this

case) can be written as grad(Y ) = 2Y � (Y ◦ Y + 2c201
T ),

where � is the Hadamard division, ◦ is the Hadamard product.

Step 1: Updating W(k+1)

W(k+1) = argmin
WTW=I

< ∇L(W(k)),W −W(k) >

+
α1

2
‖W −W(k)‖2F = argmax

WTW=I

Tr[WTM(k)],
(15)

where

M(k) =α1W(k) + λ grad(B)XTW +X grad(BT )W

+
c∑

i=1

(Xi − μi1
T
i ) grad(A

T
i ).

(16)

We can easily obtain this solution by finding the nearest

orthogonal matrix to the given matrix M(k), known as the

orthogonal Procrustes problem [26],

W(k+1) = argmax
WTW=I

Tr[WTM(k)] = P1P
T
2 , (17)

where P1 and P2 are from the singular value decomposition

M = P1ΣP
T
2 .

Step 2: Updating μi(k+1)

μi(k+1) = argmin
WTW=I

< ∇L(μi(k)), μi − μi(k) > +
α2

2
(μi − μi(k))

2

= argmin
WTW=I

α2

2
(μi − μi(k))

2 + (μi − μi(k))Ψ1[μi(k)],

(18)

where Ψ1[μi(k)] = Tr
(
grad(AT

i )(−WT 1Ti )
)
.

Setting its derivative equal to 0 we have the

solution:μi(k+1) = μi(k) − 1
α2

Ψ1[μi(k)].
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Step 3: Updating μ(k+1)

μ(k+1) = argmin
WTW=I

< ∇L(μ(k)), μ− μ(k) > +
α3

2
‖μ− μ(k)‖2F

= argmin
WTW=I

α3

2
(μ− μ(k))

2 + (μ− μ(k))Ψ2[μ(k)],
(19)

where Ψ2[μ(k)] = λTr
(
grad(B)(WWT 1T − 1T )T

)
.

Setting its derivative equal to 0 we have the solution:

μk+1 = μ(k) − 1
α3

Ψ2[μ(k)].
Step 4: Updating λ(k+1)

λ(k+1) = argmin
WTW=I

< ∇L(λ(k)), λ− λ(k) > +
α4

2
(λ− λ(k))

2
F ,

= argmin
WTW=I

α4

2
(λ− λ(k))

2 + (λ− λ(k))Ψ3[λ(k)],
(20)

where Ψ3[λ(k)] = ‖B‖Barron − 1.

The solution can be obtained by setting its derivative equal

to 0: λk+1 = λ(k) − 1
α4

Ψ3[λ(k)].

Algorithm 1: Proximal Alternating Linearized Mini-

mization

Input: data X ∈ R
d×n, number of clusters c,

hyperparameters λ, α1, α2, α3, α4, number of iterations K.
Initialization: projection matrix W ∈ R

d×m, mean values
μi, μ.

while k ≤ K do
optimize W(k+1) as Step 1;
optimize μi(k+1) as Step 2;

optimize μ(k+1) as Step 3;
optimize λ(k+1) as Step 4;

end

The solution algorithm to solve the generative LDA objec-

tive in Eq. (10) by using the proximal alternating linearized

minimisation is summarized in Algorithm 1. It is worth noting

that our new solution algorithm guarantees that both the

objective and the solution sequences converge to the globally

optimal solution at a sub-linear convergence rate. Due to space

limitation, the proof of the convergence of Algorithm 1 will

be provided in the extended journal version of this paper.

III. EXPERIMENT

We evaluated the performance of our model on several real

data benchmarks including COIL20, FERET, USPS, MNIST,

and Olivetti. [27]–[29]. As our model aims to improve the

model robustness against noise, we were motivated to design

a few experiments with noisy data, in which block disturbance

or Gaussian noise was added into the input data. Several

state-of-the-art methods were also implemented for compar-

ison, involving RSLDA [11], �2,1-LDA [30], GLDA [31],

LDA, stacked Restricted Boltzmann machine (RBM) [32], and

Stacked AutoEncoder (SAE) network [33].

Datasets descriptions. The COIL20 dataset contains 1440
images of 20 subjects, in which each subject has 72 images

taken at pose intervals of 5 angle degree. The size of each

image is 128 × 128. The FERET dataset contains more than

14, 000 facial images of 1199 individuals. Since the main

purpose of our experiment is to test the object recognition

against noise attacks, we randomly selected a subset of the

FERET dataset for our experiment. This gives rise to 1400
images of 200 individuals, each of which has 7 face images.

The size of the image was converted to 60 × 60 pixels. The

USPS image dataset is commonly used for handwritten text

recognition research. This dataset contains a total of 9, 298
samples and each sample has 16 × 16 greyscale pixels. The

MNIST dataset is another large database of handwritten digits

that contains 70, 000 samples. Each greyscale image is 28×28,

representing the digits 0− 9. The Olivetti (or AT&T) dataset

consists of 400 different images of 40 distinct individuals.

Each individual has 10 different images taken at different

conditions, and each image was resized to 64× 64 pixels.

Experimental results and analysis. We compared our

model against seven other methods involving RSLDA [11],

�2,1-LDA [30], GLDA [31], LDA, stacked Restricted Boltz-

mann machine (RBM) [32], and Stacked AutoEncoder (SAE)

network [33]. In this experiment, we demonstrate the ro-

bustness of our model on different noisy data sets. The

loss function we used in our model is Nie and Barron

adaptive loss function, respectively. Our training procedures

were implemented using the stratified 6-fold cross-validation

that partitions data into k non-overlapping folds to fit the

train/test set by preserving the percentages of samples for

each class. We repeated the stratified 6-fold cross-validation

six times and then reported the mean performance across all

folds and all repeats. See Table II for a comparison of the

performance of our method and seven other models on noisy

datasets. Note that the noisy data used in the our tables were

formed by adding Gaussian noise.In these cases, the Gaussian

noise was randomly distributed with the variance of 0.05.

The dimensionality of the above data was reduced to a fixed

level that is 19, 25, 9, 9, and 25 for COIL20, FERET, USPS,

MNIST, and Olivetti datasets, respectively. The table report

the average classification accuracy, precision, and recall scores

over 50 runs with their standard deviations. We can see that

our model clearly outperforms other competitive methods.

IV. CONCLUSION

We propose a generative LDA learning method in which

multiple robust loss functions can be interchangeable. Also, to

solve the singularity problem in a natural way, our objective

depends on the trace-ratio formulation that can avoid the

inversion of the within-class variance matrix. In addition, our

objective automatically center the data by quantifying the

optimal mean value during the learning process. We further

introduce an effective algorithm to solve the resulting non-

convex and non-smooth problem. Through our mathematical

analysis, we conclude that our optimization algorithm can find

globally optimal solutions with guaranteed convergences of

both the objective value and the solution sequence, and the

converging rate is as fast as sub-linearity. The experimental

results on several real-world datasets shows that our model

consistently outperformed its state of the art counterparts.
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TABLE II: Classification performance of different methods on the noiseless data and Gaussian noise (var=0.04) data. The

polynomial SVM algorithm was used as our classifier. The evaluation metric consists of the average recognition accuracy.

Accuracy (noiseless) SVM LDA GLDA RSLDA �2,1-LDA SAE RBM Ours (Nie) Ours (Barron)

Olivetti 0.598 ± 0.054 0.498 ± 0.079 0.601 ± 0.056 0.662 ± 0.052 0.571 ± 0.024 0.567 ± 0.032 0.611 ± 0.044 0.785 ± 0.021 0.788 ± 0.023
COIL20 0.541 ± 0.054 0.658 ± 0.057 0.671 ± 0.048 0.674 ± 0.050 0.550 ± 0.021 0.761 ± 0.038 0.687 ± 0.041 0.859 ± 0.030 0.843 ± 0.022
FERET 0.679 ± 0.093 0.507 ± 0.071 0.548 ± 0.051 0.603 ± 0.048 0.623 ± 0.027 0.681 ± 0.030 0.674 ± 0.042 0.707 ± 0.022 0.710 ± 0.027
USPS 0.484 ± 0.035 0.488 ± 0.025 0.515 ± 0.034 0.432 ± 0.039 0.497 ± 0.030 0.520 ± 0.027 0.523 ± 0.036 0.630 ± 0.026 0.630 ± 0.031

MNIST 0.401 ± 0.002 0.404 ± 0.010 0.477 ± 0.061 0.521 ± 0.044 0.515 ± 0.031 0.481 ± 0.027 0.507 ± 0.004 0.631 ± 0.041 0.638 ± 0.033

Accuracy (noisy) SVM LDA GLDA RSLDA �2,1-LDA SAE RBM Ours (Nie) Ours (Barron)

Olivetti 0.334 ± 0.021 0.321 ± 0.044 0.338 ± 0.059 0.336 ± 0.078 0.433 ± 0.067 0.401 ± 0.085 0.398 ± 0.088 0.525 ± 0.044 0.527 ± 0.059
COIL20 0.341 ± 0.064 0.342 ± 0.040 0.348 ± 0.032 0.442 ± 0.051 0.511 ± 0.026 0.564 ± 0.019 0.508 ± 0.052 0.621 ± 0.037 0.622 ± 0.071
FERET 0.302 ± 0.019 0.278 ± 0.034 0.253 ± 0.011 0.315 ± 0.041 0.398 ± 0.033 0.371 ± 0.012 0.316 ± 0.025 0.542 ± 0.015 0.564 ± 0.024
USPS 0.254 ± 0.055 0.279 ± 0.065 0.262 ± 0.002 0.268 ± 0.051 0.329 ± 0.027 0.309 ± 0.039 0.378 ± 0.024 0.438 ± 0.017 0.434 ± 0.020

MNIST 0.298 ± 0.031 0.274 ± 0.026 0.300 ± 0.073 0.303 ± 0.009 0.300 ± 0.026 0.310 ± 0.034 0.309 ± 0.046 0.433 ± 0.256 0.437 ± 0.044

Both theoretical analysis and empirical results indicate a great

advantage of our model on the discriminant projections.
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