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Abstract—Linear discriminant analysis (LDA) is widely used
for dimensionality reduction under supervised learning settings.
Traditional LDA objective aims to minimize the ratio of squared
Euclidean distances that may not perform optimally on noisy
data sets. Multiple robust LDA objectives have been proposed
to address this problem, but their implementations have two
major limitations. One is that their mean calculations use the
squared />-norm distance to center the data, which is not valid
when the objective does not use the Euclidean distance. The
second problem is that there is no generalized optimization
algorithm to solve different robust LDA objectives. In addition,
most existing algorithms can only guarantee the solution to be
locally optimal, rather than globally optimal. In this paper, we
review multiple robust loss functions and propose a new and
generalized robust objective for LDA. Besides, to better remove
the mean value within data, our objective uses an optimal way to
center the data through learning. As one important algorithmic
contribution, we derive an efficient iterative algorithm to optimize
the resulting non-smooth and non-convex objective function.
We theoretically prove that our solution algorithm guarantees
that both the objective and the solution sequences converge to
globally optimal solutions at a sub-linear convergence rate. The
experimental results demonstrate the effectiveness of our new
method, achieving significant improvements compared to the
other competing methods.

Index Terms—Linear Discriminant Analysis, Generalized Loss
Function, Robustness, Non-convex Optimization, Global Conver-
gence, Mean-Optimal.

1. INTRODUCTION

Dimensionality reduction plays an important role in pattern
classification and has been successfully applied to many real-
world applications, such as social media, business, computer
vision, bioinformatics, efc. [1]. Among the most widely used
supervised dimensionality reduction methods is the Linear
Discriminant Analysis (LDA) that aims to find the optimal
projection by simultaneously maximizing the between-class
variance and minimizing the within-class variance in the
projected subspace. The algorithm of solving the traditional
LDA objective is to optimize a trace ratio problem that
can be transformed into a tractable ratio trace form [2].
This transformation allows us to easily find a closed-form
solution by using the generalized eigenvalue decomposition
method [3]. Unfortunately, this solution often deviates from
the original objectives when outlier samples are present, which
can result in uncertainties within subsequent classification
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procedures [2]. Another problem with this method is that
inverting a singular within-class variance matrix can cause
the LDA formulation to be ill-conditioned, and in fact this
is common when the training data are sampled from high-
dimensional space or there exist strong-correlated features.
The efforts to overcome these issues by optimizing the ratio
trace transformation cannot thoroughly solve this singularity
problem. Motivated to tackle the original trace ratio problem,
many existing works [4]-[6] studied how to directly optimize
the trace-ratio objective function.

One major limitation of the traditional LDA is its depen-
dency upon the squared fy-norm (¢2) distance that is highly
vulnerable to the presence of outliers or noisy data. This
is because the least square criterion can remarkably enlarge
the effect of noise on the total loss. Unfortunately, noise
appears more or less everywhere in real-world applications.
Therefore, it is critical to improve the robustness of the model
when random noise or even adversarial attack are present in
the data. In contrast to regular noises that are usually small
in magnitude and sometimes even invisible to human eyes,
adversarial attacks are intentionally constructed by injecting
small perturbations into the original data such that the model
can be misled to output discouraged results [7]. A more
recently used adversarial attacks for modeling real-world data
are the adversarial patch attack that couples the original data
with a human-manipulated patch [8]. The effectiveness of such
attacks can be explained in terms of the black-box principle
where the attacker knows nothing about the configurations of
the studied model.

To enhance the robustness against noise, many LDA ob-
jectives changed to use other distance functions rather than
the ¢3-norm distance. Wang et al. [9] proposed to measure
the two variance matrices using a rotational invariant /;-
norm. However, the runtime of this method is as high as
the intractable memory cost of storing the representations
because the greedy learning strategy proceeds one projection
vector at a time. Tao et al. [10] proposed to select the
discriminative patterns by using a {5 ;-norm regularization
that is a row-sparsity constraint on the transformation matrix.
Since this method fails to uncover the most important features
in the given tasks and the learned representations are largely
governed by the selected number of dimensions. Wen et al.
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[11] introduced an orthogonal matrix to connect the original
features and transformed features, in which the main infor-
mation of the original data can persevere in the discriminant
subspace. However, their optimization methods easily fall into
locally optimal solutions. Zheng et al. [12] tried to build a ¢;-
norm discriminant analysis (L1-LDA) using Bayes error bound
optimization, but the implementation of the Bayes error bound
is not easy as it requires each class to contain the same number
of samples.

Recently, there are also several efforts that focus on how
to develop robust lost functions [13]-[15]. Although these
methods are able to improve the robustness against noisy
data, their implementations are usually limited to two no-
torious problems. One is that some optimization algorithms
just simply guarantee the decrease of the objective value, but
not the algorithm convergence by nature. Another problem
is that the derived solutions using their methods can easily
get stuck in local minima rather than landing exactly on the
global minima. Moreover, these loss functions were developed
with their particular properties, each of which has its own
independent variables to adjust the robustness. Hence, in this
paper, we aim to provide a novel and robust objective for
LDA that has better generalization with a shared tractable and
efficient optimization algorithm.

We also noticed that most existing robust LDA objectives
do not tackle the mean calculation in a correct way. In
many cases, the mean of the data is not zero, and using
£3-based distance to calculate the mean value is incorrect
when the objective depends on other norm based distance
[16]. In this paper, we thus do not only propose a novel
generative LDA model that integrates a very broad family of
robust loss functions, but also embed the mean calculation
into the objective function that can remove the optimal mean
automatically during learning time. Since existing optimization
algorithms are not able to well handle our generative objective
with the non-smooth and non-convex property, as one impor-
tant algorithmic contribution, we further derive an efficient
solution algorithm that can guarantee both the objective and
sequence convergences. Through our mathematical analysis,
our proposed algorithm is proved to find a globally optimal
solution at a sub-linear rate. In our extensive experiments,
our proposed method outperforms several competitive dimen-
sionality reduction approaches and has a great advantage of
handling various noisy date or adversarial attacks.

II. FORMULATION AND ALGORITHM

Given the training dataset of X € R?*™, we can repre-
sent it using a few sub-design matrices X = [Xq,..., X],
where X; = [z%,...,2}] € R™™(1 < i < ¢) corre-
sponds to a collection of data points belonging to the -
th class. The traditional binary-class LDA method assumes
that, given data points X; = [z},...,x} ] in the i-th class
and data points X; = [ﬂcjh,xﬁl]] in the j-th class, both
multivariate probability densities are multivariate Gaussian
distributions with arbitrary mean vectors p and a covariance
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value of data points in class ¢, and g is the mean value of the
whole data points. Due to the homogeneity assumption that
Y = X; = Mg, the ratio of the two densities can be written
as:
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Since the logarithms is a monotonically increasing function,
Eq. (1) follows that:
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where y = 7. Also, assume that given a randomly

selected data point x belonging to the i-th class, we have
the prior probability:P(z € X;) = m;. Using the Baye’s
theorem, we have the logarithms of the ratio of the posterior
probabilities:
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where w = (30)(ki — p;) and wo = —3(uf Bytpi —

T 11j)+log, (7). Since the function L(x) is a linear func-
tion of x, the classes ¢ and j can be separated from the linear
combination, w” X, of the data matrix X. In other words, the
objective of binary-class Linear discriminant analysis (LDA) is
to find a projection w that can maximize the squared distance
of the two class means, w oc X! (1; — ), comparing to the
within-class variation of that distance. From this point of view,
in multiclass LDA, we define the between-class scatter matrix
as Sy = Yy mi(pi — p)(; — p)T and within-class scatter
matrix as Sy, = Y5y >0t (@ — i) (2 — pi) ", where n; is
the total number of data points in class 4, j; is the mean value
of data points in class 4, and y is the mean value of the whole
data points. The objective of multiclass Linear Discriminant
Analysis is to find a transformation matrix W € R?*™ that
can minimize the squared distance of data points within the
same class and maximize the squared distance of data points
between different classes. We can thus represent the objective
function of multiclass LDA as:

e LTWVISW) - S W (s — )
wrw=r Tr(WTS,W) 330, 35, [WT (2} — wa)ll3
“4)
Rather than measuring the between-class scatter matrix .S,,, we
also need to measure the total scatter matrix Sy = >\, (z; —
w)(z; — )T, given the fact that S; = S,, + ;. The objective

function in Eq. (4) can be rewritten as:
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However, this objective is challenging to optimize due to the
fact that the numerator is a minimization problem while the de-
nominator is a problem to maximize variance in the projected
space, maxyry—; > oy ||WT(z; — p)||%. A smart way of
solving this challenge is to convert the maximization problem
into a minimization problem by using the reconstruction errors
[6], [17]. We can therefore change it into:

M G
The ¢2-norm used in this objective is known as the Euclidean
norm. In many contexts, the £2 is undesirable because of the
great sensitivity to noisy data or outliers [18]. In addition, as
we discussed in the linear model L(z) in Eq. (3), this squared
error is motivated by the data with a Gaussian prior. However,
[19] proposed that if the linear model changes to build upon a
Laplace prior, this method can provide a more robust algorithm
and produce lower error rates than previous techniques with a
Gaussian prior. With this recognition, it is easy to see that the
problem in Eq. (6) with a Laplace prior distribution reduces
to the ¢;-norm optimization problem. We also note that the
fragile £3-norm distance can be replaced with multiple robust
loss functions (for example, Nie adaptive loss function [13],
Log-cosh loss function, Huber loss function [20], Cauchy
loss function or Lorentzian function [21], or Barron adaptive
loss function [14], efc., as shown in Table I, we propose to
combine the LDA objective with such robust loss functions. In
the most practical scenarios, optimization algorithms used for
solving such robust loss functions confront several intractable
challenges as discussed in the introduction section. We thus
aim to present a generalized LDA formulation that consists
of different loss functions, and meanwhile, this objective can
be solved using a shared and tractable optimization algorithm.
From this point of view, we define a generative loss function
L(-) that can be replaced by a family of loss functions like
{2, 01, Huber, etc, as listed in out Table 1, all of which is
required to fulfill an important property - Lipschitz continuous
gradient. Following intuitions above, Eq. (6) can be changed
into:

_ 1T _ Ty _ 1T
pmin X — T = WX =Dl )
Likewise, the numerator in Eq. (5) can be changed into:
(& z
i Wzt — i)l 8
pmin > S W = )l ®)
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We can now view Eq. (7) as a constrained condition to
Eq. (8). Specifically, if L = I, this constraint changes back
to the Euclidean norm. If L 0, all data points in this
constraint collapse into a single point, which is useless in real-
world scenarios. To avoid this collapse problem, we change
the formulation to an inequality constraint:

X —p2" —Wwwh(X — 1"

Mo = ©)

where c is a positive constant. To obtain a more convenient but
equivalent problem, we observe that taking any positive values
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of ¢ just results in the L being replaced by c?L, meaning that
the inequality constraint in Eq. (9) can be simplified into an
equality constraint [22]. We can now write our optimization
problem as:

SO I (@l = pi)llzc)s
i=1 j=1

st |(1=WWTY(X = 1) py = 1.

min
WTW=I (10)

This constrained minimization problem can be solved by
constructing a Lagrange function, which is given by:

(&
LW, iy i, N) = WX = ]|y
=1

ey
+ )\(H(I —WWT)(X = p1 ), 1 -
This leads to the optimization problem as below:
i L(W, (2] ’)‘ )
in LW, pi, p, A) (12)

where the new variable A is a multiplier for the constraint.
It is worth noting that the terms p and p; are often obtained
by pi = )L, % and p = YO a;. However, the intuition
behind this calculation depends on the Euclidean distance, and,
as a result, can be invalid when the loss function is built upon
some robust norm based distance, such as ¢;-norm or {5 ;-
norm, according to [16]. This is because that the mean of a set
of input data depends on the definition of distance. Different
distance metrics/loss functions lead to different mean. Also,
using different loss functions is equivalent to use to a different
distance. At this point, the mean in our method is a variable,
but not a fixed value like the traditional one which is defined
for the f5-norm distance, since our objective is designed for
representing a family of different robust loss functions. We
thus propose a novel generative LDA objective function that
can automatically remove the optimal mean from the data over
the iterations.

Learning Eq. (12) can be difficult in practice as the objective
is non-convex and non-smooth, which cannot admit closed
form solutions. Rather than minimizing £ with respect to the
entire parameters simultaneously at each time step, we can
think of minimizing £ alternatively with respect to a single
parameter at a time. For example, if we minimize £ with
respect to the parameter W, then minimize it with respect
to 1 and so on, repeatedly cycling through all parameters, we
are guaranteed to obtain an optimal minimum. This practice is
called as Alternating Minimization method (AM). As a result,
when applying the AM to the objective in Eq. (12), we obtain
the solution update rule as:

Wiy = LOV, prieys ey, Awy)s- W€ W,

i1y = LOWVir)s s k) Ak))s - 1a € M, 13)
Bty = LWiky, figrys s k), 1 E M,

Atkr1) = LOWVirys iy (k) Ay A E A,

where k is the time step index, and W, M;, M, A are the
sequences of associated variables.



TABLE I: Types of loss functions

Loss function

Formula

Gradient

Squared £2-norm

L(y,9) = (y — 9)?

VL =2(y—9)

Lp-norm (1 <p<2) Ly, 9) = (y —9)P VL =p(y - )P !
— )2 if |y — 9| < — g if |y — g| <
Huber loss L(y,9) = 2(y Ay) 1o if |y 'y| <4 v =YY R if |y .y| <4,
dly — gl — 56 otherwise. dsgn(y — g) otherwise.
Cauchy loss Ly, §) = log (( yc—oﬂ )2+ 1) VL = %
0
Log-cosh loss L(y, 9) = log (cosh(y — 9)) VL = tanh(y — §) = %
2 -3 .
Nie adaptive loss L(y,9) = % VL =21+ U)%(y -9)
g2 . y=y ify =2,
3 (20 ify =2, B v
5 . y—9 e —
) R log (%(%)2 + 1) ify =0, (y—9)2+2c3 ify =0,
Barron adaptive loss L(y,9) =141 — exp (— 2) ify = —oo, VL = yc—gy exp (— 2(y y) ) ify = —oo,
y— y 2
v=2| (o) 3 ) . _g D N1 :
5 (( Iv a7 T 1)2 otherwise. ycgy ( h o+ 1) otherwise.

B=(I-WWT)(X —pulT). The gradient of A; and B with
respect to a variable is written as grad(A;) and grad(B), each
of which is derived using the element-wise product. For exam-
ple, suppose we want to train our objective that incorporates
Barron adaptive loss function [14] with the use of A = 0, the
general gradient listed in Table I (defined as grad(Y") in this
case) can be written as grad(Y) = 2Y @ (Y o Y + 2¢217),
where © is the Hadamard division, o is the Hadamard product.

The matrix factorization in Eq. (13) is still a non-convex
problem due to the constraint on each sequence set. An effi-
cient way that such a constraint can be used in the service of
regularizing the optimization function is by adding a proximal
regularization term to the update. This method has been used
primarily in the context of nonconvex and nonsmooth prob-
lems [23]-[25]. Using the proximal terms introduced in the
alternating linearized minimisation, we denote our regularized

optimization problems as: Step 1: Updating W ;. 1)

(14)

Wiky1) = argmin < VLWg)), W = Wiy > +*||W W I, W(k+1) = argmin < VL(W), W = Wy >

15
Hi(k+1) = 818 min < vz(ﬂz(k))uuz Mi(gy > + ( :U'z(k)) ) HW W(k)HF _ arg maxTr[W ]w(k)] (15

5 TW=1
k1) = argmin < VL(pky, b — pry > +7(M = Hk)
where

)‘(]H—l) = argmin < V,C()\(k)) A — )‘(k) > + ()\ /\(k))

M) :alW(k) + X grad(B)X"W + X grad(B")W

+Z (16)

We can easﬂy obtain this solution by finding the nearest
orthogonal matrix to the given matrix M), known as the
orthogonal Procrustes problem [26],

where VL(W},) means the gradient of Eq. (1 1) at the point of
Wiy, and < VL(W(y), W — W) > means the dot product
between the gradient V.L(W()) and the offset (W — Wy,).
Another important advantage of this method of adding the
proximal term to optimization problem is that the regulariza-
tion terms can avoid the updated solution being changed to
a value that differs significantly from the value of previous
solutions.

Ty grad(AT).

W1y = argmax Tr[W' M) = P Py,

WTw=I (17)

A. Algorithm

We now discuss the solution algorithm in more details,
with emphasis on its application to a variety of loss functions
defined in the generative loss function. Table I shows a set
of loss functions that can be incorporated into the generative [i(y1) = argmin < V g(#i<k))’
loss function, including, but not limited to the €§-norm, Huber WITw=I
loss function [20], Nie adaptive loss function [13], Barron
adaptive loss function [14], efc. Many extensions to this
generative loss function are possible, as long as they remain
the Lipschitz continuous gradient. To give a sense of how
to update the solution given in Eq. (14), we need to define
two notations by simplifying 4; = W7T(X; — y;17) and

where P; and P, are from the singular value decomposition
M = P XP].
Step 2: Updating 4i;;,+)

(18)

Qg
M — iy > +7(Nz’ — i)

a2
= argmin — (y;

— figey)® + (1 = 10y V1 [t o)
argmin - *) (o) Wl (i)

where Wy [p; )] = Tr (grad(AT)(=WT1])).
Setting its derivative equal to 0 we
solution: i g4 1) = figry — a5 V1lligr)-

have the
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Step 3: Updating 11,1 1)

. a3
Bwn) = argmin < VL(u) ), = ey >+ |1 — Ly
WTW=I (19)

. Qg
= argmin —= (u — 1))+ (1= i) o)),
WTW=I
where Wy (1] = ATr (grad(B)(WWT1T —17)T),
Setting its derivative equal to 0 we have the solution:
f1 = fige) — a5 Yaluew)-
Step 4: Updating ;1)

. a
/\(k+1) = argmin < Vﬁ()\(k)), A — )\(k) > -1—74()\ — )\(k))%ﬁ
WITW=I
oy , (20)
= arg min 7()\ — /\(k)) =+ ()\ — )\(k))\IIS[)\(k)]v
WTW=I
where W3[Ay] = || Bl Barron — 1.
The solution can be obtained by setting its derivative equal
to 0: Agy1 = )‘(k) - %4\1’3[)\(;6)}.

Algorithm 1: Proximal Alternating Linearized Mini-
mization

Input: data X € RY*™ number of clusters c,
hyperparameters A, a1, a2, a3, as, number of iterations K.
Initialization: projection matrix W € R**™, mean values
Wiy -
while k£ < K do
optimize W41y as Step 1;
optimize fi;(j,. 1 as Step 2;
optimize pi(x41) as Step 3;
optimize A(x41) as Step 4;
end

The solution algorithm to solve the generative LDA objec-
tive in Eq. (10) by using the proximal alternating linearized
minimisation is summarized in Algorithm 1. It is worth noting
that our new solution algorithm guarantees that both the
objective and the solution sequences converge to the globally
optimal solution at a sub-linear convergence rate. Due to space
limitation, the proof of the convergence of Algorithm 1 will
be provided in the extended journal version of this paper.

III. EXPERIMENT

We evaluated the performance of our model on several real
data benchmarks including COIL20, FERET, USPS, MNIST,
and Olivetti. [27]-[29]. As our model aims to improve the
model robustness against noise, we were motivated to design
a few experiments with noisy data, in which block disturbance
or Gaussian noise was added into the input data. Several
state-of-the-art methods were also implemented for compar-
ison, involving RSLDA [11], ¢ ;-LDA [30], GLDA [31],
LDA, stacked Restricted Boltzmann machine (RBM) [32], and
Stacked AutoEncoder (SAE) network [33].

Datasets descriptions. The COIL20 dataset contains 1440
images of 20 subjects, in which each subject has 72 images
taken at pose intervals of 5 angle degree. The size of each
image is 128 x 128. The FERET dataset contains more than
14,000 facial images of 1199 individuals. Since the main
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purpose of our experiment is to test the object recognition
against noise attacks, we randomly selected a subset of the
FERET dataset for our experiment. This gives rise to 1400
images of 200 individuals, each of which has 7 face images.
The size of the image was converted to 60 x 60 pixels. The
USPS image dataset is commonly used for handwritten text
recognition research. This dataset contains a total of 9,298
samples and each sample has 16 x 16 greyscale pixels. The
MNIST dataset is another large database of handwritten digits
that contains 70, 000 samples. Each greyscale image is 28 x 28,
representing the digits 0 — 9. The Olivetti (or AT&T) dataset
consists of 400 different images of 40 distinct individuals.
Each individual has 10 different images taken at different
conditions, and each image was resized to 64 x 64 pixels.
Experimental results and analysis. We compared our
model against seven other methods involving RSLDA [11],
{2 1-LDA [30], GLDA [31], LDA, stacked Restricted Boltz-
mann machine (RBM) [32], and Stacked AutoEncoder (SAE)
network [33]. In this experiment, we demonstrate the ro-
bustness of our model on different noisy data sets. The
loss function we used in our model is Nie and Barron
adaptive loss function, respectively. Our training procedures
were implemented using the stratified 6-fold cross-validation
that partitions data into k non-overlapping folds to fit the
train/test set by preserving the percentages of samples for
each class. We repeated the stratified 6-fold cross-validation
six times and then reported the mean performance across all
folds and all repeats. See Table II for a comparison of the
performance of our method and seven other models on noisy
datasets. Note that the noisy data used in the our tables were
formed by adding Gaussian noise.In these cases, the Gaussian
noise was randomly distributed with the variance of 0.05.
The dimensionality of the above data was reduced to a fixed
level that is 19, 25, 9, 9, and 25 for COIL20, FERET, USPS,
MNIST, and Olivetti datasets, respectively. The table report
the average classification accuracy, precision, and recall scores
over 50 runs with their standard deviations. We can see that
our model clearly outperforms other competitive methods.

IV. CONCLUSION

We propose a generative LDA learning method in which
multiple robust loss functions can be interchangeable. Also, to
solve the singularity problem in a natural way, our objective
depends on the trace-ratio formulation that can avoid the
inversion of the within-class variance matrix. In addition, our
objective automatically center the data by quantifying the
optimal mean value during the learning process. We further
introduce an effective algorithm to solve the resulting non-
convex and non-smooth problem. Through our mathematical
analysis, we conclude that our optimization algorithm can find
globally optimal solutions with guaranteed convergences of
both the objective value and the solution sequence, and the
converging rate is as fast as sub-linearity. The experimental
results on several real-world datasets shows that our model
consistently outperformed its state of the art counterparts.



TABLE II: Classification performance of different methods on the noiseless data and Gaussian noise (var=0.04) data. The
polynomial SVM algorithm was used as our classifier. The evaluation metric consists of the average recognition accuracy.

Accuracy (noiseless) SVM LDA GLDA RSLDA £3,1-LDA SAE RBM Ours (Nie) Ours (Barron)
Olivetti 0.598 £ 0.054 0498 + 0.079  0.601 £+ 0.056 0.662 £ 0.052 0.571 4+ 0.024  0.567 £ 0.032 0.611 + 0.044  0.785 4+ 0.021  0.788 + 0.023
COIL20 0.541 £ 0.054  0.658 £+ 0.057  0.671 + 0.048  0.674 + 0.050  0.550 £ 0.021  0.761 £ 0.038  0.687 &+ 0.041  0.859 + 0.030  0.843 + 0.022
FERET 0.679 £ 0.093  0.507 &+ 0.071  0.548 + 0.051  0.603 + 0.048  0.623 £+ 0.027 0.681 £ 0.030 0.674 &+ 0.042  0.707 £ 0.022  0.710 + 0.027
USPS 0.484 £ 0.035 0.488 £ 0.025 0.515 +0.034 0432 £ 0.039 0.497 = 0.030  0.520 £+ 0.027  0.523 £ 0.036  0.630 + 0.026  0.630 + 0.031
MNIST 0.401 £ 0.002 0.404 £ 0.010 0.477 & 0.061  0.521 £ 0.044 0.515 = 0.031  0.481 £+ 0.027 0.507 £ 0.004  0.631 + 0.041  0.638 + 0.033
Accuracy (noisy) SVM LDA GLDA RSLDA £3,1-LDA SAE RBM Ours (Nie) Ours (Barron)
Olivetti 0.334 £ 0.021  0.321 + 0.044  0.338 £ 0.059 0.336 £+ 0.078 0.433 4+ 0.067 0.401 £ 0.085 0.398 + 0.088  0.525 4+ 0.044  0.527 + 0.059
COIL20 0.341 £ 0.064  0.342 £+ 0.040  0.348 + 0.032  0.442 + 0.051  0.511 £ 0.026  0.564 £+ 0.019  0.508 &+ 0.052  0.621 £ 0.037  0.622 + 0.071
FERET 0.302 £ 0.019  0.278 £ 0.034  0.253 + 0.011  0.315 + 0.041  0.398 £+ 0.033  0.371 £ 0.012  0.316 4 0.025 0.542 + 0.015 0.564 + 0.024
USPS 0.254 £ 0.055 0.279 & 0.065 0.262 £ 0.002  0.268 + 0.051  0.329 £+ 0.027 0.309 £ 0.039  0.378 £ 0.024  0.438 £+ 0.017 0.434 £ 0.020
MNIST 0.298 + 0.031  0.274 £ 0.026  0.300 4+ 0.073  0.303 £ 0.009 0.300 + 0.026  0.310 £+ 0.034  0.309 £ 0.046  0.433 + 0.256  0.437 + 0.044
Both theoretical analysis and empirical results indicate a great ~ [15] X. Wang, L. Bo, and L. Fuxin, “Adaptive wing loss for robust face
advantage of our model on the discriminant projections. alignment via heatmap regression,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 6971-6981.
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