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Abstract—Histopathological image analysis is critical in cancer
diagnosis and treatment. Due to the huge size of histopathological
images, most existing works analyze the whole slide pathological
image (WSI) as a bag and its patches are considered as instances.
However, these approaches are limited to analyzing the patches in
a fixed shape, while the malignant lesions can form varied shapes.
To address this challenge, we propose the Multi-Instance Multi-
Shape Support Vector Machine (MIMSSVM) to analyze the
multiple images (instances) jointly where each instance consists
of multiple patches in varied shapes. In our approach, we can
identify the varied morphologic abnormalities of nuclei shapes
from the multiple images. In addition to the multi-instance
multi-shape learning capability, we provide an efficient algorithm
to optimize the proposed model which scales well to a large
number of features. Qur experimental results show the proposed
MIMSSVM method outperforms the existing SVM and recent
deep learning models in histopathological classification. The
proposed model also identifies the tissue segments in an image
exhibiting an indication of an abnormality which provides utility
in the early detection of malignant tumors.

Index Terms—scalability, multi-instance, multi-modal, support
vector machine, histopathology

I. INTRODUCTION

According to the National Breast Cancer Foundation, one
in eight women in the United States develops the breast
cancer [1]. Early detection of breast cancer is the key for
maximizing the patient’s chance of survival, and while strides
have been made in both medical and technological fields, this
problem remains at the pinnacle of breast cancer research.
In the past, traditional diagnostic procedures have leaned
heavily on the need for specialized training, especially in
pathology and radiology. With the rise of new technological
solutions, pathologists have begun digitizing the tissue sections
and creating histopathological images or whole-slide images
(WSIs). This allows certain features of the image, such as
inconsistencies in cell architecture and the presence or vacancy
of specific biological qualities, to be detected and analyzed. If
such features can be spotted, they can be used as indicators
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for diseases. For example, cells that are abnormally structured
and divided uncontrollably are carcinomas and immediately
point to the presence of cancer. Since technologically based
diagnoses are founded on features exhibited by tissue sam-
ples on a cellular level, being able to analyze the images
digitally increases efficiency of the process. Furthermore,
current medical procedures have led to an increase in the
number of biopsies taken, causing a rise in the number of
histopathological images that require unrealistic workloads for
pathologists [2].

In light of this issue, recent advancements in artificial intelli-
gence have yielded promise by displaying the ability to analyze
large volumes of histopathological images. The Breast Cancer
Histopathological Image Classification (BreaKHis) dataset [3]
is publicly available and is composed of 7,909 histopathologi-
cal images of benign and malignant breast cancer tumors. The
set of images is organized into groups of the most common
types of carcinomas, making it a very valuable dataset for
cancer research. Each patient’s histopathological images have
been classified as malignant or benign and have been assigned
to a particular group depending on the type of tumor that
they present. Each patient is represented by their collection
of histopathological images, which pathologists have correctly
classified during the creation of this dataset. To deal with such
an extensive dataset, many machine learning algorithms have
been employed to locate the abnormal tissue sections and cor-
rectly determine whether there is cancer or not. In particular,
several multi-instance learning methods (MIL) have achieved
satisfactory results in the past when performing similar tasks
on the BreaKHis dataset. Some examples are Multi-Instance
Support Vector Machine (MISVM) [4], sparse Multi-Instance
Learning (sMIL) and sparse balanced MIL (sbMIL) [5], and
Normalized Set Kernel (NSK) and Statistics Kernel (STK) [6].
These are all methods that have been deemed successful at
correctly labeling the bags in the testing dataset as either
malignant or benign.
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Fig. 1. An illustration of our processing pipeline for our multi-instance multi-
shape learning algorithm applied to the BreaKHis dataset. The input is the
concatenation of patches in different shapes, and we employ the shape specific
regularization to identify the important shape for classification.

Our research also utilizes a multi-instance learning method
to determine whether an image shows any indications of car-
cinoma and, if so, where the abnormality is located within the
histopathological image. As mentioned before, multi-instance
learning is commonly used for disease detection applications,
and these types of algorithms have also been evaluated on
the BreaKHis dataset previously. Multi-instance learning [7]-
[10] is a common weakly supervised area of machine learning
known for organizing the training and testing data into sets of
instances called bags. Due to the nature of this approach, the
data can be labeled at the bag level instead of at the instance
level, which means that clinicians do not need to spend a lot of
resources into characterizing each image in the training dataset
obtained from a biopsy. Doctors only need to label/diagnose
the bag or patient as malignant or benign, and the rest of the
instances or images follow suit.

To provide a well-rounded and complete picture of each
instance, we extract the multiple patches in the different shapes
from each image. Our approach can be particularly effective
in the cancer diagnosis, since the malignancy often exhibits
the abnormal morphology and varying shape of nuclei in the
practice of surgical pathology [11]. We extract the feature
vector for each patch, and the feature vectors of all the
patches in one instance are concatenated to create a more
information-dense vector. Because the features in a same shape
are associated each other, we design our model to learn the
group structured sparsity respect to the features grouped by
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their shapes. The patches in different shapes can be regarded
as the different views (modalities) on the image, and learning
group-wise sparsity has shown performance improvement on
the multi-modal data [12], [13]. As illustrated in Fig. 1, each
of these shapes can capture an important part of the image,
such as a cell nucleus or a possible abnormality in the cell
structure.

In our work, we also focus on optimizing our model stably
and efficiently. Considering the large size of histopathological
images, the large number of features of instances can be a
hurdle for optimizing MIL models. In our work we take this
fact into account and propose the Multi-Instance Multi-Shape
SVM (MIMSSVM) method, which improves the efficiency of
the optimization compared to the previously mentioned MIL
approaches. We summarize our contributions as follows:

o« We present an novel MIMSSVM method which utilizes
the multi-shape patches in the images.

« We develop an scalable solution for the proposed method
based on optimal line search method [14] to bypass the
quadratic programming problem that comes from the
typical MISVM models.

« We provide an application of the MIMSSVM method to
diagnose a patient with breast cancer if their histopatho-
logical images show indications of a carcinoma. In re-
gards to the interpretability, our model also identifies the
disease relevant patches in the images.

II. METHODS

In this section, we will develop the objective of the
MIMSSVM model for handling multi-instance multi-modal
(multi-shape) data and derive its solution algorithm. We
provide both exact and inexact solutions, where the inex-
act solution approximates the exact solution and improves
the scalability against the large number of features. In our
derivations, we start from standard MISVM objective [4],
and add the structured sparsity terms to exploit the multi-
modal nature of the instance vectors and employ the iterative
reweighted method [15], [16] to optimize the introduced terms
in a numerically stable way. Finally, we apply the multi-block
alternating direction method of multipliers (ADMM) [17] to
minimize the proposed MIMSSVM objective.

A. Notations

In this paper, we write matrices as bold upper-case letters
M, vectors as bold lower-case letters m, and scalars as lower-
case letters m. The i-th row and j-th column of M are denoted
as m’ and m;, respectively. We use m;- to represent the
scalar value indexed by the ¢-th row and j-th column of the
matrix M. The matrix M,, and MP correspond to the p-th
column-block and p-th row-block of M respectively. Each bag
Xi = {Xi1, ,Xin, } € R contains n; instances and its
associated label is represented by y; € {1,---,m,--- , K},
where ¢ is the index of the bag in the dataset. Each instance
x;,; in X; is the concatenation of G' modalities (shapes) of

vectors, such that x; j = [x] ;- ;xZ}].
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B. The Objective of the Multi-Instance Multi-Shape Support
Vector Machine

The K class multi-instance SVM proposed in [4] solves the
following objective:

1K
. 2
min 5 > w3
m=1
N K - (1)
+ CZ Z (1 — [max(w,, X; + 1b,,)
i=1 m=1
— max(w, X; + 1b,)Jy/" )+ -
Therefore, its decision function is given by:
7; = arg max(max(WTXi + bli)m/) . )

m/’
Motivated by the multi-modal learning using structured-
sparsity regularization proposed by [12], [13], we capture the
important modalities by applying modality-wise regularization
term ||W/||g, defined as follows [12], [13]:

K G
Wl =D lIwillz

k=1g=1

where W = [WL W2 ... ;WY ¢ R>K consists of G
row-blocks, and each row-block W9 € R * K is the weights
matrix for g-th modality (shape) of input X;. To be more
specific, for each classification task, the group ¢; norm applies
the /> norm within each modality and the ¢; norm across
different modalities. By minimizing ||W|¢,, the weights in
w? will approach to zero values, if g-th modality is not
discriminative for k-th classification task.

In addition to the group-wise sparsity learning by group ¢
norm, we introduce the additional structured sparsity regular-
izer term |[W/|,, which is the trace norm of W and defined
as [18]:

3)

min{d,K}
Y = u[(WIW)2] |

i=1

Wl = )
where o; is the i-th singular value of W. Through the
minimization of singular values of W, we can discover
the low-rank representation of projection W and maximize
the correlation between GG-modalities as its effectiveness has
been shown in [19]-[22]. Armed with the structured sparsity
regularizer terms |W/||g, and |[W||., we rewrite Eq. (1) as
follows:

®

— [max(w;, X; + 1b,,) — max(w, X; + 1b,)]y") +

The MIMSSVM objective in Eq. (5) is generally difficult
to solve because of the coupled primal variables wyg, b,
with max(-) operations. Thus we split the primal variables in
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Eq. (1) via the ADMM approach [17] by converting Eq. (5)
into the following constrained optimization problem:

1K
2
W,Inl:),l\l},E7 5 ||W’mH2 + TlHVHGl
Q.R,T,U m=1
N K
F W+ 03 S e,
=1 m=1 6
st.oel' =yt —q"+r", ©
V=W, r/" = max (u}") ,
¢ = max () .

u* =w, X; + 1b, .

As discussed earlier, the structured sparsity regularizers
[IV]le, and ||W]|. in Eq. (6) are well motivated in the context
to analyze multi-shape WSIs. However, they are both not
differentiable, therefore the objective in Eq. (6) is non-smooth
that is thereby difficult to efficiently solve in general. To
ensure the numerical stability of the optimization, we use the
optimization framework introduced in our earlier work [15],
[16], [23] that proposed the iterative reweighted method to
solve non-smooth objectives. Then we can solve Eq. (6) by
an iterative procedure in which the key step is minimizing the
following smoothed objective:

min i |w |\2+CZN: 3 (ymem)
whye 2 RS
G
+71 Y tr(VIDy (V")
g=1
+ o tr(WTDyW) |
st.oel' =yt —q" +r", )
V=W,
ri* = max (u}*) ,
;" = max (t") ,

t" =wl X, + 1b,, |
u’ = W?Xi +1b, ,
where V9 € R%*K is row-block corresponding to the row

indices of g-th modality, D; , € RE*X is an diagonal matrix
and its j-th diagonal element is computed as:

. 1 _1
Di4(j,4) = (Vi3 + )7, ®)
and Dy is computed as:
1
D, = 5(wa +6T)"2 € RP*D | 9)

where § is the smoothness term of small positive constant. The
hyperparameters 7, and 7 adjust the impact of corresponding
terms.
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From Eq. (7) we derive the following augmented La-
grangian:

K
L, = %Z_nwmuﬁZZc yre)

i=1 m=1

G N K
+71 ) tr(VID14(V)T) + 72 tr( WD W) + g >3

g=1 i=1m=1

[(e:" = g T = A)? o+ (g — max (67) + o7 /)
2

6" — (WhXi + 16 ) + 07"/
2

+ (7 — max (W) + Wl /)
2

wl' = (WX +1b,) + £§”’/uHJ

+ SV =W+ T/ul

+

(10
where W b, V,E Q,T,R,U are the primal variables,
AY O, Q=T are the dual variables, and ¢ > 0 is a
hyperparameter.

C. The Solution Algorithm

In this section, we provide the key derivation details for each
class-hyperplane in W and b with its associated constraint
variable V as they are most important variables in our model.
The full derivation details of the solution algorithm will be
provided in our longer journal extension due to space limit.

W & b update. Removing all terms from Eq. (10) that do
not include W and decoupling across columns of W gives
the following K minimization problems:

W, = argmin — ||WmH2 £ Z th — (WX + by )+

w
m i=1

WX+1b)

07 /ully) + Z Z 5 s -

'=1m’'=1
& fnll3) + 51V = W+ o ][5 + 72 tx(WT D2 W),
an
where ¢’ indicates the column blocks in X (and corresponding
columns of U and E) that belong to the m-th class. N’ is the
total number of bags that belong to the m-th class, and t}*
and @] are row vectors corresponding to the i-th bag and m-
th class in T and ®. Finally, u;?l and 517-71/ are Tow vectors
selected from U and E that correspond to the (i,m) pair
belonging to the m-th class.
Taking the derivative of Eq. (11) with respect to w,, and
setting the result equal to zero gives the closed form solution

N m m N’ K
W'r]r; = (Zi:l [(tz —1by, + 67" /1) XzT] + D1 2ot
(i = 1by + €57 /W)X ] + v + /1) (1 + 1)

2 ' -

" pT2D2 + vazl Xin‘T + Kfovzl Xi’Xz'T’) ' )

12)
which can be calculated via a least-squares solver to avoid an
inverse calculation. Similarly, differentiating Eq. (10) element-

wise with respect to b,,, setting the result equal to zero gives
the update:

N[ —wD X0 ]+ N S [ —wh X, €7 /]
N+KN' (13) :

V update. By discarding all terms not including V from
Eq. (10) and setting the derivative respect to V9 to zero matrix,
we have:

by =

VI = (uW9 —T9) (21 Dy, + pI) ™t . (14)
The full steps to solve the objective Eq. (10) is summarized
in Algorithm 1.

D. Improving Scalability Against Features

The update for w,,, in Eq. (12) depends on solving a least
squares problem in each iteration. Considering the compu-
tational complexity O((N + d)d?) of least squares solver,
updating w,, with Eq. (12) for every iteration may not be
computationally feasible in case the number of features d
is very large. Due to the multi-modal nature of instances,
the dimensionality d is typically large and we are motivated
to avoid solving the least squares problem in Eq. (12). To
improve the scalability against the number of features d, we
employ an optimal line search method [14] and update w,,
via following gradient descent:

W = Wm — SmVw,, (15)

where V., is the analytical gradient of Eq. (10) with respect
to W

Vw,, = —[LZ
K

N’
—u )Y X (up - wh Xy —

i/=1m'=1

— (Vi — Wi + Ym /1) + 22 Dowy,

(67— wl X — 1b,, + 0" /1) 7]

by, + €7 /1)7]

(16)
Then we optimize the amount of update s,,, along the direction
of gradient Vy, :

2
2

- vazv,,, )T)

1

. T T
Sm = argmin — ||Wm —8$mVi,,
Sm 2

+ Ty tr((wz;l — smva,

i N
+§Z[||t2”—(
+ZZ ['uHu — (w,, —smVT Xy = 1by,

i'=1m'=1

+ & ull3] + 5 v = (W

Day(w]

— 5, V5 )X — 1b,, + Hf/ullﬂ

— 5mVwn) +¥m /0l
a7
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Algorithm 1 The multiblock ADMM updates to optimize

Eq.

(©).

1:
2:

R A A

20:
21:
22:
23:
24:
25:
26:
27:
28:

Data: X € RPX(mt+nn) and Y € {—1,1}1K%N,
Hyperparameters: C >0, 4 >0, p> 1,7 >0, 7% >0
and tolerance > 0.

. Initialize: primal variables W, b, V. E, Q,R, T, U and

dual variables A,3, 0, Q E T.

: while residual > tolerance do

Update D, , (g € G) by Eq. (8).
Update D» by Eq. (9).
for m € K do
Update w,, € W by Eq. (15).
Update b,,, € b by b,,, =
SN e —whXoror /u]+ N K [ur - w X €7 /u]

N+KN'
end for
for (p,m) € {N, K} do
Update €)' € E by
c c
ni" — ;y;” when y"n;" > i
e =40 when 0 <y"n"* < % ,
ni" when y"ni* <0 ,
Where n7ﬂ — y:n ’"L + r’l’L A;IL/M.
Update ¢ € Q by
o= (s el 47 AT Jma (47) o7 /1)
i = 2

Update r" € R by
I e e e aaed Crid Rl
[ 2
for j € n, do
Update ¢, € T by
{de((b )t ot
2

=

7 m

Ty else
where ¢ = wl X; + 1b,, — 07/ pu.
Update u,’; € U by
= —mdx(d’ )7;7 I if j = arg max(¢p")

J 4P else
where 7" = wl'X; 4+ 1b, — & /p.
end for
Update A", 0", w)", 0,7, &) by
X = X e (g ),
ot =oi" + plq”
w”YL — w"”/ + N(T‘;‘n _ maX(u"'L))7

0" = 07" + p(t" — (W Xi + 1bm));

&' =&" +pu — (WZ;Xi + lby))
end for
for g € G do

— max(t;"));

Update VI by V9= (uWJ—-TY)(21 Dy 4+ pI)~

end for
Update ' =T + p(V — W)
Update 1 = pu.

end while

return (Wy,,...,wWg) € W and (b1,...,bx) € b.

if j = argmax(¢l") ,
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We differentiate Eq. (17) with respect to s,,, and set the result
equal to zero to earn the solution for s,,:

Sm =
’ ’

(wh(@+2mD2)—pu N #7XT —p SN, 8, 6 XE —pol ) Y,

VL (+m)I+2mDatp SN X XT+pK S8 X, X] )V,

(18)
where tm =t — wlIX, — 1b,, + 67"/p and G =
uZl - WTX ]-b'm + 52?///1‘ and ‘A"m =Vm — W + 7’m/y"
Finally we plug the gradient V,, in Eq. (16) and amount
Sm in Eq. (18) into Eq. (15).The gradient descent update
in Eq. (15) does not contain the matrix inversion which
requires the least squares solver and only depend on the
matrix by vector multiplication. Note that Z 1 X;XT and
K Z _, XX can be pre-computed in the data preparing
step. The time complex1ty of the inexact solution in Eq. (15)
is O(Nd(ny +na + -+ +nn)).

III. EXPERIMENTS

In this section, we empirically evaluation our proposed
method by two parts of experiments. We compare the proposed
exact/inexact MIMSSVM model to the various SVM and deep
learning models (1) in classification performance and (2) in
computation time across the increasing number of features.

A. Dataset

We test the classification models on BreaKHis' dataset [3].
The BreaKHis dataset was built in collaboration with the P&D
Laboratory in Parana, Brazil. The dataset contains 7,909 mi-
croscopic biopsy images of breast tumor tissue taken between
January and December 2014 in a clinical study. The dataset
contains 2,480 samples of benign tissue and 5,429 samples
of malignant tissue, therefore the classification on this im-
balanced dataset has been considered as challenging task. The
images were collected based on the various magnifying factors
(40X, 100X, 200X, and 400X), and they were categorized
into benign or malignant class in the dataset. The images are
sampled from the anonymized 82 patients and in a format
of 3-channel RGB PNG and 700 x 460 pixels. The images
were generated from breast tissue biopsy slides, stained with
hematoxylin and eosin (HE), and collected by surgical open
biopsy (SOB). The diagnosis of each slide was labeled by
experienced pathologists in the P&D Laboratory [24].

We design the multi-instance learning problem by binding
the multiple histopathological images in a same WSI as a
bag, where each image in a bag represents an instance. We
Segment each image into the patches in the various sizes and
extract the features from each patch which will be vectorized
and concatenated into an instance. This multi-shape instance
enables the classification model to detect the various shapes
and sizes of tumors and cells.

'The dataset is publicly available and can be accessed at https://web.inf.
ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
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B. Feature Extraction

We vectorize each patch or image by extracting the fea-
ture vector through Parameter Free Threshold statistics (PF-
TAS) [25]. PFTAS extracts the texture features by counting
the number of black pixels in the neighborhood of each pixel.
Then the total count for all the pixels in a given patch is stored
in a nine-bin histogram [25]. The thresholding is conducted
by Otsu’s algorithm [26] which returns a 162-dimensional
feature vector for each patch. In our evaluation of classification
performance, each bag contains the random number (in {3,
5, 10}) of images and each image is segmented into non-
overlapping two 64 x 64 patches, one 64 x 32 patch, one 32
x 32 patch at the random positions. As a result, each instance
is a vector of 162 x 4 features.

C. Comparison Methods

We compare the classification performance and scalability
of proposed exact/inexact MIMSSVM to the following three
SVM models (SIL, NSK, STK) and five deep learning models
(mi-Net, MI-Net, MMMI-deep, AMIL, and LAMIL):

e (1) A single-instance learning (SIL) method that assigns
the bags’ labels to all instances during training and
produces the maximum response for each bag/class pair
at testing time for the training bag’s instances.

The two multi-instance SVM methods: (2) Normalized
Set Kernel (NSK) and (3) Statistics Kernel (STK) [6] map
the entire bag to a single-instance via kernel function.
The five multi-instance deep learning (DL) models: The
(4) mi-Net and (5) MI-Net [27] approach to the MIL
problem in a way of instance space and embedded
space (learning vectorial representation of bag) paradigm
respectively. (6) The Multi-Modal Multi-Instance deep
learning model (MMMI-deep) [28] learns the global
cross-modal representation from the features of each
modality. Finally, the two attention mechanism based
MIL models are introduced. (7) Attention-based deep
Multiple Instance Learning (AMIL) [29] calculates the
parameterized attention (importance) score for each in-
stance to generate the probability distribution of bag la-
bels. (8) Loss-based Attention for deep Multiple Instance
Learning (LAMIL) [30] proposes to learn the instance
scores and predictions jointly by integrating the attention
mechanism with the loss function.

(9) An variation of inexact MIMSSVM for the ablation
study: We discard the multi-modal learning capability
from our model (Ours (MISM) in Table. I) to evaluate
the effectiveness of structured sparsity terms introduced
to utilize the multi-modality of instances. We set 71 and
Ty to zero to remove the impact of group norm |[W||¢,
and trace norm ||[W/,.

For these classification models, we use the following hyper-
parameters found by grid search. For SIL, NSK, and STK
the regularization tradeoff is set to 1.0. For our exact and
inexact MIMSSVM models, we set the regularization tradeoff
C to le + 3 and le + 4 respectively. The tolerance is set to
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le — 5 for both, and p is initialized with 1le — 5 and le — 10
respectively. For exact MIMSSVM model, 7, and 75 are set to
le—4 and le+3, and for inexact MIMSSVM models, 71 and 75
are set to 50 and 1le — 5. We use the linear kernel function for
SIL, NSK, STK. The deep learning models (mi-Net, MI-Net,
MMMI-deep, AMIL, and LAMIL) are implemented using the
codes provided as a companion th their papers [27]-[30] and
we use the implementations of SVM models (SIL, NSK, and
STK) provided by Doran et al [31]. Because MMMI-deep,
AMIL, and LAMIL take the image as an input, we provide
the raw patches to them without extracting features.

D. Classification Performance

In table I, we report the precision, recall, Fl-score, accu-
racy, and balanced accuracy (BACC) in the classification of
benign/malignant bags with the PFTAS features input. We
employ balanced accuracy considering the imbalanced dataset
of many malignant bags. We split the bags into 80% for
training and 20% for test set and follow the five-fold cross
validation scheme to report the averaged scores and their
standard deviations of five test sets.

The comparison between the classification models in ta-
ble I show that the proposed inexact/exact MIMSSVM model
clearly surpasses the other existing multi-instance models. We
interpret the reason as our model has the better capability
in detecting the various shapes and sizes of nucleus and
cells. When Ours are compared to the ablation model Ours
(MISM), we observe that the introduced structured sparsity
terms improve the prediction. This shows the good general-
ization capability of our multi-modal (multi-shape) learning
method for the different cancer types. Another interesting
observation from the results at lower magnification levels
(100X, 40X) is that our inexact MIMSSVM achieves the en-
couraging performance compared to exact MIMSSVM. These
results demonstrate that classification pattern for MIMSSVM
can vary based on the optimization strategy used, much as
the optimization algorithm’s impact on deep learning models
can vary [32]. While our derivation of inexact MIMSSVM may
not yield the exact optimal solution for the objective function
in Eq. (10), our results indicate that the inexact solution in
Eq. (15) can improve the prediction compared to the exact
solution in Eq. (12). It is supported by the previous finding [33]
which has shown some implementations of SVM obtain the
highest accuracy before the objective reaches its minimum.

E. Scalability Evaluation

One of the primary contributions of our study is that the
derived Algorithm 1 scales to the large number of features.
In Fig. 2, we plot the training time to the convergence of
loss function of our exact/inexact methods and the other SVM
models on PFTAS features input. The DL models (mi-Net,
MI-Net, MMMI-deep, AMIL, and LAMIL) are excluded in
this timing experiment since their training requires more than
three hours. To control the number of features of instances,
we concatenate the multiple number of 64 x 64 patches
which will be processed into 162 feature vectors. From the
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Model Magnification Precision Recall F1Score Accuracy BACC

SIL 40X 0.8814+0.019  0.806+0.029  0.846+0.030  0.809£0.031  0.83140.026
NSK 40X 0.9154+0.014  0.913+0.021  0.911£0.016  0.871£0.020  0.88040.019
STK 40X 0.9014+0.028  0.896+£0.031  0.889+0.018  0.863+0.019  0.864+0.021
mi-Net 40X 0.9084+0.019  0.883+0.016  0.892+0.016  0.887+0.010  0.87640.020
MI-Net 40X 0.9134+0.018  0.918+0.026  0.914+0.013  0.919£0.016  0.90740.019
MMMI-deep 40X 0.9114+0.027  0.919+0.018  0.915£0.019  0.918+0.038  0.90240.017
AMIL 40X 0.8931+0.042  0.904+0.026  0.900+£0.031  0.868+0.031  0.869+0.020
LAMIL 40X 0.9074+0.036  0.916+0.053  0.909£0.017  0.883+0.020  0.89040.024
Ours 40X 0.9124+0.016 ~ 0.918+0.034  0.913£0.023  0.92140.021  0.926+0.021
Ours (inexact) 40X 0.9354+0.017  0.920+0.021  0.921+£0.010  0.945+0.012  0.93140.021
Ours (MISM) 40X 0.8931+0.016  0.901+0.014  0.904+0.015 0.916+0.014  0.90840.023
SIL 100X 0.8544+0.016  0.837+0.028  0.847+0.021  0.822+£0.031  0.82940.022
NSK 100X 0.8694+0.021  0.901+0.012  0.892+0.019  0.889+£0.016  0.90340.019
STK 100X 0.853+0.031  0.912+0.020  0.880+0.015 0.893+£0.018  0.88140.014
mi-Net 100X 0.8761+0.011  0.842+0.014  0.856+0.008  0.891+0.011  0.90940.019
MI-Net 100X 0.8931+0.020  0.876+0.023  0.893+£0.019  0.901£0.018  0.88940.020
MMMI-deep 100X 0.93240.035  0.923+0.015  0.919£0.024  0.9154+0.017  0.92140.021
AMIL 100X 0.9084+0.028  0.897+0.034  0.906+£0.031  0.928+0.019  0.93140.024
LAMIL 100X 0.9161+0.030  0.892+0.027  0.909£0.029  0.9194+0.023  0.9214-0.029
Ours 100X 0.903+0.014  0.936+£0.020  0.921+£0.014  0.916+0.015  0.92340.024
Ours (inexact) 100X 0.9214+0.014  0.931+£0.021  0.926+0.019  0.942+0.021  0.938+-0.026
Ours (MISM) 100X 0.8814+0.018  0.896+0.017  0.890+0.023  0.919£0.026  0.90940.009
SIL 200X 0.879+0.013  0.840+0.019 0.857+0.017 0.851£0.019  0.8324+0.023
NSK 200X 0.9004+0.016  0.882+0.019  0.893+£0.019  0.911£0.017  0.91340.026
STK 200X 0.8831+0.021  0.876+0.035  0.884+0.016  0.876+0.027  0.86340.023
mi-Net 200X 0.8931+0.015  0.847+0.021  0.868+0.029  0.907+0.016  0.89340.009
MI-Net 200X 0.9144+0.016  0.901+0.040  0.908+0.021  0.917£0.020  0.91640.017
MMMI-deep 200X 0.913+0.017  0.926+0.028 0.918+£0.022  0.918+0.017  0.91240.015
AMIL 200X 0.87940.032  0.919+0.040  0.889+0.025 0.884+0.034  0.89840.040
LAMIL 200X 0.8954+0.019  0.871£0.025 0.889+0.041  0.899+0.029  0.87640.026
Ours 200X 0.9164+0.013  0.922+0.008  0.920+0.012  0.921+0.019  0.91840.026
Ours (inexact) 200X 0.9174+0.024  0.908+0.015  0.911£0.016  0.918+0.025  0.91640.012
Ours (MISM) 200X 0.9074+0.020  0.913+0.024  0.898+0.012  0.912+0.021  0.91240.024
SIL 400X 0.9054+0.024  0.810+0.031  0.852£0.021  0.8174£0.017  0.802+0.021
NSK 400X 0.8814+0.020  0.905+0.017  0.881£0.011  0.8464+0.016  0.88140.021
STK 400X 0.89240.023  0.901+0.027  0.899+0.016  0.861£0.017  0.853+0.018
mi-Net 400X 0.8931+0.015  0.847+0.021  0.868+0.029  0.907+0.016  0.89340.009
MI-Net 400X 0.9014+0.021  0.887+0.022  0.897£0.019  0.92940.031  0.917+0.031
MMMI-deep 400X 0.8954+0.024  0.851+0.028  0.883+0.024  0.915+0.016  0.90440.023
AMIL 400X 0.906+0.030  0.874+0.031  0.908+£0.032  0.890£0.027  0.91040.029
LAMIL 400X 0.9114+0.027  0.890+0.028  0.901£0.061  0.897+0.031  0.9044-0.028
Ours 400X 0.9294+0.026  0.919+0.019  0.923+£0.016  0.950+0.018  0.94240.020
Ours (inexact) 400X 0.92540.023  0.860+0.020  0.891£0.016  0.931£0.019  0.91340.025
Ours (MISM) 400X 0.91240.014  0.918+0.017  0.915+£0.015  0.906+0.019  0.90140.027

TABLE T

THE CLASSIFICATION PERFORMANCE OF OUR MIMSSVM AND COMPETING MODELS OVER THE VARIOUS MAGNIFICATION LEVELS. THE PFTAS
FEATURES ARE PROVIDED AS INPUT EXCEPT FOR MMMI-DEEP, AMIL, AND LAMIL WHICH RECEIVE RAW PATCHES AS INPUT. THE BEST SCORES ARE
HIGHLIGHTED IN BOLD.

results in Fig. 2, the inexact variation of MIMSSVM scales
significantly better than the exact MIMSSVM and other SVM
models against the increasing number of features. This is well
represented by the analytical complexity of two derivations
(O(Nd(n1+ng+---+ny)) v.s. O(N +d)d?)) as discussed
in Section II-D. This result validates the superior scalability of
the proposed MIMSSVM over the other SVM models which
rely on repeatedly solving a quadratic programming problem.

IV. CONCLUSION

Information in the medical dataset is usually delivered in a
variety of modalities as the development of data mining tech-
nologies, and multi-modal study is attracting more attention
in the machine learning researches. In the image analysis, the
patches in the different shapes sampled from the image can
be regarded as the different views on the image. In this study
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we present a novel Multi-Instance Multi-Shape SVM method
which scales to the large number of features. Our model
employs structured sparsity regularizations to achieve the
modality-wise sparsities and extract the predictive shapes of
patches in the prediction. The multi-modal learning capability
of our model is not limited in the different shapes of patches
and our model can be applied to the various multi-modal
data analysis. We have conducted extensive experiments on
the BreaKHis dataset and observed the promising performance
and scalability of the proposed method when compared to the
existing SVM and deep learning models. In addition to the
improved performance and scalability, our model identifies
the disease relevant regions in the images supported by the
multiple histopathological studies.
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