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Abstract—Histopathological image analysis is critical in cancer
diagnosis and treatment. Due to the huge size of histopathological
images, most existing works analyze the whole slide pathological
image (WSI) as a bag and its patches are considered as instances.
However, these approaches are limited to analyzing the patches in
a fixed shape, while the malignant lesions can form varied shapes.
To address this challenge, we propose the Multi-Instance Multi-
Shape Support Vector Machine (MIMSSVM) to analyze the
multiple images (instances) jointly where each instance consists
of multiple patches in varied shapes. In our approach, we can
identify the varied morphologic abnormalities of nuclei shapes
from the multiple images. In addition to the multi-instance
multi-shape learning capability, we provide an efficient algorithm
to optimize the proposed model which scales well to a large
number of features. Our experimental results show the proposed
MIMSSVM method outperforms the existing SVM and recent
deep learning models in histopathological classification. The
proposed model also identifies the tissue segments in an image
exhibiting an indication of an abnormality which provides utility
in the early detection of malignant tumors.

Index Terms—scalability, multi-instance, multi-modal, support
vector machine, histopathology

I. INTRODUCTION

According to the National Breast Cancer Foundation, one

in eight women in the United States develops the breast

cancer [1]. Early detection of breast cancer is the key for

maximizing the patient’s chance of survival, and while strides

have been made in both medical and technological fields, this

problem remains at the pinnacle of breast cancer research.

In the past, traditional diagnostic procedures have leaned

heavily on the need for specialized training, especially in

pathology and radiology. With the rise of new technological

solutions, pathologists have begun digitizing the tissue sections

and creating histopathological images or whole-slide images

(WSIs). This allows certain features of the image, such as

inconsistencies in cell architecture and the presence or vacancy

of specific biological qualities, to be detected and analyzed. If

such features can be spotted, they can be used as indicators

for diseases. For example, cells that are abnormally structured

and divided uncontrollably are carcinomas and immediately

point to the presence of cancer. Since technologically based

diagnoses are founded on features exhibited by tissue sam-

ples on a cellular level, being able to analyze the images

digitally increases efficiency of the process. Furthermore,

current medical procedures have led to an increase in the

number of biopsies taken, causing a rise in the number of

histopathological images that require unrealistic workloads for

pathologists [2].

In light of this issue, recent advancements in artificial intelli-

gence have yielded promise by displaying the ability to analyze

large volumes of histopathological images. The Breast Cancer

Histopathological Image Classification (BreaKHis) dataset [3]

is publicly available and is composed of 7,909 histopathologi-

cal images of benign and malignant breast cancer tumors. The

set of images is organized into groups of the most common

types of carcinomas, making it a very valuable dataset for

cancer research. Each patient’s histopathological images have

been classified as malignant or benign and have been assigned

to a particular group depending on the type of tumor that

they present. Each patient is represented by their collection

of histopathological images, which pathologists have correctly

classified during the creation of this dataset. To deal with such

an extensive dataset, many machine learning algorithms have

been employed to locate the abnormal tissue sections and cor-

rectly determine whether there is cancer or not. In particular,

several multi-instance learning methods (MIL) have achieved

satisfactory results in the past when performing similar tasks

on the BreaKHis dataset. Some examples are Multi-Instance

Support Vector Machine (MISVM) [4], sparse Multi-Instance

Learning (sMIL) and sparse balanced MIL (sbMIL) [5], and

Normalized Set Kernel (NSK) and Statistics Kernel (STK) [6].

These are all methods that have been deemed successful at

correctly labeling the bags in the testing dataset as either

malignant or benign.
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Fig. 1. An illustration of our processing pipeline for our multi-instance multi-
shape learning algorithm applied to the BreaKHis dataset. The input is the
concatenation of patches in different shapes, and we employ the shape specific
regularization to identify the important shape for classification.

Our research also utilizes a multi-instance learning method

to determine whether an image shows any indications of car-

cinoma and, if so, where the abnormality is located within the

histopathological image. As mentioned before, multi-instance

learning is commonly used for disease detection applications,

and these types of algorithms have also been evaluated on

the BreaKHis dataset previously. Multi-instance learning [7]–

[10] is a common weakly supervised area of machine learning

known for organizing the training and testing data into sets of

instances called bags. Due to the nature of this approach, the

data can be labeled at the bag level instead of at the instance

level, which means that clinicians do not need to spend a lot of

resources into characterizing each image in the training dataset

obtained from a biopsy. Doctors only need to label/diagnose

the bag or patient as malignant or benign, and the rest of the

instances or images follow suit.

To provide a well-rounded and complete picture of each

instance, we extract the multiple patches in the different shapes

from each image. Our approach can be particularly effective

in the cancer diagnosis, since the malignancy often exhibits

the abnormal morphology and varying shape of nuclei in the

practice of surgical pathology [11]. We extract the feature

vector for each patch, and the feature vectors of all the

patches in one instance are concatenated to create a more

information-dense vector. Because the features in a same shape

are associated each other, we design our model to learn the

group structured sparsity respect to the features grouped by

their shapes. The patches in different shapes can be regarded

as the different views (modalities) on the image, and learning

group-wise sparsity has shown performance improvement on

the multi-modal data [12], [13]. As illustrated in Fig. 1, each

of these shapes can capture an important part of the image,

such as a cell nucleus or a possible abnormality in the cell

structure.

In our work, we also focus on optimizing our model stably

and efficiently. Considering the large size of histopathological

images, the large number of features of instances can be a

hurdle for optimizing MIL models. In our work we take this

fact into account and propose the Multi-Instance Multi-Shape

SVM (MIMSSVM) method, which improves the efficiency of

the optimization compared to the previously mentioned MIL

approaches. We summarize our contributions as follows:

• We present an novel MIMSSVM method which utilizes

the multi-shape patches in the images.

• We develop an scalable solution for the proposed method

based on optimal line search method [14] to bypass the

quadratic programming problem that comes from the

typical MISVM models.

• We provide an application of the MIMSSVM method to

diagnose a patient with breast cancer if their histopatho-

logical images show indications of a carcinoma. In re-

gards to the interpretability, our model also identifies the

disease relevant patches in the images.

II. METHODS

In this section, we will develop the objective of the

MIMSSVM model for handling multi-instance multi-modal

(multi-shape) data and derive its solution algorithm. We

provide both exact and inexact solutions, where the inex-

act solution approximates the exact solution and improves

the scalability against the large number of features. In our

derivations, we start from standard MISVM objective [4],

and add the structured sparsity terms to exploit the multi-

modal nature of the instance vectors and employ the iterative

reweighted method [15], [16] to optimize the introduced terms

in a numerically stable way. Finally, we apply the multi-block

alternating direction method of multipliers (ADMM) [17] to

minimize the proposed MIMSSVM objective.

A. Notations

In this paper, we write matrices as bold upper-case letters

M, vectors as bold lower-case letters m, and scalars as lower-

case letters m. The i-th row and j-th column of M are denoted

as mi and mj , respectively. We use mi
j to represent the

scalar value indexed by the i-th row and j-th column of the

matrix M. The matrix Mp and Mp correspond to the p-th

column-block and p-th row-block of M respectively. Each bag

Xi = {xi,1, · · · ,xi,ni
} ∈ �d×ni contains ni instances and its

associated label is represented by yi ∈ {1, · · · ,m, · · · ,K},

where i is the index of the bag in the dataset. Each instance

xi,j in Xi is the concatenation of G modalities (shapes) of

vectors, such that xi,j = [x1
i,j ; · · · ;xG

i,j ].
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B. The Objective of the Multi-Instance Multi-Shape Support
Vector Machine

The K class multi-instance SVM proposed in [4] solves the

following objective:

min
W,b

1

2

K∑
m=1

‖wm‖22

+ C
N∑
i=1

K∑
m=1

(1− [max(wT
mXi + 1bm)

−max(wT
y Xi + 1by)]y

m
i )+ .

(1)

Therefore, its decision function is given by:

ỹi = argmax
m′

(max(WTXi + b1i)
m′

) . (2)

Motivated by the multi-modal learning using structured-

sparsity regularization proposed by [12], [13], we capture the

important modalities by applying modality-wise regularization

term ‖W‖G1
defined as follows [12], [13]:

‖W‖G1
=

K∑
k=1

G∑
g=1

‖wg
k‖2 , (3)

where W = [W1;W2; · · · ;WG] ∈ �d×K consists of G
row-blocks, and each row-block Wg ∈ �dg×K is the weights

matrix for g-th modality (shape) of input Xi. To be more

specific, for each classification task, the group �1 norm applies

the �2 norm within each modality and the �1 norm across

different modalities. By minimizing ‖W‖G1
, the weights in

wg
k will approach to zero values, if g-th modality is not

discriminative for k-th classification task.

In addition to the group-wise sparsity learning by group �1
norm, we introduce the additional structured sparsity regular-

izer term ‖W‖∗, which is the trace norm of W and defined

as [18]:

‖W‖∗ =

min{d,K}∑
i=1

σi = tr[(WTW)
1
2 ] , (4)

where σi is the i-th singular value of W. Through the

minimization of singular values of W, we can discover

the low-rank representation of projection W and maximize

the correlation between G-modalities as its effectiveness has

been shown in [19]–[22]. Armed with the structured sparsity

regularizer terms ‖W‖G1 and ‖W‖∗, we rewrite Eq. (1) as

follows:

min
W,b

1

2

K∑
m=1

‖wm‖22 + τ1‖W‖G1 + τ2‖W‖∗

+ C
N∑
i=1

K∑
m=1

(1

− [max(wT
mXi + 1bm)−max(wT

y Xi + 1by)]y
m
i )+ .

(5)

The MIMSSVM objective in Eq. (5) is generally difficult

to solve because of the coupled primal variables wk, bm
with max(·) operations. Thus we split the primal variables in

Eq. (1) via the ADMM approach [17] by converting Eq. (5)

into the following constrained optimization problem:

min
W,b,V,E,
Q,R,T,U

1

2

K∑
m=1

‖wm‖22 + τ1‖V‖G1

+ τ2‖W‖∗ + C
N∑
i=1

K∑
m=1

(ymi emi )+

s.t. emi = ymi − qmi + rmi ,

V = W, rmi = max (um
i ) ,

qmi = max (tmi ) ,

tmi = wT
mXi + 1bm ,

um
i = wT

y Xi + 1by .

(6)

As discussed earlier, the structured sparsity regularizers

‖V‖G1
and ‖W‖∗ in Eq. (6) are well motivated in the context

to analyze multi-shape WSIs. However, they are both not

differentiable, therefore the objective in Eq. (6) is non-smooth

that is thereby difficult to efficiently solve in general. To

ensure the numerical stability of the optimization, we use the

optimization framework introduced in our earlier work [15],

[16], [23] that proposed the iterative reweighted method to

solve non-smooth objectives. Then we can solve Eq. (6) by

an iterative procedure in which the key step is minimizing the

following smoothed objective:

min
W,b,V,E,
Q,R,T,U

1

2

K∑
m=1

‖wm‖22 + C

N∑
i=1

K∑
m=1

(ymi emi )+

+ τ1

G∑
g=1

tr(VgD1,g(V
g)T )

+ τ2 tr(W
TD2W) ,

s.t. emi = ymi − qmi + rmi ,

V = W ,

rmi = max (um
i ) ,

qmi = max (tmi ) ,

tmi = wT
mXi + 1bm ,

um
i = wT

y Xi + 1by ,

(7)

where Vg ∈ �dg×K is row-block corresponding to the row

indices of g-th modality, D1,g ∈ �K×K is an diagonal matrix

and its j-th diagonal element is computed as:

D1,g(j, j) =
1

2
(‖vg

j ‖22 + δ)−
1
2 , (8)

and D2 is computed as:

D2 =
1

2
(WWT + δI)−

1
2 ∈ �D×D , (9)

where δ is the smoothness term of small positive constant. The

hyperparameters τ1 and τ2 adjust the impact of corresponding

terms.

227

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on March 20,2023 at 07:41:15 UTC from IEEE Xplore.  Restrictions apply. 



From Eq. (7) we derive the following augmented La-

grangian:

Lμ =
1

2

K∑
m=1

‖wm‖22 +
N∑
i=1

K∑
m=1

C (ym
i emi )+

+ τ1

G∑
g=1

tr(VgD1,g(V
g)T ) + τ2 tr(W

TD2W) +
μ

2

N∑
i=1

K∑
m=1[

(emi − (ymi − qmi + rmi − λm
i /μ))2 + (qmi −max (tmi ) + σm

i /μ)2

+
∥∥∥tmi −

(
wT

mXi + 1bm
)
+ θm

i /μ
∥∥∥2

2

+ (rmi −max (um
i ) + ωm

i /μ)2

+
∥∥∥um

i −
(
wT

y Xi + 1by
)
+ ξm

i /μ
∥∥∥2

2

]

+
μ

2
‖V −W + Γ/μ‖2F ,

(10)

where W,b,V,E,Q,T,R,U are the primal variables,

Λ,Σ,Θ,Ω,Ξ,Γ are the dual variables, and μ > 0 is a

hyperparameter.

C. The Solution Algorithm

In this section, we provide the key derivation details for each

class-hyperplane in W and b with its associated constraint

variable V as they are most important variables in our model.

The full derivation details of the solution algorithm will be

provided in our longer journal extension due to space limit.

W & b update. Removing all terms from Eq. (10) that do

not include W and decoupling across columns of W gives

the following K minimization problems:

wm = argmin
wm

1

2
‖wm‖22 +

μ

2

N∑
i=1

[∥∥tmi − (
wT

mXi + 1bm
)
+

θm
i /μ

∥∥2
2

]
+

N ′∑
i′=1

K∑
m′=1

[μ
2

∥∥um′
i′ − (

wT
mXi′ + 1bm

)
+ ξm

′
i′ /μ

∥∥2
2

]
+

μ

2

∥∥vm −wm + γm/μ
∥∥2
2
+ τ2 tr(W

TD2W),

(11)

where i′ indicates the column blocks in X (and corresponding

columns of U and Ξ) that belong to the m-th class. N ′ is the

total number of bags that belong to the m-th class, and tmi
and θm

i are row vectors corresponding to the i-th bag and m-

th class in T and Θ. Finally, um′
i′ and ξm

′
i′ are row vectors

selected from U and Ξ that correspond to the (i,m) pair

belonging to the m-th class.

Taking the derivative of Eq. (11) with respect to wm and

setting the result equal to zero gives the closed form solution

wT
m =

(∑N
i=1

[
(tmi − 1bm + θm

i /μ)XT
i

]
+
∑N ′

i′=1

∑K
m′=1[

(um′
i′ − 1bm + ξm

′
i′ /μ)XT

i′
]
+ vT

m + γT
m/μ

) ∗ ((1/μ+ 1)I

+
2

μ
τ2D2 +

∑N
i=1 XiX

T
i +K

∑N ′

i′=1 Xi′X
T
i′
)−1

,

(12)

which can be calculated via a least-squares solver to avoid an

inverse calculation. Similarly, differentiating Eq. (10) element-

wise with respect to bm, setting the result equal to zero gives

the update:

bm =
∑N

i=1[t
m
i −wT

mXi+θm
i /μ]+

∑N′
i′=1

∑K
m=1

[
um

i′ −wT
mXi′+ξm

i′ /μ
]

N+KN ′ .
(13)

V update. By discarding all terms not including V from

Eq. (10) and setting the derivative respect to Vg to zero matrix,

we have:

Vg = (μWg − Γg)(2τ1D1,g + μI)−1 . (14)

The full steps to solve the objective Eq. (10) is summarized

in Algorithm 1.

D. Improving Scalability Against Features

The update for wm in Eq. (12) depends on solving a least

squares problem in each iteration. Considering the compu-

tational complexity O((N + d)d2) of least squares solver,

updating wm with Eq. (12) for every iteration may not be

computationally feasible in case the number of features d
is very large. Due to the multi-modal nature of instances,

the dimensionality d is typically large and we are motivated

to avoid solving the least squares problem in Eq. (12). To

improve the scalability against the number of features d, we

employ an optimal line search method [14] and update wm

via following gradient descent:

wm = wm − sm∇wm , (15)

where ∇wm is the analytical gradient of Eq. (10) with respect

to wm:

∇wm
= wm − μ

N∑
i=1

[Xi(t
m
i −wT

mXi − 1bm + θm
i /μ)T ]

− μ
N ′∑
i′=1

K∑
m′=1

[Xi′(u
m′
i′ −wT

mXi′ − 1bm + ξm
′

i′ /μ)T ]

− μ(vm −wm + γm/μ) + 2τ2D2wm .
(16)

Then we optimize the amount of update sm along the direction

of gradient ∇wm
:

sm = argmin
sm

1

2

∥∥wT
m − sm∇T

wm

∥∥2
2

+ τ2 tr((w
T
m − sm∇T

wm
)D2(w

T
m − sm∇T

wm
)T )

+
μ

2

N∑
i=1

[∥∥tmi − (wT
m − sm∇T

wm
)Xi − 1bm + θmi /μ

∥∥2
2

]

+
N ′∑
i′=1

K∑
m′=1

[μ
2

∥∥um′
i′ − (wT

m − sm∇T
wm

)Xi′ − 1bm

+ ξm
′

i′ /μ
∥∥2
2

]
+

μ

2
‖vm − (wm − sm∇wm

) + γm/μ‖22 .

(17)
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Algorithm 1 The multiblock ADMM updates to optimize

Eq. (6).

1: Data: X ∈ R
D×(n1+···+nN ) and Y ∈ {−1, 1}K×N .

2: Hyperparameters: C > 0, μ > 0, ρ > 1, τ1 ≥ 0, τ2 ≥ 0
and tolerance > 0.

3: Initialize: primal variables W,b,V,E,Q,R,T,U and

dual variables Λ,Σ,Θ,Ω,Ξ,Γ.

4: while residual > tolerance do
5: Update D1,g (g ∈ G) by Eq. (8).

6: Update D2 by Eq. (9).

7: for m ∈ K do
8: Update wm ∈ W by Eq. (15).
9: Update bm ∈ b by bm =∑N

i=1[t
m
i −wT

mXi+θm
i /μ]+

∑N′
i′=1

∑K
m=1

[
um

i′ −wT
mXi′+ξm

i′ /μ
]

N+KN ′

10: end for
11: for (p,m) ∈ {N,K} do
12: Update emp ∈ E by

emi =

⎧⎪⎨
⎪⎩
nm
i − C

μ y
m
i when ymi nm

i > C
μ ,

0 when 0 ≤ ymi nm
i ≤ C

μ ,

nm
i when ymi nm

i < 0 ,
where nm

i = ymi − qmi + rmi − λm
i /μ.

13: Update qmp ∈ Q by

qmi =

(
ym
i −emi +rmi −λm

i /μ+max
(
tmi

)
−σm

i /μ
)

2
14: Update rmp ∈ R by

rmi =

(
emi −ym

i +qmi +λm
i /μ+max

(
um

i

)
−ωm

i /μ
)

2
15: for j ∈ np do
16: Update tmp,j ∈ T by

tmi,j =

{
max(φm

i )+qmi +σm
i /μ

2 if j = argmax(φm
i ) ,

φm
i,j else ,

where φm
i = wT

mXi + 1bm − θm
i /μ.

17: Update um
p,j ∈ U by

um
i,j =

{
max(ψm

i )+rmi +ωm
i /μ

2 if j = argmax(ψm
i )

,
ψm
i,j else ,

where ψm
i = wT

y Xi + 1by − ξmi /μ.

18: end for
19: Update λm

p , σm
p , ωm

p ,θm
p , ξmp by

λm
i = λm

i + μ(emi − (ymi − qmi + rmi ));

σm
i = σm

i + μ(qmi −max(tmi ));

ωm
i = ωm

i + μ(rmi −max(um
i ));

θm
i = θm

i + μ(tmi − (wT
mXi + 1bm));

ξmi = ξmi + μ(um
i − (wT

y Xi + 1by))

.

20: end for
21: for g ∈ G do
22: Update Vg by Vg = (μWg − Γg)(2τ1D1,g + μI)−

1

23: end for
24: Update Γ = Γ+ μ(V −W)
25: Update μ = ρμ.

26: end while
27:

28: return (wm, . . . ,wK) ∈ W and (b1, . . . , bK) ∈ b.

We differentiate Eq. (17) with respect to sm, and set the result

equal to zero to earn the solution for sm:

sm =
(
wT

m(I+2τ2D2)−μ
∑N

i=1 t̂mi XT
i −μ

∑N′
i′=1

∑K
m′ ûm′

i′ XT
i′−μv̂T

m

)
∇wm

∇T
wm((1+μ)I+2τ2D2+μ

∑N
i=1 XiXT

i +μK
∑N′

i′=1
Xi′XT

i′)∇wm

,

(18)

where t̂mi = tmi − wT
mXi − 1bm + θm

i /μ and ûm′
i′ =

um′
i′ −wT

mXi′ −1bm + ξm
′

i′ /μ and v̂m = vm −wm +γm/μ.

Finally we plug the gradient ∇wm
in Eq. (16) and amount

sm in Eq. (18) into Eq. (15).The gradient descent update

in Eq. (15) does not contain the matrix inversion which

requires the least squares solver and only depend on the

matrix by vector multiplication. Note that
∑N

i=1 XiX
T
i and

K
∑N ′

i′=1 Xi′X
T
i′ can be pre-computed in the data preparing

step. The time complexity of the inexact solution in Eq. (15)

is O(Nd(n1 + n2 + · · ·+ nN )).

III. EXPERIMENTS

In this section, we empirically evaluation our proposed

method by two parts of experiments. We compare the proposed

exact/inexact MIMSSVM model to the various SVM and deep

learning models (1) in classification performance and (2) in

computation time across the increasing number of features.

A. Dataset

We test the classification models on BreaKHis1 dataset [3].

The BreaKHis dataset was built in collaboration with the P&D

Laboratory in Parana, Brazil. The dataset contains 7,909 mi-

croscopic biopsy images of breast tumor tissue taken between

January and December 2014 in a clinical study. The dataset

contains 2,480 samples of benign tissue and 5,429 samples

of malignant tissue, therefore the classification on this im-

balanced dataset has been considered as challenging task. The

images were collected based on the various magnifying factors

(40X, 100X, 200X, and 400X), and they were categorized

into benign or malignant class in the dataset. The images are

sampled from the anonymized 82 patients and in a format

of 3-channel RGB PNG and 700 × 460 pixels. The images

were generated from breast tissue biopsy slides, stained with

hematoxylin and eosin (HE), and collected by surgical open

biopsy (SOB). The diagnosis of each slide was labeled by

experienced pathologists in the P&D Laboratory [24].

We design the multi-instance learning problem by binding

the multiple histopathological images in a same WSI as a

bag, where each image in a bag represents an instance. We

segment each image into the patches in the various sizes and

extract the features from each patch which will be vectorized

and concatenated into an instance. This multi-shape instance

enables the classification model to detect the various shapes

and sizes of tumors and cells.

1The dataset is publicly available and can be accessed at https://web.inf.
ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
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B. Feature Extraction

We vectorize each patch or image by extracting the fea-

ture vector through Parameter Free Threshold statistics (PF-

TAS) [25]. PFTAS extracts the texture features by counting

the number of black pixels in the neighborhood of each pixel.

Then the total count for all the pixels in a given patch is stored

in a nine-bin histogram [25]. The thresholding is conducted

by Otsu’s algorithm [26] which returns a 162-dimensional

feature vector for each patch. In our evaluation of classification

performance, each bag contains the random number (in {3,

5, 10}) of images and each image is segmented into non-

overlapping two 64 × 64 patches, one 64 × 32 patch, one 32

× 32 patch at the random positions. As a result, each instance

is a vector of 162 × 4 features.

C. Comparison Methods

We compare the classification performance and scalability

of proposed exact/inexact MIMSSVM to the following three

SVM models (SIL, NSK, STK) and five deep learning models

(mi-Net, MI-Net, MMMI-deep, AMIL, and LAMIL):

• (1) A single-instance learning (SIL) method that assigns

the bags’ labels to all instances during training and

produces the maximum response for each bag/class pair

at testing time for the training bag’s instances.

• The two multi-instance SVM methods: (2) Normalized

Set Kernel (NSK) and (3) Statistics Kernel (STK) [6] map

the entire bag to a single-instance via kernel function.

• The five multi-instance deep learning (DL) models: The

(4) mi-Net and (5) MI-Net [27] approach to the MIL

problem in a way of instance space and embedded

space (learning vectorial representation of bag) paradigm

respectively. (6) The Multi-Modal Multi-Instance deep

learning model (MMMI-deep) [28] learns the global

cross-modal representation from the features of each

modality. Finally, the two attention mechanism based

MIL models are introduced. (7) Attention-based deep

Multiple Instance Learning (AMIL) [29] calculates the

parameterized attention (importance) score for each in-

stance to generate the probability distribution of bag la-

bels. (8) Loss-based Attention for deep Multiple Instance

Learning (LAMIL) [30] proposes to learn the instance

scores and predictions jointly by integrating the attention

mechanism with the loss function.

• (9) An variation of inexact MIMSSVM for the ablation

study: We discard the multi-modal learning capability

from our model (Ours (MISM) in Table. I) to evaluate

the effectiveness of structured sparsity terms introduced

to utilize the multi-modality of instances. We set τ1 and

τ2 to zero to remove the impact of group norm ‖W‖G1

and trace norm ‖W‖∗.

For these classification models, we use the following hyper-

parameters found by grid search. For SIL, NSK, and STK

the regularization tradeoff is set to 1.0. For our exact and

inexact MIMSSVM models, we set the regularization tradeoff

C to 1e + 3 and 1e + 4 respectively. The tolerance is set to

1e− 5 for both, and μ is initialized with 1e− 5 and 1e− 10
respectively. For exact MIMSSVM model, τ1 and τ2 are set to

1e−4 and 1e+3, and for inexact MIMSSVM models, τ1 and τ2
are set to 50 and 1e−5. We use the linear kernel function for

SIL, NSK, STK. The deep learning models (mi-Net, MI-Net,

MMMI-deep, AMIL, and LAMIL) are implemented using the

codes provided as a companion th their papers [27]–[30] and

we use the implementations of SVM models (SIL, NSK, and

STK) provided by Doran et al [31]. Because MMMI-deep,

AMIL, and LAMIL take the image as an input, we provide

the raw patches to them without extracting features.

D. Classification Performance

In table I, we report the precision, recall, F1-score, accu-

racy, and balanced accuracy (BACC) in the classification of

benign/malignant bags with the PFTAS features input. We

employ balanced accuracy considering the imbalanced dataset

of many malignant bags. We split the bags into 80% for

training and 20% for test set and follow the five-fold cross

validation scheme to report the averaged scores and their

standard deviations of five test sets.

The comparison between the classification models in ta-

ble I show that the proposed inexact/exact MIMSSVM model

clearly surpasses the other existing multi-instance models. We

interpret the reason as our model has the better capability

in detecting the various shapes and sizes of nucleus and

cells. When Ours are compared to the ablation model Ours

(MISM), we observe that the introduced structured sparsity

terms improve the prediction. This shows the good general-

ization capability of our multi-modal (multi-shape) learning

method for the different cancer types. Another interesting

observation from the results at lower magnification levels

(100X, 40X) is that our inexact MIMSSVM achieves the en-

couraging performance compared to exact MIMSSVM. These

results demonstrate that classification pattern for MIMSSVM
can vary based on the optimization strategy used, much as

the optimization algorithm’s impact on deep learning models

can vary [32]. While our derivation of inexact MIMSSVM may

not yield the exact optimal solution for the objective function

in Eq. (10), our results indicate that the inexact solution in

Eq. (15) can improve the prediction compared to the exact

solution in Eq. (12). It is supported by the previous finding [33]

which has shown some implementations of SVM obtain the

highest accuracy before the objective reaches its minimum.

E. Scalability Evaluation

One of the primary contributions of our study is that the

derived Algorithm 1 scales to the large number of features.

In Fig. 2, we plot the training time to the convergence of

loss function of our exact/inexact methods and the other SVM

models on PFTAS features input. The DL models (mi-Net,

MI-Net, MMMI-deep, AMIL, and LAMIL) are excluded in

this timing experiment since their training requires more than

three hours. To control the number of features of instances,

we concatenate the multiple number of 64 × 64 patches

which will be processed into 162 feature vectors. From the

230

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on March 20,2023 at 07:41:15 UTC from IEEE Xplore.  Restrictions apply. 



Model Magnification Precision Recall F1Score Accuracy BACC

SIL 40X 0.881±0.019 0.806±0.029 0.846±0.030 0.809±0.031 0.831±0.026
NSK 40X 0.915±0.014 0.913±0.021 0.911±0.016 0.871±0.020 0.880±0.019
STK 40X 0.901±0.028 0.896±0.031 0.889±0.018 0.863±0.019 0.864±0.021
mi-Net 40X 0.908±0.019 0.883±0.016 0.892±0.016 0.887±0.010 0.876±0.020
MI-Net 40X 0.913±0.018 0.918±0.026 0.914±0.013 0.919±0.016 0.907±0.019
MMMI-deep 40X 0.911±0.027 0.919±0.018 0.915±0.019 0.918±0.038 0.902±0.017
AMIL 40X 0.893±0.042 0.904±0.026 0.900±0.031 0.868±0.031 0.869±0.020
LAMIL 40X 0.907±0.036 0.916±0.053 0.909±0.017 0.883±0.020 0.890±0.024
Ours 40X 0.912±0.016 0.918±0.034 0.913±0.023 0.921±0.021 0.926±0.021
Ours (inexact) 40X 0.935±0.017 0.920±0.021 0.921±0.010 0.945±0.012 0.931±0.021
Ours (MISM) 40X 0.893±0.016 0.901±0.014 0.904±0.015 0.916±0.014 0.908±0.023
SIL 100X 0.854±0.016 0.837±0.028 0.847±0.021 0.822±0.031 0.829±0.022
NSK 100X 0.869±0.021 0.901±0.012 0.892±0.019 0.889±0.016 0.903±0.019
STK 100X 0.853±0.031 0.912±0.020 0.880±0.015 0.893±0.018 0.881±0.014
mi-Net 100X 0.876±0.011 0.842±0.014 0.856±0.008 0.891±0.011 0.909±0.019
MI-Net 100X 0.893±0.020 0.876±0.023 0.893±0.019 0.901±0.018 0.889±0.020
MMMI-deep 100X 0.932±0.035 0.923±0.015 0.919±0.024 0.915±0.017 0.921±0.021
AMIL 100X 0.908±0.028 0.897±0.034 0.906±0.031 0.928±0.019 0.931±0.024
LAMIL 100X 0.916±0.030 0.892±0.027 0.909±0.029 0.919±0.023 0.921±0.029
Ours 100X 0.903±0.014 0.936±0.020 0.921±0.014 0.916±0.015 0.923±0.024
Ours (inexact) 100X 0.921±0.014 0.931±0.021 0.926±0.019 0.942±0.021 0.938±0.026
Ours (MISM) 100X 0.881±0.018 0.896±0.017 0.890±0.023 0.919±0.026 0.909±0.009
SIL 200X 0.879±0.013 0.840±0.019 0.857±0.017 0.851±0.019 0.832±0.023
NSK 200X 0.900±0.016 0.882±0.019 0.893±0.019 0.911±0.017 0.913±0.026
STK 200X 0.883±0.021 0.876±0.035 0.884±0.016 0.876±0.027 0.863±0.023
mi-Net 200X 0.893±0.015 0.847±0.021 0.868±0.029 0.907±0.016 0.893±0.009
MI-Net 200X 0.914±0.016 0.901±0.040 0.908±0.021 0.917±0.020 0.916±0.017
MMMI-deep 200X 0.913±0.017 0.926±0.028 0.918±0.022 0.918±0.017 0.912±0.015
AMIL 200X 0.879±0.032 0.919±0.040 0.889±0.025 0.884±0.034 0.898±0.040
LAMIL 200X 0.895±0.019 0.871±0.025 0.889±0.041 0.899±0.029 0.876±0.026
Ours 200X 0.916±0.013 0.922±0.008 0.920±0.012 0.921±0.019 0.918±0.026
Ours (inexact) 200X 0.917±0.024 0.908±0.015 0.911±0.016 0.918±0.025 0.916±0.012
Ours (MISM) 200X 0.907±0.020 0.913±0.024 0.898±0.012 0.912±0.021 0.912±0.024
SIL 400X 0.905±0.024 0.810±0.031 0.852±0.021 0.817±0.017 0.802±0.021
NSK 400X 0.881±0.020 0.905±0.017 0.881±0.011 0.846±0.016 0.881±0.021
STK 400X 0.892±0.023 0.901±0.027 0.899±0.016 0.861±0.017 0.853±0.018
mi-Net 400X 0.893±0.015 0.847±0.021 0.868±0.029 0.907±0.016 0.893±0.009
MI-Net 400X 0.901±0.021 0.887±0.022 0.897±0.019 0.929±0.031 0.917±0.031
MMMI-deep 400X 0.895±0.024 0.851±0.028 0.883±0.024 0.915±0.016 0.904±0.023
AMIL 400X 0.906±0.030 0.874±0.031 0.908±0.032 0.890±0.027 0.910±0.029
LAMIL 400X 0.911±0.027 0.890±0.028 0.901±0.061 0.897±0.031 0.904±0.028
Ours 400X 0.929±0.026 0.919±0.019 0.923±0.016 0.950±0.018 0.942±0.020
Ours (inexact) 400X 0.925±0.023 0.860±0.020 0.891±0.016 0.931±0.019 0.913±0.025
Ours (MISM) 400X 0.912±0.014 0.918±0.017 0.915±0.015 0.906±0.019 0.901±0.027

TABLE I
THE CLASSIFICATION PERFORMANCE OF OUR MIMSSVM AND COMPETING MODELS OVER THE VARIOUS MAGNIFICATION LEVELS. THE PFTAS

FEATURES ARE PROVIDED AS INPUT EXCEPT FOR MMMI-DEEP, AMIL, AND LAMIL WHICH RECEIVE RAW PATCHES AS INPUT. THE BEST SCORES ARE

HIGHLIGHTED IN BOLD.

results in Fig. 2, the inexact variation of MIMSSVM scales

significantly better than the exact MIMSSVM and other SVM

models against the increasing number of features. This is well

represented by the analytical complexity of two derivations

(O(Nd(n1+n2+ · · ·+nN )) v.s. O((N +d)d2)) as discussed

in Section II-D. This result validates the superior scalability of

the proposed MIMSSVM over the other SVM models which

rely on repeatedly solving a quadratic programming problem.

IV. CONCLUSION

Information in the medical dataset is usually delivered in a

variety of modalities as the development of data mining tech-

nologies, and multi-modal study is attracting more attention

in the machine learning researches. In the image analysis, the

patches in the different shapes sampled from the image can

be regarded as the different views on the image. In this study

we present a novel Multi-Instance Multi-Shape SVM method

which scales to the large number of features. Our model

employs structured sparsity regularizations to achieve the

modality-wise sparsities and extract the predictive shapes of

patches in the prediction. The multi-modal learning capability

of our model is not limited in the different shapes of patches

and our model can be applied to the various multi-modal

data analysis. We have conducted extensive experiments on

the BreaKHis dataset and observed the promising performance

and scalability of the proposed method when compared to the

existing SVM and deep learning models. In addition to the

improved performance and scalability, our model identifies

the disease relevant regions in the images supported by the

multiple histopathological studies.
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