Decomposing the Critical Components of Flash Drought Using the Standardized Evaporative Stress Ratio

Stuart G. Edris^{a*}, Jeffrey B. Basara^{a,b}, Jordan I. Christian^a, Eric D. Hunt^c, Jason A. Otkin^d, Scott T. Salesky^a, Bradley G. Illston^{a,e}

^aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma, United States

^bSchool of Civil Engineering and Environmental Science, University of Cklahoma, Norman,

Oklahoma, United States

cAtmospheric and Environmental Research, Inc., Lexington, Massachusetts, United States
dCooperative Institute for Meteorological Satellite Studies Space Science and Engineering
Center, University of Wisconsin-Madison, Madis J., Wisconsin, United States
cOklahoma Climatological Survey, University of Cklahoma, Norman, Oklahoma, United States

Keywords: Flash Drought, P. pid L. ought Intensification, Evapotranspiration, Evaporative Stress, Climatology

Corresponding at hor. Stuart Edris

Address: School of Meteorology, University of Oklahoma, Norman, OK, United States

Phone number, 405-325-6561

F na 'add ess: sgedris@ou.edu

Sub. itted to: Agricultural and Forest Meteorology

Abstract

Flash droughts develop rapidly (~1 month timescale) and produce significant e of rice agricultural, and socioeconomical impacts. Recent advances in our understanding of fla. ha. ughts have resulted in methods to identify and quantify flash drought events. However, few studies have been done to isolate the individual rapid intensification and drought components of flash drought, which could further determine their causes, evolution, and predictability. This study utilized the standardized evaporative stress ratio (SESR) to quantify individual commonents of flash drought from 1979 – 2019, using evapotranspiration (ET) and potential evapotranspiration (PET) data from the North American Regional Reanalysis (NARR) dataset. The temporal change in SESR was utilized to quantify the rapid intensification component of flush drought. The drought component was also determined using SESR and compared to fae United States Drought Monitor. The results showed that SESR was able to represent the spatial coverage of drought well for regions east of the Rocky Mountains. Furthermore, the rapid intendiffication component agreed well with previous flash drought studies, with the ov rall c imatology of rapid intensification events showing similar hotspots to the flash drought clin tology east of the Rocky Mountains. The rapid intensification climatology suggested areas wes. of the Rocky Mountains experience rapid drying more often than east of the Rocky M ntan.

1. Introduction

1

- 2 Drought is a climate extreme resulting from below normal precipitation and above normal
- temperatures over a prolonged period of time, which causes an imbalance in the hydrologic
- 4 system (American Meteorological Society 1997; Pachauri et al. 2014). This put set as on
- 5 ecological systems and can have large socioeconomic impacts; extreme droug 'ts can yield
- 6 billions of dollars (US) of losses (Heim 2002; Dai 2011; NCEI 2017). Many udies have
- focused on being able to detect, monitor, and predict drought event. Vist rically, this has been
- 8 accomplished through long term indices (~ 2 6+ month averages), uch as the Palmer Drought
- 9 Severity Index (PDSI; Palmer 1965) and Standardized Preci, itation Index (SPI; McKee et al.
- 10 1993, McKee et al. 1995).

- More recent studies have focused on 'ought even's that undergo rapid evolution (approximately
- 13 1 month), denoted as "flash droug it" in Svoboda et al. (2002). Flash droughts differ from
- traditional droughts in severa' we'rs. while traditional drought can occur in any given season,
- 15 flash drought has a distinct seaschality, favoring the growing season (Chen et al. 2019; Christian
- et al. 2019a; Noguer et al. 2020; Christian et al. 2021). Additionally, traditional drought can
- occur in any given region, while flash droughts tend to favor transition zones with a strong
- precipitation g. dient (Kim and Rhee 2016; Chen et al. 2019; Christian et al. 2019b). Further,
- because of the apid drying and desiccation of the land surface, flash droughts can have large
- 20 eco of cal agricultural, and socioeconomic impacts. Examples include the 2015 flash drought in
- the southern Great Plains (Otkin et al. 2019), the 2012 flash drought across the central United

- States (Otkin et al. 2016, 2018; Basara et al. 2019), the 2010 western Russia flash drought
- 23 (Christian et al. 2020; Hunt et al. 2021), and the 1936 flash drought (Hunt et al. 2020).

Because flash droughts develop over relatively short time periods, traditional dog ght 25 monitoring, evaluation, and detection methods are generally unable to accurate, capture rapid 26 27 intensification events. Consequentially, there has been significant w. ... focused on variables that respond quickly to a rapidly drying environment and have a high ten, and resolution (e.g., ~ 1 28 29 week timescale) that allows them to detect the rapid onset of drought on shorter time scales 30 (Lisonbee et al. 2021). While changes in the United Strue Drought Monitor (USDM) database (Chen et al. 2019) and the standardized evaporative precipitation index (SPEI) at a monthly 31 timescale (Noguera et al. 2020) have been examined to determine flash drought, the main 32 variables analyzed include soil moisture (e.g., Hu, t et al. 2009; Ford et al. 2015; Otkin et al. 33 2019; Liu et al. 2020; Osman et al. 262. \as well as evapotranspiration (ET) and potential 34 evapotranspiration (PET; e.g., Otl in et al. 2013, 2014; Li et al. 2020; Kim et al. 2019; Hobbins et 35 al. 2016; McEvoy et al. 2016 Kim t al. 2019; Vicente-Serrano et al. 2018; Christian et al. 36 2019b; Nguyen et al. 2019, 2021; Pendergrass et al. 2020; Osman et al. 2021). In particular, ET 37 38 has been found to be on of the most sensitive variables to flash drought (McEvoy et al. 2016; 39 Chen et al. 20¹9) and rapid decreases in ET can serve as a precursor for flash drought 40 developm $\frac{1}{2}$ type ally occurring about 1-2 weeks in advance of drought onset (Otkin et al. 41 2013. Chen (al. 2019). In addition, ET has been associated with the atmospheric supply of 42 r ois 're vailable to the environment while PET is associated with the terrestrial demand for 43 mois ure (Hobbins et al. 2016; Christian et al. 2019b). Thus, many studies have focused on ET

and PET, creating a number of standardized indices to measure drought such as the evaporative demand drought index (EDDI; Hobbins et al. 2016; McEvoy et al. 2016; Pendergrass et al. 2020), the standardized evapotranspiration deficit index (SEDI; Kim and Rhee 2016; Kin, et al. 2019), the evaporative stress index (ESI; Anderson et al., 2007, 2013), the rapid cl., age index (RCI; Otkin et al. 2014), and the standardized evaporative stress ratio (SFSR; (b. sti n et al. 2019b). Furthermore, ET is able to not only describe flash drought events, at it an also be used to examine drought in general, and capture historic drought events, including the 1934, 1954, 1988, and 2011 droughts (Kim and Rhee 2016; Kim et al. 2019).

With the addition of numerous studies examining flock in the late of the control of various indices to identify and quantify flash drought events, Otkin et al. (2018) proposed a general framework that required any flash drough definition to include two critical components. First, a rapid intensification component on the order of a month should be included given its importance in flash drought developmer (Liu et al. 2020; Noguera et al. 2020) and impacts due to rapid desiccation of the terrestrial surface. Additionally, flash drought cannot occur unless drought conditions are rehieved (Lisonbee et al. 2021). Thus, a drought component should be clearly identifiable whereby environmental indices fall below the 20th percentile of their distribution. Some studies have examined the climatology of these components, such as Liu et al. 2020, Norgue of the late of the

6/

Dividing flash droughts into these two components can be critical in determining several featur's associated with flash droughts. For example, quantifying the occurrence of rapid intensification, can help improve understanding of flash droughts drivers, aid in their real time identification, and denote areas to improve the predictability of flash droughts. Therefore, this study undizes the SESR method of identifying flash drought (Christian et al. 2019b) to (1) analyzation intensification and drought components *individually*, (2) evaluate the ability of a SSR to detect drought in general, (3) quantify the occurrence of rapid intensification and identify locations that experience rapid intensification but not drought, and (4) determine which of the two components is most critical for flash drought occurrence in space and tire.

74

65

66

67

68

69

70

71

72

73

2. Material and Methods

76

- 77 2.1. Data
- 78 2.1.1. North American Regional Yeans ysis
- 79 This study utilized data from the North American Regional Reanalysis (NARR) which was
- designed to accurate the climate and hydrology of North America (Mesinger et al.
- 81 2006). The spat. 1 re. lution of the NARR is 32 km × 32 km with a 3-hour temporal interval.
- 82 For this study, reface evapotranspiration (ET) and potential evapotranspiration (PET) for the
- period sp. nin, 1 January 1979 to 31 December 2019 were incorporated into the analysis. PET
- 84 was viculited within the Noah land surface model using the Penman equation with surface
- ten perature, soil flux, radiation, windspeed, and specific humidity (Ek et al. 2003; Mahrt and Ek
- 1984). ET calculations used numerous moisture and vegetation variables (such as vegetation

density, stomatal conductance, precipitation, soil moisture, etc.) to determine three components (evaporation from the soil, transpiration, and evaporation from canopy intercept), which are calculated separately and then summed to obtain the total ET (Ek et al. 2003; Chen et al. 1950). The NARR has been successfully utilized in multiple, previous flash drought analysis in cluding Christian et al. (2019a, b), Chen et al. (2019), and Basara et al. (2019).

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

18

87

88

89

90

91

2.1.2. United States Drought Monitor

The USDM is a collaboration between numerous federal and state organizations and universities designed to monitor, identify, and convey information at our drought to the public and stakeholders. It incorporates the professional opi io s of the expert scientists who serve as drought monitor authors and who use numerous netrics (e.g., temperature, precipitation, streamflow, soil moisture, snowpack ground wayr, and vegetation conditions; Svoboda et al. 2002). Because the USDM has befur videry utilized for drought identification (e.g., Otkin et al. 2013, 2014; Ford et al. 2015; Clandard. 2019), USDM drought values were incorporated into this study for evaluation of dro, oht depicted by SESR. Because the data from the USDM are in a polygon format, it was raterized in this study by comparing each NARR grid point to the polygon, and assigning the grid point the value of the polygon, similar to the method used in Chen et al. (2 19). Because this study was not concerned with abnormally dry events, D0 drought 'as gi en the same value as non-drought conditions. In addition, the USDM provides a bas's ferc tegezizing drought intensity based on percentiles (i.e., Table 2 in Svoboda et al. (202)). Because the USDM has evolved and refined its determination of drought over time, data was used from 2010 – 2019 to evaluate the SESR drought component. Finally, when compared

to the USDM, the SESR drought component was averaged to the same weekly time scale as theUSDM.

111

- 112 2.2. Standardized Evaporative Stress Ratio
- 113 This study employs the flash drought identification method developed C. Ch. istian et
 114 al. (2019b), which incorporates surface moisture flux via ET (evap 12 for from the soil and
 115 transpiration from vegetation) and the atmospheric demand for m. isture (PET). The ratio of ET
 116 to PET yields the evaporative stress ratio (ESR) defined in Thristian et al. (2019b) as:

$$ESR = \frac{ET}{P \cdot T} \tag{1}$$

whereby ESR values range from 0 (a completely completel

122

118

119

120

121

To better investigate Pash drought events across different climate zones, the standardized evaporative stress ratio (SESR) was used.

$$SESR_{ijp} = \frac{ESR_{ijp} - \overline{ESR_{ijp}}}{\sigma_{ESR_{ijp}}}$$
 (2)

The subscripts i and j refer to the ith and jth spatial grid point and the subscript p refers to the pth pentad in the Gregorian calendar (leap days excluded). Overbars indicate mean values, and p refers to standard deviations. For this study, the mean and standard deviation values were calculated from the 41 years in the dataset. Negative values of SESR indicate a reg. p to drier than normal, and a region is more moist than normal when SESR is positive. C values in SESR were also computed to determine how SESR changes in time (whether the region is drying or moistening over time). The change in SESR is given by

133
$$\Delta SESR_{ij,p} = SESR_{ij,p} + 1 - SESR_{ij,p}$$
 (3)

where the subscript p indicates the p^{th} pentad. Note t^1 at p SESR should be calculated on the pentad timescale to better capture the trend in hor SESR is changing. It is important to note that for this study, the change in SESR begins on the p-change in SESR begins on the p-change in SESR begins on the p-change in p-change in the p-change in p-change in the p-c

Finally, evaporation demand is dramatically reduced in cold environments such that rapid drought development driven by evaporative stress is limited. As such, this study is restricted to the agricultural growing season (April – October) to focus on the favored season for flash drought and imilar to previous studies (Hunt et al. 2014; Otkin et al. 2014; Chen et al. 2019; Christian et al. 2019b; Noguera et al. 2020; Christian et al. 2021), with the domain set as the contiguous United States (CONUS).

148	2.3.	Criteria A	Analysis

- The method developed by Christian et al. (2019b) to identify flash drought using SLCR is based on four specific criteria, which are used to identify rapid drying and drought covidious separately. They are:
- 152 1) The flash drought must be at least 30 days in length.
- 153 2) At the end of the flash drought, SESR must be at or below the 20th percentile for that grid point and pentad.
- a) During the flash drought, ΔSESR must be at or c.ow the 40th percentile for that grid point
 and pentad.
- b) No more than one exception is allow 1 for riterion 3a during the flash drought.
- The mean change in ΔSESR during the whore flash drought must be at or below the 25th
 percentile for that grid point and range of pentads.
- For this study, each criterian was determined for each pentad in the dataset. To accomplish 160 161 this, each day was treated as an "end date" for the flash drought. For the criteria analysis, a binary value of 1, we, the criterion was satisfied for that pentad and grid point) or 0 (the 162 criterion was ot sat, fied for that pentad and grid point) was given to each grid point and for 163 164 each pen ad, in strated in Figure 1 and is described in more detail in the following sections. Each 165 crite nor was extermined for every pentad in the NARR dataset in order to examine SESR's 166 Presentation of rapid intensification and drought independently. An example of how these 67 criteria identify flash drought is illustrated in Figure 2. A benefit of using the binary values is

that the areal coverage of each component can be easily calculated by summing over all the gric' points in a domain (at any time scale desired, such as pentad, weekly, monthly, or yearly), multiplying by the areal coverage of each grid point (32 km × 32 km for the NARR grid)

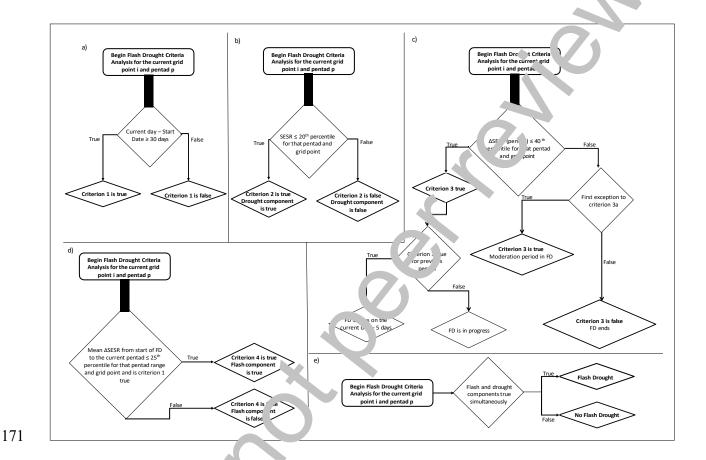


Figure 1. Flow chart of flash drought detection. Flow chart showing the algorithm used for this study and how it ca cun ted a) Criterion 1, b) Criterion 2 and the drought component, c) Criterion 3, d) Criterion 4 and the rapid intensification component, and e) flash drought. FD in the flow chart stand for Nash drought.

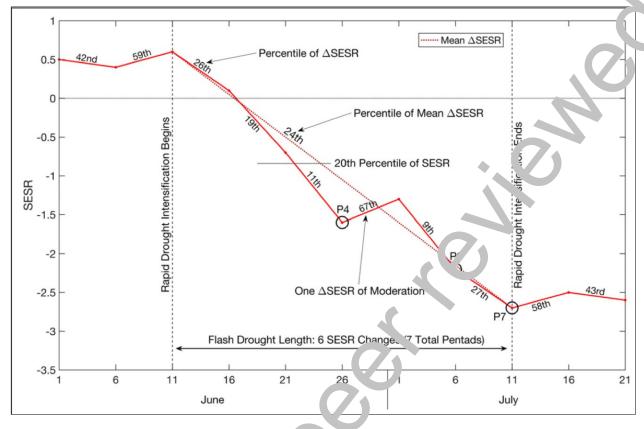


Figure 2. Flash drought detection example. It time series schematic illustrating the four criteria used in the flash drought identification method. [2] gure and caption from Figure 2 in Christian et al. 2019.]

2.4. Rapid Intensification Component

To start, crit rion. 1 is used to prevent the overall flash drought algorithm from identifying short-terr range spells" as flash droughts. The algorithm checks whether the difference between the carrent argument argument and the start of the flash drought is greater than 30 days (6 pentads). This means that criterion 1 is only true whenever rapid drying has almost continuously occurred,

with a moderation period allowed, for at least 30 days. Note this also means that the algorithm identifies the near continuous rapid drying at the end of a specific drying period. For example, in Figure 2, where the flash drought identified was 30 days in length (from June 11 to July 11), and algorithm would only identify criterion 1 as true on July 11 and later if the rapid in a structure continued.

Physically, criterion 3 checks for rapid drying over a grid point. For Condardized change variable, the 50th percentile is approximately 0 and it represents no change in conditions for a given location and pentad. As such, requiring that ΔSF in the above or below the 40th percentile means this criterion is checking whether SESR is the reading between two pentads. Even so, criterion 3 allows an exception in the event moder, the of evaporative stress occurs during the flash drought development. For example, if a tight precipitation event occurs over a grid point experiencing flash drought, the precipitation could slow how quickly SESR decreases (or even make it increase), but not enough to precent the flash drought from occurring over longer time periods. Further, because the criter on identifies rapid drying from pentad to pentad, it can be used to determine when the flash drought begins and ends. This can be seen in the example shown in Figure 2.

ع08

Fir ..., cr. rion 4 is the last criteria designed to examine whether rapid drying is occurring over a ...d point. Specifically, this criterion checks the overall drying between the start and end of the rapid drying period and determines if it was large enough to be considered a rapid

ASESR (dashed red line) is below the 25th percentile. Note that this criterion infers the magnitude of the drying at the end of the rapid intensification by checking the magnitude of decreasing SESR. Additionally, the algorithm requires criterion 1 to be true for crite. A to be true, to ensure that only means over 6 pentads or more (the full rapid intensific tion reriod) are considered. This also dictates that criterion 4 depends on criteria 1 and 3 (b. tho. which measure rapid drying components). Further, because criterion 4 also has its corneletermination for rapid intensification, it represents all the parts of rapid intensification. As such, the rapid intensification component of flash drought can be directly identified using criterion 4 (that is, rapid intensification is said to occur when criterion 4 is at the contraction of the said to occur when criterion 4 is at the contraction of the said to occur when criterion 4 is at the contraction of the said to occur when criterion 4 is at the contraction of the said to occur when criterion 4 is at the contraction of the said to occur when criterion 4 is at the contraction of the said to occur when criterion 4 is at the contraction of the said to occur when criterion 4 is at the contraction of the said to occur when criterion 4 is at the contraction of the said to occur when criterion 4 is at the contraction of the said to occur when criterion 4 is at the contraction of the said to occur when criterion 4 is at the contraction of the said to occur when criterion 4 is at the contraction of the criterion of the cri

2.5. The Drought Component

Criterion 2 is the simplest criterion to a termine and interpret. For flash drought to occur, the variable being used to identify a must be below the 20th percentile for that region and pentad to be considered in drought (Svobala et al. 2002; Otkin et al. 2018). In addition, a critical aspect of this study was to more explicitly determine how well SESR represents drought in general, both in spatial coverage and intensity. Drought was identified and classified using SESR percentiles and the classified and provided by the USDM (Table 1). In addition, the spatial coverage of drought, or the drought component, is represented by criterion 2. Because this study focuses on the first percentile and analyzed for every pentad in the NARR dataset.

Drought	Percentile	
Category	Range	
No Drought	21 – 100	
Category 1	11 – 20	
Category 2	6 – 10	
Category 3	3 – 5	
Category 4	< 2	

Table 1. Percentiles used to determine drought categorie, with SESR. Percentiles are based on those used in the U.S. Drought Monitor (Svobody et al. 2002).

24.

2.6. Statistical Analysis

Statistical analyses of the rap d in instification and flash droughts were desired to determine where regions of rapid intensification occur, but may not fall into drought and how often this occurs. To this end a partial ency table and threat scores were used. For the contingency table, only two scenaries are considered. One is the frequency of rapid intensification events without flash drought and the other is the frequency of rapid intensification with flash drought, both relative to the total number of rapid intensification events. The other two scenarios have trivial results as the flash drought is not identified when there is no rapid intensification by definition. The other two scenarios have trivial that fall into drought relative to the total number of rapid intensification events. To test the

robustness of the results, composite mean difference and correlation coefficient analyses were also performed and found similar results (not shown).

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

244

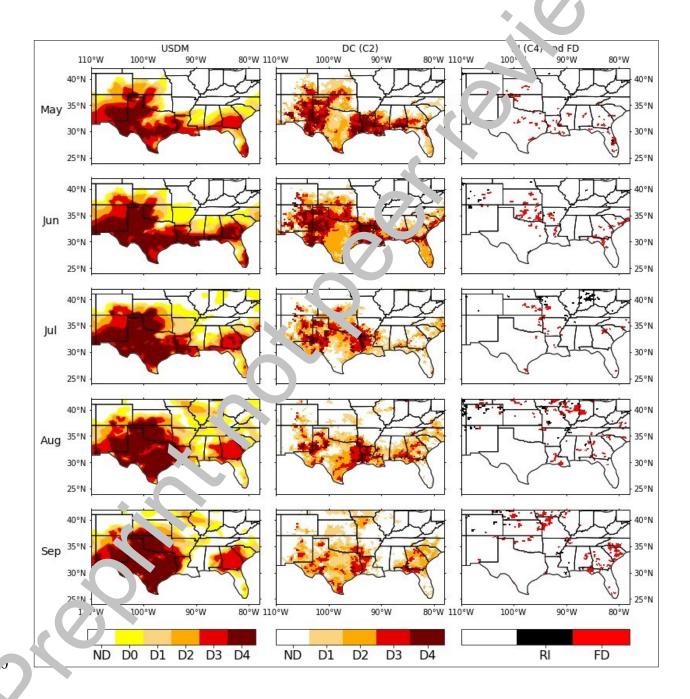
245

A contingency table was also used to compare the SESR drought component a. d. JS.) M to examine how often SESR may identify a false positive or a false negative is lative to the USDM. In addition, composite mean difference and correlation analyses were also used to compare the SESR drought component with the USDM. For these analyses, the polarities of SESR were averaged to the same weekly timescale as the USDM data, and the drought intensity was obtained from Table 1. Because the composite differer with SESR drought component minus the USDM, positive values indicate that SESR predicted intermediate more intense drought than the USDM, more frequent drought than the USDM of it redicted false positives (SESR identified drought where there the USDM did not). Convers ly, if the composite mean is negative, then SESR either underpredicted the strengt. of the drought, the frequency of the drought, or SESR failed to predict drought where it hould have (misses). In order to determine which of these possibilities is true, these stat stical comparisons were made for both drought intensity and coverage. For examply higher magnitudes in the composite difference for drought intensity comparisons while nave a smaller magnitude for the drought coverage would suggest that SESR is identifying the the drought is but is underestimating or overestimating the intensity of the drought decide on the sign of the composite difference.

263

3. Results

3.1. Case Studies


To examine the performance of the algorithm with respect to rapid intensification and to compare the drought component with the USDM for specific flash drought events, several known cases were analyzed. U.S. flash droughts from 2011 and 2012 were chosen ecause they are well-studied events (e.g., for 2011 see Otkin et al. 2013, Ford et al. 2015, McL. by et al. 2016, Vicente-Serrano et al. 2018, and Osman et al. 2021; for 2012 see Alvin et al. 2016, McEvoy et al. 2016, Basara et al. 2019, and Osman et al. 2021).

.85

3.1.1. 2011: Southern United States

During 2011, widespread and severe drought rapid to read across much of the southern U.S. during the growing season, with the largest in the source of focused on Texas and Oklahoma (Otkin et al. 2013; Ford et al. 2015; McEvoy et al. 2016; Vicente-Serrano et al. 2018). With respect to rapid intensification during 2011, SESR identified areas of flash drought in parts of Texas and Oklahoma during May of 2011 that intensification during June and propagated to the northeast as time prog. Seed into August and September (Fig. 3). The identification of rapid intensification in contral Oklahoma and north central Texas agrees with other studies using other datasets (Otkin et al. 2013; Ford et al. 2015; McEvoy et al. 2016). The timing of flash drought identified in a lay with additional intensification events in June also agreed with results of previous studies (McEvoy et al. 2016). Thus, SESR successfully identified rapidly drying conditions in central Oklahoma and north central Texas during April into May. Little intensification occurred during May and early June in eastern Oklahoma and Arkansas due to

some moderating precipitation events, but the dry conditions expanded in June and July and propagated north and east in the following months into the Corn Belt area, agreeing with the results of Flanagan et al. (2017).

291 Figure 3. Case study for the growing season of 2011 (excluding March, April, and October). (lef.) 292 Drought identified by the USDM for the last week of the month, (center) monthly-av 102 d 293 drought component (coverage intensity), anu (right) and Black/red color indicates SESR rapid intensification 294 (RI) and flash drought (FD). 295 component/flash drought was newly identified for at least 1 pentad in that mon \(\infty ZX\) refers to the 296 criterion used to identify the flash drought component.

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

12

Figures 4 and 5 show the correlation and composite mean d'fference between the drought component and USDM. Overall, SESR was well corretate with the drought identified by the USDM, with the correlation being statistically significant in most places except Texas. Additionally, some disagreement existed across García, Texas, and locations further west into New Mexico and Arizona, whereby the intencity of the drought was underestimated (Fig. 5). That is, the composite difference for an ight intensity is more negative than if just coverage is considered, implying SESR under stime ed the intensity of the drought. The composite difference for spatial coverage of a ught in Figure 5 is negative for the Southern Plains and Georgia. Thus, SESR Yentified drought less frequently than the USDM. That is, there were weeks where SESP ma, not have identified drought whereas the USDM did identify drought for most weeks, there vyielding the net negative difference in the spatial coverage comparison. This is prossed on Figure 1 to moderating influences (such as precipitation). However, based on Figure 3, SFCP wa to capture the spatial coverage of drought, agreeing with previous studies on Fi's bil' y to represent drought (e.g., Otkin et al. 2013, McEvoy et al. 2016, and Vicente-Serrano et al. 2018).

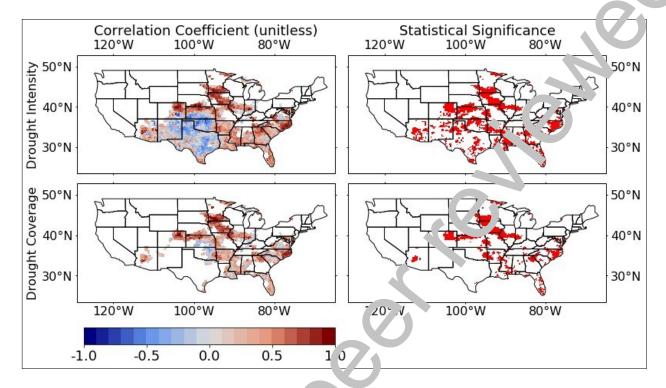


Figure 4. Correlation coefficient of the SESR drought component with the USDM using weekly data for April – October of 2011. (left) Correlation coefficient between the SESR drought component and USDM, and (right) up 95% statistical significance, calculated using the Monte-Carlo method with N = 5000. (tished) comparisons are for (top) drought coverage and intensity and (bottom) only drought coverage.

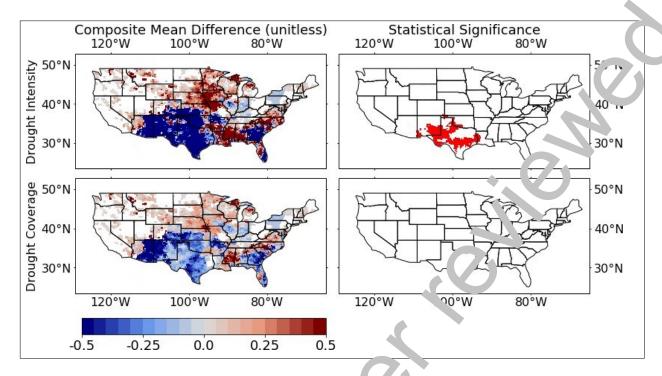


Figure 5. Composite mean difference between the SES? dro ght component and the USDM using weekly data for April – October of 2011. (left) $^{\circ}$ mr site mean difference between the SESR drought component and the USDM, and (r' ht) the 95% statistical significance, calculated using the Monte-Carlo method with $N=5^{\circ}$ 0. Statistical comparisons are for (top) drought coverage and intensity and (bottom) only drought coverage.

Overall, SESR depicted drought spreading through most of west Texas and Louisiana in May, with expansion cross most of the Deep South during June and July. Additionally, SESR identified exceptional drought for west Texas and Louisiana, but not to the extent identified by the USD. This would explain the low correlation, as the USDM had exceptional drought (D4) for the story Texas and the Deep South, and D3 in Georgia. Thus, SESR did not identify some of the more extreme areas of drought during 2011 relative to the USDM. However, the spatial coverage of the drought that SESR identified is very similar to the drought coverage in other

studies (Otkin et al. 2013; Kim and Rhee 2016; McEvoy et al. 2016; Vicente-Serrano et al. 2018). Thus, SESR was able to identify the spatial coverage of the drought. It also identifie a regions where the drought was most intense (though not necessarily the scale of the intentity).

3.1.2. 2012: Central and Midwestern United States

During 2012, a large and severe drought event spread across the Central U.S. with large impacts on the Corn Belt and upper Mississippi River (Otkin et al. 2016; 1 and et al. 2015; McEvoy et al. 2016; Basara et al. 2019). Rapid drought intensification be an in May across central Kansas and northern Missouri and steadily spread into Nebraska i Unne and to the rest of the Corn Belt in July (Fig. 6). These results are in agreement with Brain et al. (2019), McEvoy et al. (2016), and Otkin et al. (2016). More specifically, the algorithmy yielded the individual regions that experienced rapid intensification found in Basara et al. (2019), such as north central Kansas in May, north central Oklahoma in June, orth central Missouri in May, central Nebraska in June, and southeast Minnesota in Argust. Educationally, the algorithm identified rapid intensification in some regions not previously documents. Such as connection with the 2012 drought such as southern Texas, and isolated parts of the Deep South.

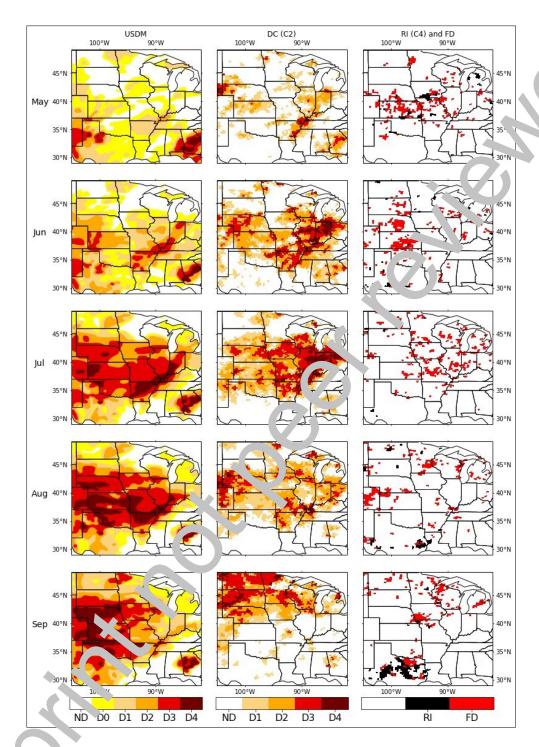


Figure 6. Ca e study for the growing season of 2012 (excluding March, April, and October). (lef \ \Gamma \ rot ght identified by the USDM for the last week of the month, (center) monthly-averaged divight component (coverage and intensity), and (right) monthly coverage of rapid intensification (RI) and flash drought (FD). Black/red color indicates SESR rapid intensification component/flash

drought was newly identified for at least 1 pentad in that month. CX refers to the criterion used o identify the flash drought component.

Similar to the 2011 case, SESR was correlated to the drought identified by the *V.S.* M, with that correlation generally being statistically significant. But it underestimated where the arought was most intense (Fig. 7). In particular, it tended to underestimate persistent of the drought slightly or failed to identify drought altogether (Fig. 8). This is more promiter two st of the Rocky Mountains (with some of the reason discussed in Sec. 4). But the conthly average (Fig. 6) tends to agree relatively well with the drought coverage for 2012, agreeing with Otkin et al. 2014 and McEvoy et al. 2016. Therefore, SESR had more trouble appring the persistence of the drought from week to week rather than the spatial coverage for as of the Rocky Mountains. In addition, SESR underestimated the severity of the drought in most locations, particularly where the drought was most severe.

Examining Fig. 6, minimal dro. 7ht coverage occurred during May, except for along the upper Mississippi delta, follown 7 the above normal precipitation at the start of the growing season (Basara et al. 2019). However, as time proceeded, the drought worsened and spread eastward into the upper Mississippi River region and lower Ohio River Valley in June, intensified in these regions, 7nd sp ead into western Iowa and the Corn Belt region during July and August. Again, SES R 1 and ed to identify D2 and occasionally D3 drought with some D4 drought in Indiana and so rounding states, whereas the USDM identified widespread D3 and D4 drought for this event. In addition, SESR indicated that the drought spread northwestward into the Dakotas much faster

than was indicated by the USDM. Hence, while SESR may not identify the severity of the drought, it continued to capture the spatial extent and regions experiencing significant drov sure effectively.

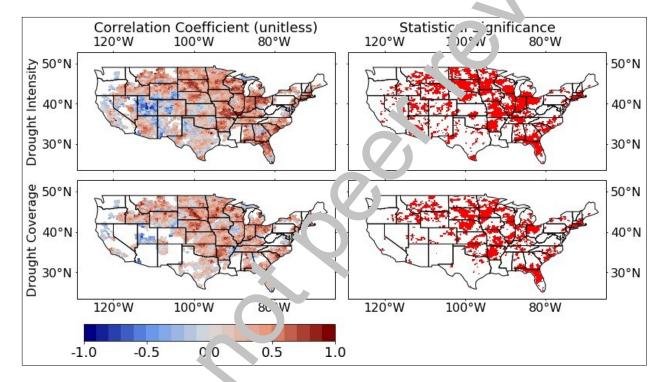


Figure 7. Correlatio. coefficient of the SESR drought component with the USDM using weekly data for April – (ctour of 2012. (left) Correlation coefficient between the SESR drought component ar 2020M, and (right) the 95% statistical significance, calculated using the Monte-Carlo method with N = 5000. Statistical comparisons are for (top) drought coverage and intensity and (1240m, only drought coverage.

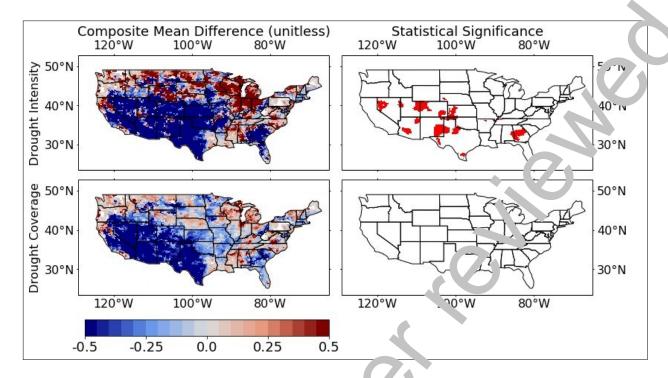


Figure 8. Composite mean difference between the SES? dro .ght component and the USDM using weekly data for April – October of 2012. (left) Tomposite mean difference between the SESR drought component and the USDM, and (i. ht) the 95% statistical significance, calculated using the Monte-Carlo method with N=5% 0. Statistical comparisons are for (top) drought coverage and intensity and (bottom) only drought coverage.

3.2. Climatology

3.2.1. SESR Papi Intens. Secation

The first part of the climatological analysis focused on rapid intensification. The rapid intensification and flash drought climatologies are displayed in Figure 9. Given that the flash drought of matology was based on the method of Christian et al. (2019b), the analysis was consistent in identifying hotspots in the Great Plains, the Yazoo Delta, the Coastal Plains, and various areas along the East Coast. The hotspots are located around various precipitation

gradients and/or agricultural regions, in agreement with previous studies (Chen et al. 2019; Christianet al. 2019b, Otkin et al. 2021). The rapid intensification analysis displays similar hotspots with an increased annual frequency of about 10% - 20%. However, an additional expansive hotspot in the rapid intensification was located across the Desert Southward and into central Nevada. Further, other areas in the Intermountain West, including Central value and Great Salt Lake and surrounding areas yielded a higher frequency of rapid antenal fication not highlighted in the flash drought climatology. Overall, regions of rapidates is only one component of flash drought development. However, east of the Rocky Mountains rapid intensification is more closely linked to flash drought development while ast of the Rocky Mountains and in the desert Southwest there are frequent rapid intensification. This (more frequently than east of the Rocky Mountains) but with few events reaching a surfat status and achieving flash drought development (see Sec. 4 for the reason).

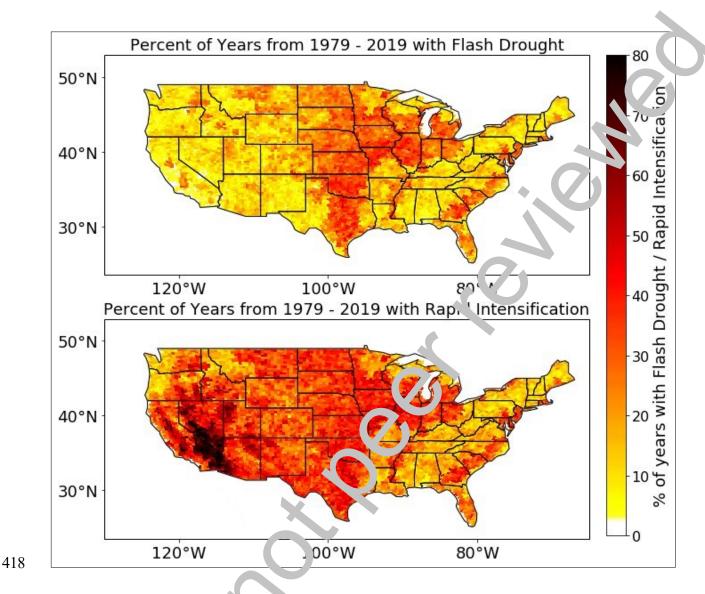
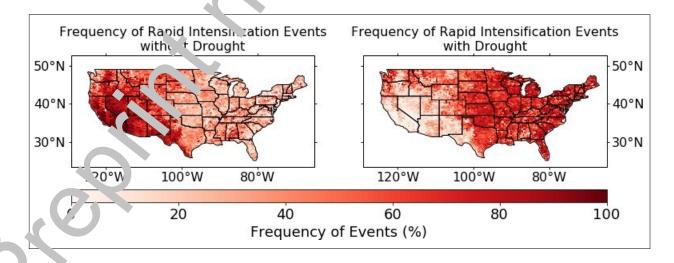


Figure 9. Climatological average (from 1979 – 2019) of flash drought (top) and the rapid intensification component (5 ttom).

420

421


To examine a eas with rapid intensification but no drought, a contingency table analysis was

per price to examine the frequency of rapid intensification events that both do and do not fall

into drought (Fig. 10). The analysis confirms that most of the rapid intensification events east of

the Rocky Mountains correspond with drought. However, west of the Rocky Mountains and the

more arid regions of western Texas experience more rapid intensification events without going into drought. This result is also displayed in Fig. 11, where the difference in areal coverage 101 rapid intensification and flash drought decreases when only the area "east" of the Rocky Mountains is considered (i.e., east of 105°W). Figure 11 indicates that for location, as of the Rockies, the temporal peak in flash drought and rapid intensification ever's oc urs in July and August which agrees with the seasonality of flash drought noted by Chen e. al. (2019), Christian et al. (2019b), Noguera et al. (2020), and Otkin et al. (2021). Finally in climatologically averaged threat score (Fig. 12) was also higher, by about 0.1 on verage for just the eastern U.S. when compared to CONUS. The eastern U.S. threat score 2130 showed a maximum in the summer season, occurring with the seasonally favored in to. flash droughts. In addition, correlation coefficient and composite mean difference a. 1, ses were performed on the rapid intensification and flash drought events and show (id ntical results (not shown). Thus, these results show that rapid intensification plays Lepr minent role in determining flash drought development east of the Rockies, where s the drought component plays a more prominent role west of the Rockies.

426

427

428

429

430

431

432

433

434

435

436

437

438

439

	Drought		
		Yes	No
≅	Yes		
	No		

		Drought	
		Yes	No
~	Yes		
	No		

Figure 10. Frequency of rapid intensification and flash drought events. Frequency of rapid intensification events that (left) do not fall into drought and (right) do fall into drought, relative to the total number of rapid intensification events. The frequencies we excludated for the growing season of the 1979 – 2019 period. The contingency table 'elow shows the frequency to the corresponding map above it.

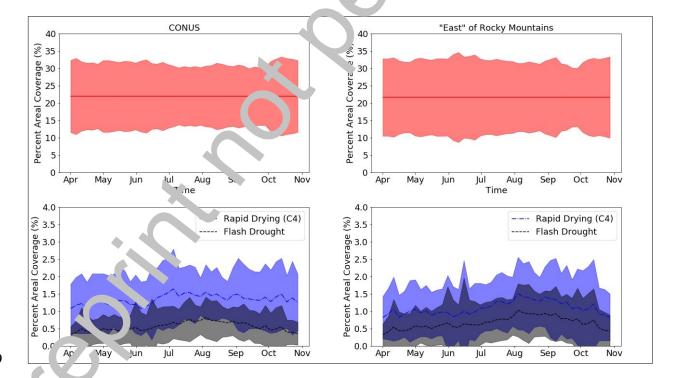


Figure 11. Average time series of flash drought components. The annual average percentage of areal coverage for drought (top, red line), rapid intensification (bottom panel, blue line) and flash drought (bottom panel, black line) spanning 1979 – 2019 in time for the whole dom, in (U.S.; left) and across the domain east of -105°E to exclude the Intermountain Wes. (rig. t). Shaded areas denote 1 standard deviation variability.

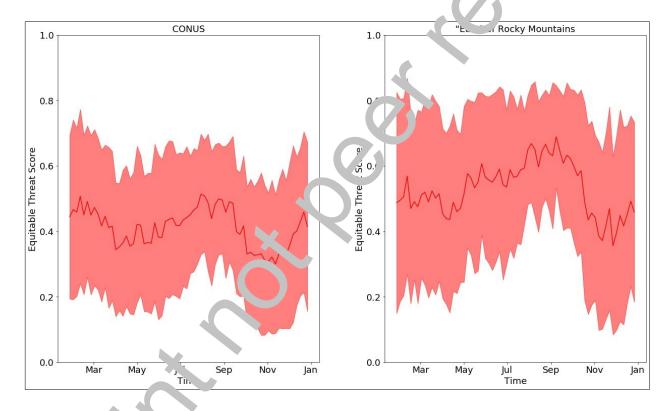


Figure 12. Av rage threat score of the rapid intensification events for (left) CONUS and (right) east of -1 15 L for each pentad for all years. The threat score gives the average rapid inter atter events that fall into drought across the given domain. Shaded area denotes the 1 s and a. Leviation variability.

4ر

3.2.2. SESR Drought Component

The second part of the climatological analysis focuses on the overall performance of the S 'S'. drought component. The climatology of the drought component was found to be about \$2.20%) everywhere, by the definition of criterion 2. The results of the comparisons between the USDM and drought component for all years (2010 – 2019) is shown in Figure 13. The comparisons were performed on the same weekly timescale as the USDM dataset. Across the state of the composite mean difference between the USDM and drought component (Fig. 3) all strates that SESR has difficulty identifying drought within the region, often failing to the strip drought when one occurs (bottom panels). This could be due to the fact that the USE 1 is focused on a more long-term drought (i.e., different type of drought) as compared the SES. (see Sec. 4). Further, when it does identify drought in the Intermountain West, it tends to inderestimate the intensity of the drought (hence the stronger mean difference in the top parallel). Conversely, in the Ohio River Valley SESR tends to overestimate the intensity of drought. In contrast to this, the composite difference is small and near zero (no difference of the Deep South.

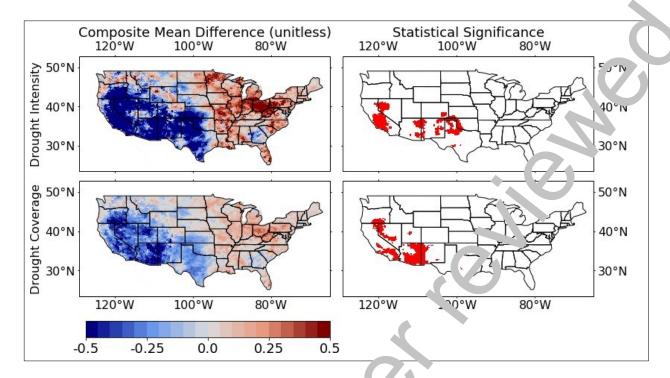
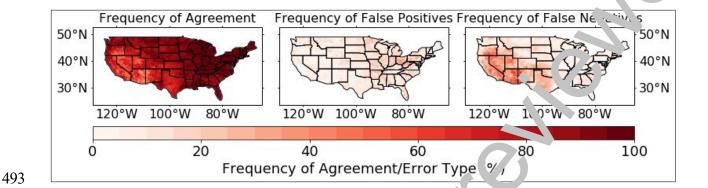



Figure 13. Composite mean difference betwee St SR drought component and USDM for the 2010 – 2019 growing seasons. Composite me n difference (left) between the SESR drought component and USDM and statistical signing ance (right) for the corresponding composite difference for coverage and intensity (top). Indicate the difference (bottom) for April – October of 2010 – 2019.

To quantify the spinition, rency of drought identification between SESR and the USDM a contingency table analysis was performed for each pentad and grid point. The results display the frequency of conrect drought identification by SESR when compared to the USDM (Fig. 14; left panel). A ritical result of the analysis is the notable agreement between the USDM and SESR that was sently occurred across the majority of the U.S., particularly east of the Mississippi Riv rand Pacific Northwest. Further, weaker to neutral agreement occurred in the semi-arid

Great Plains (namely the Southern Great Plains), portions of Georgia, and the Intermountain West with frequent disagreement in the arid Desert Southwest.

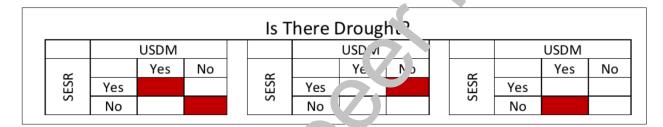


Figure 14. SESR drought component and USL M contingency table analysis for the 2010 – 2019 growing seasons. Spatial distriction of averaged agreement of drought (SESR drought component and USDM both its difficular did not identify drought at the same time; left), false positive error (center), and false negative error (right). The figure was determined by calculating the mean in the corresponding contingency table below the map for each grid point. The mean was performed across each week in April – October during 2010 – 2019 period.

Figur 14 p. vides the frequency of false positive and false negative errors respectively. When comp are with the results of the composite mean difference (Fig. 13), SESR more frequently arrived at a false negative (or a "miss") whereby it failed to identify drought when needed in the

semi-arid to arid regions and portions of Georgia. This could explain the negative composite difference found in the Southern Great Plains and around the more arid regions. However, nor false positives (or "false alarms") were identified by SESR east of the Mississippi River entered around the Great Lakes region and the Ohio River Valley. An additional possibility is that SESR becomes a good indicator of drought in regions where there is moderate to high trans iration from the vegetation, so that the ET and PET become a more accurate measure of vegetative stress. This would also explain the high negative composite difference in the intermountain West and Southern Plains, where the vegetation retains moisture in the arm irronments, but works well in the Northern Plains and Pacific Northwest, where the agricultural crops and temperate vegetation transpire at a moderate rate. However, this does not explain the poor performance in Georgia and the Ohio River Valley, and additional masse. I needs to be done to determine the reason for this.

26ر

4. Discussion

SESR was able to successful, capture the rapid intensification component shown in previous case studies (e.g., Otk), et al. (2013) and McEvoy et al. (2016) in 2011 and Basara et al. (2019) in 2012). Climato' gically the rapid intensification component occurs commonly in agriculturally from, ated land areas east of the Rocky Mountains, but also frequently occurs west of the Rocky Mountains, especially in the Desert Southwest (Fig. 9). While rapid intensification ever 3 that a not reach drought status do occur in the eastern half of the United States, they are a not reach drought status do occur in the Rocky Mountains, rapid intensification events occur often but few flash droughts events are identified. This suggests that the critical factor in this

region is the drought component. There may be several reasons for this dichotomy. For example, in the western United States the rapid intensification events may be due to the climatologic at onset or termination of the seasonal monsoon conditions in that region. As such, precipit, 'ion as often followed by rapid drying due to the arid nature of the region, but it would not recessarily enter drought (in Fig. 11, the peak in rapid intensification occurs in July when he and remountain West is included which is shortly after or during monsoon season whereas the peak occurs in August and September east of the Rockies). It is also feasible that drought depiction by SESR may be limited in the Intermountain West due to the inherent aris nature of the region, emphasis on ET, and the role of winter precipitation instead of summer precipitation (Otkin et al. 2014) at higher elevations, which could lead to the frequent misure in a rught identification. Finally, it is also possible this might be a reanalysis and resolution to the complex topography of the region. Overall, there are several potential reasons who a high frequency of rapid intensification events west of the Rocky Mountains exist with him ited drought occurrence, and future work is needed to determine the physical mean visms.

With regards to the divight component, SESR has the potential to identify drought as an individual metric. It successfully represented the spatial extent of drought events and identified areas where the diviging is most extreme. For example, SESR was able to accurately depict the spatial extent of the 2011 drought found in Vicente-Serrano et al. (2018) and Kim et al. (2019). However, STSR was found to underestimate drought severity and its persistence. That is, SESR if any assensitive to moderating events (precipitation, cooler temperatures, etc.) and no longer identifies drought after such events even when impacts are still present. This effect with a noisy

precipitation and temperature record has also been noted in Osman et al. (2021). It should be noted here that there is some level of subjectivity in the USDM (Leasor et al. 2020) and the current USDM uses multiple indices for a convergence of evidence across multiple time scales to identify drought (McEvoy et al. 2016), whereas SESR identifies rapidly changing cought across a pentad timescale. That is, the USDM represents agricultural and hydrologic cough whereas SESR represents more meteorological and agricultural drought. Thus, areas that experienced more long-duration droughts (e.g., Georgia and the Intermountain Wood in the past 20 years) will not see as much agreement between SESR and the USDM. But SESR is note to depict rapidly deteriorating conditions.

On a climatological scale, SESR continued to den the attention potential in being able to identify drought, consistently identifying drought in the Pacific Northwest, the Northern and Central Plains, the majority of the Deep South, the Great Lakes Regions, and the Northeast. However, there was not much agreemen between SESR and the USDM across arid and semi-arid regions and in regions of complex topography such as the Intermountain West and portions of the Southern Plains. There was also little agreement in Georgia and the Ohio River Valley. In addition to represer ung different types of drought, a possible explanation is that aridity and, to a lesser degree, tender equivalent powers how well SESR and the USDM agreed. That is, SESR's lowest error (Fig. 14) was in more humid regions, whereas it struggled in more arid regions. Although and the performance of SESR in all locations, (e.g., the low false points) are also drought representation by SESR compared to the USDM. Another

notable result is that SESR performs well in regions that experience moderate to high transpiration (e.g., the Northern Plains and Pacific Northwest). If the vegetation conserves moisture, as conifers and most arid vegetation do, then ET may not be a good measure for vegetation health. This would explain the low false positive and negative errors in the cific Northwest, despite the importance of wintertime precipitation (which was excl. do d for this study), as it has more temperate vegetation that transpires more readily. It vious also explain the low false positive and negative errors in the cultivated Northern Plains.

Lastly, the poor agreement between the USDM and SECT in the Intermountain West could also be related to hydrologic processes in that region. That is, the main precipitation in the Intermountain West is in snowpack during the winter which SESR does not look at. Since SESR does not consider features such as river level, and snowpack, an additional metric would be useful to represent the hydrologic processes that occur in that region of the country. It is suggested that more work be done to investigate the reasons for why SESR succeeds and fails where it does.

1

The difficulty CECP showed in representing more long-term droughts, particularly in arid regions ar CC exceme scenarios, and the fact that the percentiles can only identify D4 drought in one vor out of the dataset given its relatively short period of record, suggests that it should have help from another index, variable, or dataset to help accurately represent drought. Because ET incorporates soil moisture, vegetation conditions, and general moisture conditions (Chen et al.

1996), and PET incorporates temperature and soil fluxes (Mahrt and Ek 1984), the variable most indirectly represented by SESR is precipitation. Thus, a precipitation index such as SPI works a recommended to help identify drought.

5. Conclusion

This study utilized the method of flash drought identification developed by Christian et al. (2019b) and separated flash drought into (1) rapid intensification and (2) drought components. These components were examined separately to investigate their contribution to flash drought development for several different cases. Analysis of the drought component was completed by comparing the SESR results to the USDM from 2010 to 2019, and the rapid intensification component was compared to the results of projects and (2) drought component intensification.

61_

This study provided key insights into mechanisms that contribute towards flash drought development. It was determined that rapid intensification component plays a prominent role in flash drought development east of the Rocky Mountains, whereas the drought component plays a more prominent role mest of the Rocky Mountains. Therefore, attempts to identify flash drought in real time, or predict them must be able to capture rapidly developing drought conditions. In addition, SES of showed strong potential in being able to identify rapidly changing and short-term drought. This is recommended to investigate how the results of this method changes with different clin at log call periods (e.g., of use 10, 20, or 30 year averages instead of the 41-year average us. In this study) to quantify how the results may vary under a changing climate. It is also recommended to investigate SESR's ability to identify drought in union with a precipitation

index, such as SPI, to determine how effectively precipitation can accommodate for SESR's deficiencies in more long-term drought representation. Overall, this analysis was able to se and e flash drought into components and provide a means to quantify rapid intensification and 'rought using SESR, providing a new way to examine flash drought events.

618

619

620

621

622

623

624

625

626

614

615

616

617

Acknowledgements

This work was supported, in part, by the NOAA Climate Program Canc's Sectoral Applications Research Program (SARP) grant (NA130AR4310122), the Agri-ulture and Food Research Initiative Competitive grant (2012-02355) from the USDA National Institute of Food and Agriculture, the USDA National Institute of Food and Agricultural (NIFA) grant (2016-6800224967), the NASA Water Resources Program, range 80NSSC19K1266), the National Science Foundation grant (grants OIA-19209 1 and C1A-1946093), and the USDA Southern Great Plains Climate Hub.

627

628

References

629

630	Anderson, M.C., Hain, C., Otkin, J., Zhan, X., Mo, K., Svoboda, M., Wardlow, B., Pims'en. A.
631	2013. An intercomparison of drought indicators based on thermal remote sensing and
632	NLDAS-2 simulations with U.S. Drought Monitor classifications. Journal e
633	Hydrometeorology 14, 1035–1056. URL: http://dx.doi.org/10.1175/Jh. V-D-12-0140.1,
634	doi:10.1175/jhm-d-12-0140.1.
635	Anderson, M.C., Norman, J.M., Mecikalski, J.R., Otkin, J.A., Kusta, W.J., 2007. A
636	climatological study of evapotranspiration and moisture stress across the continental
637	United States based on thermal remote sensing: 1. n. del formulation. Journal of
638	Geophysical Research: Atmospheres 112. UR1
639	http://dx.doi.org/10.1029/2006JD007506 d 1:1 .1029/2006jd007506.
640 641	American Meteorological Society, A. M. S., 1207. Meteorological drought-policy statement. *Bulletin of the American Meteorological Society, 78, 847–849.
642	Basara, J. B., J. I. Christian, F. A. Wakefield, J. A. Otkin, E. H. Hunt, and D. P. Brown, 2019:
643	The evolution, propagat, n, and spread of flash drought in the central United States
644	during 2012 Environmental Research Letters, 14 (8), 084025, doi:10.1088/1748-9326/
645	ab2cc0, *IRL http://dx.doi.org/10.1088/1748-9326/ab2cc0.
646	Bolles, K. C., A. r. Williams, E. R. Cook, B. I. Cook, and D. A. Bishop, 2021: Tree-ring
647	con truction of the atmospheric ridging feature that causes flash drought in the central
648	nited States since 1500. Geophysical Research Letters, 48 (4),
149	doi:10.1029/2020gl091271, URL http://dx.doi.org/10.1029/2020GL091271.

650 Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and 651 comparison with fife observations. Journal of Geophysical Research, 101 (D3), 652 7268. 653 654 Chen, L. G., J. Gottschalck, A. Hartman, D. Miskus, R. Tinker, and A. Artus. 2015. Flash drought characteristics based on U.S. drought monitor. Atmosphered (9), 498, 655 656 doi:10.3390/atmos10090498, URL http://dx.doi.org/10.339('at no: 10090498. 657 Christian, J. I., J. B. Basara, E. D. Hunt, J. A. Otkin, J. C. F. rtado, V. Mishra, X. Xiao, and R. 658 M. Randall 2021: Global distribution, trends, a. u. ver. of flash drought occurrence. Nature Communications, 12, 6330, doi: 10 1038/1467-021-26692-z, URL 659 660 http://dx.doi.org/10.1038/s41467-021-2669 661 Christian, J. I., J. B. Basara, E. D. H. nt, J. A. Ou, n, and X. Xiao, 2020: Flash drought development and cascadin, m., acts associated with the 2010 Russian heatwave. 662 Environmental Resear ... Levels, 15 (9), 094078, doi:10.1088/1748-9326/ab9faf, URL 663 http://dx.doi.org/10.108c/1748-9326/ab9faf. 664 Christian, J. I., J. B Bas ra, J. A. Otkin, and E. D. Hunt, 2019a: Regional characteristics of flash 665 666 drough 3 a ross the United States. Environmental Research Communications, 1 (12), 667 12564, a i:10.1088/2515-7620/ab50ca, URL http://dx.doi.org/10.1088/2515-668 C. ristian, J. I., J. B. Basara, J. A. Otkin, E. D. Hunt, R. A. Wakefield, P. X. Flanagan, and X. Xiao, 2019b: A methodology for flash drought identification: Application of flash

671	drought frequency across the United States. Journal of Hydrometeorology, 20 (5), 833-
672	846, doi:10.1175/jhm-d-18-0198.1, URL http://dx.doi.org/10.1175/JHM-D-18-019°.1.
673	Dai, A., 2011: Characteristics and trends in various forms of the palmer drought seven in text.
674	during 1900–2008. Journal of Geophysical Research, 116 (D12), doi:10 10.79/
675	2010jd015541, URL http://dx.doi.org/10.1029/2010JD015541.
676	Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Korer, C. Gayno, and J. D.
577	Tarpley, 2003: Implementation of Noah land surface mot el actuaces in the National
678	Centers for Environmental Prediction operational massocale eta model. Journal of
579	Geophysical Research: Atmospheres, 108 (D27), \initialia in \initialia 1029/2002jd003296, URL
680	http://dx.doi.org/ 10.1029/2002JD003296.
581	Flanagan, P. X., J. B. Basara, B. G. Illston, and J. A. Otkin, 2017: The effect of the dry line and
682	convective initiation on drought evolutio. over Oklahoma during the 2011 drought.
583	Advances in Meteorology, 2017 1-16, doi:10.1155/2017/8430743, URL http:
584	//dx.doi.org/10.1155/2017/8-300/43.
685	Ford, T. W., D. B. Mc? berts, S. M. Quiring, and R. E. Hall, 2015: On the utility of in situ soil
686	moisture of serv. ions for flash drought early warning in Oklahoma, USA. Geophysical
587	Resear h. otters, 42 (22), 9790–9798, doi:10.1002/2015gl066600, URL
688	http://dx.cpi.org/ 10.1002/2015GL066600.
589	Hei n, L. I., 2002: A review of twentieth-century drought indices used in the United States.
69°	Bulletin of the American Meteorological Society, 83 (8), 1149–1166, doi:10.1175/1520-
<u>, 71</u>	0477-83.8.1149, URL http://dx.doi.org/10.1175/1520-0477-83.8.1149.

692 Hobbins, M. T., A. Wood, D. J. McEvoy, J. L. Huntington, C. Morton, M. Anderson, and C. 693 Hain, 2016: The evaporative demand drought index. Part I: Linking drought evolution variations in evaporative demand. Journal of Hydrometeorology, 17 (6), 1745–1751. 694 doi:10.1175/jhm-d-15-0121.1, URL http://dx.doi.org/10.1175/JHM-D-15-0121 695 Hoell, A., Parker, B.A., Downey, M., Umphlett, N., Jencso, K., Akyuz, F.A., Pec., D., Hadwen, 696 697 T., Fuchs, B., Kluck, D., et al., 2020. Lessons learned from the 2017 ash drought across the U.S. northern Great Plains and Canadian Prairies. Bullet n fit 2 American 698 699 Meteorological Society 101, E2171–E2185. URL: http://a. doi.org/10.1175/BAMS-D-700 19-0272.1, doi:10.1175/bams-d-19-0272.1. Hunt, E. D., F. Femia, C. Werrell, J. I. Christian, J. A. O'xin J. Basara, M. Anderson, T. White, 701 702 C. Hain, R. Randall, and K. McGaughey, 20°1: Agricultural and food security impacts 703 from the 2010 Russia flash drought. Vear. 2r and Climate Extremes, 34, 100383, 704 doi:10.1016/j.wace.2021.100383, URL h 'ps://doi.org/10.1016/j.wace.2021.100383. 705 706 Hunt, E. D., H. E. Birge, C. Longen, M. A. Licht, J. McMechan, W. Baule, and T. Connor, 707 2020: A perspective on hanges across the U.S. corn belt. Environmental Research Letters, 15 (7), 0 \, 001, doi:10.1088/1748-9326/ab9333, URL 708 709 https://doi.o. \(\frac{10.1088}{1748-9326}\) ab 9333. C Hubbard, D. A. Wilhite, T. J. Arkebauer, and A. L. Dutcher, 2009: The 710 Hunt, E. P., 711 dev. ment and evaluation of a soil moisture index. *International Journal of* 712 C' matology, 29 (5), 747–759, doi:10.1002/joc.1749, URL http://dx.doi.org/10.1002/joc.1749.

714 Hunt, E. D., M. Svoboda, B. Wardlow, K. Hubbard, M. Haves, and T. Arkebauer, 2014: 715 Monitoring the effects of rapid onset of drought on non-irrigated maize with agrong and data and climate-based drought indices. Agricultural and Forest Meteorology, 19 716 717 doi:10.1016/j.agrformet.2014.02.001, URL 718 http://dx.doi.org/10.1016/j.agrformet.2014.02.001. 719 Kim, D., W. Lee, S. T. Kim, and J. A. Chun, 2019: Historical drought and season ent over the contiguous united states using the generalized complementary or in siple of 720 evapotranspiration. Water Resources Research, 55 (7), 62 4-6267, 721 doi:10.1029/2019wr024991, URL http://dx.doi.org/0.1029/2019WR024991. 722 Kim, D., and J. Rhee, 2016: A drought index based on a full evapotranspiration from the 723 bouchet hypothesis. Geophysical Research, (et ers, 43 (19), 10,277–10,285, doi:10.1002/ 724 2016gl070302, URL http://dx.doi.org/10.1/02/2016GL070302. 725 726 Leasor, Z. T., S. M. Quiring, and M. L. Svooda, 2020: Utilizing objective drought severity 727 thresholds to improve in uga. Monitoring. Journal of Applied Meteorology and Climatology, 59 (3), 45. 475, doi:10.1175/jamc-d-19-0217.1, URL 728 729 http://dx.doi.org/1\1175/JAMC-D-19-0217.1. Li, J., Z. Wan, A. Wu, C.-Y. Xu, S. Guo, and X. Chen, 2020: Toward monitoring short-term 730 731 dr up 'ts ving a novel daily scale, standardized antecedent precipitation 732 eva, Ganspiration index. Journal of Hydrometeorology, 21 (5), 891–908, dc 1:10.1175/jhm-d-19-0298.1, URL http://dx.doi.org/10.1175/JHM-D-19-0298.1. 733

734 Lisonbee, J., M. Woloszyn, and M. Skumanich, 2021: Making sense of flash drought: 735 definitions, indicators, and where we go from here. Journal of Applied and Service 736 Climatology, 2021 (1), 1–19, doi:10.46275/joasc.2021.02.001, URL 737 http://dx.doi.org/10.46275/JOASC.2021.02.001. Liu, Y., Y. Zhu, L. Ren, J. Otkin, E. D. Hunt, X. Yang, F. Yuan, and S. Jian, 202 738 different methods for flash drought identification: Comparison of the strengths and 739 limitations. Journal of Hydrometeorology, 21 (4), 691–704, dc..1(1175/jhm-d-19-740 0088.1, URL http://dx.doi.org/10.1175/JHM-D-19-0088.1. 741 742 Liu, Y., Zhu, Y., Zhang, L., Ren, L., Yuan, F., Yang, Y., Yang, S., 2020b. Flash droughts characterization over China: From a perspective of the rapid intensification rate. Science 743 of The Total Environment 704, 135373 U. 744 745 https://doi.org/10.1016%2Fj.scitotenv. 2019 135373, doi:10.1016/j.scitotenv.2019.15.273. 746 747 Mahrt, L., and M. Ek, 1984: The include of atmospheric stability on potential evaporation. 748 Journal of Climate and Applied Meteorology, 23 (2), 222–234, doi:10.1175/1520-0450(1984)023<u.``??:tioaso>2.0.co;2, URL http://dx.doi.org/10.1175/1520-749 750 0450(1984), 3<0222:TIOASO>2.0.CO;2. McEvoy, ... J. L. Huntington, M. T. Hobbins, A. Wood, C. Morton, M. Anderson, and C. 751 752 Han. 2016: The evaporative demand drought index. Part II: CONUS-wide assessment 753 ac ainst common drought indicators. Journal of Hydrometeorology, 17 (6), 1763–1779, doi:10.1175/jhm-d-15-0122.1, URL http://dx.doi.org/10.1175/JHM-D-15-0122.1.

McKee, T. B., N. J. Doesken, and J. Kleist, 1995: Drought monitoring with multiple time scales 755 756 Proceedings of the 9th Conference on Applied Climatology. 757 McKee, T. B., N. J. Doesken, J. Kleist, and Coauthors, 1993: The relationship of drough 758 frequency and duration to time scales. Proceedings of the 8th Conference. Appned 759 Climatology, Boston, Vol. 17, 179–183. 760 Mesinger, F., and Coauthors, 2006: North American Regional Reancines. Bulletin of the American Meteorological Society, 87 (3), 343–360, doi:10.1175 Jams-87-3-343, URL 761 762 http://dx.doi.org/10.1175/BAMS-87-3-343. National Centers for Environmental Information, 201: Fill on-dollar weather and climate 763 764 disasters: Overview. URL https://www.nc.dc_10&1.gov/billions/. Nguyen, H., Wheeler, M.C., Hendon, H.H., Lim. J.P., Otkin, J.A., 2021. The 2019 flash 765 droughts in subtropical eastern, ustralia and their association with large-scale climate 766 drivers. Weather and Clin. the Ex remes 32, 100321. URL: 767 http://dx.doi.org/10.1/16/j.vace.2021.100321, doi:10.1016/j.wace.2021.100321. 768 769 Nguyen, H., Wheeler, V.C., Otkin, J.A., Cowan, T., Frost, A., Stone, R., 2019. Using the 770 evaporative stre. index to monitor flash drought in Australia. Environmental Research 771 Letters 14, 964, 16. URL: http://dx.doi.org/10.1088/1748-9326/ab2103, 772 dc...\ 10.8/1748-9326/ab2103. 773 Not ue 1, 1, F. Domínguez-Castro, and S. M. Vicente-Serrano, 2020: Characteristics and trends of flash droughts in Spain, 1961–2018. Annals of the New York Academy of Sciences, 1472 (1), 155–172, doi:10.1111/nyas.14365, URL http://dx.doi.org/10.1111/nyas.14365. 776 Osman, M., B. F. Zaitchik, H. S. Badr, J. I. Christian, T. Tadesse, J. A. Otkin, and M. C. 777 Anderson, 2021: Flash drought onset over the contiguous United States: sensitivity A 778 inventories and trends to quantitative definitions, Hydrology and Earth System Sciences 25, 565–581, doi:10.5194/hess-25-565-2021, https://doi.org/10.5194/hess-25-565-2021. 779 Otkin, J. A., M. C. Anderson, C. Hain, I. E. Mladenova, J. B. Basara, and M. Svo. Ja, 2013: 780 781 Examining rapid onset drought development using the thermal in Care 1—based evaporative stress index. Journal of Hydrometeorology, 14 4) 10 7–1074, 782 doi:10.1175/jhm-d-12-0144. 1, URL http://dx.doi.org/10.1175/JHM-D-12-0144.1. 783 784 Otkin, J. A., M. C. Anderson, C. Hain, and M. Svobod, 2914. Examining the relationship between drought development and rapid change. The evaporative stress index. Journal 785 of Hydrometeorology, 15 (3), 938–956. do. 10/175/jhm-d-13-0110.1, URL http://dx.doi. 786 org/10.1175/JHM-D-13-0110.1 787 788 Otkin, J.A., Anderson, M.C., Hain C., Svooda, M., Johnson, D., Mueller, R., Tadesse, T., Wardlow, B., Brown, 701. Assessing the evolution of soil moisture and vegetation 789 790 conditions during the 2.12 United States flash drought. Agricultural and Forest Meteorology 218-19 230-242. URL: http://dx.doi.org/10.1016/j.agrformet.2015.12.065, 791 792 doi:16.1016. agrformet.2015.12.065. Otkin, J. A., M. Coboda, E. D. Hunt, T. W. Ford, M. C. Anderson, C. Hain, and J. B. Basara, 793 201 Lash droughts: A review and assessment of the challenges imposed by rapid-onset 794 droughts in the united states. Bulletin of the American Meteorological Society, 99 (5), 795

796	911–919, doi:10.1175/bams-d-17-0149.1, URL http://dx.doi.org/10.1175/ BAMS-D-17
797	0149.1.
798	Otkin, J. A., Y. Zhong, E. D. Hunt, J. Basara, M. Svoboda, M. C. Anderson, and C. H. 1. 19:
799	Assessing the evolution of soil moisture and vegetation conditions during a lash
800	drought-flash recovery sequence over the south-central united states. Your of
801	<i>Hydrometeorology</i> , 20 (3), 549–562, doi:10.1175/jhm-d-18-017:11
802	//dx.doi.org/10.1175/JHM-D-18-0171.1.
803	Otkin, J.A., Zhong, Y., Hunt, E.D., Christian, J.I., Basara, J.B., Nguyen, H., Wheeler, M.C.,
804	Ford, T.W., Hoell, A., Svoboda, M., et al., 2021. Twee pment of a flash drought
805	intensity index. Atmosphere 12, 741. URL: http://ldoi.org/10.3390/atmos12060741,
806	doi:10.3390/atmos12060741.
807	Pachauri, R. K., and Coauthors, 2014: Climate Cange 2014: Synthesis Report. Contribution of
808	Working Groups I, II and V_1 to the 11fth Assessment Report of the Intergovernmental
809	Panel on Climate Char la CC, Geneva, Switzerland.
810	Palmer, W. C., 1965: 1 eteorological drought, Vol. 30. U.S. Department of Commerce, Weather
811	Bureau.
812	Pendergrass, . G., and Coauthors, 2020: Flash droughts present a new challenge for
813	bseas nal-to-seasonal prediction. <i>Nature Climate Change</i> , 10 (3), 191–199, doi:
814	10 103c/s41558-020-0709-0, URL http://dx.doi.org/10.1038/s41558-020-0709-0.

815 Svoboda, M., and Coauthors, 2002: The drought monitor. Bulletin of the American 816 Meteorological Society, 83 (8), 1181–1190, doi:10.1175/1520-0477-83.8.1181, UP' 817 http://dx.doi.org/10.1175/1520-0477-83.8.1181. 818 Vicente-Serrano, S. M., and Coauthors, 2018: Global assessment of the standardize evapotranspiration deficit index (SEDI) for drought analysis and monitoring. Journal of 819 Climate, 31 (14), 5371–5393, doi:10.1175/jcli-d-17-0775.1, URI 820 821 http://dx.doi.org/10.1175/JCLI-D-17-0775.1. 822 Wakefield, R. A., J. B. Basara, J. C. Furtado, B. G. Illston, C. R. Ferguson, and P. Klein, 2019: A 823 modified framework for quantifying land-atmost are ovariability during hydrometeorological and soil wetness extremes. Cklahoma. Journal of Applied 824 Meteorology and Climatology, **58** (7), 146, -14/33, doi:10.1175/jamc-d-18-0230.1, URL 825 826 http://dx.doi.org/10.1175/JAMC-D-1c 023/.1. 827