2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

Parallel Tensor Train Rounding using Gram SVD

Hussam Al Daas
Computational Mathematics Group
Rutherford Appleton Laboratory
Didcot, Oxfordshire, UK
hussam.al-daas @stfc.ac.uk

Abstract—Tensor Train (TT) is a low-rank tensor representa-
tion consisting of a series of three-way cores whose dimensions
specify the TT ranks. Formal tensor train arithmetic often causes
an artificial increase in the TT ranks. Thus, a key operation for
applications that use the TT format is rounding, which truncates
the TT ranks subject to an approximation error guarantee.
Truncation is performed via SVD of a highly structured matrix,
and current rounding methods require careful orthogonalization
to compute an accurate SVD. We propose a new algorithm for
TT-Rounding based on the Gram SVD algorithm that avoids the
expensive orthogonalization phase. Our algorithm performs less
computation and can be parallelized more easily than existing
approaches, at the expense of a slight loss of accuracy. We
demonstrate that our implementation of the rounding algorithm
is efficient, scales well, and consistently outperforms the existing
state-of-the-art parallel implementation in our experiments.

I. INTRODUCTION

Low-rank representations of tensors help to make algorithms
addressing large-scale multidimensional problems computa-
tionally feasible. While the size of explicit representations
of these tensors grows very quickly (an instance of the
“curse of dimensionality”), low-rank representations can of-
ten approximate explicit forms to sufficient accuracy while
requiring orders of magnitude less space and computational
time. For example, suppose a parametrized PDE depends on
10 parameters, where each parameter has 10 possible values.
Computing the solution for each of the 10'° configurations
becomes infeasible even for modest discretizations of the state
space, but if the solution depends smoothly on the parameters,
then the qualitative behavior of the solution over the entire
configuration space can be captured using far fewer than 1010
parameters [1], [2], [3].

As we describe in detail in §1I, the Tensor Train (TT) format
[4] is a low-rank representation with a number of parameters
that is linear in the sum of the tensor dimensions, as compared
to an explicit representation whose size is the product of the
tensor dimensions. The TT format consists of a series of 3-way
tensors, or TT cores, with one dimension corresponding to an
original tensor dimension and two dimensions corresponding
to typically much smaller TT ranks. TT approximations can
be computed from explicit tensors as a means of compression
for scientific computing and machine learning applications
[4], [5], [6], [7], but they are also often used to represent
tensors that cannot be formed explicitly at all. In the context of
parametrized PDEs, the TT format has been used to represent

1530-2075/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPS53621.2022.00095

Grey Ballard
Department of Computer Science
Wake Forest University
Winston-Salem, NC, USA
ballard @wfu.edu

930

Lawton Manning
Department of Computer Science
Wake Forest University
Winston-Salem, NC, USA
mannlgl5@wfu.edu

both the discretized operators as well as the solution, residual,
and other related vectors [8], [9], [10], [11]. In this case, TT
tensors are manipulated using operations such as additions,
dot products, and elementwise multiplications, which causes
the TT ranks to grow in size. The key operation that prevents
uncontrolled growth in TT ranks is known as TT-Rounding,
in which a TT tensor is approximated by another TT tensor
with minimal ranks subject to a specified approximation error.
This operation requires a sequence of highly structured matrix
singular value decomposition (SVD) problems and is typically
a computational bottleneck.

There exists a wide array of high-performance, parallel
implementations of tensor computations for computing decom-
positions such as CP and Tucker of dense and sparse tensors
[12], [13], [14], [15], [16], [17], as well as for performing
contractions of dense, sparse, and structured tensors [18],
[19], [20]. However, the available software for computing,
manipulating, and rounding TT tensors is largely limited to
productivity languages such as MATLAB and Python [21],
[22], and there are far fewer parallelizations of TT compu-
tations [23], [24], [25]. One of the aims of this paper is to
raise the bar for parallel performance for TT-Rounding and
demonstrate that TT-based approaches can scale to scientific
problems with more and higher dimensions using efficient par-
allelization. The focus in this paper is on applications arising
from parameter dependent PDEs and uncertainty quantification
[26], [27], [28], [29], where one or more modes are large,
ranging from thousands to millions, and the TT ranks are
small, ranging from tens to hundreds.

The TT-Rounding algorithm utilizes multiple truncated
SVDs. The central contribution of this paper is the devel-
opment of a parallel algorithm that performs these truncated
SVDs more efficiently than the existing approach, by reducing
both computational and communication costs. The basic tool
of the algorithm is the Gram SVD algorithm, which exploits
the connection between the SVD of a matrix A and the eigen-
value decomposition of its Gram matrix A" A. The truncated
SVD must be performed on a highly structured matrix which is
analogous to a matrix represented as X = AB', where A and
B are tall-skinny matrices, as we describe in §1II. We present
our TT-Rounding algorithm in §IV, showing how the ideas
from the matrix case can be applied within the context of TT.
The key to efficiency of our TT-Rounding is the computation
of Gram matrices of matrices with overlapping TT structure.

We present performance results in §V, demonstrating the
efficiency of our algorithm compared to the existing state of
the art. In a MATLAB-based experiment, we show that im-
provement of a TT-Rounding implementation leads to overall
performance improvement for a TT-based linear solver. Then
we demonstrate that our parallel implementation written in
C/MPI is both weakly and strongly scalable on TT tensors with
representative dimensions and ranks. In particular, we achieve
up to 39x parallel speedup when scaling from 1 node to 64
nodes of a distributed-memory platform for rounding a 16-way
tensor with dimensions of size 100M x50K x- - - x 50K x 10M
and TT ranks all of size 20. On that tensor, we achieve a 6x
speedup over a state-of-the-art implementation of the standard
TT-Rounding approach using 64 nodes. We also observe a
28x speedup over the same implementation on a smaller
tensor with memory footprint less than 1MB using a single
node (32 cores). Our results demonstrate that TT-Rounding is
highly efficient and scalable using our algorithm, and we target
parallelization of TT-based solvers based on our approach as
future work.

II. PRELIMINARIES
A. Tensor Train Notation

An N-mode or order-N low rank tensor X € RI1xxIn
is in the Tensor Train (TT) format if there exist strictly
positive integers Ryp,...,Ry with Ry = Ry 1 and
N order-3 tensors Jx 1,...,Tx,n, called TT cores, with
To.n € REn-1XInxEn “quch that:

x(ilv LR 7ZN) - g’x,l(ily :) o 'Tx,TL(:77:TL7 :) o T?C,N(JN)

Since Ry = Ry =1, the first and last TT cores are (order-2)
matrices so T 1(i1,:) € Rf and Tx n(:,in) € REN-2
and hence T 1(i1,:) Toxn(sin,:) - Tx,n(,in) € R
We refer to the R,,_1 X R, matrix T ,(:,ip,:) as the i,th
slice of the nth TT core of X, where 1 < i, < I,.

Different types of matricization (also known as unfolding)
of a tensor are used to express linear algebra operations on
tensors. The mode-n unfolding maps mode-n fibers (vectors)
to the columns of a matrix, denoted by X, for a tensor X.
The tensor-times-matrix product is specified for a particular
mode of the tensor and is defined so that Y = X x,, M is
equivalent t0 Y () = MXy,,).

In this work, we will often use two particular matricizations
of 3D tensors. The horizontal unfolding of TT core Tx
corresponds to stacking the slices T, (:,4p,:) for i,
1,..., I, horizontally and is equivalent to the standard mode-
1 unfolding. The horizontal unfolding operator is denoted by
H, therefore, H(Tx) € REn—1%Fnln The vertical unfolding
corresponds to stacking the slices T, (:,p,:) for i,
1,..., I, vertically and is the transpose of the standard mode-
3 unfolding. The vertical unfolding operator is denoted by V,
therefore, V(Tx) € REn-11nxBn_ These two unfoldings are
important for the linearization of tensor entries in memory
as they enable performing matrix operations on the TT core
without shuffling or permuting data.

931

Another type of unfolding which we will use to express
mathematical relationships among TT cores maps the first
n modes to rows and the rest to columns [30]. We use the
notation X(1.,) to represent this unfolding, so that X(;.,) €
RIveInxInsa-In The nth TT rank of X is the rank of X(1.,).

B. Gram SVD

Given a tall and skinny matrix A, recall that the correspond-
ing Gram matrices are AA' and ATA. We are typically
interested in G4 = AT A for efficient algorithms because it
is a smaller matrix.

Gram SVD is an algorithm that exploits the connection
between the SVD of a matrix and the eigenvalue decom-
positions of its Gram matrices. For A = UXV', we have
G4 =VIU'UEV' =VE2V'. We see that the eigenval-
ues of G 4 are the squares of the singular values of A and the
eigenvectors of G 4 are the right singular vectors of A. We can
recover the left singular vectors via U = AVX ™! (assuming
full rank). Gram SVD computes an accurate decomposition
but suffers from higher orthogonality error of U as well as
reduced accuracy of the singular values. SVD algorithms using
orthogonal transformations compute singular values with error
proportional to | A ||-e, where ¢ is the working precision, while
the error for Gram SVD can be larger by a factor as large as
the condition number of A [31]. This implies that backwards
stable SVD algorithms can compute singular values in a range
of 1/e, while Gram SVD is limited to computing singular
values in a range of 1/4/e.

C. Cookies Problem and TT-GMRES

As a concrete example of a parametrized PDE for which TT
methods work well, we consider the two-dimensional cookies
problem [26], [32] described as follows:

—diV(J(,CL’, Y; p)V(U(CE, Y; P))) = f(lv y)
u(z,y; p) =0

in Q,
on 02,
where Q is (—1,1) x

o is defined as:

o(z,y;p) = {

(—1,1), 09 is the boundary of 2 and

1

if (z,y) € D;
elsewhere

where D; for i = 1,...,p are disjoint disks distributed in 2
such that their centers are equidistant and p; is selected from
a set of samples J; C R for ¢ = 1,...,p. One way to solve
this problem is, for each combination of values (p1,. .., pp), to
solve the linear system (G117 + Y +_, p;Giy1,1) u = f, where
G1,1 € RIv¥N g the discretization of the operator —div(V(-))
in Q, G;y1,1 is the discretization of —div(xp,V(:)) in Q
where xg is the indicator function of the set S, and f is the
discretization of the function f. The number of linear systems
to solve in that case is the product of the cardinalities of the
sets (J;)1<i<p. Knowing that the set of solutions can be well
approximated by a low-rank tensor [1], [3], another approach
to solve the problem is to use an iterative method that exploits
the low-rank structure and solves one large system including

all combinations of parameters. That is, we solve a (p + 1)-
order problem of the form GU = F. The operator G is given
as G = Zzpill Gi,l R X Gi,erl, where Gzz e RIixTi for
1 =2,...,p+ 1 is a diagonal matrix containing the samples
of p;, and the remaining matrices G; ; fori =1,...,p+ 1,
j=2,...,p+1and j # i are the identity matrices of suitable
size. The right-hand side ¥ = f® 17, ® --- ® 11, ,, where
1;, is the vector of ones of size I;.

In this application and many others, the operator G has a
low operator rank and the right-hand side F is given in a low-
rank form [2], [33], [9], [10], [34]. One way to approximate
the solution by a low-rank tensor is to apply a Krylov method
adapted to low rank tensors such as TT-GMRES [8]. In each
iteration, the operator G is applied to a low rank tensor
leading to a formal expansion of the ranks. Furthermore, one
needs to orthogonalize the new basis tensor against previous
ones by using a Gram—Schmidt procedure, see Alg. 1. Again,
the ranks will increase formally. In order to keep memory
and computations tractable, one has to round the resulting
tensors after performing these two steps. Most of the time, a
small reduction in the final relative residual norm is sufficient,
which allows performing aggressive TT-Rounding with loose
tolerances. Note that a structured preconditioner is usually
combined with TT-GMRES to accelerate the convergence and
potentially decrease the TT ranks of the Krylov basis tensors
[8]. A simple choice is the mean preconditioner, which is of
operator rank one [26].

Algorithm 1 TT-GMRES [8]

1: function U = TT-GMRES(G, F, m, ¢)

2 Set B=|F||p, Vi=F/B.r=0

3 for j=1:m do

4: Set § = £

5: W = TT-ROUND(GV;, §)

6: fori=1:j5do

7 H(i, j) = INNERPROD(W, V;)

8: end for)

9: W = TT-ROUND(W — >~7_ H(i, j)V;,0)
10: H(j + 1,j) = [W]r
11: r=min |[|[H(1:j+1,1:j)y — Bei]2
12: Vi+1=W/H(j+1,j)
13: end for

14y, =argminy [Hy — Bei|

I U=y, ()Y

16: end function

D. TT-Rounding via Orthogonalization

The standard algorithm for TT-Rounding [4] is given in
Alg. 2. This procedure is composed of two phases, an orthogo-
nalization phase and a truncation phase. The orthogonalization
phase consists of a sequence of QR decompositions of the
vertical unfolding of each core starting from the leftmost to
orthogonalize its columns and then a multiplication of the
triangular factor by the following core. The truncation phase
consists of a sequence of truncated SVDs of the horizontal
unfolding of each core starting from the rightmost, leaving its
rows orthonormal (set as the leading right singular vectors),

932

and multiplying the preceding core by the singular values and
the leading left singular vectors. The direction of these two
phases can be reversed. Given a required accuracy, the TT-
Rounding procedure provides a quasi-optimal approximation
with given TT ranks [4].

Algorithm 2 TT-Rounding via Orthogonalization [4], [25]

1: function Y = TT-ROUND-QR(X, ¢)
2 Set 71571 = ‘-TI)C,I

3 forn=1to N —1do

4 V(Tyn), Rl = QR(V(Tyn))
5: H(Ty,nt1) = RH(Tx,n41)
6: end for

7 Compute ||X|| = ||Ty,~||F and g9 = ”if,”fla
8: for n = N down to 2 do

o [QR]=QR(H(Ty,))

10: [U,3,V] =TSVD(R, 0)

11 H(Tyn) " =QU X
12: V(Tyn1) =V Tyn 1)V
13: end for

14: end function

Algorithm 2 has been parallelized by Al Daas et al. [25],
who use a 1-D distribution of TT cores to partition a TT tensor
across processors. Each core is distributed over all processors
along the physical mode such that each processor owns Iy, /P
slices of the kth core. This distribution guarantees a load
balancing and allows to perform TT arithmetic efficiently. In
particular, the QR decompositions are performed via the Tall-
Skinny QR algorithm [35], and multiplications involving TT
cores are parallelized following the 1D distributions. We im-
prove upon this prior work by using an alternate TT-Rounding
approach that avoids QR decompositions, reducing arithmetic
by a constant factor and also reducing communication.

III. TRUNCATION OF MATRIX PRODUCT

To gain intuition for the use of Gram SVD within TT-
Rounding, we focus in this section on the (degenerate) case
of TT with 2 modes, with dimensions I x J. In this case,
the tensor is a matrix represented by a low-rank product of
matrices:

X =AB',)]

where A and B are tall and skinny matrices with R columns.
The goal is to approximate X with a lower rank representation

X~ AB',)

where A and B have L < R columns.

A. Truncation via Orthogonalization

A numerically accurate and reasonably efficient approach to
truncate the representation of X is via orthogonalization. By
computing (compact) QR decompositions A = Q4 R4 and
B = QzRp, we have

X = Q,RAR;Q} 3)

and the SVD of R Ry, yields the (compact) SVD of X
because Q4 and Qp have orthonormal columns. Note that
R AR;; is R x R, so its SVD is much cheaper to compute.

We formalize this approach in Alg. 3. In order to truncate
the rank of X, we can truncate the SVD of R AR;. To obtain
factors A and B, we apply Q 4 and Qp to the left and
right singular vectors, respectively. The singular values can
be distributed arbitrarily, we choose to distribute them evenly
to left and right factors.

Algorithm 3 Rounding Matrix Product AB" using QR

function [A, B] = MAT-ROUNDING-QR(A, B, ¢)
[Q4,Ra] =QR(A)
(Qs,Rp] =QR(B)
[U, 3, V] =TSVD(R AR,)
A=q, (o8
B=q, (Vs
end function

B. Truncation via Gram SVD

We now show our proposed method for a faster but poten-
tially less accurate rounding algorithm for the matrix product.
Our method is based on the Gram SVD algorithm, but we
note it is not a straightforward application. For example, we
can represent XXT as ABTBAT, and while B'B is R x R,
we cannot obtain the eigenvalue decomposition easily without
orthogonalizing A. Instead, we consider the Gram matrices of
A and B separately, letting G4 = AT A and Gz = B'B.
For clarity, we first describe the method using Cholesky QR,
then discuss pivoting within Cholesky, and finally explain the
use of Gram SVD.

1) Cholesky QR: Let us first assume A and B are full
rank, and use Cholesky QR to orthonormalize the columns
of A and B. Computing Cholesky decompositions, we have
RXRA =G4 and RERB = Gp. Then eq. (3) becomes

X = (AR)R4RL(BR;Y) .

Given the truncated SVD fJf]VT =R AR;, we can compute
A=A (R;lﬁilm) and B =B (R§1V21/2) to obtain
eq. (2).

In the case that A or B is low rank, the standard Cholesky
algorithm will fail, and we must employ a pivoted Cholesky
algorithm. Pivoted Cholesky QR works well for the low rank
case in exact arithmetic, but in the case of numerically low
rank matrices, it provides a sharp truncation for each of A and
B individually. That is, as soon as a nonpositive diagonal entry
is encountered, which corresponds to a singular value of A or
B on the order of /¢ relative to the largest singular value, the
algorithm terminates and approximates all remaining singular
values as zeros.

2) Gram SVD: We now consider using the Gram SVD
approach, which is more robust than pivoted Cholesky QR.
Here, we consider A and B to be possibly low rank. Given
the SVDs A = U X,V and B = UpXEpVy, we have
eigenvalue decompositions G4 = V432 V] = VAEAV;
and Gg = VBEQBV; = VBEDQBVB, where 2,4 and
b3 p represent the nonzero singular values and v 4 and VB

933

Algorithm 4 Truncated SVD of AB' using Gram SVDs

: function [A, B] = TSVD-ABT-GRAM(A, B, ¢)
. Ga=ATA

[VA,AA} = EIG(GA)
[VB,AB] = EIG(GB)
[0,%,V] =1SVDAY*VIVEAY2)
A=A (vanPos”
3. B=B (VBAgl/ZVﬁ)I/Q)
9: end function

1
2
3:
4:
5.
6
7

are the corresponding vectors. We can then write the1 cor-
responding left singular vectors via U, = AV Ai);; and
N 2 el

Up = AVpX . With these quantities, eq. (1) becomes

X = (AVAS,) $4V VS pBYV,E0T = U MU,
—_— ————— — —
Ua M Usp
Given the truncated SVD ﬂf]VT = M, we compute
A=A (VA2;1ﬁ21/2) and B=B (szgvz”Z)

to obtain eq. (2). In the case of numerically low rank matrices
A or B, we note that the Gram SVD will not compute singular
values on the order of /¢ (relative to the largest singular value)
accurately, but it will approximate them with a small, nonzero
quantity, unlike the Pivoted Cholesky QR approach. This leads
to more robustness because the corresponding singular vector
directions can be amplified in the multiplication by the other
matrix to capture better approximation of the product AB'.

The algorithm for the Gram SVD approach is given as
Alg. 4, which can be adapted to Pivoted Cholesky QR fol-
lowing a modification to the algebra of §III-B1. Note that the
distribution of the singular values to the two factor matrices
A and B is arbitrary. Because the Gram SVD approach is
the most robust Gram-based method and the extra cost is
insignificant when R is small, we use Gram SVD in the context
of TT-Rounding as described in §IV.

IV. TT-ROUNDING VIA GRAM SVD

In this section we present the Gram SVD TT-Rounding.
In §IV-A, we explain the analogues of matrices A and B
within the TT-Rounding algorithm, and in §IV-B we show how
to compute the Gram matrices for the associated structured
matrices. We then present two algorithmic variants of TT-
Rounding based on the approach in §IV-C, explain their
parallelization in §IV-D, and provide complexity analysis in
§IV-E with comparison against the standard TT-Rounding via
orthogonalization.

A. TT-Rounding Structure

The nth TT rank of a tensor X is the rank of the unfolding
X(1:n), Which is an Iy - - - I, X I;, 41 - - - [y matrix where each
column is a vectorization of an n-mode subtensor. If X is

(a) Equation (4) for N =6, n =3

() Ag1n) Aginy for n =3

(c) Computing GZ from GL_; forn =3

Fig. 1: Tensor network diagrams

already in TT format, then X;.,,) has the following structure
[25, Eq. (2.3)]:

Xam) = (I, @ Q1:n—1)) V(T) H(T ¢ nt1) 1,4, ®Zy),
C)]
where Q is I} x -+ x I,,_1 X R,,_1 with
Q(ila sy Z‘71717 Tnfl) = 9’fx;,l(il7 :) : g’xﬂ(:; i27 :) e
‘I')C,nfl(H inflvrnfl)7

and Zis Ryy1 X Ipyo X -+ - X Iy with

Z(rn+17 in+27 .o >ZN) = j'x,'n+2(’rn+17 in+2a)
TI)C,71+3(:7 Z.nJr?n :) co TX,N(:7 Z.N)~

Truncating or rounding the TT rank of X in this case
corresponds to performing a truncated SVD of X(.y,). The
correctness of Alg. 2 stems from the fact that at the nth
step of the truncation loop, the matrix I, ® Q(y.,_1) has
orthonormal columns and the matrix H (T x,n41)(Ir, ., ®Z1))
has orthonormal rows, and therefore the truncated SVD of
V(Tx,n) yields the truncated SVD of X;.y,).

In our proposed approach, we do not impose orthonormality
on the exterior matrices and instead use a Gram SVD based
approach. To follow the analogy of the matrix case from
eq. (1), we consider A = A(1.,,) = (I, ® Q(1,5,—1))V(Tx,n)
and BT = Bu)y = H(Txnt1)r,,, @ Zgyy), where A
and B are tensors with dimensions [; x ---I, X R, and
Ry, xI,+1 %+ x Iy, respectively. We visualize these relation-
ships using a tensor network diagram [36] in Fig. 1a. In these
diagrams, a node represents a tensor, edges represent modes
(so that the degree of a node is its dimension), and adjacent
nodes represent contractions. To perform the truncation, we
first compute AT A and BB as described in §IV-B. Then
we follow the approach as described in §III-B2 and finally
compute A and B by updating only V(T) and H(Tx n11)
leaving the TT cores that constitute Q and Z unchanged.

B. Structured Gram Matrix Computation

Considering A(1.n) = (Ir, ® Qup_1))V(Tx,n) as the
matrix A in our matrix product example, our goal is to
compute A" A exploiting the structure of A (and the internal
structure of Q(y.,,_1)). This can also be seen as a contraction
between A, a tensor of dimension n + 1, and itself in the first
n modes.

934

The structure is easiest to understand in the form of a tensor
network diagram, as we show in Fig. 1b. In the figure, we
have n = 3, so that A is a 4-way tensor composed of 3
TT cores. To visualize contracting A with itself and compute
G?f = A(1:3)TA(1:3), we draw A twice and connect edges
corresponding to the modes with dimensions I, Is, and 3.
After all connected modes are contracted, we are left with 2
un-contracted modes, each of dimension Rj3, corresponding to
a square output matrix (which is also symmetric). We use the
notation Gg‘ to signify that A is composed of left-most cores
and has dimension R3 x Rs.

The most efficient way to perform the contractions to
compute Gﬁ = A(lm)TA(lm) is to work left to right, first
contracting the mode with dimension /;. Because the operation
involves two tensors with dimension 2, it corresponds to the
(symmetric) matrix multiplication G¥ = V(Tx 1) T V(Tx 1),
where we use the notation Gf because the result is the
contraction between the left-most cores and has dimension
R; x R;. The next step is to contract the two Tx 2 nodes with
G¥ to compute G These two contractions can be performed
in either order or simultaneously, exploiting symmetry as we
describe below. We continue this process of computing each
symmetric Gram matrix from the previous mode’s, finally
computing G~ from G%_, and the two T, cores. Figure lc
shows the structure of the tensor network before G is
computed from Gg and the two Jx 3 cores.

The key to the efficiency of the structured Gram matrix
computation in the context of TT-Rounding is the fact that we
obtain all Gram matrices {Gﬁ} as a by-product of computing
the last one, G%_ . In this way, we have performed the A " A-
analogue computations for truncating all TT ranks with one
left-to-right pass over the TT representation of the tensor. In
order to compute the B' B-analogue quantities, we make a
similar pass from right to left to obtain {Gf} forl <n<
N — 1. Note that G is the contraction between the right-
most cores to the right of (and not including) the nth core, so
that GZ and G are the Gram matrices associated with the
truncation of the nth TT rank and are both R,, X R,,.

We now consider two ways of computing Gﬁ from G£71
and two Jx ,, cores, which we refer to as non-symmetric and
symmetric approaches. Computations for G from G7 "1 are
analogous. In the nonsymmetric approach, we contract G£71
with one of the cores, letting Je , represent the temporary
result as illustrated in Fig. 1c. Here we consider € to be a TT-

format tensor with the same dimensions and ranks as X for
convenient notation. This contraction is a tensor-times-matrix
operation and can be expressed as Je,, = Tx,n X1 G£71
and computed as H(Te,) = GE_H(Tx.,). After the
first contraction, Je, and the remaining Jx , share two
modes, and the second contraction is across both modes. This
operation can be performed via G% = V(Tx..) ' V(Te.n).
Note that while the result is symmetric in exact arithmetic,
this approach does not assume symmetry, and the result will
not be bit-wise symmetric due to roundoff error.

In the symmetric approach, we can use the fact that every
Gram matrix is symmetric and positive semi-definite. Thus, we
can compute a (pivoted) Cholesky decomposition G‘:TLL_1 =
LL". Then we can contract each L factor with one of the
JTx,» nodes, permuting slices of T ,, if necessary. Here, one
contraction is sufficient because they are equivalent operations,
and we can exploit the triangular structure of L to save half
the arithmetic of the tensor-times-matrix operation. Letting
T o.n = Tx,nx1 L represent the result, the second contraction
is performed via Gﬁ = V(Tp.,) V(Tp,,) which can be
performed symmetrically, again saving half the arithmetic and
producing an exactly symmetric result.

As illustrated in Fig. 1, GZ_| is a matrix with dimension
R,,—1 X R,_1 and T, has dimensions R,_; x I,, X R,.
In the nonsymmetric approach, the first contraction requires
21,,R?_, R,, operations, and the second contraction requires
2I,R,,_1R? operations. In the symmetric approach, the
Cholesky decomposition requires O(R3_,) operations, and
the two contractions together require I, R2 | R, +1, R, 1 R?
operations, not including any pivoting that must be performed.
Despite the fact that the symmetric approach saves half the
flops, we use the nonsymmetric approach in our later ex-
periments because of the empirical performance benefits. We
found that the superior performance of gemm over t rmm and
syrk (and the need to copy data for t rmm) on our platform
outweighs the reduction in arithmetic.

C. Algorithms

Given the approach to computing Gram matrices of the
TT-structured matrices described in §IV-B, we now present
algorithms for TT-Rounding using the Gram SVD approach.
We follow the basic steps outlined in §III-B2: compute Gram
matrices of factors, perform eigenvalue decompositions, trun-
cate the combined results using SVD, then apply updates to
factors to reduce their dimensions.

As described in §IV-B, with a left-to-right and right-to-left
pass of the TT structure, we can obtain the Gram matrices
associated with every TT rank truncation. Given its pair of
Gram matrices, each TT rank can be truncated independently
of all others. We call this approach the simultaneous vari-
ant to distinguish it from a more computationally efficient
method that truncates ranks in sequence (described below).
The simultaneous variant of the algorithm is given as Alg. 5.
Line 2 to line 11 show the set of contractions used to obtain
Gram matrices across all modes. Lines 15 to 17 perform
the eigenvalue and singular value decompositions of small

935

matrices. Finally, lines 18 and 19 update the TT cores and
reduce their dimension. Note that the singular values are
distributed evenly to each interior factor, as each is scaled

a1/2
by ¥ / , but this distribution is arbitrary.

Algorithm 5 TT-Rounding via Gram SVD (Simultaneous)

1: function Y = TT-ROUND-GRAM-SIM(X, €)

2 G =V(Tx1) " V(Tx1)

3 forn=2to N —1 do

4: H(‘J’G,n) = Gﬁfl?—l(j’x,n)

5 GE =V Txn) V(Ten)

6: end for

7 GR_1 = H(Tx N)H(Txn)"

8: for n = N — 1 down to 1 do

9: V(Ten) =V(Txn)GE

10: G = H(Tem)H(Txn) "

11: end for 12 x|

12: Compute | X|| = (GE) ' and g9 = HN‘—lg
13: Ty1=Tx,1

14: forn=1to N —1do

15: [Vi,Ar] = EIG(GE)

16: [Vr,Ar] = EIG(GE)

17: [0,%, V] =1SVDA}/* VI VRAY? &)
18: V(Ty) = V(Ty.) (VLA /PO
19: H(Tyn1) = (5V AL PVE) H(Tx i)
20: end for

21: end function

Alternatively, we can truncate the TT ranks in sequence to
save some arithmetic by exploiting orthonormality. Following
the original approach of TT-Rounding via orthogonalization
(Alg. 2), if we truncate the ranks from left to right and pass all
singular values to the right, then we maintain orthonormality of
the left-most cores. That is, when truncating the nth rank and
considering eq. (4), we have that Qy,,_;) has orthonormal
columns. Thus, truncating X(;.,) is equivalent to truncating
V(T n)H(Txnt1) (X1, ®Z(1y). In the standard approach,
we also have that H(Tx ,41)(Ir,,, ® Z(1)) has orthogonal
rows, but that does not apply here. Instead, we use the ana-
logue of A = V(Tx,) and B = H(Tx 1) (11, . ®@Z))-
We note that B is identical to the simultaneous case, so
BB is exactly Gﬁ. The A matrix is different, but because
it corresponds to a single core, the Gram matrix computation
is much cheaper to compute: GZ = V(Tx ,,) TV(Tx).

Thus, we can make a single right-to-left pass to pre-
compute all Gram matrices corresponding to B'B, and then
we can make a left-to-right truncation pass where we maintain
orthonormality of the left-most cores by passing all singular
values to the right factor and compute Gram matrices for
ATA in sequence. The other added benefit of this approach
is that the nth core already has one dimension truncated (from
the previous mode) when its Gram matrix is computed. This
sequence variant is presented in Alg. 6.

We note that the sequence order is arbitrary. Algorithm 6
truncates ranks in left-to-right order, but it can also truncate
right-to-left if the Gram matrix sweep is done left-to-right.
Following prior work [25], we use the acronym RLR to
signify a right-to-left Gram sweep followed by a left-to-right

Algorithm 6 TT-Rounding via Gram SVD (Sequence RLR)

1: function Y = TT-ROUND-GRAM-SEQ(X, ¢)
2GR, =HTxHTxn)"
3 for n = N — 1 down to 1 do
4 V(g’(‘f,n) = V(‘J’x,n)Gﬁ
5: GE L =H(Ten)H(Txn)"
6: end for 1/ x
7 Compute | X|| = (GF) " and &9 = \/‘%6
8: T‘d,l = T:xyl
9: forn=1to N —1do
10: Gﬁ = V(Tyyn)TV(g'y_’n)
11 [Vi,AL] = EIG(GL)
12: [Vr,Ar| = EIG(G])
13: (0,5, V] =1SVDA}*VI VALY <)
14: V(Ty.n) = V(Ty.)- (VLA ?0)
AoAT
15: H(Tyn1) = (EV AL PVE)H(Txnin)
16: end for

17: end function

truncation sweep, and we use LRL to signify left-to-right
Gram sweep followed by a right-to-left truncation sweep.

D. Parallelization

Algorithms 5 and 6 are presented as sequential algorithms.
We describe the parallel version of the algorithm in words
here, as we have chosen the algorithm for its ease of paral-
lelization. We follow the same parallel distribution as prior
work on TT-Rounding via orthogonalization [25] described in
$1I-D, with each TT core distributed across all processors and
each processor owning a subset of the slices in 1D-distribution
fashion.

There are two main parallel operations to consider in these
algorithms: (1) a TT-core times a small matrix in one mode
(e.g., line 4 in Alg. 5), and (2) the contraction of two TT cores
across two modes (e.g., line 5 in Alg. 5). Given the parallel
distribution, a TT-core times a small matrix in one mode,
which is expressed as pre-multiplication of the horizontal
unfolding or post-multiplication of the vertical unfolding by
a small matrix) can be performed independently, with no
communication, if all processors have access to the small
matrix. Also, the contraction of two TT cores (expressed as
the transpose of a vertical unfolding times another vertical
unfolding or a horizontal unfolding times the transpose of
another horizontal unfolding) can be performed via parallel
reduction with a small matrix as output: after local contraction,
a single all-reduce computes and stores the result across all
processors.

In the simultaneous variant (Alg. 5), computing the left
and right Gram matrices consists of alternating these two
operations. Consider line 2 to line 6: if each G~ contrac-
tion operation uses an all-reduce, then the subsequent core-
times-matrix operation requires only local computation and
no communication. The same pattern applies to computing
the {G”} matrices. Given that the Gram matrices are all
available on all processors, the EVD and SVD operations
can be performed redundantly so that the update operations in
lines 18 and 19 also require no communication. We note that

936

in the simultaneous variant, the EVD and SVD operations are
independent across modes. It is thus possible to distribute these
computations across processors, allowing N different proces-
sors to work simultaneously on all modes. In this case, the
processors need to broadcast their results in order to perform
the update operations. This optimization improves scalability
at the expense of slightly higher communication costs. We
have not implemented this approach because the sequence
variant of the algorithm outperforms the simultaneous variant
in our experiments.

In the sequence variant (Alg. 6), we pre-compute only
one set of Gram matrices. Computing these Gram matrices
is parallelized the same as in the simultaneous variant. The
unique operation for the sequence variant is line 10, which is
a contraction of a TT core with itself, which is performed via
local computation and an all-reduce. As before, the EVD and
SVD operations are performed redundantly and the updates
require no communication.

E. Complexity Analysis

We perform complexity analysis using the simplifying as-
sumptions that all tensor dimensions are equivalent, all ranks
are equivalent, and all reduced ranks are equivalent. That
is, we assume that [, I for 1 < n < N and that
original and reduced ranks R, = R and L, = L for
1 < n < N — 1. For comparison, the parallel cost of TT-
Rounding via orthogonalization (Alg. 2) is given by

3R% + 6RL +4L?
P
B-O(NR?*log P) 4+ o - O(N log P),

- (NIR +O(NR?log P)> +

where v, 3, and « are the costs per flop, word, and message,
respectively [25, Eq. (3.6)].

Algorithm 5 (the simultaneous variant) performs two passes
to compute Gram matrices. For each mode, the local com-
putation involves the multiplication between a local tensor
core of dimension R x (I/P) x R with an R X R matrix,
for a cost of 2IR? /P flops, and a contraction between two
cores, which requires 27 R3 /P flops. Thus, the total arithmetic
cost of the Gram matrix computations is 8NIR3/P. As
described in §IV-B, by exploiting symmetry we can reduce
the constant factor from 8 to 4. The EVD and SVD operations
are performed on R x R matrices for a total cost of O(N R3)
flops (note there is no parallelism in these operations). The
updates of the cores are multiplications of the cores with two
R x L matrices. The first multiplication costs 21 R?>L /P flops,
while the second costs 2T RL?/P because it involves a core
with one mode of already reduced dimension. Thus, the total
arithmetic cost for the updates is 2NIR?L/P +2NIRL?/P.

The communication cost of Alg. 5 is that of two all-
reduces for each mode (one for each direction of Gram matrix
computation). Thus, the communication costs across all modes

are 3+ O(NR?) 4+ a - O(N log P), and the total parallel cost
for Alg. 5 (assuming symmetry is exploited) is

4R? + 2RL + 2L2
P

- (NIR + O(NR3)) +

B-O(NR?) + a-O(Nlog P).

Algorithm 5 (the sequence variant) performs only one
pass to compute Gram matrices, for an arithmetic cost of
4NTR3/P flops across all modes, or 2NIR3/P flops if we
use the symmetric approach. Computing the Gram matrix for
the nth TT core in line 10 costs TR2L/P flops, because its
first mode has already been reduced in dimension from R to L.
The EVD and SVD operations and the updates of the cores are
the same as in the simultaneous variant. The communications
costs are identical to the simultaneous variant as well: there
is one all-reduce for each mode in the Gram pass and one
all-reduce in each mode for line 10. Thus, the total parallel
cost for Alg. 6 (assuming symmetry is exploited) is

2R? + 3RL + 2L?
P

- <NIR + O(NR3)> +

B-O(NR?) + a-O(Nlog P).

We note that, compared to the orthogonalization approach,
the Gram SVD approaches have reduced constants on the
leading arithmetic terms and smaller bandwidth terms (by a
factor of O(log P)). We will see in the numerical results that
the reduced arithmetic provides significant speedup in practice,
in part because the performance of the operations (which are
all based on gemm for Gram SVD) also improves. At higher
processor counts, the simplified communication structure (us-
ing a single well-optimized collective) also provides speedup
over the more complicated communication of Tall-Skinny QR
of the orthogonalization approach.

V. NUMERICAL RESULTS
A. Experimental Setup

All parallel scaling experiments are performed on the Andes
supercomputer at Oak Ridge Leadership Computing Facility.
Andes is a 704-node Linux cluster. Each node contains 256
GB of RAM and 2 AMD EPYC 7302 16-Core processors for
a total of 32 cores per node. We build our Gram rounding
subroutines on top of the library MPI_ATTAC [37], and we
use the OpenBLAS implementation for BLAS and LAPACK
routines [38] and OpenMPI [39].

As described in Tab. I, we use 4 synthetic TT models for
scaling experiments. Models 1-3 are analogous to the synthetic
models used in prior work [25]. Model 4 is identical in shape
to the problem we solve via TT-GMRES in the MATLAB im-
plementation of TT-Rounding (see §V-D). We note that these
models represent problems arising from parameter dependent
PDEs and uncertainty quantification; see [26], [27], [28], [29].
In particular, model 1 mimics the dimensions arising from TT
approximations of Gaussian random field correlations [27, §4],
and model 4 has dimensions comparable to a previous study
of the cookies problem [26, §4]. Models 2 and 3 have larger

937

Model | Modes | Dimensions | Memory
1 50 2K X ... X 2K 77 MB
2 16 100M x 50K X ... x 50K x 1M 8 GB
3 30 2M X ... x2M 45 GB
4 10 10K x 20 X ... x 20 930 KB

TABLE I: Synthetic TT models used for performance exper-
iments. All formal ranks are 20 and are cut in half to 10 by
the TT-Rounding procedure.

Time (s)
Time (s)

[CINS)
1
T

Lo
Zn 2\9 93 94 95 96 9T 2), 239\02\1

241 2\ 22 25 24 9 .r»

Cores

(a) Model 1

Cores

(b) Model 2

Fig. 2: Strong scaling results

dimensions, demonstrating the ability to scale TT-Rounding to
discretizations that are finer than current sequential libraries
are able to process. For each model, we scale using the three
Gram SVD algorithms described in §IV-C and the original QR-
based TT-Rounding algorithm given by Alg. 2. All reported
numbers are the minimum of 5 trials on 5 different allocations.
The sequential experiments using MATLAB were performed
on a machine with an Intel Xeon Gold 6226R CPU and 256
GB of RAM.

B. Parallel Scaling of TT-Rounding

Figures 2a, 2b, and 3a present strong scalability compar-
isons using models 1, 2, and 3, respectively, among different
rounding procedures. For the small model 1 problem in
Figure 2a, we benchmark from 1 core to all 32 on a single
node, and then scale to 4 nodes. We see that the on-node
scaling of all algorithms is similar, achieving 14—17x speedup
from 1 core to 32 cores, and the sequence variants of the Gram-
SVD approach are 3x faster than QR-based rounding on 32
cores. The performance drops off when scaling beyond a single

4
o

93

ol

Time (s)

Fraction of Time
=3 o
= >

S
o

)
!
T
I
o

926 9T

98 99 9l oll
Cores

(b) Timing Breakdown

Cores

(a) Strong Scaling

Fig. 3: Performance results for Model 3. Dark signifies com-
putation, and light signifies communication.

B Qr
B sim
BLRL 8
ERLR

Time (s)

28 99 910 9ll

Cores

26 97

25

Fig. 4: Weak scaling time breakdowns for Model 1. Dark
signifies computation, and light signifies communication.

node, as the data footprint of this problem is only 77 MB.
In Fig. 2b, we see that Gram-SVD-based rounding methods
scale well to 32 nodes (1024 cores), with parallel speedups of
26x, 21x, and 21x compared to 1 node and 576x, 491x,
and 491x compared to 1 core. The LRL variant is fastest,
reaching a speedup of a factor of up to 21x compared to the
QR-based rounding. We note that since the mode sizes of the
boundary modes are different, the computational complexity
costs for the LRL and RLR variants become different, with
LRL performing approximately half the flops of RLR. As
expected, we see a performance difference between LRL and
RLR of nearly 2x when the performance is computation
bound, and the run times converge as communication costs
begin to dominate. The scalability limit is caused by the
machine and is not inherent to the algorithm, as we explain
in §V-C.

In the case of model 3, the mode sizes are all equal, and the
complexity analysis in §IV-E tells us that the LRL and RLR
approaches are about 2x faster than the Gram-Sim approach.
This analysis is confirmed by the experiment when the time is
computation bound, as we see in Fig. 3a. Speedups of Gram
SVD over QR range from 6x to 8 x, and the parallel speedups
for the Gram SVD algorithms on 64 nodes are 42x, 27x, and
15x%.

C. Time Breakdown of TT-Rounding

Figure 3b presents the relative communication/computation
runtime of the strong scalability test using model 3, matching
the data of Fig. 3a. We remark that the communication time
is more significant when using the QR-based TT-Rounding.
The communication costs for the QR-based are a factor
O(log P) larger than the Gram rounding procedures in theory.
Further, the Gram SVD variants use the MPI_Allreduce
routine which seems to be more efficient than the TSQR
implementation used in the QR-based rounding.

Figure 4 presents the communication/computation runtime
breakdown of a weak scalability test using model 1 and differ-
ent variants of TT-Rounding procedures. We remark that the
computation time for each method is the same when increasing
the number of processors, and the relative computation time

938

400

T
T T T oL
Ton 10
Esim
200 || MLRL 1 1071 ¢

Time (s)
Rel. Residual Norm

10-1F

—e— SIM
—o—LRL

101007 AOIATY JO YUTY LL XeIN

2855 11141 24981 [‘J L) 1‘5

Spatial Dimension

10
Tteration

(a) Timing (b) Residual error and max ranks

Fig. 5: TT-GMRES results for cookies problem with 3 spatial
discretizations. In timing plot, dark signifies TT-Rounding,
and light signifies other computation. In residual/ranks plot,
markers signify different discretizations, solid lines correspond
to relative residual norms, and dashed lines correspond to
maximum TT rank of the Krylov vector computed at that
iteration.

affirms the theoretical analysis of the constant factors on the
leading terms. The communication time of Gram rounding
procedures shows a logarithmic increase up to 32 nodes (1024
cores) and increases significantly on 64 nodes. This behavior
appears even earlier, at 256 processors, when using the QR-
based TT-Rounding. In order to understand this behavior, we
performed a scalability test on the MPI_Allreduce routine
on Andes using a single scalar and observed similar behavior
costs as in Fig. 4: the time increases like log P until 32 nodes
and then begins to increase more quickly than theory suggests.
Thus, we believe the scalability limit is reached due to an
artifact of the machine rather than a limitation of the algorithm,
whose latency costs should grow with O(log P).

D. TT-GMRES Performance

Here we consider a parameter dependent PDE model where
we seek an increasingly accurate solution by refining the mesh
in space. This mesh refinement will increase the size of mode
1 and leave the parameters modes’ sizes the same.

1) MATLAB Performance for Small Problem: In this ex-
periment, we use TT-GMRES to solve the cookies problem
described in §II-C using p = 4 parameters. The values of
each parameter are distributed logarithmically in the interval
[0.1,10]. The discretization of the PDE is obtained by using
FreeFem++ [40]. The refinement is performed by increasing
the number of points on 02 and on the circles defining
the disks D;. The number of points on each circle and
each side of the square Q is selected to be {50,100, 150}.
This yields 3 spatial discretizations (and corresponding first
tensor mode) of dimensions 2855, 11141, and 24981. For
each variant of TT-Rounding, we run TT-GMRES with a
stopping criterion based on the residual norm being smaller
than 1075, As a preconditioner for TT-GMRES we use the
mean preconditioner [26].

Figure 5a shows the performance of the original TT-
Rounding using QR in a MATLAB implementation of TT-
GMRES compared to the Gram-Sim and Gram-Seq (LRL)

(c) Tol e = 10710

Fig. 6: Accuracy of TT-GMRES using Gram- and QR-based
TT-Rounding with varying GMRES tolerance.

(b) Tol e = 1076

(a) Tol ¢ = 1072

implementations of TT-Rounding for the three spatial dis-
cretizations. We note that TT-Rounding is at nearly half of
the runtime of TT-GMRES using QR and that the Gram-Seq
gives at least a 2x speedup over the QR implementation of
TT-Rounding for an overall faster TT-GMRES algorithm.

From Figure 5b, we see the variations among relative
residual norms obtained by different methods on different
discretizations is negligible. We also note that the ranks of the
TT representations of the Krylov vectors among the algorithms
are also nearly identical, which demonstrates that there is no
loss of accuracy in the TT-GMRES method by using the Gram-
SVD approaches when the desired residual norm is above
square root of machine precision.

2) Accuracy Comparison: To further explore the effects of
the Gram-based TT-Rounding on TT-GMRES, we experiment
with varying GMRES tolerance values (¢ in the notation of
Alg. 1). Figure 6 compares the computed residual norms
and the maximal TT ranks across the TT-GMRES iterations
using QR and Gram-Seq (LRL) for TT-Rounding and three
different convergence tolerances: 1072, 1076, and 10710, In
this experiment, we set [1=1781 and I, = 10 fork = 2,...,5.

Our first observation is that the computed residuals are
nearly equivalent for all three values of &, so the use of
Gram rounding does not degrade the numerical accuracy of the
method even for a tolerance below the square root of machine
precision. For the tolerance ¢ = 107!°, we see an increase
in the ranks of the TT representations of each Krylov vector,
as depicted by the deviation in maximum ranks in Fig. 6c.
Note that the rounding tolerance §, which is set in line 4 of
Alg. 1, increases as the residual decreases, so it is tightest in
the earliest iterations. Thus, the Gram method overestimates
the ranks in the first several iterations because it does not
accurately compute the smallest singular values that can be
truncated, and this propagates to later iterations.

While Fig. 6 reports computed residual norms (from line 11
of Alg. 1), we also compute the true residual norms of
the solutions. We observe slight deviation between computed
and true residual norms but little difference between QR-
and Gram-based methods. For ¢ = 1072, both approaches
achieve true residual norms of 1.1 - 1072; for ¢ = 1079,
both approaches achieve 3.6 - 107%; and for ¢ = 10719, QR-
based rounding achieves 4.0 - 10™° and Gram-based rounding
achieves 1.2 - 107?. We conclude that this deviation is due
to the inexactness of the Krylov method rather than the TT-
Rounding method, and we attribute the better accuracy of the

939

271 7
—e— QR

—a— Sim

—o— LRL

Time (s)

o o o o o o o 4—0—0—/

Il Il Il Il
95 96 97 98
Cores

-9
2 29 210 211

L L L L L
20 91 92 93 o4

Fig. 7: Weak scaling results for Model 4.

Gram-based algorithm only to overestimation of the TT ranks.
3) Weak Scaling of TT-Rounding for Larger Problems:
Using the model 4 tensor of comparable dimensions and
ranks to the one used in §V-D1, we weakly scale the spatial
dimension on Andes, keeping all other modes fixed, and report
the results in Figure 7. We remark that the LRL variant
does less computation than RLR, so we report only LRL
performance, which we see weakly scales well until 210 cores.

VI. CONCLUSION

We present in this work a parallel rounding procedure for
low-rank TT tensors based on Gram SVD. In contrast with the
orthogonalization-based rounding procedure that relies heavily
on QR decomposition of tall and skinny matrices, this method
relies on matrix multiplication. Not only does the Gram SVD
approach reduce the computational complexity, but existing
on-node implementations of matrix multiplication are typically
more efficient than those for computing and multiplying by
orthogonal matrices.

Our scalability experiments show that the proposed method
scales as well as or better than the state of the art, in large
part because all the communication is cast in terms of all-
reduce collectives, and we observe consistent speedup over the
previous work on a variety of tensor formats. Our numerical
experiments also show that the loss of accuracy inherent in the
Gram SVD does not affect the final accuracy of the solution
when used in iterative low rank solvers such as TT-GMRES
where aggressive truncation, hence low accuracy, can be used.

We consider simultaneous and sequence variants of the
Gram SVD approach. The theoretical analysis and experimen-
tal results show that the reduced arithmetic of the sequence
variants leads to shorter run times in almost all cases. Within
the sequence variant, we observe that the LRL and RLR
orderings are both possible and typically have comparable run
times. We note that for some applications where the first mode
size is much larger than the last mode size (which is common
for parametrized PDE problems), the LRL approach should be
used as it has lower computational complexity.

In the light of the numerical experiments, we plan in the
future to study randomized methods to perform rounding
procedures. Using randomized methods could outperform the

proposed procedures as they reduce arithmetic further and also
rely on matrix multiplication. Encouraged by the results of
the MATLAB implementation of TT-GMRES, we also plan
to develop a scalable implementation of the TT-based linear
solver that can use our parallel TT-Rounding algorithms.

REFERENCES

[1] L. Grasedyck, “Existence and computation of low Kronecker-rank
approximations for large linear systems of tensor product structure,”
Computing, vol. 72, no. 3-4, pp. 247-265, 2004. [Online]. Available:
https://doi.org/10.1007/s00607-003-0037-z

[2] D. Kressner and C. Tobler, “Krylov subspace methods for linear
systems with tensor product structure,” SIAM J. Matrix Anal.
Appl., vol. 31, no. 4, pp. 1688-1714, 2009/10. [Online]. Available:
https://doi.org/10.1137/090756843

[3] W. Dahmen, R. DeVore, L. Grasedyck, and E. Siili, “Tensor-sparsity

of solutions to high-dimensional elliptic partial differential equations,”

Found. Comput. Math., vol. 16, no. 4, pp. 813-874, 2016. [Online].

Available: https://doi.org/10.1007/s10208-015-9265-9

I. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput.,

vol. 33, no. 5, pp. 2295-2317, 2011. [Online]. Available: https:
//doi.org/10.1137/090752286
[5] Y. Zniyed, R. Boyer, A. F. de Almeida, and G. Favier, “A TT-based
hierarchical framework for decomposing high-order tensors,” SIAM J.
Sci. Comput., vol. 42, no. 2, pp. A822-A848, 2020. [Online]. Available:
https://doi.org/10.1137/18M 1229973
[6] L. Grigori and S. Kumar, “Parallel Tensor Train through Hierarchical
Decomposition,” INRIA, Tech. Rep. hal-03081555, 2021. [Online].
Available: https://hal.inria.fr/hal-03081555
[71 M. Rohrig-Zollner, J. Thies, and A. Basermann, “Performance of low-
rank approximations in tensor train format (TT-SVD) for large dense
tensors,” arXiv, Tech. Rep. 2102.00104, 2021. [Online]. Available:
https://arxiv.org/abs/2102.00104
[81 S. V. Dolgov, “TT-GMRES: solution to a linear system in
the structured tensor format,” Russian J. Numer. Anal. Math.
Modelling, vol. 28, no. 2, pp. 149-172, 2013. [Online]. Available:
https://doi.org/10.1515/rnam-2013-0009
[9] P. Benner, S. Gugercin, and K. Willcox, “A survey of projection-based
model reduction methods for parametric dynamical systems,” SIAM
Review, vol. 57, no. 4, pp. 483-531, 2015. [Online]. Available:
https://doi.org/10.1137/130932715
[10] P. Benner, S. Dolgov, A. Onwunta, and M. Stoll, “Low-rank solvers
for unsteady Stokes—Brinkman optimal control problem with random
data,” Comput. Methods Appl. Mech. Engrg., vol. 304, pp. 26-54,
2016. [Online]. Available: https://doi.org/10.1016/j.cma.2016.02.004

[11] ——, “Low-rank solution of an optimal control problem constrained
by random Navier-Stokes equations,” Internat. J. Numer. Methods
Fluids, vol. 92, no. 11, pp. 1653-1678, 2020. [Online]. Available:
https://doi.org/10.1002/1d.4843

[12] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “SPLATT:

Efficient and parallel sparse tensor-matrix multiplication,” in /PDPS
’15. IEEE Computer Society, 2015, pp. 61-70. [Online]. Available:
http://doi.org/10.1109/IPDPS.2015.27

[13] S. Eswar, K. Hayashi, G. Ballard, R. Kannan, M. A. Matheson, and

H. Park, “PLANC: Parallel low rank approximation with non-negativity
constraints,” arXiv, Tech. Rep. 1909.01149, 2019. [Online]. Available:
https://arxiv.org/abs/1909.01149

[14] G. Ballard, A. Klinvex, and T. G. Kolda, “TuckerMPI: A parallel

C++/MPI software package for large-scale data compression via the
tucker tensor decomposition,” ACM Trans. Math. Software, vol. 46,
no. 2, 2020. [Online]. Available: https://doi.org/10.1145/3378445
[15] V. T. Chakaravarthy, J. W. Choi, D. J. Joseph, X. Liu, P. Murali,
Y. Sabharwal, and D. Sreedhar, “On optimizing distributed Tucker
decomposition for dense tensors,” in IPDPS ’17, 2017, pp. 1038-1047.
[Online]. Available: https://doi.org/10.1109/IPDPS.2017.86

[16] O. Kaya and B. Ucgar, “Scalable sparse tensor decompositions in
distributed memory systems,” in SC ’15. ACM, 2015, pp. 77:1-77:11.
[Online]. Available: http://doi.acm.org/10.1145/2807591.2807624

[17] J. Choi, X. Liu, and V. Chakaravarthy, “High-performance dense tucker
decomposition on GPU clusters,” in SC ’I18. IEEE Press, 2018,
pp. 42:1-42:11. [Online]. Available: http://dl.acm.org/citation.cfm?id=
3291656.3291712

[18] E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and
J. Demmel, “A massively parallel tensor contraction framework
for coupled-cluster computations,” J. Parallel Distrib. Comput.,

[4

940

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

131
32

[33]

[34]

[35]

[36]
[37]
[38]

[39]

[40]

vol. 74, no. 12, pp. 3176-3190, 2014. [Online]. Available: https:
//doi.org/10.1016/j.jpdc.2014.06.002

E. Apra, E. J. Bylaska ef al., “NWChem: Past, present, and future,” J.
Chem. Phys., vol. 152, no. 18, p. 184102, 2020. [Online]. Available:
https://doi.org/10.1063/5.0004997

E. Stoudenmire and S. R. White, “ITensor: A C++ library for creating
efficient and flexible physics simulations based on tensor product
wavefunctions,” 2016. [Online]. Available: http://itensor.org/

1. Oseledets et al., “TT-Toolbox.” [Online]. Available: https://github.
com/oseledets/TT-Toolbox

A. Novikov, P. Izmailov, V. Khrulkov, M. Figurnov, and I. V.
Oseledets, “Tensor Train decomposition on TensorFlow (T3F),” J.
Mach. Learn. Res., vol. 21, no. 30, pp. 1-7, 2020. [Online]. Available:
https://www.jmlr.org/papers/v21/18-008.html

S. Dolgov and D. Savostyanov, “Parallel cross interpolation for
high-precision calculation of high-dimensional integrals,” Comput.
Phys. Commun., vol. 246, p. 106869, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0010465519302565

L. Grigori and S. Kumar, “Parallel tensor train through hierarchical
decomposition,” INRIA, Tech. Rep. hal-03081555, 2021. [Online].
Available: https://hal.inria.fr/hal-03081555

H. A. Daas, G. Ballard, and P. Benner, “Parallel algorithms for tensor
train arithmetic,” SIAM J. Sci. Comput., vol. 44, no. 1, pp. C25-C53,
2022. [Online]. Available: https://doi.org/10.1137/20M 1387158

D. Kressner and C. Tobler, “Low-rank tensor Krylov subspace
methods for parametrized linear systems,” SIAM J. Matrix Anal.
Appl., vol. 32, no. 4, pp. 1288-1316, 2011. [Online]. Available:
https://doi.org/10.1137/100799010

D. Kressner, R. Kumar, F. Nobile, and C. Tobler, “Low-rank tensor
approximation for high-order correlation functions of Gaussian random
fields,” SIAM/ASA J. Uncertain. Quantif., vol. 3, no. 1, pp. 393-416,
2015. [Online]. Available: https://doi.org/10.1137/140968938

F. Bonizzoni, F. Nobile, and D. Kressner, “Tensor train approximation
of moment equations for elliptic equations with lognormal coefficient,”
Comput. Methods Appl. Mech. Engrg., vol. 308, pp. 349-376, 2016.
[Online]. Available: https://doi.org/10.1016/j.cma.2016.05.026

P. Benner, A. Onwunta, and M. Stoll, “Block-diagonal preconditioning
for optimal control problems constrained by PDEs with uncertain
inputs,” SIAM J. Matrix Anal. Appl., vol. 37, no. 2, pp. 491-518, 2016.
[Online]. Available: https://doi.org/10.1137/15M 1018502

A.-H. Phan, P. Tichavsky, and A. Cichocki, “Fast alternating
LS algorithms for high order CANDECOMP/PARAFAC tensor
factorizations,” IEEE Trans. Signal Process., vol. 61, no. 19, pp.
4834-4846, 2013. [Online]. Available: https://doi.org/10.1109/TSP.
2013.2269903

L. Trefethen and D. Bau, Numerical Linear Algebra. SIAM, 1997.

C. Tobler, “Low-rank tensor methods for linear systems and eigenvalue
problems,” Ph.D. dissertation, ETH Zurich, 2012. [Online]. Available:
http://sma.epfl.ch/~anchpcommon/students/tobler.pdf

J. Ballani and L. Grasedyck, “A projection method to solve linear
systems in tensor format,” Numer. Linear Algebra Appl., vol. 20, no. 1,
pp. 27-43, 2013. [Online]. Available: https://doi.org/10.1002/nla.1818
R. Weinhandl, P. Benner, and T. Richter, “Low-rank linear fluid-
structure interaction discretizations,” ZAMM Z. Angew. Math. Mech.,
vol. 100, no. 11, p. e201900205, 2020. [Online]. Available:
https://doi.org/10.1002/zamm.201900205

J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, “Communication-
optimal parallel and sequential QR and LU factorizations,” SIAM J. Sci.
Comput., vol. 34, no. 1, pp. A206-A239, 2012. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/080731992

R. Penrose, “Applications of negative dimensional tensors,” in Combi-
natorial mathematics and its applications, 1971, pp. 221-244.

H. A. Daas et al, “MPI_ATTAC.” [Online]. Available: https:
//gitlab.com/aldaas/mpi_attac

Z. Xianyi et al., “OpenBLAS.” [Online]. Available: https://github.com/
xianyi/OpenBLAS

E. Gabriel, G. E. Fagg et al., “Open MPI: Goals, concept, and design of
a next generation MPI implementation,” in EuroMPI ’04, 2004, pp. 97—
104. [Online]. Available: https://doi.org/10.1007/978-3-540-30218-6_19
F. Hecht, “New development in FreeFem++,” J. Numer. Math., vol. 20,
no. 3-4, pp. 251-265, 2012. [Online]. Available: https://freefem.org/

