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Abstract. The tensor-train (TT) format is a highly compact low-rank representation for high-
dimensional tensors. TT is particularly useful when representing approximations to the solutions of
certain types of parametrized partial differential equations. For many of these problems, computing
the solution explicitly would require an infeasible amount of memory and computational time. While
the TT format makes these problems tractable, iterative techniques for solving the PDEs must be
adapted to perform arithmetic while maintaining the implicit structure. The fundamental operation
used to maintain feasible memory and computational time is called rounding, which truncates the
internal ranks of a tensor already in TT format. We propose several randomized algorithms for
this task that are generalizations of randomized low-rank matrix approximation algorithms and
provide significant reduction in computation compared to deterministic TT-rounding algorithms.
Randomization is particularly effective in the case of rounding a sum of TT-tensors (where we
observe 20x speedup), which is the bottleneck computation in the adaptation of GMRES to vectors
in TT format. We present the randomized algorithms and compare their empirical accuracy and
computational time with deterministic alternatives.
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1. Introduction. An increasing number of applications in science and technol-
ogy involve the manipulation of multidimensional data, or tensors that are higher
order equivalents of vectors (first-order) and matrices (second-order). The number of
elements of a tensor as well as the storage consumption grow exponentially with the
number of dimensions, a phenomenon known as the curse of dimensionality. When
problems of high dimensions are concerned, beating the curse of dimensionality and
finding a solution efficiently remains a challenge. Nevertheless, different tensor for-
mats and methods based on tensor products [25, 26, 32, 36, 45] have shown potential
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for mitigating the curse of dimensionality and tackling high-dimensional problems
that could not be addressed with conventional methods. Initially, the concept of
tensor decompositions was introduced in 1927 by expressing a tensor as the sum of
a finite number of rank-one tensors [29]—also known as the canonical format. The
canonical format’s memory requirements are not high, though it can suffer from nu-
merical stability issues [15, 30]. Tensors in Tucker form [7] are well known in quantum
chemistry [15, 30] since they yield robust algorithms due to the ability to form an em-
bedded manifold [35], but one of the disadvantages of the Tucker format is its storage
consumption that still depends exponentially on the number of dimensions.

One of the most promising tensor formats is the tensor-train (TT) format, a
tensor product format that was initially proposed in quantum physics, also known as
matriz product states [21], and was reinvented in numerical linear algebra [44, 46]. It
combines both the advantages of the canonical and Tucker formats, i.e., (1) the storage
consumption of a tensor depends linearly on the number of dimensions and (2) there
exist robust algorithms for the computation of best approximations. Applications of
the TT format arise from various applications such as high-dimensional PDEs like
the Fokker—Planck equations [18, 49|, quantum physics [40, 51], high-dimensional
data analysis [33, 34], machine learning [8, 12, 20, 42|, and uncertainty quantification
[39, 53], to mention just a few. Typically, those applications require an approximate
solution of linear systems of equations, eigenvalue problems, or completion problems
[4, 23, 48]. The TT format is a low-rank representation that, for TT-tensors with
small rank, offers a tremendous reduction in the computational complexity and often
exposes the structure of the problem. The use of low-rank structures such as the TT
format [44] to represent high-dimensional objects allows the solution of linear high-
dimensional problems by generalizing standard numerical linear algebra techniques
to multi-index arrays of coefficients (tensors) and the multivariate functions they
approximate.

In this paper, we focus on the problem of rounding a tensor in TT format; that is,
assuming that we are given a TT-tensor, we want to find a compressed representation
that is nearly as accurate as the original representation. There are several techniques
for computing the initial TT-tensors which do not require forming the entire ten-
sor explicitly [16, 37, 43, 50]. One such technique that is popularly used is called
the TT-cross approximation. The standard TT approach to rounding, proposed by
Oseledets [44], has two phases [44, Algorithm 2]: orthogonalization followed by com-
pression (typically using the SVD). Here, by orthogonalization, we mean a sweep of
orthogonalization steps across every tensor core. Analysis shows that the orthogonal-
ization step dominates the computational cost of this approach. Motivated by this
observation, the goal of this work is to develop randomized algorithms for rounding
TT-tensors that avoid expensive orthogonalization. In the following, we present the
main contributions of this paper.

Overview of the paper and main contributions. This paper develops several new
randomized algorithms for rounding tensors in the T'T format and is organized as
follows. In section 2, we set some notation as well as review some basic material
on randomized matrix algorithms and standard TT operations along with a detailed
analysis of their computational costs. In section 3, we propose various new randomized
algorithms for TT-rounding with the focus on randomize-then-orthogonalize, two-
sided-randomization, and rounding of a sum of TT-tensors:

1. In Algorithm 3.1, randomize-then-orthogonalize, we propose to form ran-
domized sketches of each core by nested contractions with a TT-tensor with
random cores in a first step, before performing the orthogonalization sweep
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on these much smaller matrices. Our analysis and experiments show that
this approach allowed for the best speedup compared to the deterministic
algorithm while retaining excellent accuracy.

2. In Algorithm 3.2, two-sided-randomization, we completely eliminate the need
for separate orthogonalization and compression sweeps. Instead, we work
with a two-sided randomized approach which computes products with two
random tensors followed by a compression step (which involves orthogonal-
ization of much smaller matrices). Although this approach is slightly more
expensive in terms of flops count and is less accurate than techniques men-
tioned before, it eliminates the need of extensive orthogonalization and allows
for the truncation phase to be more independent and highly parallelizable.

3. We extend the randomize-then-orthogonalize approach for compressing a TT-
tensor that is presented as a sum of TT-tensors (Algorithm 3.3). This special
case is of importance in many applications such as solving parametric linear
systems in the TT format. The use of randomization enables significant
performance improvements by exploiting the structure of the sum tensor in
a way that a deterministic algorithm cannot.

4. Additionally, in Algorithm SM2.1, orthogonalize-then-randomize, we replace
the SVD step in the standard TT-rounding algorithm with a randomized
SVD assuming that the truncated ranks are known a priori. This method,
while not competitive to the other proposed approaches, serves as a point of
comparison.

We provide an analysis of the computational cost of the proposed algorithms in sub-
section 3.4 and show that they are computationally more efficient than existing al-
gorithms. We justify our analysis through numerical experiments in section 4 on
both synthetic data and tensors generated while solving parametric partial differential
equations (PDEs). Some conclusions and future outlook are presented in section 5.
The MATLAB code for the implementation and numerical experiments is publicly
available at https://github.com/SAMSI-RandTensors/randomized TT.

Related work. There have been several recent developments in obtaining low-rank
compression of tensors. We limit our literature review to the publications dealing
with TT-tensors described in [44], which is closest to our work, and refer the reader
to review papers for other developments in tensor decompositions [1, 10, 11, 25].
Oseledets [44] proposes a method for rounding TT-tensors. A parallel version of this
method is introduced and developed in [13]. Our newly proposed approaches are more
computationally efficient compared to existing deterministic algorithms. Other works
[2, 9, 31] discuss randomized algorithms for compressing tensors in the TT format.
These approaches differ from ours in that they require access to the entries of the
tensor, i.e., they do not assume that the tensor is already in TT format. A recent
paper [3] also uses randomization to produce a TT approximation of a full tensor but
relies on tensor actions (i.e., applications of the tensor on N — 1 vectors, where N
is the order of the tensor). Other methods for constructing a low-rank compression
in the TT format involve alternating least squares [19]. The use of tensor random
projections in which the random tensors are taken to be in TT format have also been
considered in [6, 22, 47]. While these papers use randomization in the context of TT-
tensors, none of them directly address the problem of rounding, which is the central
focus of our paper.

2. Background. Here, we review the notation and necessary operations involv-
ing tensors in a modest amount of detail. For a more comprehensive exposition we
refer the reader to [13, 36, 44].
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2.1. Notation. We denote tensors by boldface script letters (e.g., X) and
matrices by boldface Roman letters (e.g., A). We follow MATLAB-like convention
and denote the entries of a three-way tensor X as X(i,j,k). A colon denotes the
entire range of indices in that dimension. We denote the column fibers as X(:, j, k),
row fibers as X(j,:, k), and tube fibers as X(j, k,:). The mode-n unfolding (or matri-
cization) of the tensor X is denoted as X € RIn>xU/In) where [ = I115---I,. The
columns of the mode-n unfolding are composed of the appropriate mode-n fibers, e.g.,
the columns of mode-1 unfolding are column fibers and the columns of mode-3 un-
folding are tube fibers. Given a matrix A € RM*In the mode-n product Y =X x,, A
is defined by its mode-n unfolding Y,y = AX(,). The norm of a tensor is equivalent
to the Frobenius norm of any of its unfoldings: [|X|| = || X[l -

An order-N tensor X € R XI~ ig in the TT format if there exist positive
integers Ry,...,Rxy with Ry = Ry = 1 and order-3 tensors Jx 1,...,Tx n, called
TT-cores, with Tx , € REr-1xInxRn for 1 <n < N, such that

x(ila .. 77/]\7) :g‘x,l(i17 :) """ Tx,n(:7in7 :) Tt j’x,N(zaiN%

where 1 < i, < I,. Note that because Ry = Ry = 1, the first and last TT-cores are
(order-2) matrices so Tx 1(i1,:) € Rf and Ty n(:yin) € REN-1. The R, x R,
matrix Tx . (:,in,:) is referred to as the i, th slice of the nth TT-core of X. It is worth
mentioning that the TT decomposition is not unique due to the multiplicative nature
of the format.

In order to express the arithmetic operations on TT-cores using linear algebra,
we will often use two specific matrix unfoldings of the order-3 tensors. The horizontal
unfolding of a TT-core Jx , corresponds to the concatenation of the slices T
(:yin,:) for i, =1,..., I, horizontally. We denote the corresponding operator by H,
so that H(Tx ) is an R,,_1 X I, R,, matrix. The vertical unfolding of a TT-core T ,,
corresponds to the concatenation of the slices Tx ,,(:,in,:) for i, =1,..., I, vertically.
We denote the corresponding operator by V, so that V(JTx ) is an R,_1I, x R,
matrix; see Figure 2.1. Moreover, we will often make use of a tensor network diagram
(see Figure 2.2) to graphically illustrate TT-tensor operations. Here nodes represent
tensors and edges represent modes so that connected nodes can be contracted.

Let X(1.) € Rl Tn)x(Int1-IN) denote an unfolding of the first n modes of a
TT-tensor X. It has the rank R,, representation

X1m) =V(Tx,1:0)H(Tx ng1:8)s

Rn—1

H(Tx,n) € Rftn—1xInFn

is horizontal unfolding

T € REn—1XInXRn

is a T'T core

V(Tx,n) € REn—1InxBn
is vertical unfolding

Fic 2.1. Horizontal and vertical unfoldings of a TT-core Tx p.
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Fic 2.2. Tensor network diagram for an order-5 TT-tensor.

where in an extension of their earlier definitions, V(Tx 1.n) € RU1l2In) X Rn penresents

the mode-(n + 1) unfolding of the product of the first n TT-cores and
H(Tx n+1:N) € RR"X(I"“”'IN)) represents the mode-1 unfolding of the product of
the final N —n TT-cores. Likewise, we can write the same unfolding as a product of
four matrices (see [13, eq. (2.3)]), i.e

(21) X(l:n) = (Iln &® V(Tx,lznfl))V(Tx,n)H(Tx,nJrl)(H(:Tx,n+2:N) ® Iln+1 )

Suppose we have two tensors Y and Z of the same dimension, and consider their
sum X. The cores of the tensor X can be expressed as

‘J’HJ’L( Z’ﬂ) )

:fo,n(iaim') 2§nSN—1,

Tz,n(:7 in, ):| ’

and for the first and the last core, we have

Toe1(in,)) = [Tya(in:) Txa(in,:)]  and TXN(ZN){?T";ZE;J;H

Let X € R™*™ with m > n. We denote the thin QR factorization of X as X = QR,
where Q € R™*"™ has orthonormal columns and R € R™*"™ is upper triangular; we also
write [Q,R] = QR(X) for use in algorithms. The SVD of X is denoted by ULV ',
where the matrix U € R™*™ has orthonormal columns containing the left singular
vectors, 3 € R™*"™ is a diagonal matrix with the singular values on the diagonal, and
V € R™*" is an orthogonal matrix, whose columns contain the right singular vectors.
Assuming that the Householder QR algorithm is used and Q is formed explicitly,
the computational cost of the QR factorization is 4mn? — 4” +0O(n?) flops. Given a
threshold € > 0, we truncate the singular values of X to obtaln a rank-k approximation
UkEkV;— of matrix X, which satisfies ||X—Uk§3kV,;r lF <esvpl|X||F. This is denoted
as [Ug, Xk, Vi] = SVD(X,esyp). The computational cost of computing the SVD is
O(mn?) flops.

2.2. Randomized matrix algorithms. An important component of our ap-
proach is the use of randomized matrix methods for low-rank matrix approximation.
In this subsection, we briefly review a few well-established randomized algorithms.

The first algorithm is the basic version of the randomized SVD proposed in [27].
Suppose we want to compute a low-rank approximation of a matrix X € R™*"™; let
the ¢ denote the number of samples which is a sum of the target rank and a small
oversampling parameter, such that £ < min{m,n}. We generate a random matrix
Q € R™¢; in practice, we take the entries of this matrix to be independent and
identically distributed standard Gaussian random variables. Then, we compute the
product Y = X2 and obtain its thin QR factorization Y = QR. The main insight
exploited by randomized SVD is that if the rank of X is close to r, or the singular
values of X decay rapidly beyond 7, then the range of Q approximates well the range

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/23/23 to 152.17.140.124 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

RANDOMIZED ROUNDING IN THE TENSOR-TRAIN FORMAT AT79

of X in the sense that X ~ QQ " X; we then use QQ ' X as a low-rank approximation
to X. The computational cost of this approach is

Crandasvp = 2¢mn + O(#*(m +n)) flops.

Additional postprocessing can be performed to convert the low-rank approximation
in the SVD format, or to truncate the low-rank approximation to the desired target
rank; see [27] for additional details.

There is one variant of this algorithm that is of particular importance to our newly
proposed methods: the generalized Nystrom method [41]. The generalized Nystrom
method avoids the orthogonalization step when computing a low-rank approximation
by using a two-sided randomized approach. Let us define two Gaussian random ma-
trices Q € R"*? and ¥ € R**™ where 7 < p <min{m,n} (note that ¢ also satisfies a
similar inequality). A low-rank approximation to X is computed as

(2.2) X~Y(¥XQ)'Z,

where Y = XQ and Z = ¥X. To implement the pseudoinverse, [41] suggests comput-
ing the QR factorization ¥X2 = QR and then obtaining the low-rank approximation
(YR™')(Q'Z). If the low-rank approximation is desired in the SVD format, this can
be done by additional postprocessing. In [41], the author recommends setting the
sketch parameters as p =7 and t = [1.57]. The associated computational cost is

ClenNys = 2mn(p +1t) + O(t*(m +n) +tp?) flops.

2.3. Standard TT arithmetic. In this subsection, we review the standard
approach to TT-rounding, first proposed in [44], using the notation of [13]. We also
review the concepts of tensor contractions.

To explain the rounding procedure for TT-tensors, we consider the following anal-
ogy from matrices. Let Y = AB be an outer product matrix where A is m x r and
B is r x n and r <min{m,n}. To obtain an approximation of Y with rank ¢ <r, we
employ an orthogonalization step followed by a compression step. In the orthogonal-
ization step, we want to make Y right orthogonal. That is, we compute the thin QR
factorization BT = QR,, and then compute Z = ART. This gives Y = AB=ZQ",
where Q' has orthonormal rows. In the second step, we compress Z by computing
the rank-¢ truncated SVD Z ~ UXV . To obtain an overall low-rank approximation
to Y, we compute V=QV,, so that Y = uzv’.

Following [13], we say a tensor is right orthogonal if its horizontal unfoldings

H(Tx.n) have orthonormal rows for n = 2,..., N (all except the first core). Simi-
larly, we say that a tensor is left orthogonal if its vertical unfoldings V(Jx ) have
orthonormal columns for n=1,..., N — 1 (all except the last core).

Right-to-left orthogonalization. Suppose we are given a TT-tensor Y. To obtain
a right-orthogonal TT-tensor X equivalent to Y, we first compute the thin QR fac-
torization QR =H(Ty n)" and set the core tensors Tx y_1 and Tx y as

V(Tyn-1)H(Tyn)=V(Tyn-1)(QR) = V(Tyn-1)R") (QT) .
—_—
V(Tx,n-1) H(Tx,N)
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Algorithm 2.1 Right-to-left orthogonalization

Require: A tensor Y in TT format

Ensure: X is a right-orthogonal tensor equivalent to Y
1: function X = ORTHOGONALIZERL(Y)

2: “TDC,N = ‘J’y’N

3: for n =N down to 2 do

4: [(H(Txn) ", R =QR(H(Tx.n)") > thin QR factorization
5: V(fo,n—l) = V(‘-T‘d,n—l) . RT > fo,n—l = g"d,n—l X3 RT
6: end for

T

end function

Algorithm 2.2 TT-rounding

Require: A tensor Y in TT format, user-defined threshold ¢y > 0
Ensure: A tensor X in TT format with reduced ranks such that || X—Y|| <e&o|Y||
1: function X = TT-ROUNDING(Y,¢0)

2: X = ORTHOGONALIZERL(Y)
1Yl

3: Compute ||Y||r and the truncation threshold ept = ——=¢0

4: Set Tx1=Ty,1.

5: forn=1to N —-1do

6: V(T xn),RI=QR(V(Tx,n)) > thin QR factorization
7 [ﬁ, f]?{\/] =SVD(R,e7T) > epp-truncated SVD factorization
8: V(Txn) =V(Txn)U > T =Txn x3U
9: H(Toxns1) =SV T H( T i) > Txni1 =Tt X1 (EVT)
10: end for

11: end function

This procedure is continued through cores N — 1,...,2 but we do not orthogonalize

the first core. The details of right-to-left orthogonalization are given in Algorithm 2.1,
which will form the foundation for many of the subsequent algorithms. We can sim-
ilarly obtain a left orthogonal tensor by processing the modes starting from mode-1,
but we omit the details here.

TT-rounding. Suppose, now, that we want to round the tensor Y in the TT
format, i.e., compress the TT format of a tensor by decreasing the TT-ranks {R,}.
In the first step of the TT-rounding approach, we first obtain a tensor X that is
right orthogonal by applying Algorithm 2.1. Starting with mode-1, for each mode,
we compute a low-rank approximation of the vertical unfolding V(T ,,); rather than
computing an SVD directly, we first compute the thin QR factorization of V(Tx 1),
followed by an SVD of the upper triangular factor R. We then obtain a low-rank
approximation V(Tx ) =~ UXV . The number of singular values and vectors retained
in the low-rank approximation depends on the threshold epr = \/l%so, where ¢ is
a user-defined threshold that controls the overall accuracy. We then rewrite V(JTx ,,)
by combining it with the low-rank factor as V(Tx ) = V(Tx,n)ﬁ. The other two
factors V| are combined with the horizontal unfolding H (T x n+1) for processing at
the next step. This process is terminated after N — 1 steps and the resulting tensor
X satisfies || X —Y|| <eol|Y||. The details are given in Algorithm 2.2.
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Algorithm 2.3 Right-to-left contraction of tensors X and Y.

Require: Tensors X,Y with consistent dimensions in TT format and ranks {RX}
and {RY}, respectively.
Ensure: Matrices {W,,} satisfy W,, = H(Tx n11.8)H( Ty nr1n) ' for 1<n< N
1: function [{W,}] = PARTIALCONTRACTIONSRL(X,Y)
2: WN_1 :H(fo’N)H(Tld’N)T

3 for n=N — 1 down to 2 do

4: V(Tzn)=V(Txn)W, > Tgn=Txn X3 Wy, for temporary Tg, ,,

5: W, 1 =H(Tzn)H(Tyn)" > matrix multiplication, W,,_1 is
Ry x RY_,

6: end for

7: end function

Right-to-left partial contraction. We consider two TT-tensors X and Y with ranks
{ij} and {R}‘»’}7 respectively. For n = 2,..., N we define the partial contraction
matrices

(23) W’n—l :;Ll(‘:fo,n:N),7‘1'1(9./‘3,n:N)T GRR§71XR3*1.
These partial contractions can be computed sequentially as

V(:TZ,n) = V(j’x,n)wny

(2.4) W1 =H (T2 )H(Tyn) "

for n =2,...,N — 1, with Wy_; = H(Tx n)H(Tyn) . Here Z is a temporary
TT-tensor with compatible dimensions and ranks.

The process of computing the matrices {W,,_1}2_, according to (2.4) is called
a right-to-left partial contraction of tensors X and Y and is illustrated in Figure 2.3.
The corresponding algorithm is presented in Algorithm 2.3.

Detailed analysis of the overall computational costs of right-to-left orthogonal-
ization (Algorithm 2.1), TT-rounding (Algorithm 2.2), and right-to-left contraction
(Algorithm 2.3) is presented in section SM1.

3. Randomized algorithms for TT-rounding. In this section, we propose
three new randomized algorithms to perform rounding of a tensor in the TT format,
i.e., given an original TT-tensor Y with TT-ranks {R,} we seck a compressed TT-
tensor representation X with a priori known target ranks {¢,}. In randomized SVD
(see subsection 2.2), it is common to include an oversampling term; that is, if we seek
a rank-r decomposition of a matrix X, we use the number of samples (alternatively,
columns of ) as £ = r + p, where r is the target rank and p is the oversampling

(a) Initial structure

Fic 2.3. Right-to-left partial contraction steps for N =4.
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parameter. The resulting low-rank approximation QQ "X is of rank ¢. However, in
the TT case, to save on notation, when we say target TT-ranks {¢,, }, we assume that
this rank automatically includes the necessary oversampling parameter.

Before we present the main algorithms, we describe a naive application of random-
ized SVD to rounding. The first algorithm we propose, orthogonalize-then-randomize,
is very similar to the standard TT-rounding algorithm; the main difference is that we
replace the truncated SVD step in Algorithm 2.2 with the basic version of the ran-
domized SVD reviewed in subsection 2.2. The nomenclature of this algorithm is clear
from the fact that there are two phases in this approach: an (already discussed)
orthogonalization phase followed by a compression phase which utilizes randomized
SVD. As we show in the analysis of the computational costs, subsection 3.4, and the
numerical experiments, this algorithm is expensive and the costs are dominated by
the first, i.e., orthogonalization, phase of the algorithm. Because of this, the details
of this approach are relegated to the supplementary materials, section SM2.

3.1. Randomize-then-orthogonalize. First, we consider a new randomize-
then-orthogonalize algorithm that uses randomization to reduce the overall compu-
tation cost of the TT-rounding procedure. It works by avoiding an expensive or-
thogonalization of the original TT-tensor Y with TT-ranks {R,} and instead uses
randomization to reduce the computational cost. In contrast to the next approach
in subsection 3.2 (two-sided-randomization), here we use randomization only on one
side.

We first offer a way to construct random Gaussian TT-tensors whose cores are
composed of independent random Gaussian entries.

DEFINITION 3.1 (random Gaussian TT-tensor). Given a set of target TT-ranks
{¢,)}, we generate a random Gaussian TT-tensor R € RIV <IN sych that each core
tensor T, € Rén—1xInxtn s filled with random, independent, normally distributed
entries with mean 0 and variance 1/(€,_11,4,) for 1 <n<N.

By this definition, while the cores of R have independent entries, the entries of
the full tensor themselves are not independent. This normalization is chosen such that
E||T®.n|/% =1 and is sometimes necessary to ensure that no overflow occurs during
the rounding computations. Note that constructing this random tensor requires only
generating and storing Zf:;l ly—14,1, random entries. A related but distinct defi-
nition for a Gaussian TT-tensor is given in [47], but the approach taken here differs
considerably in how we use the randomized tensor.

In Algorithm 3.1, we first generate a random Gaussian tensor R with given target
TT-ranks {¢,} following Definition 3.1. Next, we use the efficient multiplication of
tensor R with a given tensor Y (see Algorithm 2.3) to obtain the sketches (sometimes
also referred to as partial random projections) {W,} of Y (randomization phase).
A visualization of this process is provided in Figure 3.1. Finally, we construct a
left-orthogonal compressed TT-tensor X. Starting with n =1 and Tx 1 =Ty, we
compute the QR factorization of the sketched matrix

(31) [V(Tx,n)H(T‘d,n—&-l:N)] rH(TfR,n-i-lzN)T = Qan~

The equation above is analogous to sketching a factored matrix Y = AB by computing
the QR factorization of ABQ. We emphasize that H(Ty n11.8) and H(Tw nt1:n)
should not be formed explicitly; instead, we compute the contraction

Wn = H(T‘d,n-i-l:N)H(Tﬂl,n—i-l:N)T
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Fic 3.1. Random projection for randomize-then-orthogonalize, Algorithm 3.1.

efficiently using the process outlined in (2.4), then find the QR factorization of the
small matrix

It can be seen via (2.4) that to compute W,, we must first find W, 1,..., Wxy_1, so
in order to avoid redundant computation we use Algorithm 2.3 to obtain the partial
contractions {W,,}”=! once, then store and reuse them.

Since at the nth step the first n — 1 cores of X are already orthogonalized, they
do not need to be considered explicitly in the factorization (3.1). By projecting
V(Tx,n)H(Ty nt1:n) onto the column space of Q,,, we approximate the product of
the final N —n +1 cores as

V(Tx ) H Ty ns1:8) ® QuQa V(Tx )V H(Ty nt1:8) = QoML H(Ty ni1n)-

Then, the cores are updated, i.e., V(Tx ) = Qp and H(Tx nt1) = MpH(Ty nt1)-

It is important to mention that the randomize-then-orthogonalize approach produces
a left-orthogonal tensor X. We can use this observation to compress the tensor fur-
ther. Therefore, if the ranks are not known a priori, then we choose the ranks to be
sufficiently large and truncate them further by using Algorithm 2.2. In particular,
since the output tensor of Algorithm 3.1 is left orthogonal, we can skip the orthogo-
nalization phase (line 2 of Algorithm 2.2) and execute lines 3 to 10. This is what we
do in our numerical experiments when the rank is not known a priori.

3.2. Two-sided-randomization. Analogous to the one-sided Algorithm 3.1,
we start with generating two T'T random Gaussian tensors £ and R with given target
TT-ranks {/,,} and {p,} (with p,, > ¢,) and computing the sketches {WZ} {WZE} of
Y from the left and right, respectively (randomization phase; see Figure SM2). Next,
for each n =1,...,N — 1 we compute the SVD of a product of partial contractions
WLIWE je, WEWE=U,%, V] and form left and right factor matrices

(3.2) L,=W&v, (=02 and R, =(=)Y?U WL,

In order to highlight the significance of matrices L,, and R,,, we consider the following
unfolding of the TT-tensor Y :

Y(l:n) = V(T‘d,l:n)H(T‘d,n-&-l:N)
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Algorithm 3.1 TT-rounding: Randomize-then-orthogonalize

Require: A tensor Y in TT format with ranks {R,}, target TT-ranks {¢,}
Ensure: A tensor X in TT format with ranks {¢,}

1: function X = TT-ROUNDING-RANDORTH (Y, {{,})

2: Select a random Gaussian TT-tensor R with target TT-ranks {¢,}

3: {W,,} = PARTIALCONTRACTIONSRL(Y,R) > compute partial random
contractions

4: zj,l = Ty,l

5: forn=1to N —-1do

6: Z, =V Txn) > T is b1 X I Xx Ry,
7 Y,=7Z,W, > form the sketched matrix
8: V(T xn),~]=QR(Y,) > thin QR to compute an orthonormal basis
9: M, = V(iTxyn)TZn > form ¢,, X R,, matrix
10: H(Tx,n+1) = MnH(T‘d,nJrl) > j’f)C,nJrl = T‘A,nJrl x1 M,

11: end for
12: end function

Algorithm 3.2 TT-rounding: Two-sided-randomization (generalized Nystrom)
Require: A tensorY in TT format with ranks {R,}, target TT-ranks {¢,,} and {p,, }
Ensure: A tensor X in TT format with ranks {¢,}
1: function X = TT-ROUNDING-RANDORTH (Y, {{,})
2: Generate random Gaussian TT-tensor £ with ranks {¢,,}
3: Generate random Gaussian TT-tensor R with ranks {p,} > choose p,, > ¢,
4: {WZL} = PArRTIALCONTRACTIONSLR(Y, £)
> Precompute sketches from the left
5: {W} = PARTIALCONTRACTIONSRL(Y, R)
> Precompute sketches from the right

6: forn=1to N —-1do

T [U,,%,,V,]=SVD(WLWZ) > Compute SVD of WLWZE

>V, is p, X £,
8: L,=WZEv,(=1)1/2 > Determine internal R,, x ¢, left factor L,,
9: R, = (Z/)/?U] WL > Determine internal £,, x R,, right factor R,
10: end for

11: V(:zj’l) :V(j’y’l)Ll

12: forn=2to N —1do

13: 'H(Tx,n) = Rn_er(V(Ty,n)Ln) > fo)C,n = Ty,n X1 Rn—l X3 Ln
> hence Tx p, is £p—1 X I, X £y

14: end for

15: H(TX’N) :RNflfH(:Ty’N)

16: end function

with factors V(Ty 1.n) € RULIn)xBn gnd H(Ty nt1:n) € REnxUnt1IN) - Similarly,
we define matrices

W, = V(Tﬁ,lzn)T c Rénx(ll...jn)7
Q= H(Tgngron) | € RU+1-I8)%00n
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as the partial unfoldings of random Gaussian TT-tensors £ and R, respectively. Then
multiplying matrix Y (;.,) on the left by ¥, and on the right by €2,, yields

‘I’nY(l:n) Qn = (lI’nV(g"d,lzn))(H(T‘d,n+l:N)ﬂn) = W{:W?}«?

Following identity (2.2) illustrating the main idea of the generalized Nystrom method
for matrices discussed in subsection 2.2, we have

T
Y(ln) ~ (Y(ln)ﬂn) (\I,nY(ln)Qn) (\I’nY(ln))
=V(Ty 1) WE(WEWE) WEH(Ty 1)
= V(T‘d,1:n)L7LRnH(T‘d,71,+1:N);

see Figure SM3. Having all left and right factors at hand, for each core of the tensor
Y (treating the first and last cores separately), we distribute them according to the
formula

H(Txn) =Ru1HV(Ty.n)Ly)

forming the cores of the resulting tensor X; see Figure SM4.

In contrast to Algorithm 3.1, the two-sided-randomization approach does not
produce an orthogonal tensor. However, with a little restructuring, it can be adapted
to produce an orthogonal tensor (we do not discuss that here). This variation may
be useful for the case when the target TT-ranks are not known in advance, and
producing an orthogonal tensor can be used in conjunction with Algorithm 2.2 to
further compress the tensor.

3.3. Rounding of TT-sums. One of the most common arithmetic operations
that depends on TT-rounding is TT-summation, i.e., we want to compress a tensor
Y that is available as the sum of s TT-tensors: Y = ‘d(l) + -+ ‘d(s). To reuse ex-
isting algorithms, there are two options available to us. For example, we can form
the TT-tensor Y explicitly and then apply one of the compression algorithms pro-
posed previously. As we will argue in subsection 3.4, the computational cost of this
approach has cubic scaling with respect to the number of summands s using the
TT-rounding approach, and a quadratic scaling with respect to s using the random-
ized approaches (randomize-then-orthogonalize and two-sided-randomization). This
is computationally infeasible as s becomes large. Alternatively, we can form the par-
tial sum Y + 2(2)7 compress this partial sum, add the resulting truncated term
to the summand ‘d(g), and proceed in the same way with the remaining terms; see,
e.g., [5]. Variations of this approach can be performed using ideas from the summa-
tion methods described in [28, Chapter 4.1]. These approaches scale linearly with s,
but assuming that one prescribes a certain tolerance at each pairwise summation step,
this could lead to large intermediate TT-ranks even if the rank of the overall sum is
relatively small.

In this subsection, we show how to combine the addition and randomized rounding
operations to reduce further the computational costs, which is particularly effective
when the number of summands s is large. The basic idea is to exploit the nonzero
structure of the TT-cores of the sum of TT-tensors to avoid computing with zeros.
Applying the orthogonalization phase, as required to perform the deterministic trun-
cation phase, requires assembling the T'T representation of the sum. Furthermore, the
orthogonalization and multiplication by the triangular factor destroy the structure in
the middle cores. By using randomization, we can avoid this explicit TT assembly of
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Algorithm 3.3 TT-rounding of a sum: Randomize-then-orthogonalize

Require: Tensors {‘d(j)}lngS in TT format with ranks {R%j)}lgjgs, target TT-

ranks {/,}
Ensure: A tensor X~ 7, YU in TT format with ranks {¢,}
1: function X = TT-ROUNDING-SUM-RANDORTH({Y " }1< <4, {0, })
2: Select random Gaussian TT-tensor R with ranks {£,,}
3: for j=1to s do

4: (WY} = PARTIALCONTRACTIONSRL(YY) R)  © precompute sketches

from the right

5 end for
6. ‘J’x,l = [TH(I),l e g’y(s)’l:l
7 forn=1to N —-1do
]: Zn=V(Txn) > Toxp is 1 X I, X ijl RY
wi)
9: Y,=VTxn) ; > complete random sketch
(s)
n
10: V(T xn)~]=QR(Y,) > thin QR factorization
11: [Mgv Mﬁﬂ —V(Txn) Zn
12: if n< N —1 then > exploit structure in next internal core
13: H(Tx nt1) = |:M’$L1)H(j"d(l),n+1) MSIS)H(TH“)@H)}
14: else
15: TDC,N:ZMSE1TE(J')7N
j=1
16: end if
17: end for

18: end function

the sum and avoid unnecessary computations on zeros. Algorithm 3.3 provides the
pseudocode for rounding the sum of s input TT-tensors. To simplify the notation, we
derive the efficient computations considering the case s = 2, as the generalization will
be clear. Let Y and Z be two TT-tensors and consider the TT-tensor X =Y+2Z. Let R
be a given random Gaussian TT-tensor and let {W¥} and {W?} forn=1,...,N—1
be the right-to-left partial contractions of Y and Z with R. We have

X(l:n) = V(j’x,l:n)H(g’x,n+1:N) = [V(:T'H,l:n) V(“TZ,l:n):I |:H(TE’H+I:N):| )

H(‘J'Z,n-i-l:N)

and by using (2.1),

V(Tx10) = [I1, @V(Ty10-1) Tr, ©V(Tz,10-1))] [Wf Yon)

H(Ty.nt1) H(Ty nton)® II,LH] .

’H(Tx,nJrl:N) = H(Tz,n+1):| {H(‘Tz,nw:z\/) ® Ifn+1
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The matrix WX can be expressed as

H T n+1: W'd
WffH(S’me:N)H(g'an:N)T[ (Tymr1n) n}

T_
H(TZ,n+1:N):| HTRnt1n) = [W,Z;

This justifies the procedure in Algorithm 3.3 of computing the partial contractions
separately for each summand (line 4) and concatenating them (line 9).

After the QR factorization of the projected matrix produces the truncated core,
we compute the contraction between the new and old cores (line 11) and store the
result in a matrix M,, = [ME MTZL‘] of size £, x (RY + R®). This matrix is now
multiplied from the right by H(Jx n+1:.~) to compute the updated right factor of
X(1:ny- This multiplication can be absorbed by the (n 4 1)th core as follows:

_ Y 21 | H(Tynt1) H(Tyns2n) @1,
Mn'H(‘Ix,nJrlzN) - [Mn Mn] H(Tz,n+1):| |:H(72,n+2:N) ® IInH]a

H(‘I‘der?ZN) ® Iln+1:|

= [Mg%(737n+1) M%H(Tzv”"'l)] |:’H(‘.Tz, +2:8) @1
\n : n+1

Hence we update H(Jx n+1) as in line 13. For n =N — 1 we have

T
Txn=[My_; My_] {TZIIY/] =Mpy_1Tynv+My_ 1Tz N

Generalizing this expression to s terms yields line 15.

3.4. Computational costs. To analyze the computational cost, we make the
following assumptions that will simplify the analysis. Let Y € R’>**I be a tensor of
order N with ranks (1, R,...,R,1) in TT format. We want to compress Y to obtain
a TT-tensor X with ranks (1,¢,...,¢,1). Here and in section SM1, we assume that
{=0(R).

3.4.1. Randomized compression algorithms. We now analyze the compu-
tational cost of Algorithms 3.1 and 3.2. The computational cost of Algorithm SM2.1
is given in section SM2.

Randomize-then-orthogonalize (Algorithm 3.1). Denoting the total cost of Algo-
rithm 3.1 with Cgryo, we analyze the main components that contribute to the total
computational cost. Line 3 invokes Algorithm 2.3 with the corresponding cost de-
noted by Ccontr; see section SM1. Lines 7 and 9 contribute by a factor of 2I R¢? that
is the cost of performing the multiplication V(Jx ,,)W,, of sizes £I x R with R x £
and V(Tx )T Z,, of sizes £ x I¢ and I¢ x R that prepare the matrices Y,, and M,,
respectively, for the next steps. The term 4¢3 + O(¢3) represents the cost of the
thin QR factorization, in line 8, of the matrix Y,, of size I/ x . Line 10 involves
multiplication of matrices of size £ x R and R x IR which costs 21 R%/ flops. The total
cost of Algorithm 3.1 is

Crio = Ccontr + (N —2)(2IR?( + AT R(* +- 4I03) + O(IR? + NR?)
= I(N —2)-(4R*(+6R(* +40%) + O(IR* + NR*) flops.
Two-sided-randomization (Algorithm 3.2). Here we analyze the total cost of

Algorithm 3.2 and denote it by Cysg. The cost of lines 4 and 5 is 2Ccont,. Here, we
recall that the cost of the partial contractions from the left and from the right is the
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same since we assume that ranks are the same, i.e., p,, = ¢,, = £. However, in practice,
we choose p,, > £, to be different for numerical stability. There are two other contri-
butions to the cost that come from two different matrix multiplication: first, of sizes
{x R and Rx IR, and second, of sizes £x R and Rx I£. The cost of the for loop starting
with line 12 is O(N R?). Hence, the total computational cost of Algorithm 3.2 is

Oasr = 2 Coontr + (N — 2)(2I R?*( + 21 R(*) + O(NR?)
= I(N —2)-(6R*(+6R(*)+ O(IR¢+ NR?) flops.

Nakatsukasa [41] suggests oversampling from the left, i.e., taking p, = [1.5¢,]. We
follow this suggestion in our numerical experiments. With this assumption, the cost
is slightly higher, i.e., I(N —2) - (7TR?*( + 8.5R(?) + O(IR{ + NR?) flops, due to the
increased cost of the contraction (Algorithm 2.3) with a larger random tensor.

Comparison of different algorithms. To enable the comparison of the different
algorithms, we set a target rank as £ = SR, where 8 € (0,1] is the ratio between
the target rank ¢ and the current rank R. This allows us to compare the differ-
ent algorithms more clearly. A summary of the dominant costs of the algorithms is
provided in Table 3.1. For simplicity, we also provide a simplified representation of
the computational costs with 8 = ¢/R. In Figure 3.2, we plot the speedup of the
randomized algorithms compared to the TT-rounding algorithm; we used the sim-
plified representation of the costs while generating the figure. It can be easily seen
that all the proposed methods are faster than the TT-rounding algorithm. However,
the speedup using the orthogonalize-then-randomize algorithm is very incremental.
In contrast, the other two algorithms, randomize-then-orthogonalize and two-sided-
randomization, have very similar costs (randomize-then-orthogonalize is slightly more
efficient for smaller ) and have much higher speedups especially if 8 < 1. If S~ 1,
both algorithms are very close to the TT-rounding algorithm. Therefore, the proposed
methods are most efficient if 8 < 1, i.e., the target rank ¢ is much smaller compared
to the original rank R.

3.4.2. Rounding of TT-sums. To explain the benefits of the algorithm for
rounding TT-sums in subsection 3.3, consider the summation of s tensors of or-
der N (size I in each dimension) each with TT-ranks (1, R,...,R,1). Suppose we
form the TT-tensor Y, which represents the summation Y = ijl‘d(j), explicitly.

=

102]) —a—Orth-then-Rand |1
1l —+— Rand-then-Orth
f —+—Two-Sided-Rand

Iéi

Fic 3.2. Illustration of the speedups obtained by the randomized algorithms compared with the
TT-rounding. Here 8 =1{/R is the ratio between the target rank and the original rank of the tensor.
The speedup computations are based on the simplified cost analysis in Table 3.1.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/23/23 to 152.17.140.124 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

RANDOMIZED ROUNDING IN THE TENSOR-TRAIN FORMAT AR9

TaBLE 3.1
Summary of the computational costs (discarding lower order terms) of the randomized algo-
rithms proposed in this paper. For completeness, we also include the computational costs of the
deterministic algorithms in subsection 2.3. Orth and Contr refer to Algorithm 2.1 and Algorithm
2.3, respectively.

Algorithms Computational cost (flops) Simplified cost (flops)
Orth (N —2)I(5R3) -
Contr (N —2)I(2R?¢ 4 2R(?) -

TT-rounding (N —2)I(5R3 + 6R?¢ + 2R(?) (N —2)IR3(5+ 68 + 282)
Orth-then-rand (N —2)I(5R3 + 2R?¢ + 4R€? + 4¢3) (N —2)IR3(5 + 2B+ 48% + 483)
Rand-then-orth (N —2)I(2R?£ + ARL? + 443) (N —2)IR3(43 + 682 + 453)
Two-sided-rand (N —2)I(6R?(+ 6R(?) (N —2)IR3(68 + 682)

The intermediate cores have size sR x I x sR; the first core is of size I x sR and the
last core is of size sR x I. Suppose the target compression rank in each mode is ¢. To
leading order, the cost of executing TT-rounding and orthogonalize-then-randomize
is O(Ns*R3I). In contrast, the costs of using randomize-then-orthogonalize and the
two-sided-randomization approach are both O(N/¢s?R?I). This can be beneficial if
the number of summands s is large, or the rank R is large. This simple cost analysis
does not take into account any structure present in the summation.

Carefully exploiting the structure, as in subsection 3.3, can reduce this cost. In
particular, by using TT-rounding of a sum with s tensors of order N with randomize-
then-orthogonalize summarized in Algorithm 3.3 the leading order computational cost
is O(N¢sR?I) flops. Notice that by exploiting the structure of the tensor and using
randomization, the leading order of the cost is decreased to be linear in s in contrast
to cubic in s when no structure was taken into account and the TT-sum tensor was
formed explicitly. This decrease in the computational cost is obviously more pro-
nounced when the number of summands s is large. In what follows, we present the
analysis of the computational cost of computing the sum of s TT-tensors by random-
ization and by exploiting the underlying tensor structure.

TT-rounding of a sum: Randomize-then-orthogonalize (Algorithm 3.3). We an-
alyze the computational cost of Algorithm 3.3, which we denote by Critosum- The
leading order term is sourced from two main contributions: (1) line 4 that executes
Algorithm 2.3 s times resulting in a total computational cost of sI(N —2)(2R¢?*+2R?()
flops and (2) line 13 that represents s multiplications between matrices of size IR x R
and R x / resulting in a total cost of 2sI R?¢ flops. Next we analyze the source of the
second leading order term present in the total cost. Line 9 contributes by a factor of
two to the second leading term with a cost of 2sI R¢? flops resulting from multiplying
matrices of size I/ x sR and sR x £. Another factor of two comes from the multipli-
cation of two matrices of size £ x I¢ and I¢ x sR in line 11, resulting in a total cost
of 2sIR¢? flops. The last factor of two comes from the second leading order term of
Algorithm 2.3. Computing the thin QR factorization of the matrix of size I¢ x ¢ in
line 10 costs 4¢3 flops. Hence, the total cost of Algorithm 3.3 is

Criosum = 8 Ccontr + (N — 2)(2sI R?( + 4sI R(? + 4103) + O(NIR?)
=I(N —2)- (4sR*( + 6sR(* + 40%) + O(NIR?) flops.

4. Numerical results. In this section, we illustrate numerically the perfor-
mance of the newly developed algorithms using tensor data in TT format. We
consider both synthetic as well as more realistic test examples. Additional numer-
ical experiments are available in section SM4. All the numerical experiments were
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performed on MATLAB R2021a running on a laptop computer with an Intel Core
i9-9980H CPU and 64GB of RAM, using multithreading with four computational
threads.

4.1. TT-tensor with a fixed target rank. In our first numerical experiment,
we illustrate the performance of our rounding algorithms by rounding a random TT-
tensor with a known low-rank representation. Throughout, we choose the ranks of the
right-side randomization in the two-sided-randomization approach (Algorithm 3.2) to
be p=[1.5¢] as discussed in subsection 3.4.1.

The random TT-tensor X is constructed by perturbing a random TT-tensor Xy
with the random TT-tensor €X, as follows: X = Xy + €Xy. TT-tensors Xy, X5 €
R100%--x100 4re order N = 10 normalized random TT-tensors of ranks (1,50, ...,50,1)
(normalized according to their dimension as described in Definition 3.1), and e is
a perturbation scalar taking the values € € {1072,1076,107°}. The ranks of the
perturbed tensor X are (1,50 + 50,...,50 + 50,1), and the perturbation parameter e
determines how well tensor X is approximated by the lower rank tensor X, i.e., if €
is small, then X; is a good rank-(1,50,...,50,1) approximation of X.

We round the random TT-tensor X using Algorithms 2.2, 3.1, 3.2, and SM2.1 to
have ranks (1,¢,...,¢,1), where we vary the parameter ¢ from 35 to 80 by an increment
of 5. We present these results in Figure 4.1. The approximation error is the relative
norm error between tensor X and the approximate rounded tensor §C, ie., % We
also present the time speedup (computed with the average of five independent runs)
of the randomized algorithms compared to the deterministic algorithm.

For all values of perturbation €, the error resulting from the deterministic al-
gorithm (Algorithm 2.2) decreases slightly until the ranks of the rounded tensor are
£ =50. When ¢ > 50, the error appears to be very close to €. The errors resulting from
the randomized algorithms (Algorithms 3.1, 3.2, and SM2.1) are greater than the error
resulting from the deterministic algorithm. Additionally, the randomized algorithms
produce a more accurate approximation when the target rank is larger and are more
accurate when € is small. The orthogonalize-then-randomize and the randomize-then-
orthogonalize method (Algorithms 3.1 and SM2.1) produce a rounded tensor with
similar levels of accuracy, while the two-sided-randomization approach is the least
accurate. For smaller values of ¢, there is less difference in the accuracy between the
different algorithms. The randomize-then-orthogonalize algorithm is the fastest com-
pared to the deterministic algorithm, followed by the two-sided-randomization and
orthogonalize-then-randomize algorithms.

4.2. Solving a parametric PDE in the TT format. As a realistic test ex-
ample, we consider the parameter dependent PDE referred to in the literature as the
cookie problem [38, 52]; see section SM5 for details. Since it is known that the set of
solutions of problem (SM5.1) admits a low-rank representation [14, 24|, we consider
a global linear system encapsulating all these linear systems, i.e.,

N
<2Ai,1®--~®Ai,N> X =57,

i=1

where A ; is the discretization of the operator over the spatial domain with constant
parameter values, for each 2 <i < N, A, ; is the discretization of the operator over the
domain multiplied by the characteristic function corresponding to the corresponding
subdomain, and A;; is a diagonal matrix containing the parameter values for the
corresponding parameter, and for each 2 < j # i < N, A;; is the identity matrix.
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We use the TT-GMRES algorithm [17] to solve this global linear system of equations.
The preconditioned TT-GMRES algorithm builds the basis vectors in TT format
V1,V,, ... using the inexact Arnoldi procedure; since at each step the corresponding
TT-tensors are rounded, this results in an inexact Krylov subspace method. The main
bottleneck is the computation of two linear combinations in each iteration. First, the
following sum of N tensors with the same ranks as Vj is formed when applying the
operator to the kth basis vector computed at the previous iteration, i.e.,

N
W:Z(Ai71®"'®Ai,N)1d;
=1

after application of the preconditioner, Y = ((Zivzl A1) '®I® - ®I)Vy. Second, a
linear combination of k£ + 1 tensors appears when using the Gram—Schmidt algorithm
to orthogonalize W with respect to the previous basis vectors,

1 hjr= Vi, W), j=1,...,k,

k
2= W-S |, Vei-— 2
Z R T R his1k = |2 -

j=1 ’

In both cases, the addition of TT-tensors is followed by a TT-rounding operation in
order to reduce the ranks and keep the computations tractable. Hence, these steps are
amenable to acceleration by using the randomized Algorithm 3.3 as a rounding pro-
cedure in the aforementioned computations. Because the second linear combination

. e =0.01 e =1e-06
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10° ® g * ® TT-Rounding 10 ] TT-Rounding
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Fig 4.1. Comparison of error between a low-rank tensor and full-rank perturbed tensor, and
timings using the deterministic and randomized TT-rounding algorithms for € perturbed tensor for
different values of perturbation €. Statistics were based on five independent runs.
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involves k£ + 1 summands, the randomized implementation reduces greatly the cost of
later TT-GMRES iterations in particular, as the leading order of its computational
cost is decreased from cubic to linear in k, as detailed in subsection 3.4.

We perform numerical experiments with N =5 using a piecewise linear finite ele-
ment discretization with the mesh presented in Figure SM7, for various choices of the
number of parameter samples, I = [, =--- = I, with values of p; distributed linearly
between 1 and 10. The relative tolerance of the TT-GMRES solver is set to 10~8. We
compare the naive, deterministic implementation of the preconditioned TT-GMRES
algorithm with one using randomized summation and rounding steps. Results of the
comparison are reported in Figure 4.2. On the right, we display all internal ranks of
the TT representation of the Krylov vector computed at that iteration. We observe
that the ranks of the basis vectors and number of iterations are the same using both
implementations, and they depend only weakly on the dimension I of the parameter
modes of the tensors. The speedup achieved by the randomized approach increases
consistently with the number of parameter samples.

Taking a closer look at the timing statistics as presented in Figure 4.3, we note
that the computation and rounding of the linear combinations identified above indeed
dominate the computational cost in both cases and are a clear computational bot-
tleneck for the deterministic implementation in particular, as the ranks of the sum
tensor increase to as much as 2491 in these experiments. This explains the remarkable
speedup obtained with the randomized approach.

20

—§— Total speedup D 2007 ' ' '
18 -|—§—TT-Sum + Round d
6! ! g888gese
150 - 00 ﬁs
14+ @ ®e ®
% x ...
g1 S 1001
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61 ] i
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4 ‘ ‘ 0-e®
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Number of parameter samples |, = .. =l (log scale) TT-GMRES iteration number

Fic 4.2. Illustration of the speedups (left) and TT-ranks of the Krylov basis vectors (right)
obtained by the deterministic and randomized summation and rounding algorithms within the TT-
GMRES algorithm to solve problem (SM5.1).
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Fic 4.3. Illustration of the timings using the deterministic and randomized summation and
rounding algorithms within the TT-GMRES algorithm to solve problem (SM5.1).
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5. Conclusions and outlook. In this paper, we present randomized algorithms
for rounding a tensor, assuming that we have an initial representation in the TT for-
mat. This initial representation may not be optimal in terms of storage, and the
randomized compression techniques can be used to obtain a more efficient representa-
tion. We derive three different algorithms: orthogonalize-then-randomize, randomize-
then-orthogonalize, and two-sided-randomization. We study the computational cost
of these algorithms in some detail and show that it can be much smaller than the stan-
dard TT-rounding algorithm. Additionally, we consider the special case of rounding
a TT-tensor that is represented as the sum of many TT-tensors. While applying each
of the randomized algorithms proposed here can reduce the computational cost over
standard TT-rounding, we further exploit the structure of the problem to reduce the
computational cost to be linear in the number of summands. We perform extensive
numerical experiments and achieve over 20x speedups on test problems compared
to standard algorithms. There are many avenues for future investigations. First, it
would be interesting to derive probabilistic bounds for the accuracy of the rounding
approach. Second, we could consider extending our algorithms to the case where
the TT-tensor is obtained as the Hadamard (or elementwise) product of two ten-
sors. Finally, another extension worth considering is developing randomized rounding
algorithms in the H-Tucker format.
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