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A  B  S  T  R  A  C  T  
 

Crop growth models are powerful tools for predicting crop growth and yield. Gross primary production (GPP) is a 

major photosynthetic flux that is directly linked to crop grain yield. To better understand the potential of GPP for 

regional crop yield estimation, in this study, a novel crop data-model assimilation (CDMA) framework was 

proposed that assimilates accumulative GPP estimates from the satellite-based vegetation photosynthesis model 

(VPM) into the WOrld FOod STudies (WOFOST) model using the ensemble Kalman filter (EnKF) algorithm to 

estimate winter wheat GPP and grain yield. Results showed that the WOFOST simulated GPP agreed with the 

GPPEC derived from eddy flux tower (R2 = 0.74 and 0.47 in 2015 and 2016, respectively). Assimilating GPPVPM 

into the WOFOST model improved site-scale GPP estimation (R2 = 0.87 and 0.67 in 2015 and 2016, respec- 

tively), and also improved regional-scale winter wheat yield estimates (R2 = 0.36 and 0.29; RMSE= 479 and 572 

kg/ha in 2015 and 2016, respectively) compared with the open loop simulations (R2 = 0.14 and 0.10; RMSE= 
801 and 788 kg/ha in 2015 and 2016, respectively). Our study demonstrated that assimilation of remotely sensed 

GPP optimized the results of carbon simulation in the WOFOST model and highlighted the potential of GPP for 

regional winter wheat yield estimation using a data assimilation framework. 
 

 

 

 
1. Introduction 

 
Winter wheat is the most widely cultivated food crop globally, and 

one of the most important cereal crops traded in international markets 

(Becker-Reshef et al., 2010; Fao, 2017; Zhu et al., 2022). Winter wheat 

production is directly related to winter wheat sale and trade price and 

plays an important role for food security. Therefore, accurate moni- 

toring of regional winter wheat growth and estimation of winter wheat 

yield are becoming increasingly crucial for the world’s food security and 

sustainable crop production. 

Many previous studies used crop growth model (CGM) to simulate 

the growth status and grain yields of crops, and the CGM based on a 

series of input data for relevant physiological characteristics of the 

crops, as well as other factors, such as soil properties, crop management 

strategies, and weather conditions throughout the growing season 

(Huang et al., 2015b). A number of crop models have been developed, 

 
and most have been successfully applied to simulate the growth and 

yield of winter wheat, such as APSIM (Xiao and Tao, 2014), AquaCrop 

(Iqbal et al., 2014), EPIC (Lu and Fan, 2013), DSSAT (Attia et al., 2016), 

STICS (Palosuo et al., 2011), and WOFOST (Boogaard et al., 2013). 

However, crop models were widely used at the point (site) scale (de Wit 

et al., 2012), making it difficult to extrapolate from those estimates to a 

regional scale. 

This extrapolation to a large area becomes possible using data 

assimilation methods that integrate regional-scale information from 

remote sensing observations into process-based crop growth models. 

This approach offers powerful tools to simulate the physiological 

development, growth, and yield of a crop, and have been demonstrated 

to be one of the promising approaches for crop growth monitoring and 

yield estimation at the regional scale (de Wit and van Diepen, 2007; de 

Wit et al., 2012; Huang et al., 2015a, 2015b, 2016; Ines et al., 2013; 

Nearing et al., 2012; Xie et al., 2017). Moreover, important biophysical 
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parameters, including the leaf area index (LAI), canopy cover and soil 

moisture can be retrieved from remotely sensed data, and can help in 

fine-tuning input parameters and state variables by reducing the un- 

certainty with data assimilation approaches (Weiss et al., 2020). 

Researchers have accounted for various state variables into different 

crop models using data assimilation methods to estimate winter wheat 

yield at a regional scale, such as LAI (Chen et al., 2018; Dong et al., 2016; 

Huang et al., 2015b; Silvestro et al., 2017; Xie et al., 2017; Zhuo et al., 

2022), soil moisture (SM) (de Wit and van Diepen, 2007; Zhuo et al., 

2019), evapotranspiration (ET) (Huang et al., 2015a; Ines et al., 2006; 

Vazifedoust et al., 2009; Zhuo et al., 2022), above ground biomass 

(AGB) (Dumont et al., 2014; Jin et al., 2017), and canopy reflectance 

(Huang et al., 2019b). They have achieved promising results and have 

improved crop yield estimation. However, how to combine carbon 

fluxes (e.g., gross primary production (GPP), net primary production 

(NPP)) within crop data-model assimilation (CDMA) scheme for crop 

yield estimation need more advanced research. Migliavacca et al. (2009) 

assimilated MODIS NDVI into a process-based model (BIOME-BGC) by 

constructing a cost function to simulate GPP, and obtained good accu- 

racy for daily and annual GPP predictions. Combe et al. (2017) used the 

WOFOST model coupled with a soil respiration function to obtain the 

net surface CO2 exchange between croplands and the atmosphere. Their 

method generated satisfactory daily to multiannual hindcasts of crop- 

land GPP and net ecosystem exchange (NEE) under normal to mild 

water-stress conditions in Europe. Wang et al. (2013) used simulated 

annealing algorithm to calibrate the WOFOST model based on in situ 

observation data (e.g., GPP, LAI and yield) from one sample site. Their 

study demonstrated successful assimilation of these state variables into 

the WOFOST model at a local scale. They found a marked enhancement 

of the accuracy for these state variables and better performance after 

assimilation. In summary, these studies only assimilated variables (e.g., 

LAI) into a process-based model to generate CO2-assimilation related 

variables (e.g., NEE, GPP) or assimilated carbon flux variables (GPP) at a 

local scale for crop yield estimation, but such efforts have not been 

performed at the regional scale for winter wheat yield estimation and 

the potential of assimilating GPP into crop models has not been fully 

exploited. 

Several remote sensing-based GPP data products have been pro- 

posed, such as the MODIS GPP product (Running et al., 2004; Zhao and 

Running, 2010), vegetation photosynthesis model (VPM) (Xiao et al., 

2004a; Zhang et al., 2017b), FLUXCOM (Jung et al., 2017), Support 

vector regression (SVR) (Kondo et al., 2015), Photosynthesis-respiration 

(PR) (Keenan et al., 2016), Breathing Earth System Simulator (BESS) 

(Jiang and Ryu, 2016) and Eddy Covariance Light Use Efficiency 

(EC-LUE) (Yuan et al., 2019). In the present study, VPM was chosen as 

the observational GPP simulation model to be coupled with the 

WOFOST model to construct an improved CDMA framework. One 

advantage of VPM is its ability to account for the climate variables that 

are used for light use efficiency (LUE) calculation (Wu et al., 2010). In 

addition, VPM has shown promising results for GPP estimates for 

various land cover types, including forest (Xiao et al., 2004a, 2004b, 

2005), grasslands (Li et al., 2007; Wagle et al., 2014; Wu et al., 2008), 

savannas (Jin et al., 2013), upland crops such as maize, winter wheat 

and soybean (Doughty et al., 2018; Kalfas et al., 2011; Wang et al., 

2010), paddy rice (Xin et al., 2017) and inland freshwater wetlands 

(Kang et al., 2014). 

In summary, previous research has not yet fully addressed several 

key points. First, we’d like to test whether GPP simulated by the 

WOFOST model can reflect carbon sequestration of crops especially 

winter wheat, because most crop growth models are designed to simu- 

late crop growth, and focus primarily on crop yield (Wang et al., 2013). 

Second, previous research examined the most commonly used state 

variables (e.g., LAI, SM, ET and AGB) in a CDMA scheme, but did not test 

whether GPP was an effective variable to improve the performance of 

winter wheat yield estimation at the regional scale. As a consequence, 

we designed the present study to provide a deeper understanding of 

these questions by developing a novel CDMA framework that assimilates 

remotely sensed GPP data derived from VPM into the WOFOST model 

for improving winter wheat yield estimation. Specifically, we aimed to 

answer the following three key questions: (1) evaluating the perfor- 

mance of GPPWOFOST in winter wheat fields; (2) at the local scale, 

assessing the feasibility of assimilating GPPVPM into the WOFOST model 

and validating the GPP simulation results with and without data 

assimilation; (3) at the regional scale, estimating regional-scale winter 

wheat yield, and validate how much accuracy can it improve by 

assimilating GPPVPM into the WOFOST model. 

 
2. Materials and methods 

 
2.1. Study area 

 
The state of Oklahoma is located in the south-central United States, 

where it covers an area of 181,000 km2. We used this state as a case 

study of our data-assimilation method. Oklahoma has a temperate 

climate, and experiences the occasional extremes of temperature and 

precipitation that are typical of a continental climate. Oklahoma’s main 

winter wheat production areas are located in the west, which has a semi- 

arid climate (Fig. 1). In the western areas, the average annual temper- 

ature is approximately 14 ℃, with an annual rainfall of approximately 
500 mm (Illston et al., 2004). An eddy covariance flux tower site 

(35.56850◦ N, 98.05580◦ W) was established at the United States 

Department of Agriculture-Agricultural Research Service (USDA-ARS), 

Grazinglands Research Laboratory (GRL) in El Reno, Oklahoma (Fig. 1). 

The study site was a single-crop winter wheat site and the collected flux 

data were used to calculate the site-scale GPP. In Fig. 1, the 30 m winter 

wheat map came from Cropland Data Layer (CDL, https://www.nass.us 

da.gov), and the 500 m winter wheat map, which was corresponding to 

the CDMA assimilation unit, was resampled from the CDL and have the 

same spatial reference with MODIS data. 

Winter wheat is a cool season crop and is the primary agricultural 

crop grown in Oklahoma. Winter wheat in this study area was planted 

from early September to October. About 90% of the winter wheat 

emerges by mid-November (USDA-NASS, 2014). Jointing typically oc- 

curs from early March to mid-April, followed by the flowering until late 

April. Grain-filling begins from late April to May, and harvest usually 

occurs in early June (Zhang et al., 2017a). 

 
2.2. Data 

 
2.2.1. Eddy covariance flux tower data from the winter wheat site 

An eddy covariance (EC) tower was installed to measure the CO2, 

H2O and energy fluxes (Bajgain et al., 2018). The tower uses a 

three-dimensional sonic anemometer (CSAT3) and an open path 

infrared gas analyzer (LI-COR 7500) to measure NEE for CO2 between 

the crop, the soil, and the atmosphere. The measured NEE was gap filled 

and then partitioned into ecosystem respiration (ER) and GPP based on 

the short-term temperature sensitivity of the ER (Lloyd and Taylor, 

1994; Reichstein et al., 2005). The R package “REddyProc” tool was 

used for calculation of the tower scale GPP (Moffat et al., 2007; Reich- 

stein et al., 2005). More details regarding this method can be found at 

https://www.bgcjena.mpg.de/bgi/index.php/Services/REddyProcWeb 

-RPackage. 

 
2.2.2. Oklahoma agricultural statistical data 

The Oklahoma agricultural data included statistical data from the 

United States Department of Agriculture (USDA), the National Agricul- 

tural Statistics Service (NASS) and a cropland area dataset from Crop- 

land Data Layer (CDL). The annual county level statistics of winter 

wheat planted area, harvest area, winter wheat yield in 2015 and 2016 

were collected from the USDA-NASS (https://quickstats.nass.usda. 

gov/). The annual CDL data at a 30-m resolution in 2015 and 2016 

were also from the USDA (https://www.nass.usda.gov). CDL is a remote 

https://www.nass.usda.gov/
https://www.nass.usda.gov/
https://www.bgcjena.mpg.de/bgi/index.php/Services/REddyProcWeb-RPackage
https://www.bgcjena.mpg.de/bgi/index.php/Services/REddyProcWeb-RPackage
https://quickstats.nass.usda.gov/
https://quickstats.nass.usda.gov/
https://www.nass.usda.gov/
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Fig. 1. Maps of the study area. (a) winter wheat distribution (at 30-m spatial resolution); (b) winter wheat percentage of pixel area map within individual MODIS 

pixels (at 500-m spatial resolution) in 2015; (c) Eddy covariance flux tower at El Reno site.  

 

sensing-based land cover product and has more than 100 types of crops 

with classification accuracy greater than 90% for major crops such as 

maize, soybean and winter wheat (Boryan et al., 2011). The Landcover 

map of Oklahoma State generated from CDL is provided in the 

Supplementary. 

 
2.2.3. Gross primary production data from VPM, the MOD17A2 and 

MOD15A2 product 

The VPM model was employed to estimate the 8-day GPP with 500 m 

spatial resolution. It is constructed upon the concept that a vegetation 

canopy is composed of non-photosynthetic vegetation and chlorophyll 

(Xiao et al., 2004a, 2005). The primary input datasets for the VPM 

included  MODIS  (MOD09A1,  MYD11A2  and  MCD12Q1), 

NCEP-reanalysis II (temperature and radiation) (https://www.esrl.noaa. 

gov/psd/data/gridded/data.narr.html), Earth Stat (major crop type 

distribution), and ISLSCP II (C4 vegetation percentage map). These 

datasets were used to calculate the temperature, LUE, vegetation indices 

and photosynthetically active radiation (PAR), and then generate the 

GPP time series. The global GPPVPM dataset is available at https://doi. 

org/10.1594/PANGAEA.879560 (Zhang et al., 2017b). 

The 8-day MOD17A2H version 6 GPP product (GPPMOD17) and 

MOD15A2H version6 LAI product (LAIMODIS) with 500 m spatial reso- 

lution from 1 January 2015–31 December 2016 was also used in this 

study. GPPMOD17 was used to provide a comparison with the different 

GPP results. This product also uses a LUE model to estimate GPP, one of 

the major differences between GPPVPM and GPPMOD17 is that VPM uses 

the fraction of PAR absorbed by chlorophyll (Xiao et al., 2004a), 

whereas the MOD17A2H product uses the fraction of PAR absorbed by 

the canopy (Running et al., 2004). LAIMODIS was used to be assimilated 

into the WOFSOT model for comparing with the GPP CDMA simulation 

results. 

2.3. The vegetation photosynthesis model (VPM) 

 
The VPM model is a light (energy) use efficiency model based on 

satellite remote sensing data and flux observations. It was developed to 

estimate GPP during the photosynthetically active period of vegetation 

as the product of PAR absorbed by chlorophyll (APARchl) and light use 

efficiency (Xiao et al., 2004a). VPM can be described as follows: 

GPP = εg × APARchl (1) 

APARchl = FPARchl × PAR (2) 

εg = ε0 × Tscalar × Wscalar (3) 

Where εg is the light use efficiency (μmolCO2/μmol, PPFD), PAR is 

photosynthetically active radiation (μmol photosynthetic photon flux 

density, PPFD), APARchl is the amount of PAR absorbed by 

chlorophyll, FPARchl is the fraction of PAR absorbed by chlorophyll, 

which is estimated as a linear function of Enhanced Vegetation Index 

(EVI). The light use efficiency (εg) is affected by temperature and water, 

and it can be calculated by Eq. (3). Where ε0 is the apparent quantum 

yield or maximum light use efficiency, and Tscalar and Wscalar are the 

scalars for the effects of temperature and water, respectively. 

 
2.4. WOFOST model 

 
The WOFOST (WOrld FOod STudies) model (de Wit, 1965; Boogaard 

et al., 2013) estimates crop growth given a set of crop, soil and meteo- 

rological parameters. The major processes are phenological develop- 

ment, CO2-assimilation, transpiration, respiration, partitioning of 

assimilates among various organs, and dry matter formation. The model 

can run in a potential mode (with no yield limitations caused by water 

and nutrient stress), a water-limited mode (with water stress), or a 

https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html
https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html
https://doi.org/10.1594/PANGAEA.879560
https://doi.org/10.1594/PANGAEA.879560
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nutrient-limited mode (with nutrient stress). We used the water-limited 

mode because the winter wheat in the study area is not irrigated. The 

general structure of the WOFOST model and potential daily gross CO2 

assimilation rate calculation in the WOFOST model are provided in the 

Supplementary. 

The input data for the WOFOST model included climate, crop and 

soil parameters. The daily climate data used for the point scale WOFOST 

model in this study were obtained from the Oklahoma Mesonet (http 

s://www.mesonet.org), which consists of 121 meteorological stations 

across Oklahoma. The stations measure ten variables every 15 min 

including soil moisture, humidity, soil temperature, pressure, solar ra- 

 

Where y is the observation vector (which can be regarded as GPPVPM in 

this study), and H is the observation operator that relates to y (which can 

be taken as an identity matrix in this study), A represents a state- 

transition model that links xt and xt-1 (which can be regarded as 

WOFOST model in the CDMA framework), ε and ν are Gaussian random 

error vector with a mean of zero (which can be regarded as error of VPM 

and WOFOST model in this study). xm is represent the model simulation 

result at the time t (which can be regarded as GPPWOFOST). 

So, in this study, the optimal estimation xEnKF of xt at t = k can be 

calculated using Eqs. (7) and (8): 

diation, rainfall, temperature, leaf wetness, wind speed and direction xEnKF = (I - KH)xm + Kyt=k (7) 

(Brock et al., 1995). For the regional scale WOFOST model, we inter- 
t=k t=k 

polated data for the six required daily-scale WOFOST weather variables PEnKF = (I - KH)Pm (8) 

(maximum temperature, minimum temperature, wind speed, solar ra- 

diation, precipitation and pressure) to create a 0.1◦ × 0.1◦ grid. In this 

t=k 

 

Where Pm 

t=k 

 

is the WOFOST model state covariance at time k, I and H is 

study, the WOFOST input data were calibrated by field measurement, 

published values and the WOFOST default values. In addition, we 

assumed that Oklahoma state only planted one dominant cultivar. Ma 

the identity matrix, and K is the Kalman gain matrix, which is defined as 

follows: 

K = Pm HT (HPm HT + R )
-1 

(9) 
et al. (2013) and Huang et al. (2015b) describe details of the parame- 
terization and calibration of WOFOST for winter wheat. The 

t=k t=k t 

water-limited mode of the WOFOST model was used in this study, and 

the primary crop and soil parameters are shown in the supplementary 

file. Table 1 shows the spatial and temporal resolution of different input 

parameters used in this study. 

Where Rt is the covariance of VPM at the time t. When solving the 

Kalman gain equation, Houtekamer and Mitchell (2001) suggest calcu- 

lating Pm HT and HPm HT directly from the ensemble members, rather 

than calculating each element of Eq. (9): 

PmHT N -1 
∑Ne  

xm xm Hxm Hxm T 

2.5. The Ensemble Kalman Filter = ( e - 1)  

n=1 
( n -  )(  n - ) (10) 

 

Evensen (1994) developed the Ensemble Kalman Filter (EnKF)  HPmHT N -1 
∑Ne

 
 

Hxm 
 

Hxm 
 

Hxm 
 

Hxm T 

method, which is based on forecasting the error statistics using Monte 

Carlo methods. Burgers et al. (1998) showed that the addition of random 

perturbations to the measurements was essential for calculation of the 

= ( e - 1) 

 
∑Ne 

(  n - 
n=1 

)(  n - ) (11) 

analyzed ensemble, because it would have too low of a variance unless 

the random perturbations were added to the observations. In the present 

study, we assumed that the observation errors followed a Gaussian 

distribution. The core of the EnKF method is the Kalman filter. If the 

observations are related to the true data at time t xt, 

yt = Hxt + εt (4) 

Rt = (Ne - 1)-1  (on - o)(on - o)T (12) 
n=1 

 

Where Ne is the number of ensemble members, n is a running index for 

ensemble member, and xm represents the GPPWOFOST ensemble mean 

calculated as (13), o represents the GPPVPM ensemble mean calculated as 

(15). 

xm = Axm (5)  xm N ∑Ne  

xm
 

t t-1 -1 
e n 

n=1 

(13) 

xt = xf + νt (6) 

 

Table 1 

Hxm 
∑Ne  

Hxm 
n=1 

 
 

(14) 

The spatial and temporal resolution of different input data/parameters. 
 

 

Model Input data Spatial resolution Temporal 

resolution 

 

o = N-1 
∑Ne 

n=1 

 
on (15) 

WOFOST model 

(Output: daily 

outputs at point 
scale) 

Crop 

parameters 

Soil 
parameters 

Point scale 

 
Point scale 

 
2.6. General framework 

Weather data 10 km (interpolated 

from weather 

station) 

Daily The CDMA framework was developed to assimilate GPP into 

WOFOST using the EnKF algorithm (Fig. 2). The framework consists of 

three parts: VPM, WOFOST and the data assimilation using EnKF. In the 
Management 

data 

Point scale VPM component, ISLSCP II, Earth Stat, NCEP reanalysis II and MODIS 
data were used to calculate the light use efficiency and the absorbed PAR 

VPM model (Output: 8- 

day GPP with 500 m 

resolution) 

MOD09A1 500 m 8-day 

MCD12Q1 500 m Annual 

MYD11A2 1 km 8-day 

by chlorophyll. Then a time series of the GPP was generated. 

In the WOFOST component, the model was driven by crop, soil and 
NCEP- 

reanalysis II 

~1.875◦ × 2◦ Daily meteorological calibrated parameters, which is calibrated by MCMC 
method, and model ensembles were generated. We used field mea- 

Earth Stat 0.083◦ invariant 

ISLSCP II 1◦ × 1◦ invariant 

CDL map 30 m Annual 

surements of LAI and AGB observations to parameterize the likelihood 

function that represented the mismatch between the WOFOST output 

Winter wheat pixel 

(resampled from 

CDL) 

500 m Annual and the measurements. The observations were assumed to be corrupted 

by noise that followed a normal distribution with a mean of zero and a 

10% variance. We used a Markov-chain Monte Carlo (MCMC) method 

= 

https://www.mesonet.org/
https://www.mesonet.org/
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GPP 
∑ 

GPP 

 

Fig. 2. Flowchart for the assimilation of GPPVPM into the 

WOFOST model using the EnKF-based assimilation algo- 

rithm. Notes: ISLSCP II (International Satellite Land Sur- 

face Climatology Project, Initiative II); Earth Stat (global 

major crop types distribution); NCEP (national centers for 

environmental prediction); MODIS (moderate resolution 

imaging spectroradiometer); ε0 (maximum light use effi- 

ciency); T (temperature); LSWI (land surface water index); 

Rad (radiation); EVI (enhanced vegetation index); TScalar 

(temperature limitation for photosynthesis); WScalar (water 

limitation for photosynthesis); PAR (photosynthetically 

active radiation); fPARchl (fraction of PAR absorbed by 

chlorophyll); εg (light use efficiency); APARchl (absorbed 

PAR by chlorophyll); Error1 (GPP error in VPM model); 

OGPP1..n  (GPPVPM  ensemble);  MGPP1..n  (GPPWOFOST 

ensemble); Tmax (maximum temperature); SM (soil 

moisture). 

 

 

 

 

 

(specifically, the DiffeRential Evolution Adaptive Metropolis algorithm, 

[DREAM]; Vrugt et al., 2009) to update three crop parameters (TSUM1 

(the sum of the effective temperatures from emergence to anthesis), 

SPAN (the lifespan of leaves growing at 35 ℃, in days) and TDWI (the 
total initial dry weight of the crop)) of WOFOST from a uniform prior to 

a posterior distribution that is based on the likelihood function. First, we 

ran the DREAM sampler algorithm with 4 parallel chains until we ach- 

ieved a stationary distribution, in which the convergence statistic R hat 

(Brooks and Gelman, 1998) was less than 1.05 or after reaching the 

maximum 50,000 repetitions. Then another 50 repetitions were run, 

which essentially represented a sample from the posterior distribution. 

Finally, the 50 corresponding WOFOST simulated GPP formed the 

ensemble. 

In this study, the ensemble number was set as 50 and the uncertainty 

of the GPPVPM was set to 8% based on the results of Zhang et al. (2017b). 

The WOFOST model ran with a daily time step until a new observation 

(8-day GPPVPM from Jan 1st to May 10th) became available and the run 

was interrupted; the EnKF (the data assimilation component) was then 

used to update the target model state variable (GPP); and the WOFOST 

model was then run using the updated states (optimal GPP). Data 

assimilation was conducted for as long as observation data was avail- 

able. Because the daily GPP is a rate variable rather than a state variable, 

we used accumulated GPP (GPPA) instead of daily GPP (GPPD) in the 

CDMA framework. GPPA can be calculated by Eq. (16): 

D=N 

A = D (16) 
D=1 

 

Where GPPA is accumulated GPP, GPPD is daily GPP, N is the day. 

 
3. Results 

 
3.1. WOFOST simulated LAI and AGB at the eddy covariance flux tower 

site 

 
Fig. 3 shows the simulation and validation with the calibrated 

WOFOST model using the field measured LAI and AGB at the El-Reno 

site. The LAI of winter wheat increased slowly from emergence to 

wintering, and almost stopped growing during the wintering stage. It 

then began to grow rapidly during the green-up stage and reached its 

maximum value prior to flowering stage. Then, it decreased gradually 

from the flowering stage to maturity stage, and decreased rapidly after 

maturity stage. The time series for LAI and AGB simulated by WOFOST 

agree well with the measured LAI and AGB. As shown in Fig. 3, the 

coefficient of determination (R2) of the simulated and observed LAI in 

2015 and 2016 were 0.82 and 0.77, respectively, with RMSE of 0.78 and 

0.77 m2/m2, respectively; the R2 of AGB was 0.94 and 0.93, respec- 

tively, with RMSE of 121.25 and 81.06 g/m2, respectively. Results 

indicated that the WOFOST model was well calibrated and could 

simulate the winter wheat growth status at the study area properly. 

Fig. 4-1(a) and (b) compare the different GPP products. The GPP 

trends followed a similar overall pattern. During the winter wheat 

growing season in both 2015 and 2016, GPP started to increase in mid- 

March and reached a peak in early April. In addition, EVI, which can 

indicate the health, density and growth of vegetation, also had good 

consistency with the GPP results. This reflects the authenticity of the 

different GPP products. Among the four GPP products, GPPMOD17 had 

the lowest value during most days of the growing season, whereas 

GPPWOFOST was slightly higher than GPPVPM and GPPEC during the peak 

growing season (from late March to late April). The scatterplots in Fig. 4- 

1 show good relationship between GPPWFOSOT and GPPEC with R2 of 0.74 

and 0.47 in 2015 and 2016, respectively; the corresponding RMSE were 

3.65 and 4.12 g Cm-2day-1 in 2015 and 2016, respectively. The accu- 

racy of the WOFOST simulated GPP was better in 2015 than that in 

2016. As shown in Fig. 4-1(b), GPPVPM and GPPMOD17 had a peak during 

late April to early May in 2016 which were inconsistent with GPPEC and 

GPPWOFOST. This might be due to the impact of pasture in the pixel 

where eddy covariance flux tower located. 

Before early March in 2015 and late February in 2016, the value of 

GPPWOFOST was consistently 0, which was generally because of the 

wintering stage of winter wheat. During this stage, the average tem- 

perature was low (Fig. 4-2(a) and (b)), and winter wheat will have little 

or no photosynthesis. In 2016, GPPWOFOST during two time periods 

(approximately early March and late March) also had a value of 0. This 

was due to the effect of low temperature limitations in the WOFOST 

model, in which an average minimum temperature for the previous 

seven days lower than 0 ℃ causes the model to assume that photosyn- 

thesis does not occur. These time periods are indicated in gray Fig. 4-2 

(b). 

 
3.2. Assimilation of GPPVPM into WOFOST at the eddy tower site 

 
The performance of the WOFOST simulated GPP after assimilation 

(GPPEnKF) was compared with GPPEC, GPPVPM and GPPWOFOST during 

the winter wheat growing season at the point scale. To eliminate the 

value of 0 for GPPWOFOST in the EnKF data assimilation, we assigned 

these values of GPPVPM to those GPPWOFOST which value equal to 0. In 

contrast, if the GPPWOFOST was greater than 0, the GPPEnKF was 
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Fig. 3. Validation of the simulated WOFOST LAI and AGB with field measured data in 2015 and 2016. 

 

calculated from GPPWOFOST and GPPVPM using EnKF algorithm. Fig. 5 

compares the time series for the four GPP products. The accumulated 

GPP increased slowly before early March, followed by an increase dur- 

ing March and late April. From early May, the increase of accumulated 

GPP gradually decreased and finally became stable. Fig. 6 shows the 

validation of GPPVPM, GPPEnKF and GPPWOFOST compared with GPPEC. 

The winter wheat GPP before DOY 60 (purple circle) and after DOY 140 

(dark green circle) was generally lower than 10, whereas the main 

period of GPP simulation is during DOY 60–140, when is corresponding 

to jointing, flowering and grain filling stages of winter wheat. Compared 

with GPPWOFOST, GPPVPM performed better at the El-Reno site both in 

2015 (R2 = 0.85, RMSE = 2.01 g Cm-2day-1) and 2016 (R2 = 0.56, 

RMSE = 3.86 g Cm-2day-1). Assimilation GPPVPM improved the GPP 

estimates (GPPEnKF in 2015: R2 = 0.87, RMSE = 2.26 g Cm-2day-1; 

GPPEnKF in 2016: R2 = 0.67, RMSE =3.25 g Cm-2day-1) compared with 

the values estimated without data assimilation (GPPWOFOST in 2015: R2 

= 0.74, RMSE = 3.65 g Cm-2day-1; GPPWOFOST in 2016: R2 = 0.47, 

RMSE = 4.12 g Cm-2day-1). Furthermore, the R2 of GPPEnKF improved 
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Fig. 4. -1. Comparison among different daily GPP time series products at the El-Reno flux tower site in (a) 2015 and (b) 2016. 4-2. Daily minimum temperature 

(TMIN) and averaged minimum temperature (TMIN-Average) at El-Reno flux tower site in (a) 2015 and (b) 2016. (Gray areas represent TMIN-Average lower than 

0 ℃ after the wintering stage). 
 

compared with GPPVPM both in 2015 and 2016, while RMSE was 

increased slightly in 2015 and decreased in 2016. Results showed that 

assimilating GPPVPM into the WOFOST model have potential for 

improving the GPP simulation at the site level. 

The accumulated GPP and yield results at the El Reno site were also 

compared. Fig. 7 shows that GPPMOD17 had the lowest values during 

winter wheat growing season in both years, whereas GPPVPM had the 

highest accumulated GPP in both years. The accumulated GPPEC and 

GPPWOFOST were close to each other. For the winter wheat yield, Yiel- 

dEnKF was higher than YieldWOFOST in both years, and was closer to 
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Fig. 5. Comparison of accumulated GPP time series simulated by WOFOST with and without EnKF-based assimilation method during winter wheat growing season 

(from Jan. 1st to Jun. 5th) at EI-Reno flux tower site. 

 
 

 

Fig. 6. Validation of daily GPP simulated by WOFOST with and without EnKF-based assimilation method and VPM compared with the GPPEC at El-Reno flux 

tower site. 
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Fig. 7. Comparison of accumulated GPP during winter wheat growing season (from Jan. 1st to Jun. 5th) and yield at El-Reno flux tower site. 

 

Yieldmeas in 2016. (Yield measurements from the EI Reno site were not 

available in 2015.). 

 
3.3. Assimilation of GPPVPM into WOFOST at the regional scale 

 
The regional scale data assimilation was conducted in 500 m grid 

cells in which the spatial resolution coincides with GPPVPM. Fig. 8 shows 

the resulting regional winter wheat yields in both years based on both 

government statistics (Fig. 8(a), (b)) and our simulations (Fig. 8(c-j)). 

From Fig. 8(c) and (d) can be seen that the spatial variation in the un- 

assimilated winter wheat yield maps was small, especially in 2016, and 

yield mostly ranged from 1500 to 2500 kg/ha. This was mainly due to 

the coarse spatial resolution of the meteorological parameters. The yield 

maps with assimilation (Fig. 8(g), (h)) showed more spatial variance, 

and the spatial pattern agreed well with official yield statistics at the 

county level (Fig. 8(i) and (j)). Moreover, we also found a mismatch in 

winter wheat yield between 2015 and 2016. The county-level statistical 

data showed that the winter wheat yield of most counties was higher in 

2016 than 2015 (Fig. 8(a), (b)), whereas the open loop simulated yield 

(Fig. 8(e) and (f)) showed the opposite result especially in central and 

eastern Oklahoma. One reason might be that we only used one set of 

crop parameters to simulate all of Oklahoma, and Fig. 7 showed slightly 

higher WOFOST simulated yield at the flux tower site in 2015 than in 

2016. After we assimilated GPPVPM into WOFOST, the simulated winter 

wheat yield results (Fig. 8(i) and (j)) agreed better than open loop results 

with the official statistics. This demonstrates that the assimilation of 

GPPVPM into WOFOST improved the estimation of winter wheat yield. 

Fig. 9 shows the validation results based on a comparison of the 

simulated values with the official regional statistical data. The circle size 

represents the variance of the pixel yield in the county, the larger the 

circle the greater the variance of pixel yield in the county. Assimilation 

of GPP improved the winter wheat yield estimation in both years. R2 

increased from 0.14 and 0.10 without assimilation in 2015 and 2016, 

respectively, to 0.36 and 0.29 with assimilation, and the RMSE 

decreased from 801 and 788 kg/ha to 479 and 572 kg/ha in 2015 and 

2016, respectively. However, the county statistical winter wheat yields 

were mostly lower than the WOFOST simulated yields and were lower 

than that in North China Plain, where the official winter wheat yield 

ranges from 4000 to 8000 kg/ha (Huang et al., 2015b, 2016, 2019a). 

One possible reason is that the winter wheat in Oklahoma is mostly 

rainfed, whereas in Northern China, winter wheat is irrigated 2–4 times 

during the growing season. This is important, since winter wheat is more 

sensitive to water stress during the jointing and grain-filling stage 

(Huang et al., 2018), which means that winter wheat in Oklahoma is 

more likely to suffer from water stress that can easily cause lower yield. 

 
4. Discussion 

 
4.1. Assimilation of remotely sensed GPP into process-based crop model 

 
GPP is widely used to understand an ecosystem’s carbon cycle and its 

relationship with the climate system. However, it has not often been 

used for crop yield estimation in a CDMA framework; instead, studies 

have generally relied on LAI or SM. One of the primary reasons for this is 

that GPP and crop yield are secondary variables that are only indirectly 

accessible from remotely sensed observations. In contrast, LAI or SM are 

considered to be primary variables directly involved in the radiative 

process (Weiss et al., 2020). 

In this study, we developed a GPP CDMA framework to improve 

winter wheat yield estimation at a regional scale. Our results suggested 

that the WOFOST simulated GPP time series achieved high accuracy of 

simulating the actual carbon sequestration processes in this winter 

wheat field, and it also agreed well with eddy covariance tower simu- 

lated GPP (Fig. 4(a) and (b)). Moreover, assimilating GPPVPM into the 

WOFOST model using the EnKF algorithm eliminated zero values from 

GPPWOFOST, which resulted from WOFOST’s assumption that photo- 

synthesis will not occur when the air temperature is below 0 ℃. 
Particularly, the GPP CDMA framework improved GPP estimation at the 

point scale (Fig. 6) and improved winter wheat yield estimation 

compared to WOFOST simulation without assimilation at the regional 

scale (Fig. 9). These results demonstrated the high potential to use GPP 

as a state variable in the CDMA framework. 

To compare the performance of assimilating LAI (the most 

commonly used state variable in CDMA) and GPP for winter wheat yield 

estimation, a same CDMA experiment, which using the EnKF assimila- 

tion method, was conducted by using MODIS LAI product, and the 

comparison results were shown in Fig. 10. Assimilating GPPVPM per- 

formed better than LAIMODIS both in 2015 and 2016 (R2 = 0.36 and 0.29; 

RMSE= 479 and 572 kg/ha in 2015 and 2016, respectively, for assim- 

ilating GPP. R2 = 0.25 and 0.19; RMSE= 511 and 770 kg/ha in 2015 and 

2016, respectively, for assimilating LAI). The yield estimation results 

obtained by assimilating GPPVPM were generally higher than assimi- 

lating LAIMODIS, and assimilating GPPVPM can get a higher average yield 

value (Fig. 10(c)). The main reason is that LAIMODIS always 
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Fig. 8. Regional winter wheat yield estimation without and with EnKF assimilation method. Note: (a) and (b) represent county official statistical yield in 2015 and 

2016, respectively; (c) and (d) represent WOFOST model simulated yield without assimilation in 2015 and 2016, respectively; (e) and (f) represent zonal mean 

statistics at a county level based on (c) and (d), respectively; (g) and (h) represent WOFOST model simulated yield with EnKF assimilation in 2015 and 2016, 

respectively; (i) and (j) represent zonal mean statistics at a county level based on (g) and (h), respectively. 
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Fig. 9. Comparison of the estimated winter wheat yield with statistical data at a county level. Comparison results are for the open loop in (a) 2015 and (c) 2016, and 

using EnKF assimilation in (b) 2015 and (d) 2016. 

 

underestimates winter wheat LAI, whose highest value ranges from 5 to 

7 m2/m2 in actual growth state while LAIMODIS ranges from 2 to 3 m2/ 

m2 (Fig. 11). Due to the low value of LAIMODIS, LAIEnKF (red line) was 

generally lower than LAIWOFOST (yellow line) (Fig. 11). Several previous 

studies proven that assimilating LAIMODIS into crop model directly may 

reduce the crop yield estimation results, due to the lower LAI values 

caused by scaling effect (Dente et al., 2008; Huang et al., 2015b, 2016, 

2022; Ma et al., 2013; ). At present, the commonly used strategies of 

assimilating LAIMODIS are (1) to stretch the LAIMODIS value to the normal 

range by data fusion methods (Huang et al., 2016) or (2) assimilating the 

trend information of LAIMODIS using variational method (Zhuo et al., 

2020). In summary, assimilating GPPVPM is able to obtain higher accu- 

racy than LAIMODIS using EnKF method for winter wheat yield estimation 

at the regional scale. 

 

4.2. Comparison with the linear regression model using harvest index for 

winter wheat yield estimation 

 
Harvest index (HI) is calculated as the ratio between crop grain yield 

and crop aboveground biomass (AGB), or net primary production (NPP) 

or gross primary production (GPP) (Wu et al., 2021a). In this study, we 

used the accumulated GPP (GPPA) over winter wheat growing season as 

a dependent variable for winter wheat yield estimation using HI. 

Numerous researches reported the HI values range from 0.2 to 0.6 for 

different crops (Guan et al., 2016; Lobell et al., 2002; Monfreda et al., 

2008; Wu et al., 2021a, 2021b), and we followed results concluded by 

Wu et al. (2021b) that set the HI as 0.25. The validation results of winter 

wheat yield and production at the county level were presented in 

Fig. 12. 

The validation results showed that winter wheat yield estimated by 

CDMA (YieldCDMA) had higher accuracy (R2 = 0.36 and 0.29; RMSE= 
479 and 572 kg/ha in 2015 and 2016, respectively) than by HI (YieldHI) 

(R2 = 0.28 and 0.19; RMSE= 423 and 682 kg/ha in 2015 and 2016, 

respectively), and larger spatial differences were found for the 

YieldCDMA ranging 1000 – 3500 kg/ha (Fig. 12(a), (b)). The winter 

wheat production validation results were performed well for both Pro- 

ductionCDMA and ProductionHI, in which R2 were generally bigger than 

0.8 and RMSE were generally lower than 55 kton, due to the high pre- 

cision winter wheat mapping results (CDL, https://www.nass.usda.gov). 

HI method is feasible and easy to operate, which only costs about a few 

minutes for Oklahoma while CDMA will cost more than 10 h for 

calculating. However, HI is also affected by many factors, such as crop 

varieties, crop management, and environmental conditions (Wu et al., 

2021b), and a constant HI could cause large uncertainties for crop yield 

estimation at the regional scale. In general, CDMA, which comprehen- 

sively considers crop, soil, management and weather conditions, is more 

https://www.nass.usda.gov/
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Fig. 10. Comparison of the estimated county-level winter wheat yield by assimilating GPPVPM and LAIMODIS in (a) 2015 and (b) 2016, and comparison of yield 

distribution (c). 

 
 

 

Fig. 11. Comparison of LAI simulated by WOFOST with and without EnKF-based assimilation method during winter wheat growing season at the site level. (LAIEnKF 

represent the LAI value simulated by WOFOST with EnKF method; LAIWOFOST represent the LAI value simulated by WOFOST; LAIMODIS represent MODIS LAI product; 

LAISG-UE represent the LAIMODIS filtered by upper enveloped SG filter method). 

 

suitable for winter wheat yield estimation, and can obtain higher winter 

wheat yield estimation accuracy than HI method. 

 

4.3. Uncertainty of the GPP CDMA framework and future development 

 
Uncertainty of GPP observations is a potentially important source of 

uncertainty in GPP CDMA framework. This is because the estimation of 

GPP is still highly uncertain by now, although the related theories have 

made great progress in recent years (Ryu et al., 2019). In the present 

study, the error related to GPPVPM came from the following sources. 

First, VPM integrates coarse spatial resolution data into its calculation, 

such as the NCEP reanalysis II meteorological data, which has an orig- 

inal resolution of approximately 1.875◦ × 2◦ and is primary forcing data 

for the estimation of LUE and PAR. This approach is feasible at the global 

scale, but it may lead to large errors when it is applied at local and 

regional scales. Second, estimation of the maximum LUE can contain 

significant errors. The maximum LUE values at the ecosystem level vary 

among vegetation types and may also differ between regions for a given 

ecosystem type (Xiao et al., 2011). In this study, the maximum LUE was 

estimated by using the look up table method, and the LUE value of 

winter wheat was set to 0.42 g C/mol PPFD-1 (Zhang et al., 2017b). 
Thus, if the maximum LUE values for different crops can be specified in 
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Fig. 12. Comparison of the estimated winter wheat yield/production with statistical data at a county level. (a) winter wheat yield estimation using GPP CDMA 

method in 2015, (b) winter wheat yield estimation using GPP CDMA method in 2016, (c) winter wheat yield estimation HI method in 2015, (d) winter wheat yield 

estimation using HI method in 2016, (e) winter wheat production estimation using GPP CDMA method in 2015, (f) winter wheat production estimation using GPP 

CDMA method in 2016, (g) winter wheat production estimation HI method in 2015, and (h) winter wheat production estimation usi ng HI method in 2016. 
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the future, the estimation of GPP will improve. Third, the uncertainties 

in VPM also come from the two down-regulation factors (Wscalar and 

Tscalar). Jin et al. (2013) performed a sensitivity analysis for VPM and 

found that it was important to account for both water and temperature 

to downscale the maximum LUE when estimating GPP in semi-arid cli- 

mates, because the accuracy of both factors will directly affect the ac- 

curacy of GPP. 

As for the WOFSOT model, only one set of crop parameters (cali- 

brated by the wheat variety of Gallagher) was used in this study 

throughout the Oklahoma winter wheat area, which is difficult to 

represent the spatial variations. It was assumed that a single dominant 

cultivar was planted throughout the study area and that the crop char- 

acteristics and management measures did not vary spatially. However, 

more than 30 varieties of wheat are planted throughout Oklahoma and 

they differ in crop characteristics, and the most planted variety is Gal- 

lagher, which accounts for 14% of the total (ODAFF, 2017). To account 

for this variation, future research should regionalize the crop parame- 

ters. Secondly, the mismatch in spatial resolution among the dataset 

from the eddy covariance tower (at a point scale), the crop model (at a 

point scale) and the GPPVPM pixels (500-m spatial resolution) will also 

affect the accuracy of the GPPEnKF assimilation. 

The data assimilation method used in this study was EnKF, while the 

standard EnKF method has its own assumptions and uncertainties. It 

tends to reject observations in the late period of CDMA, which is referred 

to “filter divergence” (Ines et al., 2013). To reduce the effect of the filter 

divergence, inflation factor can be conducted in future studies to enlarge 

the variance of the forecast ensemble (Huang et al., 2016; Lin et al., 

2008). Besides, an important assumption of the EnKF is that both 

observation and model errors are Gaussian, while the reality is not the 

case. Particle Filter (PF) algorithm, which can assume that the error is 

non-Gaussian distribution, is a potential sequential assimilation method 

for CDMA (Moradkhani and Weihermüller, 2011; Nagarajan et al., 

2011). 

In the future study, GPP data at a finer spatial resolution should be 

applied to the GPP CDMA framework to reduce the spatial mismatch 

between crop models and GPP observations. Besides, given the current 

availability of Solar-induced chlorophyll fluorescence (SIF) observa- 

tions, which can provide a direct link to the instantaneous photosyn- 

thetic activity (Guan et al., 2016; Guanter et al., 2014; Macbean et al., 

2018), researchers begin to use SIF data for improving estimates of GPP 

(Bacour et al., 2019; Koffi et al., 2015; Macbean et al., 2018; Norton 

et al., 2018a, 2018b), which proved that the remote sensing derived SIF 

can largely reduce the uncertainty of GPP estimation (Norton et al., 

2018b) and can further advance our understanding and help with a more 

accurate estimation of GPP. 

 

5. Conclusions 

 
In this study, the coupled VPM-WOFOST CDMA framework was used 

to estimate winter wheat yield in Oklahoma (USA) in 2015 and 2016 by 

assimilating 500-m-scale GPPVPM product into the WOFOST model using 

EnKF algorithm. At the point scale, the WOFOST simulated GPP 

(GPPWOFOST) had a good relationship with GPPEC and can reflect winter 

wheat carbon sequestration well. Moreover, the VPM-WOFOST CDMA 

framework can improve winter wheat GPP estimation at the point scale. 

At the regional scale, assimilating GPPVPM into the WOFOST model 

slightly improved the winter wheat yield estimation, this may be due to 

the scale mismatch and the uncertainty of remotely sensed GPP. How- 

ever, this study is a successful first attempt that demonstrates the po- 

tential of GPP assimilation for regional-scale winter wheat yield 

estimation within a CDMA framework. In addition, it improves our 

understanding of the importance of carbon flux processes of crops in 

crop yield estimation. 
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