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ABSTRACT

Crop growth models are powerful tools for predicting crop growth and yield. Gross primary production (GPP) is a
major photosynthetic flux that is directly linked to crop grain yield. To better understand the potential of GPP for
regional crop yield estimation, in this study, a novel crop data-model assimilation (CDMA) framework was
proposed that assimilates accumulative GPP estimates from the satellite-based vegetation photosynthesis model
(VPM) into the WOrld FOod STudies (WOFOST) model using the ensemble Kalman filter (EnKF) algorithm to
estimate winter wheat GPP and grain yield. Results showed that the WOFOST simulated GPP agreed with the

GPPgc derived from eddy flux tower (R> = 0.74 and 0.47 in 2015 and 2016, respectively). Assimilating GPPvpum
into the WOFOST model improved site-scale GPP estimation (R?> = 0.87 and 0.67 in 2015 and 2016, respec-
tively), and also improved regional-scale winter wheat yield estimates (R? = 0.36 and 0.29; RMSE= 479 and 572
kg/ha in 2015 and 2016, respectively) compared with the open loop simulations (R?> = 0.14 and 0.10; RMSE=

801 and 788 kg/ha in 2015 and 2016, respectively). Our study demonstrated that assimilation of remotely sensed
GPP optimized the results of carbon simulation in the WOFOST model and highlighted the potential of GPP for
regional winter wheat yield estimation using a data assimilation framework.

1. Introduction

and most have been successfully applied to simulate the growth and
yield of winter wheat, such as APSIM (Xiao and Tao, 2014), AquaCrop

Winter wheat is the most widely cultivated food crop globally, and
one of the most important cereal crops traded in international markets
(Becker-Reshef et al., 2010; Fao, 2017; Zhu et al., 2022). Winter wheat
production is directly related to winter wheat sale and trade price and
plays an important role for food security. Therefore, accurate moni-
toring of regional winter wheat growth and estimation of winter wheat
yield are becoming increasingly crucial for the world’s food security and
sustainable crop production.

Many previous studies used crop growth model (CGM) to simulate
the growth status and grain yields of crops, and the CGM based on a
series of input data for relevant physiological characteristics of the
crops, as well as other factors, such as soil properties, crop management
strategies, and weather conditions throughout the growing season
(Huang et al., 2015b). A number of crop models have been developed,

(Igbal et al., 2014), EPIC (Lu and Fan, 2013), DSSAT (Attia et al., 2016),
STICS (Palosuo et al., 2011), and WOFOST (Boogaard et al., 2013).
However, crop models were widely used at the point (site) scale (de Wit
et al., 2012), making it difficult to extrapolate from those estimates to a
regional scale.

This extrapolation to a large area becomes possible using data
assimilation methods that integrate regional-scale information from
remote sensing observations into process-based crop growth models.
This approach offers powerful tools to simulate the physiological
development, growth, and yield of a crop, and have been demonstrated
to be one of the promising approaches for crop growth monitoring and
yield estimation at the regional scale (de Wit and van Diepen, 2007; de
Wit et al., 2012; Huang et al., 2015a, 2015b, 2016; Ines et al., 2013;
Nearing et al., 2012; Xie et al., 2017). Moreover, important biophysical
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parameters, including the leaf area index (LAI), canopy cover and soil
moisture can be retrieved from remotely sensed data, and can help in
fine-tuning input parameters and state variables by reducing the un-
certainty with data assimilation approaches (Weiss et al., 2020).

Researchers have accounted for various state variables into different
crop models using data assimilation methods to estimate winter wheat
yield at a regional scale, such as LAI (Chen et al., 2018; Dong et al., 2016;
Huang et al., 2015b; Silvestro et al., 2017; Xie et al., 2017; Zhuo et al.,
2022), soil moisture (SM) (de Wit and van Diepen, 2007; Zhuo et al.,
2019), evapotranspiration (ET) (Huang et al., 2015a; Ines et al., 2006;
Vazifedoust et al., 2009; Zhuo et al., 2022), above ground biomass
(AGB) (Dumont et al., 2014; Jin et al., 2017), and canopy reflectance
(Huang et al., 2019b). They have achieved promising results and have
improved crop yield estimation. However, how to combine carbon
fluxes (e.g., gross primary production (GPP), net primary production
(NPP)) within crop data-model assimilation (CDMA) scheme for crop
yield estimation need more advanced research. Migliavacca et al. (2009)
assimilated MODIS NDVI into a process-based model (BIOME-BGC) by
constructing a cost function to simulate GPP, and obtained good accu-
racy for daily and annual GPP predictions. Combe et al. (2017) used the
WOFOST model coupled with a soil respiration function to obtain the
net surface CO, exchange between croplands and the atmosphere. Their
method generated satisfactory daily to multiannual hindcasts of crop-
land GPP and net ecosystem exchange (NEE) under normal to mild
water-stress conditions in Europe. Wang et al. (2013) used simulated
annealing algorithm to calibrate the WOFOST model based on in situ
observation data (e.g., GPP, LAI and yield) from one sample site. Their
study demonstrated successful assimilation of these state variables into
the WOFOST model at a local scale. They found a marked enhancement
of the accuracy for these state variables and better performance after
assimilation. In summary, these studies only assimilated variables (e.g.,
LAI) into a process-based model to generate CO»-assimilation related
variables (e.g., NEE, GPP) or assimilated carbon flux variables (GPP) at a
local scale for crop yield estimation, but such efforts have not been
performed at the regional scale for winter wheat yield estimation and
the potential of assimilating GPP into crop models has not been fully
exploited.

Several remote sensing-based GPP data products have been pro-
posed, such as the MODIS GPP product (Running et al., 2004; Zhao and
Running, 2010), vegetation photosynthesis model (VPM) (Xiao et al.,
2004a; Zhang et al., 2017b), FLUXCOM (Jung et al., 2017), Support
vector regression (SVR) (Kondo et al., 2015), Photosynthesis-respiration
(PR) (Keenan et al., 2016), Breathing Earth System Simulator (BESS)
(Jiang and Ryu, 2016) and Eddy Covariance Light Use Efficiency
(EC-LUE) (Yuan et al., 2019). In the present study, VPM was chosen as
the observational GPP simulation model to be coupled with the
WOFOST model to construct an improved CDMA framework. One
advantage of VPM is its ability to account for the climate variables that
are used for light use efficiency (LUE) calculation (Wu et al., 2010). In
addition, VPM has shown promising results for GPP estimates for
various land cover types, including forest (Xiao et al., 2004a, 2004b,
2005), grasslands (Li et al., 2007; Wagle et al., 2014; Wu et al., 2008),
savannas (Jin et al., 2013), upland crops such as maize, winter wheat
and soybean (Doughty et al., 2018; Kalfas et al., 2011; Wang et al.,
2010), paddy rice (Xin et al., 2017) and inland freshwater wetlands
(Kang et al., 2014).

In summary, previous research has not yet fully addressed several
key points. First, we’d like to test whether GPP simulated by the
WOFOST model can reflect carbon sequestration of crops especially
winter wheat, because most crop growth models are designed to simu-
late crop growth, and focus primarily on crop yield (Wang et al., 2013).
Second, previous research examined the most commonly used state
variables (e.g., LAL, SM, ET and AGB) in a CDMA scheme, but did not test
whether GPP was an effective variable to improve the performance of
winter wheat yield estimation at the regional scale. As a consequence,
we designed the present study to provide a deeper understanding of
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these questions by developing a novel CDMA framework that assimilates
remotely sensed GPP data derived from VPM into the WOFOST model
for improving winter wheat yield estimation. Specifically, we aimed to
answer the following three key questions: (1) evaluating the perfor-
mance of GPPworost in winter wheat fields; (2) at the local scale,
assessing the feasibility of assimilating GPPypy into the WOFOST model
and validating the GPP simulation results with and without data
assimilation; (3) at the regional scale, estimating regional-scale winter
wheat yield, and validate how much accuracy can it improve by
assimilating GPPypy into the WOFOST model.

2. Materials and methods
2.1. Study area

The state of Oklahoma is located in the south-central United States,
where it covers an area of 181,000 km?. We used this state as a case
study of our data-assimilation method. Oklahoma has a temperate
climate, and experiences the occasional extremes of temperature and
precipitation that are typical of a continental climate. Oklahoma’s main
winter wheat production areas are located in the west, which has a semi-
arid climate (Fig. 1). In the western areas, the average annual temper-
ature is approximately 14 °C, with an annual rainfall of approximately
500 mm (Illston et al., 2004). An eddy covariance flux tower site
(35.56850° N, 98.05580° W) was established at the United States
Department of Agriculture-Agricultural Research Service (USDA-ARS),
Grazinglands Research Laboratory (GRL) in El Reno, Oklahoma (Fig. 1).
The study site was a single-crop winter wheat site and the collected flux
data were used to calculate the site-scale GPP. In Fig. 1, the 30 m winter
wheat map came from Cropland Data Layer (CDL, https://www.nass.us
da.gov), and the 500 m winter wheat map, which was corresponding to
the CDMA assimilation unit, was resampled from the CDL and have the
same spatial reference with MODIS data.

Winter wheat is a cool season crop and is the primary agricultural
crop grown in Oklahoma. Winter wheat in this study area was planted
from early September to October. About 90% of the winter wheat
emerges by mid-November (USDA-NASS, 2014). Jointing typically oc-
curs from early March to mid-April, followed by the flowering until late
April. Grain-filling begins from late April to May, and harvest usually
occurs in early June (Zhang et al., 2017a).

2.2. Data

2.2.1. Eddy covariance flux tower data from the winter wheat site

An eddy covariance (EC) tower was installed to measure the CO,,
H,O and energy fluxes (Bajgain et al., 2018). The tower uses a
three-dimensional sonic anemometer (CSAT3) and an open path
infrared gas analyzer (LI-COR 7500) to measure NEE for CO; between
the crop, the soil, and the atmosphere. The measured NEE was gap filled
and then partitioned into ecosystem respiration (ER) and GPP based on
the short-term temperature sensitivity of the ER (Lloyd and Taylor,
1994; Reichstein et al., 2005). The R package “REddyProc” tool was
used for calculation of the tower scale GPP (Moffat et al., 2007; Reich-
stein et al., 2005). More details regarding this method can be found at
https://www.bgcjena.mpg.de/bgi/index.php/Services/REddyProcWeb
-RPackage.

2.2.2. Oklahoma agricultural statistical data

The Oklahoma agricultural data included statistical data from the
United States Department of Agriculture (USDA), the National Agricul-
tural Statistics Service (NASS) and a cropland area dataset from Crop-
land Data Layer (CDL). The annual county level statistics of winter
wheat planted area, harvest area, winter wheat yield in 2015 and 2016
were collected from the USDA-NASS (https://quickstats.nass.usda.
gov/). The annual CDL data at a 30-m resolution in 2015 and 2016
were also from the USDA (https://www.nass.usda.gov). CDL is a remote
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Fig. 1. Maps of the study area. (a) winter wheat distribution (at 30-m spatial resolution); (b) winter wheat percentage of pixel area map within individual MODIS
pixels (at 500-m spatial resolution) in 2015; (¢) Eddy covariance flux tower at El Reno site.

sensing-based land cover product and has more than 100 types of crops
with classification accuracy greater than 90% for major crops such as
maize, soybean and winter wheat (Boryan et al., 2011). The Landcover
map of Oklahoma State generated from CDL is provided in the
Supplementary.

2.2.3. Gross primary production data from VPM, the MODI17A2 and
MODI15A2 product

The VPM model was employed to estimate the 8-day GPP with 500 m
spatial resolution. It is constructed upon the concept that a vegetation
canopy is composed of non-photosynthetic vegetation and chlorophyll
(Xiao et al., 2004a, 2005). The primary input datasets for the VPM
included MODIS (MOD09A1, MYDI1IA2 and MCDI2QI),
NCEP-reanalysis II (temperature and radiation) (https://www.esrl.noaa.
gov/psd/data/gridded/data.narr.html), Earth Stat (major crop type
distribution), and ISLSCP II (C4 vegetation percentage map). These
datasets were used to calculate the temperature, LUE, vegetation indices
and photosynthetically active radiation (PAR), and then generate the
GPP time series. The global GPPypy dataset is available at https://doi.
org/10.1594/PANGAEA.879560 (Zhang et al., 2017b).

The 8-day MOD17A2H version 6 GPP product (GPPmopi7) and
MODI15A2H version6 LAI product (LAImopis) with 500 m spatial reso-
lution from 1 January 2015-31 December 2016 was also used in this
study. GPPyopi7 was used to provide a comparison with the different
GPP results. This product also uses a LUE model to estimate GPP, one of
the major differences between GPPypm and GPPyopi7 is that VPM uses
the fraction of PAR absorbed by chlorophyll (Xiao et al., 2004a),
whereas the MOD17A2H product uses the fraction of PAR absorbed by
the canopy (Running et al., 2004). LAImopis Was used to be assimilated
into the WOFSOT model for comparing with the GPP CDMA simulation
results.

2.3. The vegetation photosynthesis model (VPM)

The VPM model is a light (energy) use efficiency model based on
satellite remote sensing data and flux observations. It was developed to
estimate GPP during the photosynthetically active period of vegetation
as the product of PAR absorbed by chlorophyll (APAR.y) and light use
efficiency (Xiao et al., 2004a). VPM can be described as follows:

GPP = g X APAR O]
APAR; = FPAR .y % PAR )
&g = €0 X Tscatar X Wcatar 3)

Where &g is the light use efficiency (umolCO,/umol, PPFD), PAR is
photosynthetically active radiation (umol photosynthetic photon flux
density, PPFD), APAR., is the amount of PAR absorbed by
chlorophyll, FPAR. is the fraction of PAR absorbed by chlorophyll,
which is estimated as a linear function of Enhanced Vegetation Index
(EVI). The light use efficiency (&g) is affected by temperature and water,
and it can be calculated by Eq. (3). Where ¢ is the apparent quantum
yield or maximum light use efficiency, and Ticawr and Wieuar are the
scalars for the effects of temperature and water, respectively.

2.4. WOFOST model

The WOFOST (WOrld FOod STudies) model (de Wit, 1965; Boogaard
et al., 2013) estimates crop growth given a set of crop, soil and meteo-
rological parameters. The major processes are phenological develop-
ment, CO;-assimilation, transpiration, respiration, partitioning of
assimilates among various organs, and dry matter formation. The model
can run in a potential mode (with no yield limitations caused by water
and nutrient stress), a water-limited mode (with water stress), or a
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nutrient-limited mode (with nutrient stress). We used the water-limited
mode because the winter wheat in the study area is not irrigated. The
general structure of the WOFOST model and potential daily gross CO,
assimilation rate calculation in the WOFOST model are provided in the
Supplementary.

The input data for the WOFOST model included climate, crop and
soil parameters. The daily climate data used for the point scale WOFOST
model in this study were obtained from the Oklahoma Mesonet (http
s://www.mesonet.org), which consists of 121 meteorological stations
across Oklahoma. The stations measure ten variables every 15 min
including soil moisture, humidity, soil temperature, pressure, solar ra-
diation, rainfall, temperature, leaf wetness, wind speed and direction

(Brock et al., 1995). For the regional scale WOFOST model, we inter-
polated data for the six required daily-scale WOFOST weather variables
(maximum temperature, minimum temperature, wind speed, solar ra-
diation, precipitation and pressure) to create a 0.1° x 0.1° grid. In this
study, the WOFOST input data were calibrated by field measurement,
published values and the WOFOST default values. In addition, we
assumed that Oklahoma state only planted one dominant cultivar. Ma
et al. (2013) and Huang et al. (2015b) describe details of the parame-
terization and calibration of WOFOST for winter wheat. The
water-limited mode of the WOFOST model was used in this study, and
the primary crop and soil parameters are shown in the supplementary
file. Table | shows the spatial and temporal resolution of different input
parameters used in this study.

2.5. The Ensemble Kalman Filter

Evensen (1994) developed the Ensemble Kalman Filter (EnKF)
method, which is based on forecasting the error statistics using Monte
Carlo methods. Burgers et al. (1998) showed that the addition of random
perturbations to the measurements was essential for calculation of the
analyzed ensemble, because it would have too low of a variance unless
the random perturbations were added to the observations. In the present
study, we assumed that the observation errors followed a Gaussian
distribution. The core of the EnKF method is the Kalman filter. If the
observations are related to the true data at time t x,,

Ve = Hx, + & (4)

X" = Ax" ©)]
t -1

X =X +w ©6)

Table 1

The spatial and temporal resolution of different input data/parameters.

Model Input data Spatial resolution Temporal
resolution
WOFOST model Crop Point scale
(Output: daily parameters
outputs at point Soil Point scale
scale) parameters
Weather data 10 km (interpolated Daily
from weather
station)
Management Point scale
data
VPM model (Output: 8- MODO09%A1 500 m 8-day
day GPP with 500 m MCDI12Q1 500 m Annual
resolution) MYDI11A2 1 km 8-day
NCEP- ~1.875° x 2° Daily
reanalysis II
Earth Stat 0.083° invariant
ISLSCP I 1" x 1° invariant
CDL map 30m Annual
Winter wheat pixel 500 m Annual

(resampled from
CDL)
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Where y is the observation vector (which can be regarded as GPPypy in
this study), and H is the observation operator that relates to y (which can
be taken as an identity matrix in this study), 4 represents a state-
transition model that links x, and x., (which can be regarded as
WOFOST model in the CDMA framework), € and v are Gaussian random
error vector with a mean of zero (which can be regarded as error of VPM
and WOFOST model in this study). ™ is represent the model simulation
result at the time t (which can be regarded as GPPworost)-

So, in this study, the optimal estimation x2§" of x, at t = k can be

calculated using Eqs. (7) and (8):

xEKE = (I - KH)x"  + Ky=¢ 7
t=k t=k

PEnKF = ([ — KH)Pm (8)
=k 1=k

Where P, is the WOFOST model state covariance at time k, 7 and H is

=k
the identity matrix, and K is the Kalman gain matrix, which is defined as
follows:

K=P" H'(HP" H +R)’ ©)

t=k =k t
Where R, is the covariance of VPM at the time t. When solving the
Kalman gain equation, Houtekamer and Mitchell (2001) suggest calcu-

lating P2, H" and HPZ H" directly from the ensemble members, rather
than calculating each element of Eq. (9):

P N X" He" Hx" '
=Ce-0 G0, ) (19
HP'"H' N 2 g Hx"  Hy"  Hx" 7
(=D Cum L= ) an
b3
Rl = (Ne - 1)_1 (On _5)(0n - B)T (12)

n=1

Where N, is the number of ensemble members, 7 is a running index for
ensemble member, and X" represents the GPPworost ensemble mean
calculated as (13), o represents the GPPypy ensemble mean calculated as

(15).

N X
- o= gl XI: (13)
n=1
L=
Hx"=N,;'" Hx! (14)
n=1
=
o= N;l Oy (15)

n=1

2.6. General framework

The CDMA framework was developed to assimilate GPP into
WOFOST using the EnKF algorithm (Fig. 2). The framework consists of
three parts: VPM, WOFOST and the data assimilation using EnKF. In the
VPM component, ISLSCP II, Earth Stat, NCEP reanalysis II and MODIS
data were used to calculate the light use efficiency and the absorbed PAR
by chlorophyll. Then a time series of the GPP was generated.

In the WOFOST component, the model was driven by crop, soil and
meteorological calibrated parameters, which is calibrated by MCMC
method, and model ensembles were generated. We used field mea-
surements of LAI and AGB observations to parameterize the likelihood
function that represented the mismatch between the WOFOST output
and the measurements. The observations were assumed to be corrupted
by noise that followed a normal distribution with a mean of zero and a
10% variance. We used a Markov-chain Monte Carlo (MCMC) method
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Fig. 2. Flowchart for the assimilation of GPPvpm into the
WOFOST model using the EnKF-based assimilation algo-

(specifically, the DiffeRential Evolution Adaptive Metropolis algorithm,
[DREAM]; Vrugt et al., 2009) to update three crop parameters (TSUM 1
(the sum of the effective temperatures from emergence to anthesis),

SPAN (the lifespan of leaves growing at 35 °C, in days) and TDWI (the
total initial dry weight of the crop)) of WOFOST from a uniform prior to
a posterior distribution that is based on the likelihood function. First, we
ran the DREAM sampler algorithm with 4 parallel chains until we ach-
ieved a stationary distribution, in which the convergence statistic R hat
(Brooks and Gelman, 1998) was less than 1.05 or after reaching the
maximum 50,000 repetitions. Then another 50 repetitions were run,
which essentially represented a sample from the posterior distribution.
Finally, the 50 corresponding WOFOST simulated GPP formed the
ensemble.

In this study, the ensemble number was set as 50 and the uncertainty
of the GPPypm was set to 8% based on the results of Zhang et al. (2017b).
The WOFOST model ran with a daily time step until a new observation
(8-day GPPypy from Jan 1st to May 10th) became available and the run
was interrupted; the EnKF (the data assimilation component) was then
used to update the target model state variable (GPP); and the WOFOST
model was then run using the updated states (optimal GPP). Data
assimilation was conducted for as long as observation data was avail-
able. Because the daily GPP is a rate variable rather than a state variable,
we used accumulated GPP (GPP,) instead of daily GPP (GPPp) in the
CDMA framework. GPP, can be calculated by Eq. (16):

N

(16)

Where GPP, is accumulated GPP, GPP), is daily GPP, N is the day.

3. Results

3.1. WOFOST simulated LAI and AGB at the eddy covariance flux tower
site

Fig. 3 shows the simulation and validation with the calibrated
WOFOST model using the field measured LAI and AGB at the El-Reno
site. The LAI of winter wheat increased slowly from emergence to
wintering, and almost stopped growing during the wintering stage. It
then began to grow rapidly during the green-up stage and reached its
maximum value prior to flowering stage. Then, it decreased gradually
from the flowering stage to maturity stage, and decreased rapidly after
maturity stage. The time series for LAl and AGB simulated by WOFOST
agree well with the measured LAI and AGB. As shown in Fig. 3, the

| H assimi ]_at ion | mo de]_ | rithm. Notes: ISLSCP II (International Satellite Land Sur-
| face Climatology Project, Initiative II); Earth Stat (global
| ISLSCP II/Earth Stat ‘ | Crop/Soil/Weather/ l major crop types distribution); NCEP (national centers for
| NCEP Reanalysis II/MODIS | i| Management parameters : environmental prediction); MODIS (moderate resolution
| ‘()(,—,,l,l Mgppl | | imaging spectroradiometer); gy (maximum light use effi-
I v v v v v H | * | ciency); T (temperature); LSWI (land surface water index);
| &) T LSWI| | Rad EVI ” I Rad (radiation); EVI (enhanced vegetation index); Tscatar
:> EnKF <}:l WOFOST | (temperature limitation for photosynthesis); Wscaiar (Water
| l l l i ” § limitation for photosynthesis); PAR (photosynthetically
= : : Fisld | active radiation); fPAR., (fraction of PAR absorbed by
Tscatar | |Wseanr| | PAR | [PARG | . .
| ‘()(.‘I'l'“ mvﬂsm‘rﬂ:l | chlorophyll); &, (light use efficiency); APARcw (absorbed
| % J [ - J | ZULl PAR by chlorophyll); Errorl (GPP error in VPM model);
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| & APAR.., H GPP time MCMC ensemble); Tmax (maximum temperature); SM (soil
| series | moisture).
| —c} | |
| . | Regional
I ] Dartur -
| VPMgpp ‘ Perturb !| Fonl et |

coefficient of determination (R?) of the simulated and observed LAI in
2015 and 2016 were 0.82 and 0.77, respectively, with RMSE of 0.78 and
0.77 m?/m?, respectively; the R? of AGB was 0.94 and 0.93, respec-
tively, with RMSE of 121.25 and 81.06 g/m?, respectively. Results
indicated that the WOFOST model was well calibrated and could
simulate the winter wheat growth status at the study area properly.

Fig. 4-1(a) and (b) compare the different GPP products. The GPP
trends followed a similar overall pattern. During the winter wheat
growing season in both 2015 and 2016, GPP started to increase in mid-
March and reached a peak in early April. In addition, EVI, which can
indicate the health, density and growth of vegetation, also had good
consistency with the GPP results. This reflects the authenticity of the
different GPP products. Among the four GPP products, GPPyopi7 had
the lowest value during most days of the growing season, whereas
GPPworost was slightly higher than GPPypyv and GPPgc during the peak
growing season (from late March to late April). The scatterplots in Fig. 4-
1 show good relationship between GPPwrosor and GPPgc with R? of 0.74
and 0.47 in 2015 and 2016, respectively; the corresponding RMSE were
3.65 and 4.12 g Cm~2day' in 2015 and 2016, respectively. The accu-
racy of the WOFOST simulated GPP was better in 2015 than that in
2016. As shown in Fig. 4-1(b), GPPypm and GPPyopi7 had a peak during
late April to early May in 2016 which were inconsistent with GPPgc and
GPPworost- This might be due to the impact of pasture in the pixel
where eddy covariance flux tower located.

Before early March in 2015 and late February in 2016, the value of
GPPworost Was consistently 0, which was generally because of the
wintering stage of winter wheat. During this stage, the average tem-
perature was low (Fig. 4-2(a) and (b)), and winter wheat will have little
or no photosynthesis. In 2016, GPPworost during two time periods
(approximately early March and late March) also had a value of 0. This
was due to the effect of low temperature limitations in the WOFOST
model, in which an average minimum temperature for the previous
seven days lower than 0 °C causes the model to assume that photosyn-
thesis does not occur. These time periods are indicated in gray Fig. 4-2

(b).
3.2. Assimilation of GPPypy into WOFOST at the eddy tower site

The performance of the WOFOST simulated GPP after assimilation
(GPPgnkr) was compared with GPPgc, GPPypy and GPPyworost during
the winter wheat growing season at the point scale. To eliminate the
value of 0 for GPPworost in the EnKF data assimilation, we assigned
these values of GPPypy to those GPPworost which value equal to 0. In
contrast, if the GPPworost was greater than 0, the GPPg.wr was
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Fig. 3. Validation of the simulated WOFOST LAI and AGB with field measured data in 2015 and 2016.

calculated from GPPworost and GPPypy using EnKF algorithm. Fig. 5
compares the time series for the four GPP products. The accumulated
GPP increased slowly before early March, followed by an increase dur-
ing March and late April. From early May, the increase of accumulated
GPP gradually decreased and finally became stable. Fig. 6 shows the
validation of GPPvpym, GPPEakr and GPPworost compared with GPPgc.
The winter wheat GPP before DOY 60 (purple circle) and after DOY 140
(dark green circle) was generally lower than 10, whereas the main
period of GPP simulation is during DOY 60-140, when is corresponding

to jointing, flowering and grain filling stages of winter wheat. Compared
with GPPworost, GPPyvpm performed better at the El-Reno site both in
2015 (R? = 0.85, RMSE = 2.01 g Cm~2day™') and 2016 (R*> = 0.56,
RMSE = 3.86 g Cm~2day'). Assimilation GPPypy improved the GPP
estimates (GPPgqkr in 2015: R* = 0.87, RMSE = 2.26 g Cm~%day';
GPPg.xr in 2016: R? = 0.67, RMSE =3.25 g C(m~2day™') compared with
the values estimated without data assimilation (GPPworost in 2015: R?
= 0.74, RMSE = 3.65 g Cm~2day™'; GPPworosr in 2016: R? = 0.47,

RMSE = 4.12 g C(m~2day™'). Furthermore, the R? of GPPgr improved
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Fig. 4. -1. Comparison among different daily GPP time series products at the EI-Reno flux tower site in (a) 2015 and (b) 2016. 4-2. Daily minimum temperature
(TMIN) and averaged minimum temperature (TMIN-Average) at EI-Reno flux tower site in (a) 2015 and (b) 2016. (Gray areas represent TMIN-Average lower than

0 °C after the wintering stage).

compared with GPPypy both in 2015 and 2016, while RMSE was compared. Fig. 7 shows that GPPyopi17 had the lowest values during

increased slightly in 2015 and decreased in 2016. Results showed that winter wheat growing season in both years, whereas GPPypy had the
assimilating GPPvypy into the WOFOST model have potential for highest accumulated GPP in both years. The accumulated GPPgc and
improving the GPP simulation at the site level. GPPworost were close to each other. For the winter wheat yield, Yiel-

The accumulated GPP and yield results at the El Reno site were also denkr Was higher than Yieldworost in both years, and was closer to
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Yieldmess in 2016. (Yield measurements from the EI Reno site were not
available in 2015.).

3.3. Assimilation of GPPypy into WOFOST at the regional scale

The regional scale data assimilation was conducted in 500 m grid
cells in which the spatial resolution coincides with GPPypy. Fig. 8 shows
the resulting regional winter wheat yields in both years based on both
government statistics (Fig. 8(a), (b)) and our simulations (Fig. 8(c-j)).
From Fig. 8(c) and (d) can be seen that the spatial variation in the un-
assimilated winter wheat yield maps was small, especially in 2016, and
yield mostly ranged from 1500 to 2500 kg/ha. This was mainly due to
the coarse spatial resolution of the meteorological parameters. The yield
maps with assimilation (Fig. 8(g), (h)) showed more spatial variance,
and the spatial pattern agreed well with official yield statistics at the
county level (Fig. 8(i) and (j)). Moreover, we also found a mismatch in
winter wheat yield between 2015 and 2016. The county-level statistical
data showed that the winter wheat yield of most counties was higher in
2016 than 2015 (Fig. 8(a), (b)), whereas the open loop simulated yield
(Fig. 8(e) and (f)) showed the opposite result especially in central and
eastern Oklahoma. One reason might be that we only used one set of
crop parameters to simulate all of Oklahoma, and Fig. 7 showed slightly
higher WOFOST simulated yield at the flux tower site in 2015 than in
2016. After we assimilated GPPypy into WOFOST, the simulated winter
wheat yield results (Fig. 8(i) and (j)) agreed better than open loop results
with the official statistics. This demonstrates that the assimilation of
GPPypy into WOFOST improved the estimation of winter wheat yield.

Fig. 9 shows the validation results based on a comparison of the
simulated values with the official regional statistical data. The circle size
represents the variance of the pixel yield in the county, the larger the
circle the greater the variance of pixel yield in the county. Assimilation
of GPP improved the winter wheat yield estimation in both years. R?
increased from 0.14 and 0.10 without assimilation in 2015 and 2016,
respectively, to 0.36 and 0.29 with assimilation, and the RMSE
decreased from 801 and 788 kg/ha to 479 and 572 kg/ha in 2015 and
2016, respectively. However, the county statistical winter wheat yields
were mostly lower than the WOFOST simulated yields and were lower
than that in North China Plain, where the official winter wheat yield
ranges from 4000 to 8000 kg/ha (Huang et al., 2015b, 2016, 2019a).
One possible reason is that the winter wheat in Oklahoma is mostly
rainfed, whereas in Northern China, winter wheat is irrigated 2—4 times
during the growing season. This is important, since winter wheat is more

sensitive to water stress during the jointing and grain-filling stage
(Huang et al., 2018), which means that winter wheat in Oklahoma is
more likely to suffer from water stress that can easily cause lower yield.

4. Discussion
4.1. Assimilation of remotely sensed GPP into process-based crop model

GPP is widely used to understand an ecosystem’s carbon cycle and its
relationship with the climate system. However, it has not often been
used for crop yield estimation in a CDMA framework; instead, studies
have generally relied on LAI or SM. One of the primary reasons for this is
that GPP and crop yield are secondary variables that are only indirectly
accessible from remotely sensed observations. In contrast, LAI or SM are
considered to be primary variables directly involved in the radiative
process (Weiss et al., 2020).

In this study, we developed a GPP CDMA framework to improve
winter wheat yield estimation at a regional scale. Our results suggested
that the WOFOST simulated GPP time series achieved high accuracy of
simulating the actual carbon sequestration processes in this winter
wheat field, and it also agreed well with eddy covariance tower simu-
lated GPP (Fig. 4(a) and (b)). Moreover, assimilating GPPvypy into the
WOFOST model using the EnKF algorithm eliminated zero values from
GPPworost, Which resulted from WOFOST’s assumption that photo-
synthesis will not occur when the air temperature is below 0 °C.
Particularly, the GPP CDMA framework improved GPP estimation at the
point scale (Fig. 6) and improved winter wheat yield estimation
compared to WOFOST simulation without assimilation at the regional
scale (Fig. 9). These results demonstrated the high potential to use GPP
as a state variable in the CDMA framework.

To compare the performance of assimilating LAI (the most
commonly used state variable in CDMA) and GPP for winter wheat yield
estimation, a same CDMA experiment, which using the EnKF assimila-
tion method, was conducted by using MODIS LAI product, and the
comparison results were shown in Fig. 10. Assimilating GPPypy per-
formed better than LAIvopis both in 2015 and 2016 (R2 =0.36and 0.29;
RMSE= 479 and 572 kg/ha in 2015 and 2016, respectively, for assim-
ilating GPP. R* = 0.25 and 0.19; RMSE= 511 and 770 kg/ha in 2015 and
2016, respectively, for assimilating LAI). The yield estimation results
obtained by assimilating GPPypy were generally higher than assimi-
lating LAImonis, and assimilating GPPypyv can get a higher average yield
value (Fig. 10(c)). The main reason is that LAlvopis always
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underestimates winter wheat LAI, whose highest value ranges from 5 to
7 m*/m? in actual growth state while LAlIyopis ranges from 2 to 3 m%/
m? (Fig. 11). Due to the low value of LAlyopis, LAlgukr (red line) was
generally lower than LAlworost (yellow line) (Fig. 11). Several previous
studies proven that assimilating LAlInopis into crop model directly may
reduce the crop yield estimation results, due to the lower LAI values
caused by scaling effect (Dente et al., 2008; Huang et al., 2015b, 2016,
2022; Ma et al., 2013; ). At present, the commonly used strategies of
assimilating LAIvopis are (1) to stretch the LAIyonis value to the normal
range by data fusion methods (Huang et al., 2016) or (2) assimilating the
trend information of LAlyopis using variational method (Zhuo et al.,
2020). In summary, assimilating GPPypy is able to obtain higher accu-
racy than LAlvopis using EnKF method for winter wheat yield estimation
at the regional scale.

4.2. Comparison with the linear regression model using harvest index for
winter wheat yield estimation

Harvest index (HI) is calculated as the ratio between crop grain yield
and crop aboveground biomass (AGB), or net primary production (NPP)
or gross primary production (GPP) (Wu et al., 2021a). In this study, we
used the accumulated GPP (GPP,) over winter wheat growing season as
a dependent variable for winter wheat yield estimation using HI.
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Numerous researches reported the HI values range from 0.2 to 0.6 for
different crops (Guan et al., 2016; Lobell et al., 2002; Monfreda et al.,
2008; Wu et al., 2021a, 2021b), and we followed results concluded by
Wu et al. (2021b) that set the HI as 0.25. The validation results of winter
wheat yield and production at the county level were presented in
Fig. 12.

The validation results showed that winter wheat yield estimated by
CDMA (Yieldcpwma) had higher accuracy (R? = 0.36 and 0.29; RMSE=
479 and 572 kg/ha in 2015 and 2016, respectively) than by HI (Yieldu)
(R? = 0.28 and 0.19; RMSE= 423 and 682 kg/ha in 2015 and 2016,
respectively), and larger spatial differences were found for the
Yieldcpma ranging 1000 — 3500 kg/ha (Fig. 12(a), (b)). The winter
wheat production validation results were performed well for both Pro-
ductioncpma and Productiony;, in which R? were generally bigger than
0.8 and RMSE were generally lower than 55 kton, due to the high pre-
cision winter wheat mapping results (CDL, https://www.nass.usda.gov).
HI method is feasible and easy to operate, which only costs about a few
minutes for Oklahoma while CDMA will cost more than 10 h for
calculating. However, HI is also affected by many factors, such as crop
varieties, crop management, and environmental conditions (Wu et al.,
2021b), and a constant HI could cause large uncertainties for crop yield
estimation at the regional scale. In general, CDMA, which comprehen-
sively considers crop, soil, management and weather conditions, is more
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suitable for winter wheat yield estimation, and can obtain higher winter
wheat yield estimation accuracy than HI method.

4.3. Uncertainty of the GPP CDMA framework and future development

Uncertainty of GPP observations is a potentially important source of
uncertainty in GPP CDMA framework. This is because the estimation of
GPP is still highly uncertain by now, although the related theories have
made great progress in recent years (Ryu et al., 2019). In the present
study, the error related to GPPypy came from the following sources.
First, VPM integrates coarse spatial resolution data into its calculation,
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such as the NCEP reanalysis II meteorological data, which has an orig-
inal resolution of approximately 1.875° x 2° and is primary forcing data
for the estimation of LUE and PAR. This approach is feasible at the global

scale, but it may lead to large errors when it is applied at local and
regional scales. Second, estimation of the maximum LUE can contain
significant errors. The maximum LUE values at the ecosystem level vary
among vegetation types and may also differ between regions for a given
ecosystem type (Xiao et al., 2011). In this study, the maximum LUE was
estimated by using the look up table method, and the LUE value of

winter wheat was set to 0.42 g C/mol PPFD-! (Zhang et al., 2017b).
Thus, if the maximum LUE values for different crops can be specified in
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the future, the estimation of GPP will improve. Third, the uncertainties
in VPM also come from the two down-regulation factors (Wcar and
Tscatar)- Jin et al. (2013) performed a sensitivity analysis for VPM and
found that it was important to account for both water and temperature
to downscale the maximum LUE when estimating GPP in semi-arid cli-
mates, because the accuracy of both factors will directly affect the ac-
curacy of GPP.

As for the WOFSOT model, only one set of crop parameters (cali-
brated by the wheat variety of Gallagher) was used in this study
throughout the Oklahoma winter wheat area, which is difficult to
represent the spatial variations. It was assumed that a single dominant
cultivar was planted throughout the study area and that the crop char-
acteristics and management measures did not vary spatially. However,
more than 30 varieties of wheat are planted throughout Oklahoma and
they differ in crop characteristics, and the most planted variety is Gal-
lagher, which accounts for 14% of the total (ODAFF, 2017). To account
for this variation, future research should regionalize the crop parame-
ters. Secondly, the mismatch in spatial resolution among the dataset
from the eddy covariance tower (at a point scale), the crop model (at a
point scale) and the GPPypy pixels (500-m spatial resolution) will also
affect the accuracy of the GPPgkr assimilation.

The data assimilation method used in this study was EnKF, while the
standard EnKF method has its own assumptions and uncertainties. It
tends to reject observations in the late period of CDMA, which is referred
to “filter divergence” (Ines et al., 2013). To reduce the effect of the filter
divergence, inflation factor can be conducted in future studies to enlarge
the variance of the forecast ensemble (Huang et al., 2016; Lin et al.,
2008). Besides, an important assumption of the EnKF is that both
observation and model errors are Gaussian, while the reality is not the
case. Particle Filter (PF) algorithm, which can assume that the error is
non-Gaussian distribution, is a potential sequential assimilation method
for CDMA (Moradkhani and Weihermiiller, 2011; Nagarajan et al.,
2011).

In the future study, GPP data at a finer spatial resolution should be
applied to the GPP CDMA framework to reduce the spatial mismatch
between crop models and GPP observations. Besides, given the current
availability of Solar-induced chlorophyll fluorescence (SIF) observa-
tions, which can provide a direct link to the instantaneous photosyn-
thetic activity (Guan et al., 2016; Guanter et al., 2014; Macbean et al.,
2018), researchers begin to use SIF data for improving estimates of GPP
(Bacour et al., 2019; Koffi et al., 2015; Macbean et al., 2018; Norton
etal., 2018a, 2018b), which proved that the remote sensing derived SIF
can largely reduce the uncertainty of GPP estimation (Norton et al.,
2018b) and can further advance our understanding and help with a more
accurate estimation of GPP.

5. Conclusions

In this study, the coupled VPM-WOFOST CDMA framework was used
to estimate winter wheat yield in Oklahoma (USA) in 2015 and 2016 by
assimilating 500-m-scale GPPypy product into the WOFOST model using
EnKF algorithm. At the point scale, the WOFOST simulated GPP
(GPPworost) had a good relationship with GPPgc and can reflect winter
wheat carbon sequestration well. Moreover, the VPM-WOFOST CDMA
framework can improve winter wheat GPP estimation at the point scale.
At the regional scale, assimilating GPPypy into the WOFOST model
slightly improved the winter wheat yield estimation, this may be due to
the scale mismatch and the uncertainty of remotely sensed GPP. How-
ever, this study is a successful first attempt that demonstrates the po-
tential of GPP assimilation for regional-scale winter wheat yield
estimation within a CDMA framework. In addition, it improves our
understanding of the importance of carbon flux processes of crops in
crop yield estimation.

14

European Journal of Agronomy 139 (2022) 126556

CRediT authorship contribution statement

Wen Zhuo: Conceptualization, Methodology, Software, Writing —
original draft. Jianxi Huang: Conceptualization, Supervision, Re-
sources, Writing — review & editing. Xiangming Xiao: Conceptualiza-
tion, Resources, Writing — review & editing. Hai Huang: Software,
Writing — review & editing. Rajen Bajgain: Software, Formal analysis.
Xiaocui Wu: Data curation, Visualization. Xinran Gao: Resources,
Visualization. Jie Wang: Data curation, Visualization. Xuecao Li:
Writing — review & editing. Pradeep Wagle: Data curation.

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgments

This study was supported by the National Natural Science Founda-
tion of China (Project No. 41971383), Science and Technology Facilities
Council of UK-Newton Agritech Programme (Project No. ST/N006798/
1), the USDA National Institute of Food and Agriculture (NIFA) (Project
No. 2013-69002 and 2016-68002-24967) and the China Scholarship
Council (No. 201806350193). We thank professor Yao Zhang at Peking
University for improving the manuscript. We are grateful to the Earth
Observation and Modeling Facility (EOMF) members for their help and
advice on this research.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.eja.2022.126556.

References

Attia, A., Rajan, N., Xue, Q., Nair, S., Ibrahim, A., Hays, D., 2016. Application of
DSSATCERES-Wheat model to simulate winter wheat response to irrigation
management in the Texas High Plains. Agric. Water Manag 165, 50-60.

Bacour, C., Maignan, F., Macbean, N., Porcar stell, A., Flexas, J., Frankenberg, C.,

Peylin, P., Chevallier, F., Vuichard, N., Bastrikov, V., 2019. Improving estimates of

Gross Primary Productivity by assimilating solar-induced fluorescence satellite

retr als in a ter al biosphere model using a process-based SIF model.
J. Geophys. Res. Biogeosci. 124 (11), 3281-3306.
Bajgain, R., Xiao, X., Ba ,J., Wagle, P., Zhou, Y., Mahan, H., Gowda, P., Mccarthy, H.

R., Northup, B., Neel, J., Steiner, J., 2018. Carbon dioxide and water vapor fluxes in

winter wheat and tallgrass prairie in central Oklahoma. Sci. Total Environ. 644,
1511-1524.
Becker-Reshef, I., Vermote, E., Lindeman, M., Justice, C., 2010. A generalized regression-

based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS
data. Remote Sens. Environ. 114 (6), 1312—1323.

Boogaard, H., Wolf, Supit, I., Niemeyer, S., Van Ittersum, M., 2013. A regional
implementation of WOFOST for calculating yield gaps of autumn-sown wheat across
the European Union. Field Crop Res. 143 (2013), 130-142.

Boryan, C., Yang, Z., Mueller, R., Craig, M., 201 1. Monitoring
Department of Agriculture, National

S agriculture: the US

Agricultural Statistics Service, Cropland Data
Layer Program. Geocarto Int. 26, 341-358.

Brock, F.V., Crawford, K.C., Elliott, R.L., Cuperus, G.W., Stadler, S.J.,
Eilts, M.D., 1995. The Oklahoma Mesonet: a technical overview.
Technol. 12 (1), 5-19.

Brooks, S.P., Gelman, A., 1998. General methods for monitoring convergence of iterative
simulations. J. Comput. Graph. Stat. 7 (4), 434-455.

Johnson, H.L.,
J. Atmos. Ocean.

Burgers, G., Van Leeuwen, P.J., Evensen, G., 1998. Analysis scheme in the ensemble
Kalman filter. Mon. Weather Rev. 126, 1719-1724.

Chen, Y., Zhang, Z., Tao, F., 2018. Improving regional winter wheat yield estimation
through assimilation of phenology and leaf area index from remote sensing data.
Eur. J. Agron. 101, 163-173.

Combe, M., De Wit, A.J., Vila -Guerau de Arellano, J., van der Molen, M.K., Magliulo, V.,
Peters, W., 2017. Grain yield observations constrain cropland CO; fluxes over
Europe. J. Geophys. Res. Biogeosci. 122 (12), 3238-3259.

De Wit, A., Duveiller, G., Defourny, P., 2012. Estimati
with WOFOST through the assimilation of green area index retrieved from MODIS

egional winter wheat yield

observations. Agric. For. Meteorol. 164, 39-52.

De Wit, A.D., Van Diepen, C., 2007. Crop model data assimilation with the Ensemble
Kalman filter for improving regional crop yield forecasts. Agric. For. Meteorol. 146,
38-56.

De Wit, C.T., 1965. Photosynthesis of Leaf Canopies. Pudoc, Wageningen.


https://doi.org/10.1016/j.eja.2022.126556
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref1
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref1
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref1
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref2
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref2
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref2
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref2
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref2
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref3
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref3
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref3
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref3
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref4
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref4
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref4
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref5
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref5
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref5
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref6
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref6
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref6
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref7
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref7
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref7
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref8
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref8
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref9
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref9
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref10
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref10
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref10
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref11
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref11
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref11
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref12
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref12
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref12
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref13
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref13
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref13
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref14

W. Zhuo et al.

Dente, L., Satalino, G., Mattia, F., Rinaldi, M., 2008. Assimilation of leaf area index
derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield.
Remote Sens. Environ. 112, 1395-1407.

Dong, T., Liu, J., Qian, B., Zhao, T., Jing, Q., Geng, X., Wang, J., Huffman, T., Shang, J.,
2016. Estimating winter wheat biomass by assimilating leaf area index derived from
fusion of Landsat-8 and MODIS data. Int. J. Appl. Earth Obs. Geoinf. 49, 63-74.

Doughty, R., Xiao, X., Wu, X., Zhang, Y., Bajgain, R., Zhou, Y., Qin, Y., Zou, Z.,
Mccarthy, H., Friedman, J., Wagle, P., 2018. Responses of gross primary production
of grasslands and croplands under drought, pluvial, and irrigation conditions during
20102016, Oklahoma, USA. Agric. Water Manag. 204, 47—59.

Dumont, B., Leemans, V., Mansouri, M., Bodson, B., Destain, J.-P., Destain, M.-F., 2014.
Parameter identification of the STICS crop model, using an accelerated formal
MCMC approach. Environ. Model. Softw. 52, 121-135.

Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics. J. Geophys. Res.
Oceans 99, 10143-10162.

Fao, 2017. The future of food and agriculture — trends and challenges.

Guan, K., Berry, J.A., Zhang, Y., Joiner, J., Guanter, L., Badgley, G., Lobell, D.B., 2016.
Improving the monitoring of crop productivity using spaceborne solar-induced
fluorescence. Glob. Chang. Biol. 22 (2), 716-726.

Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J.A., Frankenberg, C.,
Huete, A.R., Zarco-Tejada, P., Lee, J.-E., Moran, M.S., Ponce-Campos, G., Beer, C.,
Campsvalls, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J.M.,
Griffis, T.J., 2014. Global and time-resolved monitoring of crop photosynthesis with
chlorophyll fluorescence. Proc. Natl. Acad. Sci. USA 111, E1327-E1333.

Houtekamer, P.L., Mitchell, H.L., 2001. A sequential ensemble Kalman filter for
atmospheric data assimilation. Mon. Weather Rev. 129 (1), 123-137.

Huang, J., Go mez-Dans, J.L., Huang, H., Ma, H., Wu, Q., Lewis, P.E., Liang, S., Chen, Z.,
Xue, J.H., Wu, Y., Zhao, F., Wang, J., Xie, X.H., 2019a. Assimilation of remote
sensing into crop growth models: current status and perspectives. Agric. For.
Meteorol. 276-277.

Huang, H., Huang, J., Li, X., Zhuo, W., Wu, Y., Niu, Q., Su, W, Yuan, W, 2022. A dataset
of winter wheat aboveground biomass in China during 2007-2015 based on data
assimilation. Sci. Data 9 (200), 1-12. https://doi.org/10.1038/s41597-022-01305-6.

Huang, J., Ma, H., Sedano, F., Lewis, P., Liang, S., Wu, Q., Su, W., Zhang, X., Zhu, D.,
2019b. Evaluation of regional estimates of winter wheat yield by assimilating three
remotely sensed reflectance datasets into the coupled WOFOST-prosail model. Eur. J.
Agron. 102, 1-13.

Huang, J., Ma, H., Su, W., Zhang, X., Huang, Y., Fan, J., Wu, W_, 2015a. Jointly
assimilating MODIS LAI and ET products into the SWAP model for winter wheat
yield estimation. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 8 (8), 4060-4071.

Huang, J., Sedano, F., Huang, Y., Ma, H., Li, X, Liang, S., Tian, L., Zhang, X., Fan, J.,
Wu, W., 2016. Assimilating a synthetic Kalman flter leaf area index series into the
WOFOST model to improve regional winter wheat yield estimation. Agric. For.
Meteorol. 216, 188-202.

Huang, J., Tian, L., Liang, S., Becker-Reshef, I., Su, W., Zhang, X., Zhu, D., Wu, W.,
2015b. Improving winter wheat yield estimation by assimilation of the leaf area
index from Landsat TM and MODIS data into the WOFOST model. Agric. For.
Meteorol. 204, 106-121.

Huang, J., Zhuo, W., Li, Y., Huang, R., Sedano, F., Su, W., Dong, J., Tian, L., Huang, Y.,
Zhu, D., Zhang, X., 2018. Comparison of three remotely sensed drought indices for
assessing the impact of drought on winter wheat yield. Int. J. Digit. Earth 11 (13), 1—
23.

Iliston, B.G., Basara, J.B., Crawford, K.C., 2004. Seasonal to interannual variations of soil
moisture measured in Oklahoma. Int. J. Climatol. A J. R. Meteorol. Soc. 24 (15),
1883—-1896.

Ines, A.V., Das, N.N., Hansen, J.W., Njoku, E.G., 2013. Assimilation of remotely sensed
soil moisture and vegetation with a crop simulation model for maize yield
prediction. Remote Sens. Environ. 138, 149-164.

Ines, A.V., Honda, K., Gupta, A.D., Droogers, P., Clemente, R.S., 2006. Combining remote
sensing-simulation modeling and genetic algorithm optimization to explore water
management options in irrigated agriculture. Agric. Water Manag. 83 (3), 221-232.

Igbal, M.A., Shen, Y., Stricevic, R., Pei, H., Sun, H., Amiri, E., Penas, A., Del Rio, S., 2014.
Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain
under deficit irrigation from field experiment to regional yield simulation. Agric.
‘Water Manag. 135, 61-72.

Jiang, C., Ryu, Y., 2016. Multi-scale evaluation of global gross primary productivity and
evapotranspiration products derived from Breathing Earth System Simulator (BESS).
Remote Sens. Environ. 186, 528-547.

Jin, C., Xiao, X.M., Merbold, L., Arneth, A., Veenendaal, E., Kutsch, W.L., 2013.
Phenology and gross primary production of two dominant savanna woodland
ecosystems in Southern Africa. Remote Sens. Environ. 135, 189-201.

Jin, X., Li, Z., Yang, G., Yang, H., Feng, H., Xu, X., Wang, J., Li, X., Luo, J., 2017. Winter
wheat yield estimation based on multi-source medium resolution optical and radar
imaging data and the AquaCrop model using the particle swarm optimization
algorithm. ISPRS J. Photogramm. Remote Sens. 126, 24-37.

Jung, M., Reichstein, M., Schwalm, C.R., Huntingford, C., Sitch, S., Ahlstro 'm, A.,
Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein, P., Gans, F., Ichii, K., Jain, A.K.,
Kato, E., Papale, D., Poulter, B., Raduly, B., Ro "denbeck, C., Tramontana, G.,
Viovy, N., Wang, Y.-P., Weber, U., Zachle, S., Zeng, N., 2017. Compensatory water
effects link yearly global land CO: sink changes to temperature. Nature 541,
516-520.

Kalfas, J.L., Xiao, X.M., Vanegas, D.X., Verma, S.B., Suyker, A.E., 2011. Modeling gross
primary production of irrigated and rain-fed maize using MODIS imagery and CO:
flux tower data. Agric. For. Meteorol. 151, 1514—1528.

15

European Journal of Agronomy 139 (2022) 126556

Kang, X., Wang, Y., Chen, H., Tian, J., Cui, X., Rui, Y., Zhong, L., Kardol, P., Hao, Y.,
Xiao, X., 2014. Modeling carbon fluxes using multi-temporal MODIS imagery and
CO: eddy flux tower data in Zoige Alpine Wetland, South-West China. Wetlands 34,
603—618.

Keenan, T.F., Prentice, I1.C., Canadell, J.G., Williams, C.A., Wang, H., Raupach, M.,
Collatz, G.J., 2016. Recent pause in the growth rate of atmospheric COz due to
enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428.

Koffi, E.N., Rayner, P.J., Norton, A.J., Frankenberg, C., Scholze, M., 2015. Investigating
the usefulness of satellite-derived fluorescence data in inferring gross primary
productivity within the carbon cycle data assimilation system. Biogeosciences 12
(13), 4067-4084.

Kondo, M., Ichii, K., Takagi, H., Sasakawa, M., 2015. Comparison of the data-driven
topdown and bottom-up global terrestrial CO> exchanges: GOSAT COs inversion and
empirical eddy flux upscaling. J. Geophys. Res. Biogeosci. 120, 1226—1245.

Li, Z.Q., Yu, G.R., Xiao, X.M., Li, Y.N., Zhao, X.Q., Ren, C.Y., Zhang, L.M., Fu, Y.L., 2007.
Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using
MODIS images and climate data. Remote Sens. Environ. 107, 510-519.

Lin, C., Wang, Z., Zhu, J., 2008. An ensemble Kalman filter for severe dust storm data
assimilation over China. Atmos. Chem. Phys. 8 (11), 2975-2983.

Lloyd, J., Taylor, J., 1994. On the temperature dependence of soil respiration. Funct.
Ecol. 8 (3), 315-323.

Lobell, D.B., Hicke, J.A., Asner, G.P., Field, C., Tucker, C., Los, S., 2002. Satellite
estimates of productivity and light use effciency in United States agriculture, 1982-
98. Glob. Chang. Biol. 8, 722-735.

Lu, C., Fan, L., 2013. Winter wheat yield potentials and yield gaps in the North China
Plain. Field Crop Res. 143, 98-105.

Ma, H.Y ., Huang, J.X., Zhu, D.H., Liu, J.M., Zhang, C., Su, W_, Fan, J.L., 2013. Estimating
regional winter wheat yield by assimilation of time series of HJ-1 CCD into WOFOST—
ACRM model. Math. Comput. Model. Dyn. Syst. 58 (3-4), 753-764.

Macbean, N., Maignan, F., Bacour, C., Lewis, P., Peylin, P., Guanter, L., Ko "hler, P.,

Go “mez-Dans, J., Disney, M., 2018. Author Correction: Strong constraint on modelled
global carbon uptake using solar-induced chlorophyll fluorescence data. Sci. Rep. 8,
10420.

Migliavacca, M., Meroni, M., Busetto, L., Colombo, R., Zenone, T., Matteucci, G.,
Manca, G., Seufert, G., 2009. Modeling gross primary production of agro-forestry
ecosystems by assimilation of satellite-derived information in a process-based model.
Sensors 9 (2), 922-942.

Moffat, A.M., Papale, D., Reichstein, M., Hollinger, D.Y ., Richardson, A.D., Barr, A.G.,
Beckstein, C., Braswell, B.H., Churkina, G., Desai, A.R., Falge, E., 2007.
Comprehensive comparison of gap-filling techniques for eddy covariance net carbon
fluxes. Agric. For. Meteorol. 147 (3—4), 209-232.

Monfreda, C., Ramankutty, N., Foley, J.A., 2008. Farming the planet: 2. Geographic
distribution of crop areas, yields, physiological types, and net primary production in
the year 2000. Glob. Biogeochem. Cycles 22 (1).

Moradkhani, H., Weihermiiller, L., 2011. Hydraulic parameter estimation by remotely-
sensed top soil moisture observations with the particle filter. J. Hydrol. 399 (3), 410—
421.

Nagarajan, K., Judge, J., Graham, W.D., Monsivais-Huertero, A., 2011. Particle filter-
based assimilation algorithms for improved estimation of root-zone soil moisture
under dynamic vegetation conditions. Adv. Water Resour. 34 (4), 433-447.

Nearing, G.S., Crow, W.T., Thorp, K.R., Moran, M.S., Reichle, R.H., Gupta, H.V., 2012.
Assimilating remote sensing observations of leaf area index and soil moisture for
wheat yield estimates: an observing system simulation experiment. Water Resour.
Res. 48, W05525.

Norton, A.J., Rayner, P.J., Koffi, E.N., Scholze, M., Silver, J., Wang, Y., 2018a. Estimating
global gross primary productivity using chlorophyll fluorescence and a data
assimilation system with the BETHY-SCOPE model. Biogeosci. Discuss. 2018, 1-40.

Norton, A.J., Rayner, P.J., Koffi, E.N., Scholze, M., 2018b. Assimilating solar-induced
chlorophyll fluorescence into the terrestrial biosphere model BETHY-SCOPE v1.0:
model description and information content. Geosci. Model Dev. 11 (4), 1517-1536.

ODAFF (Oklahoma Department of Agriculture, Food, and Forestry), 2017. Oklahoma
Agricultural Statistics 2017. Oklahoma City, OK.

Palosuo, T., Kersebaum, K.C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J.E.,
Patil, R.H., Ruget, F., Rumbaur, C., Taka" "c,J., Trnka, M., 201 1. Simulation of winter
wheat yield and its variability in different climates of Europe: a comparison of eight
crop growth models. Eur. J. Agron. 35 (3), 103—114.

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P.,
Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., 2005. On the separation of
net ecosystem exchange into assimilation and ecosystem respiration: review and
improved algorithm. Glob. Chang. Biol. 11, 1424—-1439.

Running, S.W., Nemani, R.R., Heinsch, F.A., Zhao, M.S., Reeves, M., Hashimoto, H.,
2004. A continuous satellite-derived measure of global terrestrial primary
production. Bioscience 54, 547-560.

Ryu, Y., Berry, J.A., Baldocchi, D.D., 2019. What is global photosynthesis? History,
uncertainties and opportunities. Remote Sens. Environ. 223, 95-114.

Silvestro, P.C., Pignatti, S., Pascucci, S., Yang, H., Li, Z., Yang, G., Huang, W., Casa, R.,
2017. Estimating wheat yield in China at the field and district scale from the
assimilation of satellite data into the Aquacrop and simple algorithm for yield
(SAFY) models. Remote Sens. 9 (5), 509.

Usda-Nass, 2014. Crop progress and condition. USDA’s National Agricultural Statistics
Service Oklahoma Field Office. (https://www.nass.usda.gov/Statistics by State/
Oklahoma/Publications/Crop_Progress_& Condition/2014/index.php) .

Vazifedoust, M., Dam, Van, Bastiaanssen, J., Feddes, R, W., 2009. Assimilation of satellite
data into agrohydrological models to improve crop yield forecasts. Int. J. Remote
Sens. 30 (10), 2523-2545.


http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref15
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref15
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref15
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref16
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref16
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref16
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref17
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref17
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref17
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref17
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref18
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref18
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref18
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref19
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref19
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref19
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref20
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref20
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref20
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref21
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref21
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref21
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref21
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref21
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref22
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref22
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref23
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref23
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref23
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref23
https://doi.org/10.1038/s41597-022-01305-6
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref25
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref25
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref25
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref25
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref26
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref26
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref26
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref27
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref27
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref27
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref27
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref28
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref28
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref28
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref28
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref29
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref29
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref29
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref29
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref29
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref30
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref30
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref30
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref31
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref31
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref31
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref32
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref32
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref32
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref33
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref33
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref33
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref33
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref34
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref34
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref34
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref35
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref35
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref35
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref36
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref36
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref36
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref36
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref37
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref37
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref37
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref37
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref37
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref37
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref38
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref38
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref38
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref39
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref39
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref39
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref39
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref40
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref40
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref40
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref41
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref41
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref41
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref41
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref42
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref42
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref42
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref43
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref43
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref43
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref44
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref44
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref45
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref45
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref46
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref46
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref46
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref47
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref47
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref48
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref48
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref48
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref48
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref49
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref49
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref49
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref49
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref50
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref50
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref50
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref50
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref51
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref51
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref51
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref51
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref52
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref52
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref52
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref53
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref53
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref53
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref53
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref54
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref54
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref54
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref55
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref55
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref55
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref55
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref56
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref56
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref56
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref57
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref57
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref57
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref58
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref58
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref58
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref58
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref59
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref59
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref59
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref59
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref60
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref60
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref60
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref61
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref61
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref62
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref62
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref62
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref62
https://www.nass.usda.gov/Statistics_by_State/Oklahoma/Publications/Crop_Progress_%26amp%3B_Condition/2014/index.php
https://www.nass.usda.gov/Statistics_by_State/Oklahoma/Publications/Crop_Progress_%26amp%3B_Condition/2014/index.php
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref63
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref63
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref63

W. Zhuo et al.

Vrugt, J.A., Ter Braak, C.J.F., Diks, C.G.H., Robinson, B.A., Hyman, J.M., Higdon, D.,
2009. Accelerating Markov chain Monte Carlo simulation by differential evolution
with self-adaptive randomized subspace sampling. Int. J. Nonlinear Sci. Numer.
Simul. 10 (3), 273-290.

Wagle, P., Xiao, X., Torn, M.S., Cook, D.R., Matamala, R., Fischer, M.L, Jin, C., Dong, J.,
Biradar, C., 2014. Sensitivity of vegetation indices and gross primary production of
tallgrass prairie to severe drought. Remote Sens. Environ. 152, 1-14.

Wang, J., Li, X., Lu, L., Fang, F., 2013. Estimating near future regional corn yields by
integrating multi-source observations into a crop growth model. Eur. J. Agron. 49,
126-140.

Wang, Z., Xiao, X., Yan, X., 2010. Modeling gross primary production of maize cropland
and degraded grassland in northeastern China. Agric. For. Meteorol. 150,
1160-1167.

Weiss, M., Jacob, F., Duveiller, G., 2020. Remote sensing for agricultural applications: a
meta-review. Remote Sens. Environ. 236, 111402.

Wu, C., Munger, J.W., Niu, Z., Kuang, D., 2010. Comparison of multiple models for
estimating gross primary production using MODIS and eddy covariance data in
Harvard Forest. Remote Sens. Environ. 114 (12), 2925-2939.

Wu, W.X., Wang, S.Q., Xiao, X.M., Yu, G.R,, Fu, Y.L., Hao, Y.B., 2008. Modeling gross
primary production of a temperate grassland ecosystem in Inner Mongolia, China,
using MODIS imagery and climate data. Sci. China Ser. D Earth Sci. 51, 1501-1512.

Wu, X.C., Xiao, X., Yang, Z., Wang, J., Steiner, J., Bajgain, R., 2021a. Spatial-temporal
dynamics of maize and soybean planted area, harvested area, gross primary
production, and grain production in the Contiguous United States during
2008-2018. Agric. For. Meteorol. 297, 108240.

Wu, X.C., Xiao, X., Steiner, J., Yang, Z., Qin, Y., Wang, J., 2021b. Spatiotemporal changes
of winter wheat planted and harvested areas, photosynthesis and grain production in
the contiguous United States from 2008-2018. Remote Sens. 13, 1735.

Xiao, D., Tao, F., 2014. Contributions of cultivars, management and climate change to
winter wheat yield in the North China Plain in the past three decades. Eur. J. Agron.
52, 112-122.

Xiao, J.F., Davis, K.J., Urban, N.M., Keller, K., Saliendra, N.Z., 2011. Upscaling carbon
fluxes from towers to the regional scale: influence of parameter variability and land
cover representation on regional flux estimates. J. Geophys. Res. Biogeosci. 116, 15.

Xiao, X., Hollinger, D., Aber, J., Goltz, M., Davidson, E.A., Zhang, Q., Moore III, B.,
2004a. Satellite-based modeling of gross primary production in an evergreen
needleleaf forest. Remote Sens. Environ. 89 (4), 519-534.

Xiao, X.M., Zhang, Q.Y., Braswell, B., Urbanski, S., Boles, S., Wofsy, S., Berrien, M.,
Ojima, D., 2004b. Modeling gross primary production of temperate deciduous
broadleaf forest using satellite images and climate data. Remote Sens. Environ. 91,
256-270.

Xiao, X.M., Zhang, Q.Y ., Saleska, S., Hutyra, L., De Camargo, P., Wofsy, S., Frolking, S.,
Boles, S., Keller, M., Moore, B., 2005. Satellite-based modeling of gross primary

16

European Journal of Agronomy 139 (2022) 126556

production in a seasonally moist tropical evergreen forest. Remote Sens. Environ. 94,
105-122.

Xie, Y., Wang, P., Bai, X., Khan, J., Zhang, S., Li, L., Wang, L., 2017. Assimilation of the
leaf area index and vegetation temperature condition index for winter wheat yield
estimation using landsat imagery and the CERES-wheat model. Agric. For. Meteorol.
246, 194-206.

Xin, F., Xiao, X., Zhao, B., Miyata, A., Baldocchi, D., Knox, S., Kang, M., Shim, K.M.,
Min, S., Chen, B., Li, X., 2017. Modeling gross primary production of paddy rice
cropland through analyses of data from COz eddy flux tower sites and MODIS
images. Remote Sens. Environ. 190, 42-55.

Yuan, W.P., Zheng, Y., Piao, S.L., Ciais, P., Lombardozzi, D., Wang, Y.P., Ryu, Y.,
Chen, G.X., Dong, W.J., Hu, Z.M., Jain, A.K,, Jiang, C.Y, Kato, E., Li, S.H., Lienert, S.,
Liu, S.G., Nabel, J., Qin, Z.C., Quine, T., Sitch, S., Smith, W.K., Wang, F., Wu, C.Y.,
Xiao, Z.Q., Yang, S., 2019. Increased atmospheric vapor pressure deficit reduces
global vegetation growth. Sci. Adv. 5 (8), eaax1396. https://doi.org/10.1126/
sciadv.aax1396.

Zhang, N., Zhao, C., Quiring, S.M., Li, J., 2017a. Winter wheat yield prediction using
normalized difference vegetative index and agro-climatic parameters in Oklahoma.
Agron. J. 109 (6), 2700-2713.

Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., Dong, J., 2017b. A global
moderate resolution dataset of gross primary production of vegetation for 2000—
2016. Sci. Data 4, 170165.

Zhao, M., Running, S.W., 2010. Drought-induced reduction in global terrestrial net
primary production from 2000 through 2009. Science 329 (5994), 940-943.

Zhu, P., Kim, T., Jin, Z., Lin, C., Wang, X., Ciais, P., Mueller, N.D., Aghakouchak, A.,
Huang, J., Mulla, D., Makowski, D., 2022. The critical benefits of snowpack
insulation and snowmelt for winter wheat productivity. Nat. Clim. Change 12, 485—
490.

Zhuo, W., Fang, S., Gao, X., Wang, L., Wu, D, Fu, S., Wu, Q., Huang, J., 2022. Crop yield
prediction using MODIS LAI, TIGGE weather forecasts and WOFOST model: a case
study for winter wheat in Hebei, China during 2009-2013. Int. J. Appl. Earth Obs.
Geoinf. 106, 102668.

Zhuo, W, Fang, S., Wu, D., Wang, L., Li, M., Zhang, J., Gao, X., 2022. Integrating
remotely sensed water stress factor with a crop growth model for winter wheat yield
estimation in the North China Plain during 2008-2018. Crop J. https://doi.org/
10.1016/j.¢j.2022.04.004.

Zhuo, W., Huang, J., Gao, X., Ma, H., Huang, H., Su, W., Meng, J., Li, Y., Chen, H.,
Yin, D., 2020. Prediction of winter wheat maturity dates through assimilating
remotely sensed leaf area index into crop growth model. Remote Sens. 12 (18), 2896.

Zhuo, W., Huang, J., Li, L., Zhang, X., Ma, H., Gao, X., Huang, H., Xu, B., Xiao, X., 2019.
Assimilating soil moisture retrieved from Sentinel-1 and Sentinel-2 data into
WOFOST model to improve winter wheat yield estimation. Remote Sens. 11 (13),
1618.


http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref64
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref64
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref64
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref64
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref65
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref65
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref65
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref66
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref66
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref66
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref67
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref67
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref67
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref68
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref68
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref69
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref69
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref69
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref70
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref70
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref70
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref71
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref71
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref71
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref71
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref72
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref72
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref72
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref73
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref73
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref73
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref74
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref74
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref74
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref75
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref75
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref75
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref76
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref76
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref76
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref76
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref77
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref77
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref77
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref77
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref78
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref78
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref78
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref78
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref79
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref79
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref79
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref79
https://doi.org/10.1126/sciadv.aax1396
https://doi.org/10.1126/sciadv.aax1396
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref81
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref81
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref81
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref82
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref82
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref82
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref82
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref83
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref83
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref84
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref84
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref84
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref84
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref84
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref85
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref85
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref85
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref85
https://doi.org/10.1016/j.cj.2022.04.004
https://doi.org/10.1016/j.cj.2022.04.004
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref87
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref87
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref87
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref88
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref88
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref88
http://refhub.elsevier.com/S1161-0301(22)00104-6/sbref88

