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1. Introduction

A countable discrete group I' is sofic if there exist maps o; : I' — sym(V;)
(where each V; is a finite set and sym(V;) is its permutation group) satisfying

1= lim |V;| " YHv € Vi : 0s(g9)oi(h)v = 04 (gh)v} VYg,hel,
71— 00

1= lim |[Vi| v € V; : 0;(g9)v # v} Vg eI\ {1r}.
71— 00

The first condition ensures that the maps behave asymptotically like homomor-
phisms and the second condition ensures that, asymptotically, every nontrivial
element of I' behaves like a fixed point-free map on V;. In this sense, we can
think of ¢; as providing a kind of approximation for the left-translation action
of I' on itself.

Sofic groups were defined implicitly by M. Gromov in [Gro99] where he proved
they satisfy Gottschalk’s surjunctivity conjecture. Benjy Weiss made the sub-
ject more accessible by simplifying the proof of Gromov’s result in [Wei00] and
giving sofic groups their name, which is derived from the Hebrew word sofi
meaning finite. For an introduction to sofic groups, see [Pes08, PK13, CL15].
At the time of this writing, it is an open problem whether all discrete countable
groups are sofic.

Locally compact sofic groups and their entropy theory were introduced by the
first author and Sukhpreet Singh in Singh’s unpublished 2016 thesis (available
upon request to the first author). In this note, we give a new approach to
locally compact sofic groups via partial actions and charts. Our main results

are informally summarized as follows.

e Theorem 3.2. Every sofic group is unimodular.

e Theorem 3.3. Every unimodular lcsc amenable group is sofic.

e Theorem 3.5. A sequence of local G-spaces is a sofic approximation if
and only if the essential injectivity radius of the sequence is infinite.

e Theorem 3.7. The new definition of sofic given in this paper generalizes
the previous definitions for discrete countable groups.

e Theorem 3.9. If G admits a sofic lattice subgroup then G is sofic.

e Corollary 3.10. The following groups are sofic: semi-simple Lie groups
(e.g., SL(n,R),SO(n, 1) etc.), the automorphism group of a regular tree.

e Proposition 3.11. If G is sofic and H < G is an open subgroup then H
is sofic.
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This paper is organized as follows. Fix a locally compact second countable
group G. In §2 we introduce local G-spaces as topological spaces with a partial
homogeneous action of G. We derive metric and measure-theoretic properties
of these spaces. In §3 we define sofic approximations to G as sequences of local
G-spaces which, in a sense, approximate the action of G on itself by right-
translations. We also prove the main results. The last section gives a series of
open problems.

2. Local G-spaces and partial actions

2.1. LocAL G-sSPACES. We use the abbreviation lcsc to mean locally compact
second countable. Let G be an lcsc group.

Definition 1: A partial right-action of G on a Hausdorff space M is a con-

tinuous map « : dom(a) = M where dom(a) C M x G is open. We require the

following axioms hold for all p € M.

Axiom 1. (p,1lg) € dom(«) and a(p, 1lg) = p.

Axiom 2. If (p, g) € dom(a) then (a(p, 9), g~ ') €dom(c) and a(a(p, g), g~ ) =p.

Axiom 3. If (p,g), (a(p,9), h), (p, gh) € dom(«x) then a(p, gh) = a(a(p, g), h).

A partial action « is homogeneous if, in addition, it satisfies the following.

Axiom 4. For every p € M there is an open neighborhood O, of 1¢ in G such
that {p} x O, C dom(«) and the restriction of a(p,-) to {p} x O, is
a homeomorphism onto an open neighborhood of p in M.

Definition 2: A local G-space is a pair (M, «) where M is an lcsc space and
« is a partial homogeneous right-action.

Notation 1: We will usually denote a local G-space by M (or V), leaving the
action « implicit. To simplify notation, we write

p-g = a(p,g).
If K ¢ M, we will also write K.g = {a(k,g) : k € K}. In particular, K.g is
well-defined if and only if K x {g} is in the domain of the action «. Similarly,
we write p.O = {a(p,g) : g € O} if {p} x O C dom(«).

Remark 1: By Axiom 3, p.g1.92 = p.g1g2 when both sides are defined. However
this does not imply that p.g1.g2.93 = p.g19293 even when both sides are defined.
See Example 3.
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LEMMA 2.1: Let M be a local G-space. Let g € G. Then «(-,g) is injective
(where it is defined).

Proof. Suppose a(p, g) = a(q, g) for some p,q € M. In other words, p.g = q.g.
!'=pand ¢q.g.g7"
defined. Therefore, p = ¢ as required. |

By Axiom 2 of Definition 1, p.g.g~ = g and both are well-

COROLLARY 2.2: Let M be a local G-space. Let K C M be compact, g € G
and suppose K.g is well-defined. Then the map «(-,g) restricted to K is a

homeomorphism onto its image.

Proof. Because K is compact, it suffices to prove the map is continuous and
injective. Continuity follows from joint continuity of av and injectivity follows
from the previous lemma. |

2.2. CHARTS.

Definition 3: Let (M, ) be a local G-space and p € M. A chart centered
at p is a homeomorphism f, : dom(f,) — rng(f,) where dom(f,) C M is an
open neighborhood of p, rng(f,) is an open neighborhood of the identity in G
and g = fp(p.g) for all g € rng(f,). By Axiom 4 of Definition 1, for every p € M
there exists a chart centered at p.

We will show that the transition functions between two charts are locally
given by left-translation in G.

Definition 4: Let A, B C G be Borel sets. A map ¢ : A — B is locally left-

translation if there exists a decomposition A = | |, ; 4; into relatively open

el
sets and {g; };cr C G (for some countable index set I) such that ¢(a) = g;a for
all a € A;. By relatively open we mean A; is open in A.

PROPOSITION 2.3: Let (M, «a) be a local G-space. Let p,q € M and let f,, f,
be charts centered at p, q respectively. Let

A ={g € mg(fy) : p.g € dom(f,) Ndom(fy)},
B = {g € rng(fy) : ¢.9 € dom(f,) Ndom(fy)}.
Then there is a map 7 : A — B which is locally left-translation such that
fo(r) = 7(fp(r))

for all r € dom(f,) Ndom(f,). Moreover, T is bijective and left-Haar-measure-

preserving.
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Proof. Let r € dom(fp) N dom(f,). Let g € rng(f,) be such that p.g = r.
Let h € rng(f;) be such that ¢.h = r. Choose a chart f, centered at r. Af-
ter choosing rng(f,) smaller if necessary we may assume grng(f,) C rng(fp,)
and hrng(f,) C rng(fy). This implies r.k = p.g.k = p.gk for all k € rng(f,).
Similarly, r.k = q.hk.

Let C, = hg~'. We claim that f,(r.k) = C, f,(r.k) for all k € rng(f,). This

follows from

fq(r.k) = fq(p.hk) = hk = Crgk = C. fp(p.gk) = C; fp(r.k).

Since r.rng(f,) = dom(f,), this implies f,(s) = C, fp(s) for all s € dom(f).
Because G is lesc, it follows that there are a countable index set I, and
{ri}ier C dom(fp) Ndom(f,) such that

dom(f,) N'dom(fy) C Ujer dom(fy,)

where f,, are as above.
Let A,B C G be as in the statement. Define 7 : A — B by 7(9) = Cy,g
if p.g € dom(f,,). By the previous paragraph

T(fp(r)) = fo(r)

for all r € dom(f,) Ndom(f,). In particular, since f, and f, are homeomor-
phisms, 7 is well-defined, bijective and continuous. Since g — 7(g)g~! is lo-
cally constant, 7 is locally left-translation and therefore it is left-Haar-measure-
preserving. |

2.2.1. Measures. Here we show that a local G-space admits a canonical measure.

PROPOSITION 2.4 (The canonical measure): Let (M,a) be a local G-space.
Fix a left-Haar measure Haarg on G. Then there exists a unique Radon mea-
sure volyr on M satisfying the following. If p € M, f, is a chart centered at p
and K C dom(f,) is Borel, then

(1) voly (K) = Haarg({g € rng(f,) : p.g € K}) = Haarg(f,(K)).

Proof. Let K C M be Borel. Because M is lcsc there exist a countable index
set I, charts {fi}ier with f; centered at p; € M such that K C (J;.; dom(f;).
Therefore, there is a Borel decomposition K = | |, ; K; with K; C dom(f;) for

all 7. We define

el

volpy (K) = Z Haarg(f:(K;)).

icl
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In order to show this is well-defined, suppose that J is a countable index set,
{9j}jes are charts, K = | |, ; L; is a Borel decomposition and L; C dom(g;).
We must show that

> Haarg(fi(K:)) = > Haarg(g;(L;)).

i€l jed
By countable additivity, it suffices to show that
Haarg(fi(Ki n LJ)) = Haarg(gj (Kl n LJ))

for all ¢ € I,j € J. This follows from Proposition 2.3.

This shows that volys is well-defined and satisfies volas (K) = Haarg(fp(K))
whenever f is a chart with K C dom(f). Because f, is a measure-preserving
homeomorphism and G is locally compact, it follows that voly; is a Radon

measure. [ |

Definition 5: Let § : G — Rs( be the modular function. This means that
if S C G has a finite Haar measure, then Haarg(Sg) = §(g) Haarg(S) where
Haarg is a left-Haar measure on G. The modular function is a homomorphism;
G is unimodular if 6(g) =1 for all g € G. This means that the Haar measure
on G is both left and right G-invariant.

LEMMA 2.5 (Locally measure-preserving): Let (M, a) be a local G-space and
suppose K x {g} C dom(a) for some measurable K C M and g € G. Then

volp (K.g) = 6(g) volps (K).

Proof. Let p € K. Since (p,g) € dom(«) and dom(e) is open in M x G,
there are open neighborhoods U,V of 1¢ in G such that {p} x U C dom(«),
{p} x Vg C dom(e). By Axiom 4 of Definition 1, there is an open neighbor-
hood O, of the identity in G such that «(p,-) restricts to a homeomorphism
from O,, to an open neighborhood p.O, of p in M. After intersecting O, with U
and V if necessary, we may assume O, CUNYV.

For every h € O,, if p.h € K then p.h, p.h.g, p.hg are all well-defined (and
therefore p.h.g = p.hg by Axiom 3 of Definition 1).

Since M is lscs, there exists a countable subset {p;};c; C K and open neigh-
borhood O; = O,, C G of the identity as above such that

Upi.Oi O K.
iel
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So there is a measurable partition K = |_|1°i1 K; such that for each i, K; C p;.0;.
Because the map a(-,g) : K — M is injective (by Lemma 2.1) and

voly (K.g) = Z volys (K;.g)
i=1

we may assume without loss of generality that K C p.0,, for some p € K.

We claim that f,(K.g) = fp(K)g (and both sides are well-defined). To see
this, let k € K C p.O,. Then there is h € O, such that k = p.h. By choice
of Op, p.h.g = p.hg and both are well-defined. Thus

fo(k.g) = fp(p-hg) = hg = fo(p-h)g = fp(k)g.
Since k € K is arbitrary, this proves the claim. So
Haary (K.g) = Haar (f,(K-g)) = Haar(f,(K)g)
= 6(g) Haarg(f,(K)) = 6(g) volar ().
The first and last equalities hold by definition of vola(-). |

2.3. METRICS. In this section, we show that, given a left-invariant proper met-
ric dg on G, there is a canonical induced metric dy; on any local G-space M.

Definition 6: A local G-space M is transitive if for every p,q € M there
exist elements ¢1,...,9, € G such that ¢ = p.g1.--- .g,. Equivalently, this
means there exist charts f1,..., f,, such that p € dom(f;),q € dom(f,) and
dom(f;) Ndom(f;4+1) # O for all 4.

Definition 7: Let G be an lcsc group with a left-invariant proper metric dg.
Let M be a local G-space. Let B(p) C G be the open ball of radius p centered
at 1g. For p € M, let injrad(M, p) be the supremum over all p > 0 such that
(1) for any g, h € G with g, h, gh € B(p), p.g.h = p.gh (in particular, both
sides are well-defined);

(2) the restriction of a(p,-) to B(p) is a homeomorphism onto its image.

This is the injectivity radius at p.

THEOREM 2.6: Let dg be a left-invariant proper metric on G. Let M be a
transitive left-G-space. Then there is a metric dy; on M satisfying the following
local condition. For all p € M, if p = injrad(M, p) and g € B(p) then

dM(papg) = dG(lGag)'
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Proof. Let p,q € M. Define

n—1

du(p,q) = inf Y da(1a, 9:)
i=1
where the infimum is over all sequences g1, ..., g, € Gsuchthat p.g;.--- .g, = gq.

Let p € M. Let p = injrad(M, p). To finish the proof it suffices to show that

if g € B(p) then du(p,p-9) = da(lc, 9)-
So suppose hi,...,h, € G and p.g = p.hy.--- .h,. We must show that

(2) da(le,9) <> da(la, hi).

If for every i, hy ---h; € B(p), then (2) is immediate by the triangle inequality.
So we assume there is some index m such that hy---hp41 ¢ B(p). We may
assume m is the smallest index for which this holds. Thus hq ---h; € B(p) for
all i <m and hy - hpmi1 € B(p).

Because dg is left-G-invariant,

da(lg, h) +da(lag, he) = da(la, h1) + da(h1, hihe) > da(la, hihg).

By an inductive argument we obtain

m—+1
Z da(lg, hi) > da(lg, hi - hms1) > p > da(la, 9)-
i=1

This proves (2). |

2.4. EXAMPLES.

Example 1: If T' < G is discrete, then T'\G admits a local G-space structure as
follows. Define o : T\G x G — I'\G by a(T'g, h) = I'gh.

Fix g € G and let 7 : G — T'\G be the map 7(h) = I'gh. Since T is discrete,
m is a covering space map. In particular, it is a local homeomorphism. This
implies Axiom 4 of Definition 1. The other Axioms are immediate.

Example 2: Let M C G be an open subset. Let
dom(a) ={(p,g) E M x G :pg € M}

and define « : dom(a) = M by a(p,g) = pg. It is immediate that (M, «) is a
local G-space. Moreover, voly, is the restriction of Haarg to M.
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Example 3: In this example, we show that it is possible for p.g.h.k # p.ghk
even when both sides are well-defined. Let G = C be the complex plane, as
an additive group. Let M be a double cover of C\ {0}. To be precise, let
M = (0,00) X R/4xZ. For a,b € R/47Z, define

la —b| = inf |a’ — b — 47n|
nez

where o',V € R satisfy o/ = a mod 47Z and V' =b mod 4xZ.
Let

dom(a) = {((r,0),s¢" —re?®) € M x C:5>0, |¢p— 0] <21/3}.
Define an action « : dom(a) — M by

Oz((T, 9)7 Z) = (tv ¢)

where te'® = re? + 2 and ¢ € R/47Z is chosen to minimize |§ — ¢|. Note there
are only two different elements ¢, o € R/477Z that satisfy te'® = re® + z
(for j = 1,2) and ¢1 — ¢2 = 27 mod 47Z. Because these elements are 27
apart, at most one of them can be within 27/3 of §. Moreover, the definition
of dom(a) shows that exactly one of these elements is within 27/3 of 6. So «
is well-defined.

Next we check that (M, a) is a local G-space. Define

f:M—=C, f(r6) =re?.

Then f is a 2-1 covering map of C \ {0}. Also

fla(p,2)) = f(p) + =
Because f is a local homeomorphism, « satisfies Axiom 4 of Definition 1.

In order to check Axiom 3, suppose (r,6).z1, (r,0).21.22 and (r,0).(z1 + 22)
are all well-defined. We must show that (r,0).z1.22 = (r,0).(21 + 22). Let
(r1,601) = (r,0).21, (re,02) = (1,0).21.22 and (r3,03) = (r,0).(z1 + 22).

The assumption that these are all well-defined implies |6 — 61| < 2m/3,
|01 — 03] < 27/3 and |0 — 03] < 2w/3. The triangle inequality implies

|92 793| < 2.

On the other hand, the definition of « implies that either #; = 63 or
02 = 03 + 27 (mod 4w). So we must have 8 = 63 mod 4n. Therefore Axiom 3
holds. The other Axioms are immediate.



248 L. BOWEN AND P. BURTON Isr. J. Math.

Next we show the existence of p € M and g, h, k € G such that p.g.h.k # p.ghk
even though both sides are well-defined. Let p = (1,0) € M. Let g =i — 1,
h=—-i—1,k=1—14. Then

fp)+g=1+(i—1)=i.
So p.g = (1,7/2). Also f(p.g) +h=i+h=—1. So p.g.h = (1,7). Finally,

fp.gh)+k=-1+k=—i.

Sop.g.h.k=(1,37/2). On the other hand, g+h+k=—i—1. Sop.ghk=(1, —m/2).
Because —7/2 # 37/2 mod 4w, we have p.g.h.k # p.ghk.

3. Sofic groups
3.1. DEFINITIONS.

Definition 8: Let M = (M, «) be a local G-space and let U C G be open and
pre-compact and let € > 0. Let M[U] = M|w, U] be the set of all p € M such
that, if g,h € G are such that g, h,gh € U, then p.g.h = p.gh (in particular,
both sides are well-defined). Moreover, we require that the map g — a(p,g)
is a homeomorphism from U to an open neighborhood of p. We say M is a
(U, €)-sofic approximation to G if

volpr (M) < oo and  volpy (M[U]) > (1 — €) volps (M).

Definition 9: A sofic approximation to G is a sequence ¥ = (M;)$2, where M;
is a (U, €;)-sofic approximation such that the U; are pre-compact open sets
increasing to GG and the sequence ¢; decreases to 0. We say G is sofic if it
admits a sofic approximation.

The following lemma will be generally helpful.

LEMMA 3.1: IfU C G is a pre-compact open neighborhood of the identity and
g € U, then

M[U].g c M[Ung~'U].

Proof. Let p € M[U], g € U and h, k € G be such that h,k,hk € UNg=1U. To
show p.g € M[U N g~1U], we first show p.g.h.k = p.g.hk.

Because peM|[U], and g, h, ghe U we have p.g.h=p.gh. Because gh, k, ghk €U
we have p.gh.k = p.ghk. Combine these equalities to obtain p.g.h.k = p.g.hk.
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Next define 8 : UNg U — M by (k) = p.g.k. We must show 3 is a
homeomorphism onto an open neighborhood of p.g. Let v : U — M be the
map v(k) = p.k. This map is a homeomorphism onto an open neighborhood
of p since p € M[U]. Moreover, (k) = p.g.k = p.gk = v(gk). So B is the
composition of left multiplication by g with . This implies it has the claimed
properties. |

3.2. UNIMODULARITY. The goal of this section is to prove:
THEOREM 3.2: If G is sofic then G is unimodular.

Proof. Fix a left-Haar measure Haarg on G. Let € >0, g € G, and U C G be a
pre-compact open set containing {1¢, g,9?}. Suppose M is a (UUg~1U, ¢)-sofic
approximation.

By Lemma 3.1, M[g~'U].g~! € M[U Ng~'U]. Multiply by g on the right to
obtain M[U N g~'U].g > M[g~'U]. Thus

voly (MU N g~ 'U.g) > voly (Mg~ 'U]) > voly (M[U U g~ 'U])
> (1 - €) volas (M),
Let 6 : G — R be the modular function. Lemma 2.5 implies
volp (MU N g™'U].g) = 6(g) voly (MU N g~ tU]).
Combining this with the previous inequality, we obtain
volpr (M) > volpy (M[U N g™ tU]) > 6(g) (1 — €) volps (M).

Therefore, 6(g) > 1 — e. Since this is true for every € > 0, §(g) > 1. However,
§ : G — R is a homomorphism. So §(g~!) = §(g)~!. Since also §(¢g~ ') > 1,
we obtain §(g) = 1. Because g € G is arbitrary, G must be unimodular. |

3.3. AMENABLE GROUPS.
THEOREM 3.3: Every unimodular amenable Icsc group is sofic.

Definition 10: A locally compact group G is amenable if for every left-Haar
measure Haarg, there exists a sequence {F;}52, of measurable sets with finite
positive measure such that for every compact K C G,

Haarg (K F;
(3) im Hearc(KF)
1—00 Haarg(Fi)

Such a sequence is called a left-Fglner sequence.

=1
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LEMMA 3.4: If G is amenable and unimodular, then there exists a sequence
{Fl}?il of finite measure subsets such that each F; is pre-compact, open and
for every compact K C G,

() lim Haarg({p € F; : pK C F}})
i—00 Haarg (F})

=1.

Proof. Let {F;}$2, be a left-Fglner sequence. After perturbing slightly, we may
assume each F; is pre-compact. Indeed, since F; has finite measure, there is a
subset L; C F; which is pre-compact such that lim; . %ﬁl}?) = 0. Then
{L;}$2, is left-Fglner. So we can replace F; with L;.

Let {K;}°, be an increasing sequence of pre-compact open subsets
with G = |J; K;. We choose K; to grow so slowly that

Haarq (K, F;)

5 1 =1.
(5) sy Haarg (F;)
Let F/ = K;F;. Then F] is pre-compact and open. Because

lim Haarg(F! A F;) 0
1 - =
i~co  Haarg(F;) ’

we have that {F]}$2, is left-Folner.
For any compact K C G, there exists ¢ with K C K;. Therefore,

Haarg({p € F} : Kp C F}) Haarg({p € F] : K;p C F}})

lim inf > lim inf
oo Haarg (F}) = B Haarg(F})
() Haarqg (F;)
> liminf —————= = 1.

i—+00 HaarG (FI)

Now let F; = (F!)~'. Note that F} is pre-compact and open since F! is. Let
K C G be compact. Suppose p € F; satisfies pK C F;. Then K~ 'p~! C F!.
The converse is also true. Thus

{peF:pKCE}y '={peF K 'pcF}.
Because G is unimodular, Haarg(E) = Haarg(E~!) for any measurable E C G.
Thus

7 2 /. /
i B22rc({p € Fi:pK C FY) . Haarg({p € Fy - K/ p C F/})
i—o0 Haarg (F;) i—00 Haarg(F})

by (6). |

=1
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Proof of Theorem 3.3. Let G be a unimodular amenable lcsc group. Let
{F;}22; C G be a sequence as in Lemma 3.4. As in Example 2 we may re-
gard F; as a local G-space with volg, equal to the restriction of Haarg to F;
where (as always in this paper) Haarg is a left-Haar measure. Let U C G be
pre-compact and € > 0. Then F;[U] consists of all p € F; with pU C F;. By
Lemma 3.4,

volg, (Fi[U]) = Haarg({p € F; : pU C F;})
> (1 — €)Haarg(F;) = (1 — €) volg, (F})

for all sufficiently large ¢. Thus {F;}$2; is a sofic approximation and G is
sofic. |

3.4. THE METRIC APPROACH TO SOFICITY. For this section, fix an lcsc group
G with a left-invariant proper metric dg.

THEOREM 3.5: Let (M;)$2, be a sequence of local G-spaces. Then the following
are equivalent.

(1) {M;}22, is a sofic approximation to G.
(2) For every p >0

lim volys, ({p € M; : injrad(M;, p) > p}) .
i—»00 VOlMi (Ml) v

where injectivity radius is defined in Definition 7.

Proof. Let U = B(p), which is the open ball of radius p centered at the identity
in G. Then injrad(M;,p) > p if and only if p € M;[U]. So the theorem follows
immediately from the definition of sofic approximation. ]

Remark 2: It is possible to define Benjamini-Schramm (BS) convergence for
measured metric spaces via the pointed Gromov-Hausdorff-Prokhorov topology
[Bow15]. Theorem 3.5 implies that if a sequence of local G-spaces equipped with
metrics given by Theorem 2.6 is a sofic approximation to G, then it BS-converges
to G. The converse is not true. For example, there are non-isomorphic finitely
generated groups GG1, G2 with Cayley graphs which are isomorphic as unlabeled
graphs. Precisely, there are generating sets S; for G; (i = 1,2) so that with the
corresponding word-metrics there is an isometry ¢ : G; — G> that maps the
identity to the identity and S; bijectively onto Ss.
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Suppose { M, } is a sofic approximation to Gy. Then {M;} BS-converges to G.
However, we can think of {M;} as a local Ga-space in the following way. For
p € M; and g € S, U {lg,}, let p.g equal p.¢~1(g) (if and only if the latter is
defined). Because G5 is finitely generated, this makes each M; into a local Ga-
space. With this structure, {M;} is not a sofic approximation to G (since Gp
and G are non-isomorphic). But it does BS-converge to G5 (since Gy and G

are isometric).

3.4.1. Discrete sofic groups. In this section we show that our new definition of
sofic agrees with the standard definition if G is a countable discrete group.

Definition 11: Let G be a countable group. Let o : G — sym(V) (where V is a
finite set) be a set map. For U C G, let V[o,U] C V be the set of all p such that
(1) a(g)a(h)p = a(gh)p for all g,h € U;
(2) a(g)p # o(h)p for all g,h € U with g # h.

Then o is a discrete (U, ¢)-sofic approximation if
SV[0.U] > (1- V.

We call G sofic as a discrete group if for every finite U C G and € > 0 there
exists a (U, €)-sofic approximation to G.

We first show that if G is sofic as a discrete group, then it admits a sofic
approximation that is exact with respect to inverses and the identity.

LEMMA 3.6: If G is sofic as a discrete group, then for every finite U C G
and € > 0 there exists a discrete (U, €)-sofic approximation o : G — sym(V)
such that o(1¢) is the identity and o(g~!) = o(g)~* for all g € G.

Proof. Without loss of generality, we may assume U = U~! and 1g € U.

Let 0 : G — sym(V) be a discrete (U2, €|U|™!)-sofic approximation to G.
Let D C G be the set of order 2 elements. Let H C G be a subset such that for
every g € G there is a unique element in the intersection H N {g,g7'}.

If v € Vo, U?] then

o(1g)*v = o(1g)v.
Thus o(1g)v = v. If also g € D N U? is nontrivial then

2

o) v=0(g®w=0c(c)v=uv, o(g)v#ao(lg)v=no.
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So there exists an element 0'(g) € sym(V') with order 2 such that o’(g)v = o(g)v
for all v € V[o,U?]. This defines o’(g) for all g € D N U?. Also define

identity, g€ {lg}uU(D\U?),
o'(9) = 4 a(9), g€ H\(Dufle}),
olg™H)~t gte H\(DU{la}).
This defines o’ on all of G. Note that o/(1¢) is the identity and o’ (g) "' =0'(g7!)
for all ¢ € G. Moreover, o'(g)v € {o(g9)v,0(g~ )"t} for all v € V[o,U?]
and g € U2
It now suffices to show ¢’ is a discrete (U, €)-sofic approximation. To prove
this, let
W={veV:o(gveVo,U?VgecU}
We claim that W C V[¢o', U].
To prove this we observe: if v € Vo, U?] and g € U? then

o'(glv=0a(gv=0(g™") " v.
Indeed
a(g™o(glv =o(le)v =v.
Thus o(g)v = o(g~1)"tv. Since o'(g)v € {o(g9)v,0(g~ 1) v}, it follows that
d'(g)v = o(g)v. This proves the claim.
Now let w € W and g,h € U. By definition of W, o(h)w € V[o,U?]. Since
gh € U,
o' (g)o’ (hyw = o' (g)(o(h)w) = o(g)o(h)w = o(gh)w = o’ (gh)w.
Moreover, if g # h then

This shows that W C Vo', U] as claimed.
By definition,
W = ﬂ o(g)" Ve, U?.
geU
Since each o(g) is a permutation and |V (o, U?)| > (1 — €|U|71)|V|, this implies
[W| > (1 —¢)|V]. Thus

#VI[o Ul > #W > (1 - e)#V.

This shows that ¢’ is a discrete (U, €)-sofic approximation. ]



254 L. BOWEN AND P. BURTON Isr. J. Math.

THEOREM 3.7: Let G be a discrete countable group. Then G is sofic as a
discrete group if and only if G is sofic in the sense of Definition 8.

Proof. Suppose G is sofic as a discrete group. Let dg be a proper left-invariant
metric on G. Recall that B(p) denotes the open radius p ball centered at the
identity in G. It suffices to show that for every radius p > 0 and € > 0, there is
a (B(p), €)-sofic approximation to G (in the sense of Definition 8).

Let 0 : G — sym(V) be a discrete (B(2p),€)-sofic approximation to G.
By Lemma 3.6, we may assume o(lg) is the identity permutation and
o(g™l) =0o(g)~" for all g € G.

For p € V, define injrad(o, p) to be the supremum of 1 > 0 such that

(1) o(gh)~'p=o(h)"ta(g)~"p for all g, h € B(n);
(2) a(g)~'p# o(h)'pif g,h € B(n) with g # h.
So p € Vo, B(p)] if and only if injrad(o,p) > p.

Let dom(a) be the set of all (p,g) in V x G such that either
injrad(o, p) >dg(1g, g) or injrad (e, o(g)"1p) >da(1g, g). Define a:dom(a)) =V
by

o(p, g) = o(9)~"p-
We claim that (V, «) is a local G-space. It is immediate that Axioms 1, 2 and 4
of Definition 1 hold.

To verify Axiom 3, suppose (p, g), (a(p,g),h), (p,gh) € dom(a). Then

ala(p, g9),h) = o(h) " alp,g) = o(h) " a(g)"'p,
o(p, gh) = a(gh)~"p.

So we must show that
(7) a(h) " a(g)"'p = algh)"p.

Because (p, 9), (a(p, 9), h), (p, gh) € dom(a),
either injrad(o,p) > da(1g,9) or injrad(o,a(g) " 'p) > da(1g, g),
cither injrad(c,o(g) *p)>da(lg,h) or injrad(c,o(h) to(g) 'p)>da(la,h),
either injrad(o,p) > da(1q, gh) or injrad(o, a(gh) " *p) > da(1a, gh).

Choose q € {p,a(g9)"'p,a(h)"to(g9) " 'p,o(gh)~1p} to maximize the injectiv-
ity radius injrad(c, ¢). Note that injrad(c,q) > da(1g, f) for all f € {g, h,gh}.
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If ¢ = p then (7) follows by definition of injrad(c, p). If ¢ = o(g) ~*p then

o(gh)o(h) to(g)'p=0(9)a(g) 'p=p

by definition of injrad(c, o(g)~*p) and the assumption o(h)~! = o(h~1!). This
also implies (7) by multiplying both sides by o(gh)~!. The other cases are
similar. This verifies Axiom 3.

It is immediate that Vo, B(2p)] C Ve, B(p)]. So

#Vla, B(p)] = #Vo, B(2p)] = (1 — e)#V.

This proves (V,«) is (B(p), €)-sofic in the sense of Definition 8. Since p, e are
arbitrary, this proves G is sofic.

Now suppose G is sofic in the sense of Definition 8. Let p > 0 be a radius
and € > 0. It suffices to show there exists ¢ : G — V such that o is a discrete
(B(p), €)-sofic approximation.

By Theorem 3.5, there exists a sofic approximation M = (M, «) to G such
that
() volps({p € M : injrad(M, p) > 3p})

volyr (M)

> 1—¢[B(p)| .

Because G is discrete, we choose Haarg to be counting measure on G. There-
fore, volys is counting measure on M. In particular, M is finite.

By Lemma 2.1, for g € G, the map «f(, g) is injective on its domain. There-
fore, there exists a permutation o(g~!) € sym(M) that agrees with a(-,g) on
its domain. So there is a map ¢ : G — sym(M) such that o(g)p = a(p,g7!)
for all (p,g~ ') € dom(a). We claim that (M, o) is a (B(p), €)-discrete sofic
approximation.

Let D be the set of all p € M such that injrad(M, p.g) > 2p for all g € B(p).
By (8), |D| > (1 — €)|M]. So it suffices to show that D C M[c, B(p)].

Let p € D and g,h € B(p). By the triangle inequality, gh € B(2p). Since
injrad(M, p) > 2p,

o(gh)p = o(g)a(h)p.
Moreover, if g # h then
o(g)p # o(h)p.

These two claims imply D C M|o, B(p)] and so complete the proof. |



256 L. BOWEN AND P. BURTON Isr. J. Math.

3.5. STABILITY OF SOFICITY UNDER CONSTRUCTIONS.

3.5.1. Inducing from a subgroup. In this section we prove that if G contains a
sofic lattice I' < G then G is sofic as well. Moreover, if & = {V;};en is a sofic
approximation to I' then there is an induced sofic approximation

Ind{ (¥) = {Ind{ (Vi) }ien

to GG. This is similar to the way that an action or representation of I' can be
induced to G. It depends apriori on a choice of fundamental domain A C G.
We will choose A to have some additional properties that will make it easier
to prove that the induced map really is a sofic approximation. It seems likely
that different fundamental domains lead to essentially the same induced sofic
approximation but we make no effort to prove it. The next lemma gives a ‘nice’
fundamental domain.

Definition 12: A lattice is a subgroup I' < G such that, with the induced
topology, I' is discrete and I'\G has a finite G-invariant Borel measure. A
fundamental domain for I' is a Borel set A C G such that | | . gA is a
partition of G.

Definition 13: Let X be a topological space. A collection {Y;};cr of subsets
Y; C X is locally finite if for every x € X there exists an open neighborhood O
of x in X such that

#{iel:V;,NO#0} < cc.

This condition implies that for every compact K C X,
#iel:V;NK # 0} < oo.

LEMMA 3.8: LetI' < G be a lattice. Then there exists a fundamental domain A
for T' such that the collection {gA : g € '} is locally finite.

Proof. Let # : G — T'\G be the quotient map. Because I' is discrete, for
every g € G there exists an open pre-compact neighborhood O of g such that
the restriction of 7 to O is injective. So there exists an open cover {O;}ier of
I'\G such that for each ¢ € I, there is a pre-compact open set 0; C G such
that 7 restricted to O; is a homeomorphism onto O;. Because G is locally
compact, after passing to a sub-cover if necessary, we may assume {O; }ie; is
locally finite. This implies that the cover {gO;}ger.icr of G is also locally finite.
In fact, because O; is pre-compact and T is discrete, for any compact K C G
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there are only finitely many ¢ € I' with gO; N K # @. On the other hand, there
are only finitely many indices i € I with TO; N K # () because this condition
implies TK N O; # 0 and {O;};c1 is locally finite.

Since G is second countable, the index set I is at most countable, so we may
assume that I C N. Define

A={J0\ (U Ugoj>.
i€l g€l j<i
Then A is a Borel fundamental domain.

Let z € G. Let O, C G be a pre-compact open neighborhood of x such
that the restriction of 7 to O, is a homeomorphism onto its image. Because
{90} ger.icr of G is locally finite, there are only finitely many pairs (g,4) € T'x T
such that gO; N O, # 0.

We claim that O, intersects at most finitely many I-translates of A. To see
this, let g € T and suppose gA N O, # (. Since A C Uicr O;, this implies the
existence of ¢ € I with gO; N O, # 0. So by the previous paragraph, there are
only finitely many g € I with gA N O, # 0. This finishes the lemma. ]

THEOREM 3.9: Let I' < G be a lattice where G is an Icsc group. If T is sofic
then G is sofic. Moreover, for every sofic approximation ¥ = {V;};cr to I’ there
is an induced sofic approximation IndS () = {Ind¥(V;)}ier to G determined
only by ¥ and a choice of fundamental domain A for I satisfying Lemma 3.8.

Proof. Let A be a fundamental domain for I' satisfying Lemma 3.8. Define a
section o : I'\G — A by I'oc(I'g) = I'g. This is well-defined because A is a
fundamental domain. Define ¢ : T\G x G — T" by

¢(Th, g) = o(Th)go(Thg) .

Then c satisfies the cocycle equation ¢(T'h, g)c(Thg, k) = ¢(Th, gk) for any g, h, k.
If K C G then we write

c(Th,K) ={c(Th,k): ke K} CT.

We claim that if K is compact then ¢(T'h, K) is finite. To see this, observe that
c(Th,k)ANo(Th)K # 0 (for all k € K). In fact,

o(Th)k = ¢(Th, k)o(Thk) € ¢(Th, k)A N o(Th)K.

Because the collection {gA}ger is locally finite and o(I'h)K is compact, this
implies the claim: ¢(T'h, K) is finite.
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Let ¥ = {V; }ier be a sofic approximation to I' (in the sense of Definition 8).
We will denote the partial action of I' on V; by v.g for v € V;, g € I whenever
this is well-defined.

For a warm-up exercise, let’s handle the special case in which there is a finite-
index subgroup H; <T', V; = H;\I" and the partial action of I" on V; is the usual
action by right-translation. In that case, G acts on V; x I'\G by

(v,Th).g = (v.c(Th, g),Thg).
Define a G-equivariant Borel isomorphism
o:V; xI'\G — H\G, ®(H;q,Th)= H;go(Th).

The action of G on V; x T'\G is not continuous with respect to the product
topology. So we re-topologize V; x I'\G by pulling back the topology on H;\G.
Because the quotient map G — H;\G is a covering space map, the topology
on H;\G is such that the open sets in H;\G are images of open sets in G. So the
new topology on V; x I'\ G has a basis of open sets given by sets of the form p.O
where p € V; x I'\G and O C G is an open neighborhood of the identity.
Now for the general case. For (v,I'h) € V; x I'\G and g € G we write

o' ((v,Th),g) = (v,Th).g := (v.c(Th, g),Thg)

whenever this is well-defined. Observe that by Axiom 3 (applied to V;), if
p € Vi xT'\G and g, h € G are such that p.g, p.g.h and p.gh are all well-defined,
then

p.g-h = p.gh.
We say that a subset O C G is good for a point p € V; x I'\G if

e O is an open neighborhood of the identity,
e for every hy, hy € O, p.hy and p.hy.hi 'hy are well-defined, and
e the map which sends g € O to p.g is injective.

Note that if O is good for p, then every open subset of O containing the identity
is also good for p. Let M; C V; x I'\G be the set of all points p for which there
exists a good set O C G. If p € M; and O is good for p then we write

p.O ={p.g: g€ O}.

CrAM 1: If O is good for p and g € O then ¢~ 'O is good for p.g. Moreover,

.0 =p.g.g 0.
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Proof of Claim 1.Let h1, ho € g~ 'O. We must show that p.g.h; and p.g.hl.hflhg
are well-defined.
Because O is good for p and g, gh; € O, it follows that

p-g-hi = p.g.9~ gha
is well-defined. Moreover, p.g and p.gh; are well-defined. Therefore,

p.gh1 = p.g.hy.
So it now suffices to show p.ghl.hflhg is well-defined. But this follows from
goodness of O because ghi, ghs € O and p.ghy.(gh1)~*gha = p.gh1.hy *ha. This
proves the first statement.
Note that if O is good for p and g, h € O then p.g.g~'h = p.h (because both
sides are well-defined). The second statement follows. |

Claim 1 implies that p.O C M;.

CrAM 2: The collection of subsets of M; of the form p.O (where p € M; and O
is good for p) is a base for a topology on M;.

Proof of Claim 2. 1t suffices to show that if O is good for p and U is good for
q and r € p.O Nq.U, then there is a good set W C G for r such that

rW C p.ONgq.U.

Let r = p.g = q.h for some g € O, h € U. Then g0 and h=!U are good for r
by Claim 1. It follows that W = ¢~'O N h~'U is also good for r. Moreover,

r.W =p.g.(g"*ONKU) C p.O.
Similarly, ».W C q.U. |

From now on, we consider M; with the topology induced by sets of the
form p.O as above. Claim 2 implies that if O is good for p, then the map g — p.g
from O into M; is a homeomorphism onto an open subset of M;. In particular,
M; is locally compact.

We claim M; is second countable. Because G is second countable, there is a
collection {(I'g;, O;)}jes such that

e each O; C G is a pre-compact open neighborhood of the identity,
e the map from O; to I'\G given by h +— I'g;h is injective,

o the sets {I'g;0;} ;e form a base for the topology on I'\G,

e J is countable.
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Given v € V;, k €T, j € J define
B(u,k,§) = {(v-ke(Tg;,5), Tgjs) : 5 € O;} C Vi x T\G

whenever this is well-defined. Because V;,I" and J are countable, the collection
of sets of this form is countable.

Now suppose p € M; and U C G is good for p. Let p = (v,I'h). Because
{T'g;O;} e is a base and T'hU is open in I'\G, there exists j € J and an open
subset U’ C U with 1¢ € U’ such that ThU’ =T'g;0;. Since U’ is good for p,
p.U’ is open in M;. We claim p.U’ = B(v,k,j) for some k € T. To see this,
note that ThU’ = T'g;O; implies the existence of v € I" such that

U' = h™'vg;0;.
If w € U’ then there is an s € O; such that u = h~!vg;s. So
pu = (v.c(Th,u),Thu) = (v.c(Th, h~'vg;s), Thh™'~vg;s)
= (v.c(Th, k™ vg;)e(Tg;, 5), Tg;s).

Thus p.U' C B(v,k,j) where k = ¢(T'h,h " 'yg;). The reverse inclusion is
similar. Thus, the collection of sets of the form p.U’ is a countable base for the
topology on M;.

Let dom(a) be the set of all (p,g) € M; x G such that there is an open
neighborhood of (p,g) in M; x G on which o' is well-defined. Let « be the
restriction of o/ to dom(a).

CLAIM 3: « is continuous. Moreover, if (¢, f) € dom(«), then there is an open
neighborhood W of (q, f) such that a(W) is open in M.

Proof of Claim 3. By Claim 2, it suffices to prove: if p € M; and O C G is good
for p then a~1(p.0) is open in M; x G. So let (¢, f) € a=(p.0). Let g € O be
such that p.g = q.f. By Claim 1, g~ 'O is good for p.g = q.f.

Let U1 C G be a set which is good for ¢ so that

(¢.Ur x {f}H U {q} x Urf) C dom(e)
and f~1Uf C g7'O. We claim that ¢.U;f C p.O. To see this, let h € Uj.
Then q.hf = q.f.f ~1hf because both sides are well-defined (by Claim 1 applied

to ¢.f = p.g). Since q.f.f'hf = p.g.f "'hf C p.O, this proves q.hf € p.O.
Since h is arbitrary,

q.U1f C p.O.
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After choosing U; smaller if necessary, we may assume the closure of ¢q.U; f
is contained in p.O. Therefore, there is an open neighborhood U; C G of the
identity such that q.Uy f.Us C p.O,

(q.Ur x fU3)U ({q} x Uy fU3) U (q.U1 f x Uz) C dom(cx)
and f~1U; fUs C g~ 1O. Tt follows that
W :=qU; x fUs C M; x G
is an open neighborhood of (g, f). Moreover,
a(W) =q.Uy.fUy = q.Uy fUs = q.U1 f.Us

since these are all well-defined. By the assumption on Us, this shows that

a(W) C p.O,
which shows that a is continuous.

Note that
a(W) =qUifUs = q.f-f U1 fUs

because both sides are well-defined. Because f~'U; fUs C ¢~ 'O which is good

for p.g = q.f, it follows that (W) is open in M. |

We claim the space M; with the partial action defined above is a local G-
space. Axioms 1, 3 and 4 are immediate. To establish Axiom 2, suppose that
(p,g) € dom(a). We have to show (p.g,g~!) € dom(c). There is an open
subset W C dom(a) containing (p,g). For each (¢, f) € W, ¢.f.f~! is well-
defined. Moreover, the set {(q.f, f~!) : (¢, f) € W} is an open neighborhood of
(p.g,9~1). This implies Axiom 2.

Let U C G be a precompact open neighborhood of the identity with U = U~}
and € > 0. We will show that if 7 is sufficiently large then M; is a (U, €)-sofic
approximation.

Given F' C T, let Q(F) be the set of all Th € T'\G such that, for ev-
ery gi1,92 € U® with gi1go € U3, ¢(Thg1,92) € F. Because U is precompact,
c(Th,U?) is finite for every h. So there exists a finite set F' C I" such that

volp\ g (QUF)) > (1 — €/2) volp\¢(T'\G).

After choosing F larger if necessary, we may assume 1lg € F and F = F~ 1.
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Because X is a sofic approximation, there exists I such that ¢ > I implies V;
is an (F?,¢/2)-sofic approximation to I'. We claim that if i > I then M; is a
(U, €)-sofic approximation. Because

volar, (Vi[F?] x Q(F))

voly, (V;[F?]) x volp\ g (Q(F))
(1 = ¢/2)*|Vi| volp\a(T\G)
> (1 —€/2)?volyy, (M;),
it suffices to show that M;[U] D V;[F?] x Q(F).
First we claim that if p = (v,Th) € V;[F?] x Q(F) then p.U.U? is well-defined.
This is equivalent to the well-definedness of v.c(T'h, g1).c(T'hg1, g2) for all gy € U

and g2 € U?. Because T'h € Q(F), ¢(T'h, g1) and ¢(T'h, g1g2) are in F. By the
cocycle equation,

Y

c(Thgi,g2) = ¢(Th,g1) " 'c(Th, g1g2) € F2.
Since v € V;[F?], v.c(Th, g1).c(Thgi, g2) is well-defined.

Next we show that U is good for p. The first condition of ‘good’ is trivial and
the second condition holds by the paragraph above. To check the third condi-
tion, suppose g1, g2 € U and p.g1 = p.ge. Because ¢(T'h,g;) € F (i = 1,2), and
v€V;[F?], the condition p.g; =p.g2 implies ¢(T'h, g1) =c(T'h, g2). Equivalently,

o(Th)g10(Thg1)™! = o(Th)gao(Thgs) ™!

Because we also have I'hg; = I'hga, it follows that g1 = go. This verifies U is
good for p. In particular, p € M;.

Next we claim that for all g € U, (p, g) € dom(a). It suffices to show p.U x gU
is an open neighborhood of (p, ¢) in dom(«’). This is implied by the paragraph
above, which shows p.U.gU is well-defined. So V;[F?] x Q(F) x U C dom(«).

Next we show that the map which sends g € U to p.g is a homeomorphism
onto an open subset of M;. Because U is good for p, this map is well-defined and
injective. By Claim 3, it is continuous. Because U is pre-compact, this implies
the map is a homeomorphism onto an open subset. Thus M;[U] D V;[F] x Q(F)
as claimed.

Because U, € are arbitrary, this shows { M;} is a sofic approximation to G. |

COROLLARY 3.10: The following groups are sofic: semi-simple Lie groups (e.g.,
SL(n,R),SO(n, 1) etc.), the automorphism group of a regular tree.

Proof. These groups admit residually finite lattices. Since residual finiteness
implies soficity, the corollary follows from Theorem 3.9. ]
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3.5.2. Restricting to a subgroup. It is well-known that if a countable group I
is sofic then all of its subgroups are sofic. Indeed, given a sofic approximation
{o;:T'—sym(V;)} one can restrict the maps o; to a subgroup A to obtain a sofic
approximation to A. This argument fails in the general setting of locally com-
pact groups because, if H < G, then the Haar measure on H might be singular
to the Haar measure on G. However, the following gives a positive result.

PROPOSITION 3.11: Let G be a locally compact sofic group. If H < G is an
open subgroup then H is sofic.

Proof. Let (M, a) be a local G-space. Define a partial action ay by

ag :dom(ap) = M, an(p,g) = alp,g)
where
dom(ay) = dom(a) N (M x H).

We claim that (M, ay) is a local H-space. To see this, let p € M. By
Axiom 4 of Definition 1, there is an open neighborhood O, of 1¢ in G such that
the restriction of a(p, -) to O, is a homeomorphism onto an open neighborhood
of pin M. Because H is open, the restriction of a(p,-) to O, N H is also a
homeomorphism onto an open neighborhood of p in M. This shows Axiom 4.
The other Axioms are immediate.

Let U be an open neighborhood of 17 in H and € > 0. Because H is open in G,
U is also an open neighborhood of 1¢ in G. By definition, M[U, o] = M[U, ay].
Because the Haar measure on H equals the Haar measure on G restricted to H,
the choice voly; does not depend on whether we consider M to be a local G-
space or a local H-space. So if (M, «) is a (U, €)-sofic approximation to G, then
(M, o) is also a (U, €)-sofic approximation to H. |

4. Open problems
4.1. WHICH GROUPS ARE SOFIC?

Problem 1: Are all unimodular lcsc groups sofic? For example, the Neretin
group is a unimodular lesc group without lattices [BCGM12]. Is it sofic?

Problem 2: If G is linear and unimodular then is G sofic? By Mal’cev’s Theorem
[Mal40] if G is finitely generated and linear then it is residually finite. Because
increasing unions of sofic groups are sofic, if G is countable and linear then it
is sofic.
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Problem 3: If G is connected and sofic then is its universal cover sofic?

Problem 4: Suppose G is a connected unimodular Lie group and let S < G be
its solvable radical. If G/S is sofic then is G sofic?

Problem 5: Permanence properties for discrete countable sofic groups have been
studied in [CHR14, HS18, ABFSG19, AG20] for example. These papers concern
graph products, wreath products (restricted and unrestricted) and semi-direct
products respectively. Are there analogs of these results for locally compact
sofic groups?

Problem 6: Suppose G is a non-unimodular lcsc group and let § : G — Ry
denote the modular homomorphism. Let G = R x G denote the semi-direct
product with group law

(t,9)(s,h) = (t+6(g)s, gh).
Then G and Ker(§) are unimodular groups. If G is sofic then is Ker(8) sofic?
If Ker(6) is sofic then is G sofic?

4.2. GROUP RINGS.

Problem 7: If G is sofic, then is its group von Neumann algebra Connes-
embeddable? Elek and Szabd proved the answer is ‘yes’ in the case of discrete
countable groups [ES05].

Problem 8: The algebraic eigenvalue conjecture of J. Dodziuk, P. Linnell,
V. Mathai, T. Schick and S. Yates [DLMT03] posits that if T is a discrete
group and A € M, (ZT) (the ring of n x n matrices with values in the group
ring ZI') and [(A) is the corresponding operator on ¢2I'®" then all eigenvalues
of [(A) are algebraic integers. This was proven true for sofic groups by A. Thom
[ThoO8]. Is there an analogous statement for locally compact sofic groups?

Problem 9 (Kaplansky’s direct finiteness conjecture): A ring R is said to be
directly finite if zy = 1 implies yx = 1 for all z, y € R. Kaplansky conjectured
that if G is a countable group and k is a field, then the group ring kG is directly
finite. This is known as Kaplansky’s Direct Finiteness Conjecture. If G is sofic,
then as explained in Problem 10 below, it satisfies Gottschalk’s surjunctivity
conjecture. This immediately implies kG is directly finite if k is a finite field.
The general case follows because all fields are embeddable into ultraproducts
of finite fields. See [CL15] for details. Is there an analogous statement in the
setting of locally compact groups?
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4.3. ACTIONS.

Problem 10 (Gottschalk’s surjunctivity conjecture): Suppose X is a compact
Hausdorff space, G is a topological group and G x X — X is a jointly continuous
action. This action is said to be surjunctive if every continuous injective G-
equivariant map ¢ : X — X is surjective.

Gottschalk conjectured that if G is discrete and A is a finite set, then the full
shift GA% is surjunctive where

AY ={z:G - A}
has the topology of pointwise convergence and G acts on A® by

(g2)(f) = z(g7' f).

M. Gromov proved that sofic groups satisfy Gottschalk’s conjecture [Gro99).
His proof was simplified and made more accessible by B. Weiss [Wei00]. It was
re-proven by Kerr and Li using sofic topological entropy [KL11]. Is there an
analog of Gottschalk’s conjecture in the locally compact setting?

Problem 11: Sofic approximations have been used to define invariants of actions
of discrete countable groups on probability spaces, compact topological spaces
and Banach spaces. These invariants include sofic measure entropy [Bowl10],
topological sofic entropy [KL11], sofic mean dimension [Lil3], sofic mean length
[LL19] and ¢? dimension [Hay14]. These invariants generalize classical invariants
of Z-actions. For an introduction to sofic entropy, see [Bow18]. This motivates
the problem: generalize these invariants to actions by locally compact groups.
This problem is open except for the fact that Sukhpreet Singh’s thesis general-
ized some of the foundational results of sofic entropy theory to locally compact
groups. He has no plans to publish his thesis, but copies are available upon
request to the first author.

4.4. SOFIC APPROXIMATIONS.

Problem 12 (Amenable groups): Elek and Szabé proved a structure theorem
for sofic approximations of discrete amenable groups in [ES11]. It states that
there is essentially only one sofic approximation to a discrete amenable group
(up to asymptotically vanishing perturbations and taking disjoint copies) which
is given by a Fglner sequence. Is there an analogous statement in the setting of
locally compact groups?
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Problem 13 (Flexible stability): Let us say that a sofic group G is flexibly
stable if for every 6 > 0 there are pre-compact open U C G and € > 0 such that,
if M is an (U, ¢€)-sofic approximation to G, then there exist lattice subgroups
T'1,...,Tx <G, an open subspace M’ C M, an open subspace X’ C X where

2
X = |_| i\G
i=1
is the disjoint union and a homeomorphism ® : M’ — X’ such that
e O(p.g) = ®(p)g whenever both sides are defined;
e vol(M') > (1 —6) vol(M);
e vol(X’) > (1 —¢)vol(X).
This implies that any sofic approximation to G can, by a small perturbation,
be changed into an approximation by a disjoint union of coset spaces. It follows
from Benjy Weiss’s results in [Wei01] and Elek and Szabd’s structure theorem for
sofic approximations of amenable groups [ES11] that residually finite amenable
discrete groups are flexibly stable. It is a folklore result that free groups are
flexibly stable. In recent work, it has been shown that surface groups are flexibly
stable [LLM19]. This motivates the following questions: is PSL(2,R) flexibly
stable? Aut(T;)? SO(3,1)? R? x SL(2,R)? Are amenable unimodular groups
that admit residually finite lattices flexibly stable? If G is flexibly stable then
are all lattice subgroups of G flexibly stable?

Problem 14 (Property (T) and expanders): If M is a complete Riemannian
manifold with finite volume, then the Cheeger constant of M is
area(0K)
M) = il =5
where the infimum is over all compact smooth sub-manifolds K C M with
0 < vol(K) < vol(M)/2 [CheT0].

Suppose G is a connected Lie group with property (T). It is well-known
that there is a positive lower bound ¢y > 0 on the Cheeger constants of coset
spaces I'\G. That is h(I'\G) > ¢ for all lattices I' < G. With this in mind,
we conjecture that there exists e > 0 such that for every § > 0 there exist
a pre-compact open set U C G and e¢ > 0, such that if M is any (U, €)-sofic
approximation to G, then there exists a smooth submanifold M’ C M satisfying

e vol(M') > (1 —6) vol(M);
e every connected component of M’ has Cheeger constant > €.



Vol. 251, 2022 LOCALLY COMPACT SOFIC GROUPS 267

A similar conjecture for discrete (T) groups by the first author was proven by
Gabor Kun [Kunl6]. Maybe there is a common generalization to all locally
compact (T) groups?

Problem 15: The sofic dimension of a countable discrete group measures the
growth rate of the number of sofic approximations to the group [DKP14, GP15].
It is a combinatorial version of the free entropy dimension [Voi96]. Moreover, it
admits a natural formula with respect to free product with amalgamation over
an amenable group. Are there analogs of these results in the locally compact
setting?

Problem 16: A countable discrete group G is sofic if and only if it embeds
into a metric ultraproduct of finite symmetric groups [ES05, Pes08]. Is there
an analogous fact for locally compact sofic groups? Note that SL(2,R) is sofic
(because it admits a residually finite lattice) but it does not continuously embed
into a metric ultraproduct of compact groups. This is because SL(2,R) does

not admit a proper bi-invariant metric.
4.5. GROUPOIDS AND MEASURED EQUIVALENCE RELATIONS.

Problem 17: Soficity was generalized to discrete measured equivalence relations
and groupoids in [EL10, Paull, DKP14]. Can this theory be generalized to
measured equivalence relations and groupoids with locally compact leaves?

Problem 18: Tt might be possible to reduce soficity of a non-discrete lcsc group
to soficity of a related discrete measured equivalence relation. The latter notion
was introduced in [EL10].

It is well-known that a discrete countable group G is sofic if there exists an
essentially free action of G on a standard probability space (X, i) such that the
orbit-equivalence relation is sofic. It seems likely that this fact generalizes to
locally compact groups as follows.

Suppose G acts on a standard probability space (X, u) preserving the mea-
sure. For simplicity, let us assume the action is essentially free. By [FHMT78|
there is a complete lacunary section S C X. This means that S is Borel, GS
is conull in X and there is an open neighborhood U C G of the identity such
that Uz NS = {z} for all z € S. In particular, if RY = {(z,g2) : x € X, g € G}
is the orbit-equivalence relation of the G action and R2, := RgN(Sx S), then RZ,
is an equivalence relation on S with countable classes.
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If G is non-discrete then u(S) = 0. In spite of this, there is a natural measure,
denoted v, on S which behaves as if it were p conditioned on S. The measure
is defined by

V(A) = p(VA)
Haarg(V)
where A C S is any Borel set and V' C G is a symmetric open neighborhood
of 1¢ in G such that V2 c U. This does not depend on the choice of V. This
is explained in [Avnl10] for example.

We conjecture: if there exists a pmp action G (X, 1) and a section S C X
as above such that the discrete measured equivalence relation (5, v, R%) is sofic,
then G is sofic. This might give an approach to proving that the group of
von Neumann algebras of sofic groups are Connes-embeddable (see [EL10] for
related results in the discrete case).

Problem 19: The previous problem gave a sufficient condition for soficity. There
is a related equivalent condition. It is well-known that a discrete countable
group G is sofic if and only if for every Bernoulli shift action of G the associated
measured equivalence relation is sofic. It seems likely that this fact generalizes
to locally compact groups as follows.

Consider the Poisson point process on a non-discrete lcsc group G with inten-
sity measure equal to a left-Haar measure on G. Because G is non-discrete, we
can consider the law of this process to be a G-invariant probability measure p
on the space € of discrete closed subsets of G. Let €21 C €2 be the set of discrete
closed subsets w C G with 1¢ € w. Even though p(€2;) = 0, there is a natural
probability measure v on ; that intuitively represents p conditioned on 23
(this exists even though € is not a lacunary section). Define an equivalence
relation R on Q1 by (w1,ws) € R & Jg € G such that gw; = wy. Then R
is discrete and v-preserving. We conjecture that G is sofic if and only if this

measured equivalence relation is sofic.
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