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1. Introduction

A countable discrete group Γ is sofic if there exist maps σi : Γ → sym(Vi)

(where each Vi is a finite set and sym(Vi) is its permutation group) satisfying

1 = lim
i→∞

|Vi|−1{v ∈ Vi : σi(g)σi(h)v = σi(gh)v} ∀g, h ∈ Γ,

1 = lim
i→∞

|Vi|−1{v ∈ Vi : σi(g)v $= v} ∀g ∈ Γ \ {1Γ}.

The first condition ensures that the maps behave asymptotically like homomor-

phisms and the second condition ensures that, asymptotically, every nontrivial

element of Γ behaves like a fixed point-free map on Vi. In this sense, we can

think of σi as providing a kind of approximation for the left-translation action

of Γ on itself.

Sofic groups were defined implicitly by M. Gromov in [Gro99] where he proved

they satisfy Gottschalk’s surjunctivity conjecture. Benjy Weiss made the sub-

ject more accessible by simplifying the proof of Gromov’s result in [Wei00] and

giving sofic groups their name, which is derived from the Hebrew word sofi

meaning finite. For an introduction to sofic groups, see [Pes08, PK13, CL15].

At the time of this writing, it is an open problem whether all discrete countable

groups are sofic.

Locally compact sofic groups and their entropy theory were introduced by the

first author and Sukhpreet Singh in Singh’s unpublished 2016 thesis (available

upon request to the first author). In this note, we give a new approach to

locally compact sofic groups via partial actions and charts. Our main results

are informally summarized as follows.

• Theorem 3.2. Every sofic group is unimodular.

• Theorem 3.3. Every unimodular lcsc amenable group is sofic.

• Theorem 3.5. A sequence of local G-spaces is a sofic approximation if

and only if the essential injectivity radius of the sequence is infinite.

• Theorem 3.7. The new definition of sofic given in this paper generalizes

the previous definitions for discrete countable groups.

• Theorem 3.9. If G admits a sofic lattice subgroup then G is sofic.

• Corollary 3.10. The following groups are sofic: semi-simple Lie groups

(e.g., SL(n,R), SO(n, 1) etc.), the automorphism group of a regular tree.

• Proposition 3.11. If G is sofic and H ≤ G is an open subgroup then H

is sofic.
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This paper is organized as follows. Fix a locally compact second countable

group G. In §2 we introduce local G-spaces as topological spaces with a partial

homogeneous action of G. We derive metric and measure-theoretic properties

of these spaces. In §3 we define sofic approximations to G as sequences of local

G-spaces which, in a sense, approximate the action of G on itself by right-

translations. We also prove the main results. The last section gives a series of

open problems.

2. Local G-spaces and partial actions

2.1. Local G-spaces. We use the abbreviation lcsc to mean locally compact

second countable. Let G be an lcsc group.

Definition 1: A partial right-action of G on a Hausdorff space M is a con-

tinuous map α : dom(α) → M where dom(α) ⊂ M ×G is open. We require the

following axioms hold for all p ∈ M .

Axiom 1. (p, 1G) ∈ dom(α) and α(p, 1G) = p.

Axiom 2. If (p, g)∈dom(α) then (α(p, g), g−1)∈dom(α) and α(α(p, g), g−1)=p.

Axiom 3. If (p, g), (α(p, g), h), (p, gh) ∈ dom(α) then α(p, gh) = α(α(p, g), h).

A partial action α is homogeneous if, in addition, it satisfies the following.

Axiom 4. For every p ∈ M there is an open neighborhood Op of 1G in G such

that {p}×Op ⊂ dom(α) and the restriction of α(p, ·) to {p}×Op is

a homeomorphism onto an open neighborhood of p in M .

Definition 2: A local G-space is a pair (M,α) where M is an lcsc space and

α is a partial homogeneous right-action.

Notation 1: We will usually denote a local G-space by M (or V ), leaving the

action α implicit. To simplify notation, we write

p.g = α(p, g).

If K ⊂ M , we will also write K.g = {α(k, g) : k ∈ K}. In particular, K.g is

well-defined if and only if K × {g} is in the domain of the action α. Similarly,

we write p.O = {α(p, g) : g ∈ O} if {p}×O ⊂ dom(α).

Remark 1: By Axiom 3, p.g1.g2 = p.g1g2 when both sides are defined. However

this does not imply that p.g1.g2.g3 = p.g1g2g3 even when both sides are defined.

See Example 3.
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Lemma 2.1: Let M be a local G-space. Let g ∈ G. Then α(·, g) is injective

(where it is defined).

Proof. Suppose α(p, g) = α(q, g) for some p, q ∈ M . In other words, p.g = q.g.

By Axiom 2 of Definition 1, p.g.g−1 = p and q.g.g−1 = q and both are well-

defined. Therefore, p = q as required.

Corollary 2.2: Let M be a local G-space. Let K ⊂ M be compact, g ∈ G

and suppose K.g is well-defined. Then the map α(·, g) restricted to K is a

homeomorphism onto its image.

Proof. Because K is compact, it suffices to prove the map is continuous and

injective. Continuity follows from joint continuity of α and injectivity follows

from the previous lemma.

2.2. Charts.

Definition 3: Let (M,α) be a local G-space and p ∈ M . A chart centered

at p is a homeomorphism fp : dom(fp) → rng(fp) where dom(fp) ⊂ M is an

open neighborhood of p, rng(fp) is an open neighborhood of the identity in G

and g = fp(p.g) for all g ∈ rng(fp). By Axiom 4 of Definition 1, for every p ∈ M

there exists a chart centered at p.

We will show that the transition functions between two charts are locally

given by left-translation in G.

Definition 4: Let A,B ⊂ G be Borel sets. A map φ : A → B is locally left-

translation if there exists a decomposition A =
⊔

i∈I Ai into relatively open

sets and {gi}i∈I ⊂ G (for some countable index set I) such that φ(a) = gia for

all a ∈ Ai. By relatively open we mean Ai is open in A.

Proposition 2.3: Let (M,α) be a local G-space. Let p, q ∈ M and let fp, fq
be charts centered at p, q respectively. Let

A = {g ∈ rng(fp) : p.g ∈ dom(fp) ∩ dom(fq)},

B = {g ∈ rng(fq) : q.g ∈ dom(fp) ∩ dom(fq)}.

Then there is a map τ : A → B which is locally left-translation such that

fq(r) = τ(fp(r))

for all r ∈ dom(fp) ∩ dom(fq). Moreover, τ is bijective and left-Haar-measure-

preserving.
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Proof. Let r ∈ dom(fp) ∩ dom(fq). Let g ∈ rng(fp) be such that p.g = r.

Let h ∈ rng(fq) be such that q.h = r. Choose a chart fr centered at r. Af-

ter choosing rng(fr) smaller if necessary we may assume g rng(fr) ⊂ rng(fp)

and h rng(fr) ⊂ rng(fq). This implies r.k = p.g.k = p.gk for all k ∈ rng(fr).

Similarly, r.k = q.hk.

Let Cr = hg−1. We claim that fq(r.k) = Crfp(r.k) for all k ∈ rng(fr). This

follows from

fq(r.k) = fq(p.hk) = hk = Crgk = Crfp(p.gk) = Crfp(r.k).

Since r. rng(fr) = dom(fr), this implies fq(s) = Crfp(s) for all s ∈ dom(fr).

Because G is lcsc, it follows that there are a countable index set I, and

{ri}i∈I ⊂ dom(fp) ∩ dom(fq) such that

dom(fp) ∩ dom(fq) ⊂ ∪i∈I dom(fri)

where fri are as above.

Let A,B ⊂ G be as in the statement. Define τ : A → B by τ(g) = Crig

if p.g ∈ dom(fri). By the previous paragraph

τ(fp(r)) = fq(r)

for all r ∈ dom(fp) ∩ dom(fq). In particular, since fp and fq are homeomor-

phisms, τ is well-defined, bijective and continuous. Since g *→ τ(g)g−1 is lo-

cally constant, τ is locally left-translation and therefore it is left-Haar-measure-

preserving.

2.2.1. Measures. Here we show that a localG-space admits a canonical measure.

Proposition 2.4 (The canonical measure): Let (M,α) be a local G-space.

Fix a left-Haar measure HaarG on G. Then there exists a unique Radon mea-

sure volM on M satisfying the following. If p ∈ M , fp is a chart centered at p

and K ⊂ dom(fp) is Borel, then

(1) volM (K) = HaarG({g ∈ rng(fp) : p.g ∈ K}) = HaarG(fp(K)).

Proof. Let K ⊂ M be Borel. Because M is lcsc there exist a countable index

set I, charts {fi}i∈I with fi centered at pi ∈ M such that K ⊂
⋃

i∈I dom(fi).

Therefore, there is a Borel decomposition K =
⊔

i∈I Ki with Ki ⊂ dom(fi) for

all i. We define

volM (K) =
∑

i∈I

HaarG(fi(Ki)).
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In order to show this is well-defined, suppose that J is a countable index set,

{gj}j∈J are charts, K =
⊔

j∈J Lj is a Borel decomposition and Lj ⊂ dom(gj).

We must show that
∑

i∈I

HaarG(fi(Ki)) =
∑

j∈J

HaarG(gj(Lj)).

By countable additivity, it suffices to show that

HaarG(fi(Ki ∩ Lj)) = HaarG(gj(Ki ∩ Lj))

for all i ∈ I, j ∈ J . This follows from Proposition 2.3.

This shows that volM is well-defined and satisfies volM (K) = HaarG(fp(K))

whenever f is a chart with K ⊂ dom(f). Because fp is a measure-preserving

homeomorphism and G is locally compact, it follows that volM is a Radon

measure.

Definition 5: Let δ : G → R>0 be the modular function. This means that

if S ⊂ G has a finite Haar measure, then HaarG(Sg) = δ(g)HaarG(S) where

HaarG is a left-Haar measure on G. The modular function is a homomorphism;

G is unimodular if δ(g) = 1 for all g ∈ G. This means that the Haar measure

on G is both left and right G-invariant.

Lemma 2.5 (Locally measure-preserving): Let (M,α) be a local G-space and

suppose K × {g} ⊂ dom(α) for some measurable K ⊂ M and g ∈ G. Then

volM (K.g) = δ(g) volM (K).

Proof. Let p ∈ K. Since (p, g) ∈ dom(α) and dom(α) is open in M × G,

there are open neighborhoods U, V of 1G in G such that {p} × U ⊂ dom(α),

{p}× V g ⊂ dom(α). By Axiom 4 of Definition 1, there is an open neighbor-

hood Op of the identity in G such that α(p, ·) restricts to a homeomorphism

from Op to an open neighborhood p.Op of p in M . After intersecting Op with U

and V if necessary, we may assume Op ⊂ U ∩ V .

For every h ∈ Op, if p.h ∈ K then p.h, p.h.g, p.hg are all well-defined (and

therefore p.h.g = p.hg by Axiom 3 of Definition 1).

Since M is lscs, there exists a countable subset {pi}i∈I ⊂ K and open neigh-

borhood Oi = Opi ⊂ G of the identity as above such that
⋃

i∈I

pi.Oi ⊃ K.
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So there is a measurable partitionK =
⊔∞

i=1 Ki such that for each i, Ki ⊂ pi.Oi.

Because the map α(·, g) : K → M is injective (by Lemma 2.1) and

volM (K.g) =
∞∑

i=1

volM (Ki.g)

we may assume without loss of generality that K ⊂ p.Op for some p ∈ K.

We claim that fp(K.g) = fp(K)g (and both sides are well-defined). To see

this, let k ∈ K ⊂ p.Op. Then there is h ∈ Op such that k = p.h. By choice

of Op, p.h.g = p.hg and both are well-defined. Thus

fp(k.g) = fp(p.hg) = hg = fp(p.h)g = fp(k)g.

Since k ∈ K is arbitrary, this proves the claim. So

HaarM (K.g) = HaarG(fp(K.g)) = HaarG(fp(K)g)

= δ(g)HaarG(fp(K)) = δ(g) volM (K).

The first and last equalities hold by definition of volM (·).

2.3. Metrics. In this section, we show that, given a left-invariant proper met-

ric dG on G, there is a canonical induced metric dM on any local G-space M .

Definition 6: A local G-space M is transitive if for every p, q ∈ M there

exist elements g1, . . . , gn ∈ G such that q = p.g1. · · · .gn. Equivalently, this

means there exist charts f1, . . . , fn such that p ∈ dom(f1), q ∈ dom(fn) and

dom(fi) ∩ dom(fi+1) $= ∅ for all i.

Definition 7: Let G be an lcsc group with a left-invariant proper metric dG.

Let M be a local G-space. Let B(ρ) ⊂ G be the open ball of radius ρ centered

at 1G. For p ∈ M , let injrad(M,p) be the supremum over all ρ > 0 such that

(1) for any g, h ∈ G with g, h, gh ∈ B(ρ), p.g.h = p.gh (in particular, both

sides are well-defined);

(2) the restriction of α(p, ·) to B(ρ) is a homeomorphism onto its image.

This is the injectivity radius at p.

Theorem 2.6: Let dG be a left-invariant proper metric on G. Let M be a

transitive left-G-space. Then there is a metric dM on M satisfying the following

local condition. For all p ∈ M , if ρ = injrad(M,p) and g ∈ B(ρ) then

dM (p, p.g) = dG(1G, g).
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Proof. Let p, q ∈ M . Define

dM (p, q) = inf
n−1∑

i=1

dG(1G, gi)

where the infimum is over all sequences g1, . . . , gn ∈ G such that p.g1. · · · .gn = q.

Let p ∈ M . Let ρ = injrad(M,p). To finish the proof it suffices to show that

if g ∈ B(ρ) then dM (p, p.g) = dG(1G, g).

So suppose h1, . . . , hn ∈ G and p.g = p.h1. · · · .hn. We must show that

dG(1G, g) ≤
n∑

i=1

dG(1G, hi).(2)

If for every i, h1 · · ·hi ∈ B(ρ), then (2) is immediate by the triangle inequality.

So we assume there is some index m such that h1 · · ·hm+1 /∈ B(ρ). We may

assume m is the smallest index for which this holds. Thus h1 · · ·hi ∈ B(ρ) for

all i ≤ m and h1 · · ·hm+1 /∈ B(ρ).

Because dG is left-G-invariant,

dG(1G, h1) + dG(1G, h2) = dG(1G, h1) + dG(h1, h1h2) ≥ dG(1G, h1h2).

By an inductive argument we obtain

m+1∑

i=1

dG(1G, hi) ≥ dG(1G, h1 · · ·hm+1) ≥ ρ > dG(1G, g).

This proves (2).

2.4. Examples.

Example 1: If Γ < G is discrete, then Γ\G admits a local G-space structure as

follows. Define α : Γ\G×G → Γ\G by α(Γg, h) = Γgh.

Fix g ∈ G and let π : G → Γ\G be the map π(h) = Γgh. Since Γ is discrete,

π is a covering space map. In particular, it is a local homeomorphism. This

implies Axiom 4 of Definition 1. The other Axioms are immediate.

Example 2: Let M ⊂ G be an open subset. Let

dom(α) = {(p, g) ∈ M ×G : pg ∈ M}

and define α : dom(α) → M by α(p, g) = pg. It is immediate that (M,α) is a

local G-space. Moreover, volM is the restriction of HaarG to M .
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Example 3: In this example, we show that it is possible for p.g.h.k $= p.ghk

even when both sides are well-defined. Let G = C be the complex plane, as

an additive group. Let M be a double cover of C \ {0}. To be precise, let

M = (0,∞)× R/4πZ. For a, b ∈ R/4πZ, define

|a− b| = inf
n∈Z

|a′ − b′ − 4πn|

where a′, b′ ∈ R satisfy a′ = a mod 4πZ and b′ = b mod 4πZ.
Let

dom(α) = {((r, θ), seiφ − reiθ) ∈ M × C : s > 0, |φ− θ| < 2π/3}.

Define an action α : dom(α) → M by

α((r, θ), z) = (t,φ)

where teiφ = reiθ + z and φ ∈ R/4πZ is chosen to minimize |θ− φ|. Note there

are only two different elements φ1,φ2 ∈ R/4πZ that satisfy teiφj = reiθ + z

(for j = 1, 2) and φ1 − φ2 = 2π mod 4πZ. Because these elements are 2π

apart, at most one of them can be within 2π/3 of θ. Moreover, the definition

of dom(α) shows that exactly one of these elements is within 2π/3 of θ. So α

is well-defined.

Next we check that (M,α) is a local G-space. Define

f̃ : M → C, f̃(r, θ) = reiθ.

Then f̃ is a 2-1 covering map of C \ {0}. Also

f̃(α(p, z)) = f̃(p) + z.

Because f̃ is a local homeomorphism, α satisfies Axiom 4 of Definition 1.

In order to check Axiom 3, suppose (r, θ).z1, (r, θ).z1.z2 and (r, θ).(z1 + z2)

are all well-defined. We must show that (r, θ).z1.z2 = (r, θ).(z1 + z2). Let

(r1, θ1) = (r, θ).z1, (r2, θ2) = (r, θ).z1.z2 and (r3, θ3) = (r, θ).(z1 + z2).

The assumption that these are all well-defined implies |θ − θ1| < 2π/3,

|θ1 − θ2| < 2π/3 and |θ − θ3| < 2π/3. The triangle inequality implies

|θ2 − θ3| < 2π.

On the other hand, the definition of α implies that either θ2 = θ3 or

θ2 = θ3 + 2π (mod 4π). So we must have θ2 = θ3 mod 4π. Therefore Axiom 3

holds. The other Axioms are immediate.
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Next we show the existence of p ∈ M and g, h, k ∈ G such that p.g.h.k $= p.ghk

even though both sides are well-defined. Let p = (1, 0) ∈ M . Let g = i − 1,

h = −i− 1, k = 1− i. Then

f̃(p) + g = 1 + (i− 1) = i.

So p.g = (1,π/2). Also f̃(p.g) + h = i+ h = −1. So p.g.h = (1,π). Finally,

f̃(p.g.h) + k = −1 + k = −i.

So p.g.h.k=(1, 3π/2). On the other hand, g+h+k=−i−1. So p.ghk=(1,−π/2).

Because −π/2 $= 3π/2 mod 4π, we have p.g.h.k $= p.ghk.

3. Sofic groups

3.1. Definitions.

Definition 8: Let M = (M,α) be a local G-space and let U ⊂ G be open and

pre-compact and let ε > 0. Let M [U ] = M [α, U ] be the set of all p ∈ M such

that, if g, h ∈ G are such that g, h, gh ∈ U , then p.g.h = p.gh (in particular,

both sides are well-defined). Moreover, we require that the map g *→ α(p, g)

is a homeomorphism from U to an open neighborhood of p. We say M is a

(U, ε)-sofic approximation to G if

volM (M) < ∞ and volM (M [U ]) ≥ (1− ε) volM (M).

Definition 9: A sofic approximation toG is a sequence Σ = (Mi)∞i=1 whereMi

is a (Ui, εi)-sofic approximation such that the Ui are pre-compact open sets

increasing to G and the sequence εi decreases to 0. We say G is sofic if it

admits a sofic approximation.

The following lemma will be generally helpful.

Lemma 3.1: If U ⊂ G is a pre-compact open neighborhood of the identity and

g ∈ U , then

M [U ].g ⊂ M [U ∩ g−1U ].

Proof. Let p ∈ M [U ], g ∈ U and h, k ∈ G be such that h, k, hk ∈ U ∩ g−1U . To

show p.g ∈ M [U ∩ g−1U ], we first show p.g.h.k = p.g.hk.

Because p∈M [U ], and g, h, gh∈U we have p.g.h=p.gh. Because gh, k, ghk∈U

we have p.gh.k = p.ghk. Combine these equalities to obtain p.g.h.k = p.g.hk.
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Next define β : U ∩ g−1U → M by β(k) = p.g.k. We must show β is a

homeomorphism onto an open neighborhood of p.g. Let γ : U → M be the

map γ(k) = p.k. This map is a homeomorphism onto an open neighborhood

of p since p ∈ M [U ]. Moreover, β(k) = p.g.k = p.gk = γ(gk). So β is the

composition of left multiplication by g with γ. This implies it has the claimed

properties.

3.2. Unimodularity. The goal of this section is to prove:

Theorem 3.2: If G is sofic then G is unimodular.

Proof. Fix a left-Haar measure HaarG on G. Let ε > 0, g ∈ G, and U ⊂ G be a

pre-compact open set containing {1G, g, g2}. Suppose M is a (U ∪g−1U, ε)-sofic

approximation.

By Lemma 3.1, M [g−1U ].g−1 ⊂ M [U ∩ g−1U ]. Multiply by g on the right to

obtain M [U ∩ g−1U ].g ⊃ M [g−1U ]. Thus

volM (M [U ∩ g−1U ].g) ≥ volM (M [g−1U ]) ≥ volM (M [U ∪ g−1U ])

≥ (1 − ε) volM (M).

Let δ : G → R be the modular function. Lemma 2.5 implies

volM (M [U ∩ g−1U ].g) = δ(g) volM (M [U ∩ g−1U ]).

Combining this with the previous inequality, we obtain

volM (M) ≥ volM (M [U ∩ g−1U ]) ≥ δ(g)−1(1− ε) volM (M).

Therefore, δ(g) ≥ 1 − ε. Since this is true for every ε > 0, δ(g) ≥ 1. However,

δ : G → R>0 is a homomorphism. So δ(g−1) = δ(g)−1. Since also δ(g−1) ≥ 1,

we obtain δ(g) = 1. Because g ∈ G is arbitrary, G must be unimodular.

3.3. Amenable groups.

Theorem 3.3: Every unimodular amenable lcsc group is sofic.

Definition 10: A locally compact group G is amenable if for every left-Haar

measure HaarG, there exists a sequence {Fi}∞i=1 of measurable sets with finite

positive measure such that for every compact K ⊂ G,

lim
i→∞

HaarG(KFi)

HaarG(Fi)
= 1.(3)

Such a sequence is called a left-Følner sequence.
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Lemma 3.4: If G is amenable and unimodular, then there exists a sequence

{F̃i}∞i=1 of finite measure subsets such that each F̃i is pre-compact, open and

for every compact K ⊂ G,

lim
i→∞

HaarG({p ∈ F̃i : pK ⊂ F̃i})
HaarG(F̃i)

= 1.(4)

Proof. Let {Fi}∞i=1 be a left-Følner sequence. After perturbing slightly, we may

assume each Fi is pre-compact. Indeed, since Fi has finite measure, there is a

subset Li ⊂ Fi which is pre-compact such that limi→∞
HaarG(Fi\Li)
HaarG(Fi)

= 0. Then

{Li}∞i=1 is left-Følner. So we can replace Fi with Li.

Let {Ki}∞i=1 be an increasing sequence of pre-compact open subsets

with G =
⋃

iKi. We choose Ki to grow so slowly that

lim
i→∞

HaarG(KiFi)

HaarG(Fi)
= 1.(5)

Let F ′
i = KiFi. Then F ′

i is pre-compact and open. Because

lim
i→∞

HaarG(F ′
i ! Fi)

HaarG(Fi)
= 0,

we have that {F ′
i}∞i=1 is left-Følner.

For any compact K ⊂ G, there exists i with K ⊂ Ki. Therefore,

(6)

lim inf
i→∞

HaarG({p ∈ F ′
i : Kp ⊂ F ′

i})
HaarG(F ′

i )
≥ lim inf

i→∞

HaarG({p ∈ F ′
i : Kip ⊂ F ′

i})
HaarG(F ′

i )

≥ lim inf
i→∞

HaarG(Fi)

HaarG(F ′
i )

= 1.

Now let F̃i = (F ′
i )

−1. Note that F̃i is pre-compact and open since F ′
i is. Let

K ⊂ G be compact. Suppose p ∈ F̃i satisfies pK ⊂ F̃i. Then K−1p−1 ⊂ F ′
i .

The converse is also true. Thus

{p ∈ F̃i : pK ⊂ F̃i}−1 = {p ∈ F ′
i : K

−1p ⊂ F ′
i}.

Because G is unimodular, HaarG(E) = HaarG(E−1) for any measurable E ⊂ G.

Thus

lim inf
i→∞

HaarG({p ∈ F̃i : pK ⊂ F̃i})
HaarG(F̃i)

= lim inf
i→∞

HaarG({p ∈ F ′
i : K

−1p ⊂ F ′
i})

HaarG(F ′
i )

= 1

by (6).
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Proof of Theorem 3.3. Let G be a unimodular amenable lcsc group. Let

{Fi}∞i=1 ⊂ G be a sequence as in Lemma 3.4. As in Example 2 we may re-

gard Fi as a local G-space with volFi equal to the restriction of HaarG to Fi

where (as always in this paper) HaarG is a left-Haar measure. Let U ⊂ G be

pre-compact and ε > 0. Then Fi[U ] consists of all p ∈ Fi with pU ⊂ Fi. By

Lemma 3.4,

volFi(Fi[U ]) = HaarG({p ∈ Fi : pU ⊂ Fi})

≥ (1− ε)HaarG(Fi) = (1− ε) volFi(Fi)

for all sufficiently large i. Thus {Fi}∞i=1 is a sofic approximation and G is

sofic.

3.4. The metric approach to soficity. For this section, fix an lcsc group

G with a left-invariant proper metric dG.

Theorem 3.5: Let (Mi)∞i=1 be a sequence of local G-spaces. Then the following

are equivalent.

(1) {Mi}∞i=1 is a sofic approximation to G.

(2) For every ρ > 0

lim
i→∞

volMi({p ∈ Mi : injrad(Mi, p) > ρ})
volMi(Mi)

= 1,

where injectivity radius is defined in Definition 7.

Proof. Let U = B(ρ), which is the open ball of radius ρ centered at the identity

in G. Then injrad(Mi, p) ≥ ρ if and only if p ∈ Mi[U ]. So the theorem follows

immediately from the definition of sofic approximation.

Remark 2: It is possible to define Benjamini–Schramm (BS) convergence for

measured metric spaces via the pointed Gromov–Hausdorff–Prokhorov topology

[Bow15]. Theorem 3.5 implies that if a sequence of local G-spaces equipped with

metrics given by Theorem 2.6 is a sofic approximation toG, then it BS-converges

to G. The converse is not true. For example, there are non-isomorphic finitely

generated groups G1, G2 with Cayley graphs which are isomorphic as unlabeled

graphs. Precisely, there are generating sets Si for Gi (i = 1, 2) so that with the

corresponding word-metrics there is an isometry φ : G1 → G2 that maps the

identity to the identity and S1 bijectively onto S2.
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Suppose {Mi} is a sofic approximation to G1. Then {Mi} BS-converges toG1.

However, we can think of {Mi} as a local G2-space in the following way. For

p ∈ Mi and g ∈ S2 ∪ {1G2}, let p.g equal p.φ−1(g) (if and only if the latter is

defined). Because G2 is finitely generated, this makes each Mi into a local G2-

space. With this structure, {Mi} is not a sofic approximation to G2 (since G1

and G2 are non-isomorphic). But it does BS-converge to G2 (since G1 and G2

are isometric).

3.4.1. Discrete sofic groups. In this section we show that our new definition of

sofic agrees with the standard definition if G is a countable discrete group.

Definition 11: Let G be a countable group. Let σ : G → sym(V ) (where V is a

finite set) be a set map. For U ⊂ G, let V [σ, U ] ⊂ V be the set of all p such that

(1) σ(g)σ(h)p = σ(gh)p for all g, h ∈ U ;

(2) σ(g)p $= σ(h)p for all g, h ∈ U with g $= h.

Then σ is a discrete (U, ε)-sofic approximation if

#V [σ, U ] ≥ (1− ε)#V.

We call G sofic as a discrete group if for every finite U ⊂ G and ε > 0 there

exists a (U, ε)-sofic approximation to G.

We first show that if G is sofic as a discrete group, then it admits a sofic

approximation that is exact with respect to inverses and the identity.

Lemma 3.6: If G is sofic as a discrete group, then for every finite U ⊂ G

and ε > 0 there exists a discrete (U, ε)-sofic approximation σ : G → sym(V )

such that σ(1G) is the identity and σ(g−1) = σ(g)−1 for all g ∈ G.

Proof. Without loss of generality, we may assume U = U−1 and 1G ∈ U .

Let σ : G → sym(V ) be a discrete (U2, ε|U |−1)-sofic approximation to G.

Let D ⊂ G be the set of order 2 elements. Let H ⊂ G be a subset such that for

every g ∈ G there is a unique element in the intersection H ∩ {g, g−1}.
If v ∈ V [σ, U2] then

σ(1G)
2v = σ(1G)v.

Thus σ(1G)v = v. If also g ∈ D ∩ U2 is nontrivial then

σ(g)2v = σ(g2)v = σ(1G)v = v, σ(g)v $= σ(1G)v = v.
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So there exists an element σ′(g) ∈ sym(V ) with order 2 such that σ′(g)v = σ(g)v

for all v ∈ V [σ, U2]. This defines σ′(g) for all g ∈ D ∩ U2. Also define

σ′(g) =






identity, g ∈ {1G} ∪ (D \ U2),

σ(g), g ∈ H \ (D ∪ {1G}),
σ(g−1)−1. g−1 ∈ H \ (D ∪ {1G}).

This defines σ′ on all ofG. Note that σ′(1G) is the identity and σ′(g)−1=σ′(g−1)

for all g ∈ G. Moreover, σ′(g)v ∈ {σ(g)v,σ(g−1)−1v} for all v ∈ V [σ, U2]

and g ∈ U2.

It now suffices to show σ′ is a discrete (U, ε)-sofic approximation. To prove

this, let

W = {v ∈ V : σ(g)v ∈ V [σ, U2] ∀g ∈ U}.
We claim that W ⊂ V [σ′, U ].

To prove this we observe: if v ∈ V [σ, U2] and g ∈ U2 then

σ′(g)v = σ(g)v = σ(g−1)−1v.

Indeed

σ(g−1)σ(g)v = σ(1G)v = v.

Thus σ(g)v = σ(g−1)−1v. Since σ′(g)v ∈ {σ(g)v,σ(g−1)−1v}, it follows that

σ′(g)v = σ(g)v. This proves the claim.

Now let w ∈ W and g, h ∈ U . By definition of W , σ(h)w ∈ V [σ, U2]. Since

gh ∈ U2,

σ′(g)σ′(h)w = σ′(g)(σ(h)w) = σ(g)σ(h)w = σ(gh)w = σ′(gh)w.

Moreover, if g $= h then

σ′(g)w = σ(g)w $= σ(h)w = σ′(h)w.

This shows that W ⊂ V [σ′, U ] as claimed.

By definition,

W =
⋂

g∈U

σ(g)−1V [σ, U2].

Since each σ(g) is a permutation and |V (σ, U2)| ≥ (1− ε|U |−1)|V |, this implies

|W | ≥ (1− ε)|V |. Thus

#V [σ′, U ] ≥ #W ≥ (1− ε)#V.

This shows that σ′ is a discrete (U, ε)-sofic approximation.
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Theorem 3.7: Let G be a discrete countable group. Then G is sofic as a

discrete group if and only if G is sofic in the sense of Definition 8.

Proof. Suppose G is sofic as a discrete group. Let dG be a proper left-invariant

metric on G. Recall that B(ρ) denotes the open radius ρ ball centered at the

identity in G. It suffices to show that for every radius ρ > 0 and ε > 0, there is

a (B(ρ), ε)-sofic approximation to G (in the sense of Definition 8).

Let σ : G → sym(V ) be a discrete (B(2ρ), ε)-sofic approximation to G.

By Lemma 3.6, we may assume σ(1G) is the identity permutation and

σ(g−1) = σ(g)−1 for all g ∈ G.

For p ∈ V , define injrad(σ, p) to be the supremum of η > 0 such that

(1) σ(gh)−1p = σ(h)−1σ(g)−1p for all g, h ∈ B(η);

(2) σ(g)−1p $= σ(h)−1p if g, h ∈ B(η) with g $= h.

So p ∈ V [σ, B(ρ)] if and only if injrad(σ, p) ≥ ρ.

Let dom(α) be the set of all (p, g) in V × G such that either

injrad(σ, p)>dG(1G, g) or injrad(σ,σ(g)−1p)>dG(1G, g). Define α :dom(α)→V

by

α(p, g) = σ(g)−1p.

We claim that (V,α) is a local G-space. It is immediate that Axioms 1, 2 and 4

of Definition 1 hold.

To verify Axiom 3, suppose (p, g), (α(p, g), h), (p, gh) ∈ dom(α). Then

α(α(p, g), h) = σ(h)−1α(p, g) = σ(h)−1σ(g)−1p,

α(p, gh) = σ(gh)−1p.

So we must show that

(7) σ(h)−1σ(g)−1p = σ(gh)−1p.

Because (p, g), (α(p, g), h), (p, gh) ∈ dom(α),

either injrad(σ, p) > dG(1G, g) or injrad(σ,σ(g)−1p) > dG(1G, g),

either injrad(σ,σ(g)−1p)>dG(1G, h) or injrad(σ,σ(h)−1σ(g)−1p)>dG(1G, h),

either injrad(σ, p) > dG(1G, gh) or injrad(σ,σ(gh)−1p) > dG(1G, gh).

Choose q ∈ {p,σ(g)−1p,σ(h)−1σ(g)−1p,σ(gh)−1p} to maximize the injectiv-

ity radius injrad(σ, q). Note that injrad(σ, q) > dG(1G, f) for all f ∈ {g, h, gh}.
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If q = p then (7) follows by definition of injrad(σ, p). If q = σ(g)−1p then

σ(gh)σ(h)−1σ(g)−1p = σ(g)σ(g)−1p = p

by definition of injrad(σ,σ(g)−1p) and the assumption σ(h)−1 = σ(h−1). This

also implies (7) by multiplying both sides by σ(gh)−1. The other cases are

similar. This verifies Axiom 3.

It is immediate that V [σ, B(2ρ)] ⊂ V [α, B(ρ)]. So

#V [α, B(ρ)] ≥ #V [σ, B(2ρ)] ≥ (1− ε)#V.

This proves (V,α) is (B(ρ), ε)-sofic in the sense of Definition 8. Since ρ, ε are

arbitrary, this proves G is sofic.

Now suppose G is sofic in the sense of Definition 8. Let ρ > 0 be a radius

and ε > 0. It suffices to show there exists σ : G → V such that σ is a discrete

(B(ρ), ε)-sofic approximation.

By Theorem 3.5, there exists a sofic approximation M = (M,α) to G such

that

(8)
volM ({p ∈ M : injrad(M,p) > 3ρ})

volM (M)
> 1− ε|B(ρ)|−1.

Because G is discrete, we choose HaarG to be counting measure on G. There-

fore, volM is counting measure on M . In particular, M is finite.

By Lemma 2.1, for g ∈ G, the map α(·, g) is injective on its domain. There-

fore, there exists a permutation σ(g−1) ∈ sym(M) that agrees with α(·, g) on

its domain. So there is a map σ : G → sym(M) such that σ(g)p = α(p, g−1)

for all (p, g−1) ∈ dom(α). We claim that (M,σ) is a (B(ρ), ε)-discrete sofic

approximation.

Let D be the set of all p ∈ M such that injrad(M,p.g) > 2ρ for all g ∈ B(ρ).

By (8), |D| ≥ (1 − ε)|M |. So it suffices to show that D ⊂ M [σ, B(ρ)].

Let p ∈ D and g, h ∈ B(ρ). By the triangle inequality, gh ∈ B(2ρ). Since

injrad(M,p) > 2ρ,

σ(gh)p = σ(g)σ(h)p.

Moreover, if g $= h then

σ(g)p $= σ(h)p.

These two claims imply D ⊂ M [σ, B(ρ)] and so complete the proof.
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3.5. Stability of soficity under constructions.

3.5.1. Inducing from a subgroup. In this section we prove that if G contains a

sofic lattice Γ ≤ G then G is sofic as well. Moreover, if Σ = {Vi}i∈N is a sofic

approximation to Γ then there is an induced sofic approximation

IndGΓ (Σ) = {IndGΓ (Vi)}i∈N

to G. This is similar to the way that an action or representation of Γ can be

induced to G. It depends apriori on a choice of fundamental domain ∆ ⊂ G.

We will choose ∆ to have some additional properties that will make it easier

to prove that the induced map really is a sofic approximation. It seems likely

that different fundamental domains lead to essentially the same induced sofic

approximation but we make no effort to prove it. The next lemma gives a ‘nice’

fundamental domain.

Definition 12: A lattice is a subgroup Γ ≤ G such that, with the induced

topology, Γ is discrete and Γ\G has a finite G-invariant Borel measure. A

fundamental domain for Γ is a Borel set ∆ ⊂ G such that
⊔

g∈Γ g∆ is a

partition of G.

Definition 13: Let X be a topological space. A collection {Yi}i∈I of subsets

Yi ⊂ X is locally finite if for every x ∈ X there exists an open neighborhood O

of x in X such that

#{i ∈ I : Yi ∩O $= ∅} < ∞.

This condition implies that for every compact K ⊂ X ,

#{i ∈ I : Yi ∩K $= ∅} < ∞.

Lemma 3.8: Let Γ ≤ G be a lattice. Then there exists a fundamental domain∆

for Γ such that the collection {g∆ : g ∈ Γ} is locally finite.

Proof. Let π : G → Γ\G be the quotient map. Because Γ is discrete, for

every g ∈ G there exists an open pre-compact neighborhood Õ of g such that

the restriction of π to Õ is injective. So there exists an open cover {Oi}i∈I of

Γ\G such that for each i ∈ I, there is a pre-compact open set Õi ⊂ G such

that π restricted to Õi is a homeomorphism onto Oi. Because G is locally

compact, after passing to a sub-cover if necessary, we may assume {Oi}i∈I is

locally finite. This implies that the cover {gÕi}g∈Γ,i∈I of G is also locally finite.

In fact, because Õi is pre-compact and Γ is discrete, for any compact K ⊂ G



Vol. 251, 2022 LOCALLY COMPACT SOFIC GROUPS 257

there are only finitely many g ∈ Γ with gÕi ∩K $= ∅. On the other hand, there

are only finitely many indices i ∈ I with ΓÕi ∩K $= ∅ because this condition

implies ΓK ∩Oi $= ∅ and {Oi}i∈I is locally finite.

Since G is second countable, the index set I is at most countable, so we may

assume that I ⊂ N. Define

∆ =
⋃

i∈I

Õi \
( ⋃

g∈Γ

⋃

j<i

gÕj

)
.

Then ∆ is a Borel fundamental domain.

Let x ∈ G. Let Õx ⊂ G be a pre-compact open neighborhood of x such

that the restriction of π to Õx is a homeomorphism onto its image. Because

{gÕi}g∈Γ,i∈I of G is locally finite, there are only finitely many pairs (g, i) ∈ Γ×I

such that gÕi ∩ Õx $= ∅.
We claim that Õx intersects at most finitely many Γ-translates of ∆. To see

this, let g ∈ Γ and suppose g∆ ∩ Õx $= ∅. Since ∆ ⊂
⋃

i∈I Õi, this implies the

existence of i ∈ I with gÕi ∩ Õx $= ∅. So by the previous paragraph, there are

only finitely many g ∈ Γ with g∆ ∩ Õx $= ∅. This finishes the lemma.

Theorem 3.9: Let Γ ≤ G be a lattice where G is an lcsc group. If Γ is sofic

then G is sofic. Moreover, for every sofic approximation Σ = {Vi}i∈I to Γ there

is an induced sofic approximation IndGΓ (Σ) = {IndGΓ (Vi)}i∈I to G determined

only by Σ and a choice of fundamental domain ∆ for Γ satisfying Lemma 3.8.

Proof. Let ∆ be a fundamental domain for Γ satisfying Lemma 3.8. Define a

section σ : Γ\G → ∆ by Γσ(Γg) = Γg. This is well-defined because ∆ is a

fundamental domain. Define c : Γ\G×G → Γ by

c(Γh, g) = σ(Γh)gσ(Γhg)−1.

Then c satisfies the cocycle equation c(Γh, g)c(Γhg, k) = c(Γh, gk) for any g, h, k.

If K ⊂ G then we write

c(Γh,K) = {c(Γh, k) : k ∈ K} ⊂ Γ.

We claim that if K is compact then c(Γh,K) is finite. To see this, observe that

c(Γh, k)∆ ∩ σ(Γh)K $= ∅ (for all k ∈ K). In fact,

σ(Γh)k = c(Γh, k)σ(Γhk) ∈ c(Γh, k)∆ ∩ σ(Γh)K.

Because the collection {g∆}g∈Γ is locally finite and σ(Γh)K is compact, this

implies the claim: c(Γh,K) is finite.



258 L. BOWEN AND P. BURTON Isr. J. Math.

Let Σ = {Vi}i∈I be a sofic approximation to Γ (in the sense of Definition 8).

We will denote the partial action of Γ on Vi by v.g for v ∈ Vi, g ∈ Γ whenever

this is well-defined.

For a warm-up exercise, let’s handle the special case in which there is a finite-

index subgroup Hi ≤ Γ, Vi = Hi\Γ and the partial action of Γ on Vi is the usual

action by right-translation. In that case, G acts on Vi × Γ\G by

(v,Γh).g = (v.c(Γh, g),Γhg).

Define a G-equivariant Borel isomorphism

Φ : Vi × Γ\G → Hi\G, Φ(Hig,Γh) = Higσ(Γh).

The action of G on Vi × Γ\G is not continuous with respect to the product

topology. So we re-topologize Vi × Γ\G by pulling back the topology on Hi\G.

Because the quotient map G → Hi\G is a covering space map, the topology

on Hi\G is such that the open sets in Hi\G are images of open sets in G. So the

new topology on Vi×Γ\G has a basis of open sets given by sets of the form p.O

where p ∈ Vi × Γ\G and O ⊂ G is an open neighborhood of the identity.

Now for the general case. For (v,Γh) ∈ Vi × Γ\G and g ∈ G we write

α′((v,Γh), g) = (v,Γh).g := (v.c(Γh, g),Γhg)

whenever this is well-defined. Observe that by Axiom 3 (applied to Vi), if

p ∈ Vi×Γ\G and g, h ∈ G are such that p.g, p.g.h and p.gh are all well-defined,

then

p.g.h = p.gh.

We say that a subset O ⊂ G is good for a point p ∈ Vi × Γ\G if

• O is an open neighborhood of the identity,

• for every h1, h2 ∈ O, p.h1 and p.h1.h
−1
1 h2 are well-defined, and

• the map which sends g ∈ O to p.g is injective.

Note that if O is good for p, then every open subset of O containing the identity

is also good for p. Let Mi ⊂ Vi × Γ\G be the set of all points p for which there

exists a good set O ⊂ G. If p ∈ Mi and O is good for p then we write

p.O = {p.g : g ∈ O}.

Claim 1: If O is good for p and g ∈ O then g−1O is good for p.g. Moreover,

p.O = p.g.g−1O.



Vol. 251, 2022 LOCALLY COMPACT SOFIC GROUPS 259

Proof of Claim 1.Let h1, h2∈g−1O. We must show that p.g.h1 and p.g.h1.h
−1
1 h2

are well-defined.

Because O is good for p and g, gh1 ∈ O, it follows that

p.g.h1 = p.g.g−1gh1

is well-defined. Moreover, p.g and p.gh1 are well-defined. Therefore,

p.gh1 = p.g.h1.

So it now suffices to show p.gh1.h
−1
1 h2 is well-defined. But this follows from

goodness of O because gh1, gh2 ∈ O and p.gh1.(gh1)−1gh2 = p.gh1.h
−1
1 h2. This

proves the first statement.

Note that if O is good for p and g, h ∈ O then p.g.g−1h = p.h (because both

sides are well-defined). The second statement follows.

Claim 1 implies that p.O ⊂ Mi.

Claim 2: The collection of subsets of Mi of the form p.O (where p ∈ Mi and O

is good for p) is a base for a topology on Mi.

Proof of Claim 2. It suffices to show that if O is good for p and U is good for

q and r ∈ p.O ∩ q.U , then there is a good set W ⊂ G for r such that

r.W ⊂ p.O ∩ q.U.

Let r = p.g = q.h for some g ∈ O, h ∈ U . Then g−1O and h−1U are good for r

by Claim 1. It follows that W = g−1O ∩ h−1U is also good for r. Moreover,

r.W = p.g.(g−1O ∩ h−1U) ⊂ p.O.

Similarly, r.W ⊂ q.U .

From now on, we consider Mi with the topology induced by sets of the

form p.O as above. Claim 2 implies that if O is good for p, then the map g *→ p.g

from O into Mi is a homeomorphism onto an open subset of Mi. In particular,

Mi is locally compact.

We claim Mi is second countable. Because G is second countable, there is a

collection {(Γgj , Oj)}j∈J such that

• each Oj ⊂ G is a pre-compact open neighborhood of the identity,

• the map from Oj to Γ\G given by h *→ Γgjh is injective,

• the sets {ΓgjOj}j∈J form a base for the topology on Γ\G,

• J is countable.
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Given v ∈ Vi, k ∈ Γ, j ∈ J define

B(v, k, j) = {(v.kc(Γgj, s),Γgjs) : s ∈ Oj} ⊂ Vi × Γ\G

whenever this is well-defined. Because Vi,Γ and J are countable, the collection

of sets of this form is countable.

Now suppose p ∈ Mi and U ⊂ G is good for p. Let p = (v,Γh). Because

{ΓgjOj}j∈J is a base and ΓhU is open in Γ\G, there exists j ∈ J and an open

subset U ′ ⊂ U with 1G ∈ U ′ such that ΓhU ′ = ΓgjOj . Since U ′ is good for p,

p.U ′ is open in Mi. We claim p.U ′ = B(v, k, j) for some k ∈ Γ. To see this,

note that ΓhU ′ = ΓgjOj implies the existence of γ ∈ Γ such that

U ′ = h−1γgjOj .

If u ∈ U ′ then there is an s ∈ Oj such that u = h−1γgjs. So

p.u = (v.c(Γh, u),Γhu) = (v.c(Γh, h−1γgjs),Γhh
−1γgjs)

= (v.c(Γh, h−1γgj)c(Γgj , s),Γgjs).

Thus p.U ′ ⊂ B(v, k, j) where k = c(Γh, h−1γgj). The reverse inclusion is

similar. Thus, the collection of sets of the form p.U ′ is a countable base for the

topology on Mi.

Let dom(α) be the set of all (p, g) ∈ Mi × G such that there is an open

neighborhood of (p, g) in Mi × G on which α′ is well-defined. Let α be the

restriction of α′ to dom(α).

Claim 3: α is continuous. Moreover, if (q, f) ∈ dom(α), then there is an open

neighborhood W of (q, f) such that α(W ) is open in Mi.

Proof of Claim 3. By Claim 2, it suffices to prove: if p ∈ Mi and O ⊂ G is good

for p then α−1(p.O) is open in Mi ×G. So let (q, f) ∈ α−1(p.O). Let g ∈ O be

such that p.g = q.f . By Claim 1, g−1O is good for p.g = q.f .

Let U1 ⊂ G be a set which is good for q so that

(q.U1 × {f}) ∪ ({q}× U1f) ⊂ dom(α)

and f−1U1f ⊂ g−1O. We claim that q.U1f ⊂ p.O. To see this, let h ∈ U1.

Then q.hf = q.f.f−1hf because both sides are well-defined (by Claim 1 applied

to q.f = p.g). Since q.f.f−1hf = p.g.f−1hf ⊂ p.O, this proves q.hf ∈ p.O.

Since h is arbitrary,

q.U1f ⊂ p.O.
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After choosing U1 smaller if necessary, we may assume the closure of q.U1f

is contained in p.O. Therefore, there is an open neighborhood U2 ⊂ G of the

identity such that q.U1f.U2 ⊂ p.O,

(q.U1 × fU2) ∪ ({q}× U1fU2) ∪ (q.U1f × U2) ⊂ dom(α)

and f−1U1fU2 ⊂ g−1O. It follows that

W := q.U1 × fU2 ⊂ Mi ×G

is an open neighborhood of (q, f). Moreover,

α(W ) = q.U1.fU2 = q.U1fU2 = q.U1f.U2

since these are all well-defined. By the assumption on U2, this shows that

α(W ) ⊂ p.O,

which shows that α is continuous.

Note that

α(W ) = q.U1fU2 = q.f.f−1U1fU2

because both sides are well-defined. Because f−1U1fU2 ⊂ g−1O which is good

for p.g = q.f , it follows that α(W ) is open in Mi.

We claim the space Mi with the partial action defined above is a local G-

space. Axioms 1, 3 and 4 are immediate. To establish Axiom 2, suppose that

(p, g) ∈ dom(α). We have to show (p.g, g−1) ∈ dom(α). There is an open

subset W ⊂ dom(α) containing (p, g). For each (q, f) ∈ W , q.f.f−1 is well-

defined. Moreover, the set {(q.f, f−1) : (q, f) ∈ W} is an open neighborhood of

(p.g, g−1). This implies Axiom 2.

Let U ⊂ G be a precompact open neighborhood of the identity with U = U−1

and ε > 0. We will show that if i is sufficiently large then Mi is a (U, ε)-sofic

approximation.

Given F ⊂ Γ, let Ω(F ) be the set of all Γh ∈ Γ\G such that, for ev-

ery g1, g2 ∈ U3 with g1g2 ∈ U3, c(Γhg1, g2) ∈ F . Because U is precompact,

c(Γh, U3) is finite for every h. So there exists a finite set F ⊂ Γ such that

volΓ\G(Ω(F )) > (1 − ε/2) volΓ\G(Γ\G).

After choosing F larger if necessary, we may assume 1G ∈ F and F = F−1.
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Because Σ is a sofic approximation, there exists I such that i > I implies Vi

is an (F 2, ε/2)-sofic approximation to Γ. We claim that if i > I then Mi is a

(U, ε)-sofic approximation. Because

volMi(Vi[F
2]× Ω(F )) = volVi(Vi[F

2])× volΓ\G(Ω(F ))

≥ (1− ε/2)2|Vi| volΓ\G(Γ\G)

≥ (1− ε/2)2 volMi(Mi),

it suffices to show that Mi[U ] ⊃ Vi[F 2]× Ω(F ).

First we claim that if p = (v,Γh) ∈ Vi[F 2]×Ω(F ) then p.U.U2 is well-defined.

This is equivalent to the well-definedness of v.c(Γh, g1).c(Γhg1, g2) for all g1 ∈ U

and g2 ∈ U2. Because Γh ∈ Ω(F ), c(Γh, g1) and c(Γh, g1g2) are in F . By the

cocycle equation,

c(Γhg1, g2) = c(Γh, g1)
−1c(Γh, g1g2) ∈ F 2.

Since v ∈ Vi[F 2], v.c(Γh, g1).c(Γhg1, g2) is well-defined.

Next we show that U is good for p. The first condition of ‘good’ is trivial and

the second condition holds by the paragraph above. To check the third condi-

tion, suppose g1, g2 ∈ U and p.g1 = p.g2. Because c(Γh, gi) ∈ F (i = 1, 2), and

v∈Vi[F 2], the condition p.g1=p.g2 implies c(Γh, g1)=c(Γh, g2). Equivalently,

σ(Γh)g1σ(Γhg1)
−1 = σ(Γh)g2σ(Γhg2)

−1.

Because we also have Γhg1 = Γhg2, it follows that g1 = g2. This verifies U is

good for p. In particular, p ∈ Mi.

Next we claim that for all g ∈ U , (p, g) ∈ dom(α). It suffices to show p.U×gU

is an open neighborhood of (p, g) in dom(α′). This is implied by the paragraph

above, which shows p.U.gU is well-defined. So Vi[F 2]× Ω(F )× U ⊂ dom(α).

Next we show that the map which sends g ∈ U to p.g is a homeomorphism

onto an open subset ofMi. Because U is good for p, this map is well-defined and

injective. By Claim 3, it is continuous. Because U is pre-compact, this implies

the map is a homeomorphism onto an open subset. Thus Mi[U ] ⊃ Vi[F ]×Ω(F )

as claimed.

Because U, ε are arbitrary, this shows {Mi} is a sofic approximation toG.

Corollary 3.10: The following groups are sofic: semi-simple Lie groups (e.g.,

SL(n,R), SO(n, 1) etc.), the automorphism group of a regular tree.

Proof. These groups admit residually finite lattices. Since residual finiteness

implies soficity, the corollary follows from Theorem 3.9.
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3.5.2. Restricting to a subgroup. It is well-known that if a countable group Γ

is sofic then all of its subgroups are sofic. Indeed, given a sofic approximation

{σi :Γ→sym(Vi)} one can restrict the maps σi to a subgroup Λ to obtain a sofic

approximation to Λ. This argument fails in the general setting of locally com-

pact groups because, if H ≤ G, then the Haar measure on H might be singular

to the Haar measure on G. However, the following gives a positive result.

Proposition 3.11: Let G be a locally compact sofic group. If H ≤ G is an

open subgroup then H is sofic.

Proof. Let (M,α) be a local G-space. Define a partial action αH by

αH : dom(αH) → M, αH(p, g) = α(p, g)

where
dom(αH) = dom(α) ∩ (M ×H).

We claim that (M,αH) is a local H-space. To see this, let p ∈ M . By

Axiom 4 of Definition 1, there is an open neighborhood Op of 1G in G such that

the restriction of α(p, ·) to Op is a homeomorphism onto an open neighborhood

of p in M . Because H is open, the restriction of α(p, ·) to Op ∩ H is also a

homeomorphism onto an open neighborhood of p in M . This shows Axiom 4.

The other Axioms are immediate.

Let U be an open neighborhood of 1H inH and ε > 0. BecauseH is open inG,

U is also an open neighborhood of 1G in G. By definition, M [U,α] = M [U,αH ].

Because the Haar measure on H equals the Haar measure on G restricted to H ,

the choice volM does not depend on whether we consider M to be a local G-

space or a local H-space. So if (M,α) is a (U, ε)-sofic approximation to G, then

(M,αH) is also a (U, ε)-sofic approximation to H .

4. Open problems

4.1. Which groups are sofic?

Problem 1: Are all unimodular lcsc groups sofic? For example, the Neretin

group is a unimodular lcsc group without lattices [BCGM12]. Is it sofic?

Problem 2: If G is linear and unimodular then isG sofic? By Mal’cev’s Theorem

[Mal40] if G is finitely generated and linear then it is residually finite. Because

increasing unions of sofic groups are sofic, if G is countable and linear then it

is sofic.
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Problem 3: If G is connected and sofic then is its universal cover sofic?

Problem 4: Suppose G is a connected unimodular Lie group and let S ≤ G be

its solvable radical. If G/S is sofic then is G sofic?

Problem 5: Permanence properties for discrete countable sofic groups have been

studied in [CHR14, HS18, ABFSG19, AG20] for example. These papers concern

graph products, wreath products (restricted and unrestricted) and semi-direct

products respectively. Are there analogs of these results for locally compact

sofic groups?

Problem 6: Suppose G is a non-unimodular lcsc group and let δ : G → R>0

denote the modular homomorphism. Let Ĝ = R ! G denote the semi-direct

product with group law

(t, g)(s, h) = (t+ δ(g)s, gh).

Then Ĝ and Ker(δ) are unimodular groups. If Ĝ is sofic then is Ker(δ) sofic?

If Ker(δ) is sofic then is Ĝ sofic?

4.2. Group rings.

Problem 7: If G is sofic, then is its group von Neumann algebra Connes-

embeddable? Elek and Szabó proved the answer is ‘yes’ in the case of discrete

countable groups [ES05].

Problem 8: The algebraic eigenvalue conjecture of J. Dodziuk, P. Linnell,

V. Mathai, T. Schick and S. Yates [DLM+03] posits that if Γ is a discrete

group and A ∈ Mn(ZΓ) (the ring of n × n matrices with values in the group

ring ZΓ) and l(A) is the corresponding operator on -2Γ⊕n, then all eigenvalues

of l(A) are algebraic integers. This was proven true for sofic groups by A. Thom

[Tho08]. Is there an analogous statement for locally compact sofic groups?

Problem 9 (Kaplansky’s direct finiteness conjecture): A ring R is said to be

directly finite if xy = 1 implies yx = 1 for all x, y ∈ R. Kaplansky conjectured

that if G is a countable group and k is a field, then the group ring kG is directly

finite. This is known as Kaplansky’s Direct Finiteness Conjecture. If G is sofic,

then as explained in Problem 10 below, it satisfies Gottschalk’s surjunctivity

conjecture. This immediately implies kG is directly finite if k is a finite field.

The general case follows because all fields are embeddable into ultraproducts

of finite fields. See [CL15] for details. Is there an analogous statement in the

setting of locally compact groups?
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4.3. Actions.

Problem 10 (Gottschalk’s surjunctivity conjecture): Suppose X is a compact

Hausdorff space, G is a topological group and G×X → X is a jointly continuous

action. This action is said to be surjunctive if every continuous injective G-

equivariant map φ : X → X is surjective.

Gottschalk conjectured that if G is discrete and A is a finite set, then the full

shift G"AG is surjunctive where

AG = {x : G → A}

has the topology of pointwise convergence and G acts on AG by

(gx)(f) = x(g−1f).

M. Gromov proved that sofic groups satisfy Gottschalk’s conjecture [Gro99].

His proof was simplified and made more accessible by B. Weiss [Wei00]. It was

re-proven by Kerr and Li using sofic topological entropy [KL11]. Is there an

analog of Gottschalk’s conjecture in the locally compact setting?

Problem 11: Sofic approximations have been used to define invariants of actions

of discrete countable groups on probability spaces, compact topological spaces

and Banach spaces. These invariants include sofic measure entropy [Bow10],

topological sofic entropy [KL11], sofic mean dimension [Li13], sofic mean length

[LL19] and -p dimension [Hay14]. These invariants generalize classical invariants

of Z-actions. For an introduction to sofic entropy, see [Bow18]. This motivates

the problem: generalize these invariants to actions by locally compact groups.

This problem is open except for the fact that Sukhpreet Singh’s thesis general-

ized some of the foundational results of sofic entropy theory to locally compact

groups. He has no plans to publish his thesis, but copies are available upon

request to the first author.

4.4. Sofic approximations.

Problem 12 (Amenable groups): Elek and Szabó proved a structure theorem

for sofic approximations of discrete amenable groups in [ES11]. It states that

there is essentially only one sofic approximation to a discrete amenable group

(up to asymptotically vanishing perturbations and taking disjoint copies) which

is given by a Følner sequence. Is there an analogous statement in the setting of

locally compact groups?
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Problem 13 (Flexible stability): Let us say that a sofic group G is flexibly

stable if for every δ > 0 there are pre-compact open U ⊂ G and ε > 0 such that,

if M is an (U, ε)-sofic approximation to G, then there exist lattice subgroups

Γ1, . . . ,Γk ≤ G, an open subspace M ′ ⊂ M , an open subspace X ′ ⊂ X where

X :=
k⊔

i=1

Γi\G

is the disjoint union and a homeomorphism Φ : M ′ → X ′ such that

• Φ(p.g) = Φ(p)g whenever both sides are defined;

• vol(M ′) ≥ (1 − δ) vol(M);

• vol(X ′) ≥ (1− δ) vol(X).

This implies that any sofic approximation to G can, by a small perturbation,

be changed into an approximation by a disjoint union of coset spaces. It follows

from BenjyWeiss’s results in [Wei01] and Elek and Szabó’s structure theorem for

sofic approximations of amenable groups [ES11] that residually finite amenable

discrete groups are flexibly stable. It is a folklore result that free groups are

flexibly stable. In recent work, it has been shown that surface groups are flexibly

stable [LLM19]. This motivates the following questions: is PSL(2,R) flexibly

stable? Aut(Td)? SO(3, 1)? R2 ! SL(2,R)? Are amenable unimodular groups

that admit residually finite lattices flexibly stable? If G is flexibly stable then

are all lattice subgroups of G flexibly stable?

Problem 14 (Property (T) and expanders): If M is a complete Riemannian

manifold with finite volume, then the Cheeger constant of M is

h(M) = inf
K⊂M

area(∂K)

vol(K)

where the infimum is over all compact smooth sub-manifolds K ⊂ M with

0 < vol(K) ≤ vol(M)/2 [Che70].

Suppose G is a connected Lie group with property (T). It is well-known

that there is a positive lower bound ε0 > 0 on the Cheeger constants of coset

spaces Γ\G. That is h(Γ\G) ≥ ε0 for all lattices Γ ≤ G. With this in mind,

we conjecture that there exists ε′0 > 0 such that for every δ > 0 there exist

a pre-compact open set U ⊂ G and ε > 0, such that if M is any (U, ε)-sofic

approximation to G, then there exists a smooth submanifold M ′ ⊂ M satisfying

• vol(M ′) ≥ (1 − δ) vol(M);

• every connected component of M ′ has Cheeger constant ≥ ε′0.
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A similar conjecture for discrete (T) groups by the first author was proven by

Gábor Kun [Kun16]. Maybe there is a common generalization to all locally

compact (T) groups?

Problem 15: The sofic dimension of a countable discrete group measures the

growth rate of the number of sofic approximations to the group [DKP14, GP15].

It is a combinatorial version of the free entropy dimension [Voi96]. Moreover, it

admits a natural formula with respect to free product with amalgamation over

an amenable group. Are there analogs of these results in the locally compact

setting?

Problem 16: A countable discrete group G is sofic if and only if it embeds

into a metric ultraproduct of finite symmetric groups [ES05, Pes08]. Is there

an analogous fact for locally compact sofic groups? Note that SL(2,R) is sofic
(because it admits a residually finite lattice) but it does not continuously embed

into a metric ultraproduct of compact groups. This is because SL(2,R) does

not admit a proper bi-invariant metric.

4.5. Groupoids and measured equivalence relations.

Problem 17: Soficity was generalized to discrete measured equivalence relations

and groupoids in [EL10, Pău11, DKP14]. Can this theory be generalized to

measured equivalence relations and groupoids with locally compact leaves?

Problem 18: It might be possible to reduce soficity of a non-discrete lcsc group

to soficity of a related discrete measured equivalence relation. The latter notion

was introduced in [EL10].

It is well-known that a discrete countable group G is sofic if there exists an

essentially free action of G on a standard probability space (X,µ) such that the

orbit-equivalence relation is sofic. It seems likely that this fact generalizes to

locally compact groups as follows.

Suppose G acts on a standard probability space (X,µ) preserving the mea-

sure. For simplicity, let us assume the action is essentially free. By [FHM78]

there is a complete lacunary section S ⊂ X . This means that S is Borel, GS

is conull in X and there is an open neighborhood U ⊂ G of the identity such

that Ux∩S = {x} for all x ∈ S. In particular, if RX
G = {(x, gx) : x ∈ X, g ∈ G}

is the orbit-equivalence relation of the G action and RS
G := RG∩(S×S), then RS

G

is an equivalence relation on S with countable classes.
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If G is non-discrete then µ(S) = 0. In spite of this, there is a natural measure,

denoted ν, on S which behaves as if it were µ conditioned on S. The measure

is defined by

ν(A) =
µ(V A)

HaarG(V )

where A ⊂ S is any Borel set and V ⊂ G is a symmetric open neighborhood

of 1G in G such that V 2 ⊂ U . This does not depend on the choice of V . This

is explained in [Avn10] for example.

We conjecture: if there exists a pmp action G"(X,µ) and a section S ⊂ X

as above such that the discrete measured equivalence relation (S, ν,RS
G) is sofic,

then G is sofic. This might give an approach to proving that the group of

von Neumann algebras of sofic groups are Connes-embeddable (see [EL10] for

related results in the discrete case).

Problem 19: The previous problem gave a sufficient condition for soficity. There

is a related equivalent condition. It is well-known that a discrete countable

group G is sofic if and only if for every Bernoulli shift action of G the associated

measured equivalence relation is sofic. It seems likely that this fact generalizes

to locally compact groups as follows.

Consider the Poisson point process on a non-discrete lcsc group G with inten-

sity measure equal to a left-Haar measure on G. Because G is non-discrete, we

can consider the law of this process to be a G-invariant probability measure µ

on the space Ω of discrete closed subsets of G. Let Ω1 ⊂ Ω be the set of discrete

closed subsets ω ⊂ G with 1G ∈ ω. Even though µ(Ω1) = 0, there is a natural

probability measure ν on Ω1 that intuitively represents µ conditioned on Ω1

(this exists even though Ω1 is not a lacunary section). Define an equivalence

relation R on Ω1 by (ω1,ω2) ∈ R ⇔ ∃g ∈ G such that gω1 = ω2. Then R

is discrete and ν-preserving. We conjecture that G is sofic if and only if this

measured equivalence relation is sofic.

References

[ABFSG19] G. Arzhantseva, F. Berlai, M. Finn-Sell and L. Glebsky, Unrestricted wreath

products and sofic groups, International Journal of Algebra and Computation

29 (2019), 343–355.
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