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ARTICLE INFO ABSTRACT
Keywords: The novel coronavirus SARS-CoV-2 emerged in 2019 and subsequently spread throughout the world, causing
SARS-CoV-2

over 600 million cases and 6 million deaths as of September 7th, 2022. Superspreading events (SSEs), defined
here as public or social events that result in multiple infections over a short time span, have contributed
to SARS-CoV-2 spread. In this work, we compare the dynamics of SSE-dominated SARS-CoV-2 outbreaks,
defined here as outbreaks with relatively higher SSE rates, to the dynamics of non-SSE-dominated SARS-
CoV-2 outbreaks. To accomplish this, we derive a continuous-time Markov chain (CTMC) SARS-CoV-2 model
from an ordinary differential equation (ODE) SARS-CoV-2 model and incorporate SSEs using an events-based
framework. We simulate our model under multiple scenarios using Gillespie’s direct algorithm. The first
scenario excludes hospitalization and quarantine; the second scenario includes hospitalization, quarantine,
premature hospital discharge, and quarantine violation; and the third scenario includes hospitalization and
quarantine but excludes premature hospital discharge and quarantine violation. We also vary quarantine
violation rates. Results indicate that, with either no control or imperfect control, SSE-dominated outbreaks
are more variable but less severe than non-SSE-dominated outbreaks, though the most severe SSE-dominated
outbreaks are more severe than the most severe non-SSE-dominated outbreaks. We measure severity by the
time it takes for 50 active infections to be achieved; more severe outbreaks do so more quickly. SSE-dominated
outbreaks are also more sensitive to control measures, with premature hospital discharge and quarantine
violation substantially reducing control measure effectiveness.

Superspreading events

Human behavior
Continuous-time Markov chain
Gillespie’s direct algorithm

1. Introduction issued citations and some being arrested (Hernandez, 2020; Knight,
2020; KSTP, 2020; West Hawaii Today Staff, 2020). Beyond refusing to
mask, failing to social distance, and violating stay-at-home orders, some
people voluntarily attend public or social events. Others may be forced
to work in close proximity to each other, an example being workers in

certain meat-packing plants (Pokora et al., 2021). Both of the aforemen-

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is
the causative agent of COVID-19. As of September 7th, 2022, it has
caused over 600 million cases and 6 million deaths worldwide (World
Health Organization, 2022). Of those, over 84 million cases and 1
million deaths have occurred in the United States of America (Centers

for Disease Control and Prevention, 2022). COVID-19 has strained the
healthcare system, with many hospitals nearing or exceeding capac-
ity (Alltucker and Bajak, 2020; Gabbat and Laughland, 2022; Hubbard,
2022; McCarthy, 2020). In response, both national and state-level
governments have issued guidelines and mandates aimed at reducing
transmission, ranging from social-distancing guidelines and mask man-
dates to stay-at-home orders and limits on large gatherings (MultiState
Policy Team, 2021; Our World in Data, 2020).

The effectiveness of these guidelines and mandates has been hin-
dered by imperfect adherence and compliance. For example, some
people refuse to wear a mask (Haischer et al., 2020). Moreover, many
people fail to social distance, despite doing so initially (Hoeben et al.,
2021). People also violate stay-at-home orders, with several being
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tioned facilitate superspreading events (SSEs), defined here as public
or social events that result in multiple infections over a short time
span. Such events have contributed to the fast spread of SARS-CoV-
2 (Swinkels, 2020; Althouse et al., 2020; Du et al., 2022; Lakdawala
and Menachery, 2021). There are other settings that can facilitate SSEs,
such as prisons, but these are not considered here (Althouse et al.,
2020).

SSEs differ from superspreading individuals (SIs), which we define
here as individuals who cause disproportionately more infections over
their infectious lifetime. Event- and individual-based superspreading
are not mutually exclusive; people who cause SSEs may qualify as
SIs. However, this is not always the case. People may cause multiple
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infections at a public/social event but not cause disproportionately
more infections over their infectious lifetime. Likewise, not all who
become SIs do so by causing SSEs. Given that event- and individual-
based superspreading are not mutually exclusive, factors relevant to
SSEs are often relevant to SIs and vice versa. Intrinsic factors that
potentiate superspreading (in general) include greater-than-average
viral shedding and contact rates (Althouse et al., 2020; Lloyd-Smith
et al., 2005; Chen et al., 2021); heterogeneity in SARS-CoV-2 shedding
is evident in Badu, et al.’s literature review (Badu et al., 2021) on
SARS-CoV-2 viral loads, shedding, and transmission dynamics. Extrinsic
factors include crowding and poor ventilation (Althouse et al., 2020;
Chen et al., 2021; Ashworth, 2021). Despite SSEs’ and SIs’ non-mutual
exclusivity, they differ in that only a subset of the population may
achieve SI status without causing SSEs, whereas anyone may cause SSEs
under the right circumstances.

Event- and individual-based superspreading are incorporated into
models using different frameworks. SSEs may be modeled via rare
events resulting in multiple infections; these events may be caused by
any individual, and their frequency and number of resulting infections
each follow some distribution. This is the approach taken by James
et al. (2007). SIs may be modeled via heterogeneity in infectivity;
individual infectivity follows some distribution, the right tail of which
corresponds to superspreader individuals. This is the approach taken by
Lloyd-Smith et al. (2005). There are many other approaches to model-
ing SIs in the literature (Lakdawala and Menachery, 2021; Mushanyu
et al., 2022; Ndairou et al., 2020; Shakiba et al., 2021); note that while
some of these articles mention superspreading events, their frameworks
are nonetheless individual-based. Despite the importance of super-
spreading in SARS-CoV-2 outbreaks being well-established (Swinkels,
2020; Althouse et al., 2020; Du et al., 2022; Lakdawala and Menach-
ery, 2021), most SARS-CoV-2 models do not incorporate it. Of those
that do, most utilize an individual-based framework (Lakdawala and
Menachery, 2021; Mushanyu et al., 2022; Ndairou et al., 2020). More-
over, most superspreading-incorporating SARS-CoV-2 models do not
include control measures (Mushanyu et al., 2022; Ndairou et al., 2020).
SSEs’ influence on SARS-CoV-2 outbreak dynamics — beyond being
known contributors — is thus relatively unexplored from a modeling
perspective, especially in the context of control. Wilasang et al. (2022)
successfully reconstructed the first wave of SARS-CoV-2 transmission in
Thailand using a superspreading-incorporating SARS-CoV-2 model with
control, but they utilized an individual-based framework and included
only one type of control. We utilize an events-based framework and
include two types of control; to our knowledge, we are the only authors
to do so.

In what follows, SSE-dominated outbreaks refer to outbreaks with
relatively higher SSE rates than non-SSE-dominated outbreaks; non-
SSEs refer to non-SSE-related infection events. The goals of this study
are to investigate:

G1. The influence of SSEs relative to that of non-SSEs on outbreak
dynamics

G2. The effectiveness of hospitalization and quarantine as control
measures for SSE- versus non-SSE-dominated outbreaks

G3. The influence of quarantine violation on the effectiveness of
quarantine for SSE- versus non-SSE-dominated outbreaks

We incorporate SSEs into a continuous-time Markov chain (CTMC)
model, impose a constancy condition, and vary SSE and non-SSE rates
to accomplish G1. The constancy condition requires that the expected
number of infections following the CTMC model’s first change in state
remain constant for different SSE and non-SSE rates. We simulate the
CTMC model under multiple scenarios to accomplish G2:

(i). With neither hospitalization nor quarantine (NHQ). This sce-
nario excludes hospitalization and quarantine.

(ii). With realistic hospitalization and quarantine (RHQ). This sce-
nario includes hospitalization, quarantine, premature hospital
discharge, and quarantine violation.
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(iii). With idealistic hospitalization and quarantine (IHQ). This sce-
nario includes hospitalization and quarantine but excludes pre-
mature hospital discharge and quarantine violation.

Finally, we simulate the CTMC model under RHQ with varying levels
of quarantine violation to accomplish G3. Our methods, results, and
discussion are located in Sections 2, 3, and 4.

2. Methods

We derive our continuous-time Markov chain (CTMC) model from
Agusto et al.’s (2022) baseline COVID-19 model (see Section 2.1) and
incorporate SSEs in Section 2.2. The constancy condition is derived
in Section 2.3. After formulating the CTMC model and imposing the
constancy condition, we detail our simulation protocol in Section 2.4.
Finally, we introduce two superspreading-incorporating, discrete-time
Markov chain (DTMC) models from literature (Lloyd-Smith et al., 2005;
James et al., 2007) in Section 2.5. These models’ results are used for
comparison in Section 4.

2.1. Baseline COVID-19 model

In Agusto, et al.’s baseline COVID-19 model (Agusto et al., 2022),
the evolution of susceptible (.S(1)), exposed (E(1)), asymptomatic (A(7)),
symptomatic (/(¢)), hospitalized (H(¢)), quarantined (Q(#)), and re-
moved (R(7)) individuals through time is governed by the system of
ordinary differential equations given below:

ds __ SOU® +n,A0) +ngQ) +ny H)l

@ N(1) ’

dE _ ﬂS(t)[I(t) + 14 AWM + 1000 +ny HOI CE(.

dt N

% =qoE(t) — (y4 + 04)A(),

‘Z;_j =(1-qcE®+ VQQ(I) +vygH(®) — (a)Q +oy+y+6pI0), (€D)]
% =y () — (v + 7y + 8 HQ@),

% =wol(t) = (Vg + 79 + 60)O),

IR — a4 8040+ (1 + 510 + (1 +50)00) + (g + ) H D),

The exposed and asymptomatic classes account for the virus’ incubation
period and the reduced infectiousness of asymptomatic individuals.
Meanwhile, hospitalization and quarantine function as control mea-
sures. Movement of individuals from the hospitalized and quarantined
classes back to the symptomatic class account for limited resources
and human behavior. We refer to the former as premature hospital
discharge and the latter as quarantine violation. The model’s flow
diagram is displayed in Fig. 1, and its parameters are defined in Table 1.

2.2. Continuous-time Markov chain model

We limit ourselves to outbreak scenarios - specifically, the short
time period following the introduction of a small number of infected
individuals into a completely susceptible population — so that we may
assume the following:

(+) Population size and mixing is such that transmission events are
independent of each other and unaffected by the depletion of
susceptible individuals and accumulation of removed individu-
als (Miller, 2018).

This assumption is reasonable in outbreak scenarios because the num-

ber of infected individuals is small relative to the number of susceptible

individuals. (1) implies that % ~ 1, so we may approximate the rate at

which individuals transition from S to E due to non-SSEs as

BSsgA+1+np0+nyH)
N

~ fnpA+1+no0 +nyH).
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Fig. 1. Compartmental flow diagram for the baseline COVID-19 model (1). Susceptible individuals are exposed upon initial infection, and exposed individuals are either asymptomatic
or symptomatic once infectious. Asymptomatic individuals are removed upon recovery or death, while symptomatic individuals may be hospitalized or quarantined and are removed
upon recovery or death. Hospitalized and quarantined individuals may be prematurely discharged from the hospital or violate quarantine and are removed upon recovery or death.

Table 1
Parameter values for the baseline COVID-19 model (1).
Parameter Description Value Sources
B Infection rate 0.4975 Agusto et al. (2022), Edholm et al. (2022) and MIDAS Network
(2021)
N> N> Mg Infection rate modifiers 0.45, 0.1362, 0.3408 Agusto et al. (2022, 2021)
q Proportion that remain asymptomatic 0.5 Agusto et al. (2022, 2021) and Centers for Disease Prevention
and Control (2020)
o Disease progression rate é Agusto et al. (2022) and Centers for Disease Prevention and
Control (2020)
Yas V1Yo Yo Recovery rates 0.7565, 0.0775, 0.041, 0.083 Agusto et al. (2022), Cheng et al. (2020), Sanche et al. (2020),
Johansson et al. (2021) and Renardy et al. (2020)
@y, 00 Hospitalization & quarantine rates 0.1977, 0.453 Agusto et al. (2022, 2021)
VirsVo Hospital discharge & quarantine violation rates 0.1301, 0.4605 Agusto et al. (2022, 2021)
04567,64,060 Death rates 0.00325, 0.0065, 0.0065, 0.0065 Agusto et al. (2022, 2021) and UK Health Security Agency

(2022)

The possible events corresponding to the baseline COVID-19 model (1)
are:

Eg.p:S—S—-1,E— E+1(An individual transitions from S to E)
Er_.,: E—E-1,A— A+1(An individual transitions from E to A)
E,.r:A— A—-1,R— R+1(An individual transitions from A to R)
Er_;: E— E-1,I- I+1(An individual transitions from E to I)
E;,g:I—-1-1H— H +1(An individual transitions from I to H)
E;,o:1—-1-1,0— Q+1(An individual transitions from I to Q)
E;_g : I >T-1,R—> R+1(An individual transitions from I to R)
Ey_.;:H—- H-1,I- I+ 1(An individual transitions from H to I)
Ey_gr:H—-> H-1,R— R+ 1(An individual transitions from H to R)
Eg_;:0—-0Q-1,I - I+1(An individual transitions from Q to I)
Eg_r:0 - 0-1,R— R+1(An individual transitions from Q to R)

E_, ¢ corresponds to a susceptible individual being exposed; E_, 4 cor-
responds to an exposed individual becoming infectious but remaining
asymptomatic; E ,_ p corresponds to an asymptomatic individual recov-
ering or dying; E_,; corresponds to an exposed individual becoming
infectious and symptomatic; E;_ ;; corresponds to a symptomatic indi-
vidual being hospitalized; E,_,, corresponds to a symptomatic individ-
ual being quarantined; E;_  corresponds to a symptomatic individual
recovering or dying; Ey_,; corresponds to a hospitalized individual
being prematurely discharged from the hospital; Ey_ z corresponds to
a hospitalized individual recovering or dying; E,_,; corresponds to a

quarantined individual violating quarantine; and E,_, y corresponds to
a quarantined individual recovering or dying.

Let K € NuU {0} be a Poisson random variable with expectation
¢ € N. We incorporate SSEs by defining an additional event,

Eggp : S > S —k,E > E + k (k individuals transition from S to E),

where k is some possible value of K. E gy corresponds to k susceptible
individuals becoming exposed. The event thus generates a random
number of infections over a short period of time. This differs from
Eg_ g, which generates one infection. In what follows, we take y €
R* to be the deterministic rate at which infected individuals cause
SSEs. (1) implies that SSEs involve a single infected individual and
otherwise susceptible individuals, and assuming that hospitalized and
quarantined individuals do not cause SSEs, we may take y(n4A + I) to
be the deterministic rate at which SSEs occur.

Now, let = € R*. By considering the above events’ occurrence in
a sufficiently small time interval, (z, 7 + Ar), we may assume that at
most one event occurs in this interval. The probabilities corresponding
to each event’s occurrence in (z,  + Ar) are then:

P(Eg_ ;A7) = pnyA+ 1 +ny0 +ny H)Az, P(Eggp; At) = w(ny A+ DAL,

P(Eg_ 5 47) = qo EAr, P(E,_g;4t) = (v, + 6,)Ad7,
P(Eg_;:47) = (1 — )0 EAr, P(E;_ ;A7) = oy 1Az,
P(E,QQ; A7) = wQ[Ar, P(E;_g; A7) = (y; + 6;)1 Az,
P(Ey_ ;3 47) = vy HAz, P(Ey_g; A1) = (yy +6)HAr,

P(Eg_ ;3 47) = vp04r, P(Eg_ p; A7) = (rp + 85)Q4.
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4z is taken to be small enough that )} P(E;; A7) < 1 for all 7 < T, where
ée{S—->ESSE,E—>AA—>RE—->II->H,I—->Q0I—->RH-—>
I,H - R,Q - 1,0 - R} and T € R"; this ensures that the above are
valid probabilities. We denote the set of all possible transitions as Sy.
The stochastic instantaneous rates at which events occur are obtained

by dividing the above probabilities by Az and taking

P(E;; At)
Ar—0+ At

for each &:

q(Es_g) =By A+ 1+ny0 +nyH),
4(Eg_4) = qoE,

9(Eg_) =1 —-q)E,

4(Ej_g) = wpl,

9(Ey_p)=vygH,

4(Eg_p) =vQ,

A(Essp) =ywngA+1),
Qq(E L p) = (ra+34A,
q(E1_>1-1) =wyl,
q(E;_g)=(y; +61,
q(EH_,R) =(yy +oéy)H,
q(Eg_g) = (ro +60)0.

From the stochastic instantaneous rates, we obtain the probabilities of
given events being the next to occur. Letting Q = ¥’ g(E;), we have:

P(Es_p) = 58] P(Egsp) = 20850,
Py = W) P = TR
P = L), Py =L,
PE, g = L2, Py =T,
Py = LD P(Eyp = SR
P(Eg_;) = @, P(Eg_p) = @~

The set of events Sy = {E; : & € Sy} and probabilities Sp = { P(E;) :
& € Sy} constitute a continuous-time Markov chain. Our CTMC deriva-
tion from the baseline COVID-19 model (1) is adapted from Oluwa-
tobilloba’s CTMC derivations from simpler (SIS and SIR) models for
infectious disease spread (Oluwatobilloba, 2020). For further reading
on infectious disease modeling, see Keeling and Rohani (2008), and for
general reading on Markov chains, see Bar-Ilan University (2018) and
Queen’s University (2005).

2.3. Constancy condition

To investigate the relative influence of SSEs versus non-SSEs on
outbreak dynamics, we impose a constancy condition by requiring
that the expected number of infections following the first change in
state remain constant for different rates of SSEs and non-SSEs. We
denote this expectation as Ey(X), where X € N uU {0} is a random
variable corresponding to the number of infections following a change
in state. Note that these infections may be SSE- or non-SSE-related. Our
constancy condition is adapted from James et al.’s (2007) constancy
condition. Assuming that James, et al. take I, = 1, both conditions may
be derived using the probability generating functions (pgfs) of X given
the systems’ initial states. However, the interpretation of E,(X) differs,
as the systems’ state changes have different meanings (see Section 2.5).

Let p* = «p, where « € [0,1] and g is the fitted infection rate
parameter (see Table 1), which we take to be the non-SSE rate in the
absence of SSEs. This gives p* € [0, f]. We seek v, the SSE rate, such
that the constancy condition is satisfied for an arbitrary p*. To begin,
we derive the pgf for X. Letting

P(X =0)= P(Egy) + P(Esg) + P(Egp) + P(E; ) + P(Ejp)
+ P(E;p) + P(Eyp)
+ P(Ey )+ P(Eg) + P(Egp)
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and recalling that K ~ Poisson(¢), we have:

G(is) = PX=0s"+PX=1s'
+P(X =2)s> + -+ + P(X = k)sk + .-
= [P(Essp & K =0)+ P(X = 0)]s°
+[P(Egsp & K = 1) + P(Egp)]s!
+P(Egsp &K =2)s + ...+ P(Eggp & K = k)s* + -
= PX =0)s"+ P(Egp)s' + P(Egsp)[P(K = 0)s” + P(K = 1)s!
+ P(K = k)sk 4+ -]
= PX =O)sO+P(ESE)sl + P(ESSE)[T;—?e’¢SO+ ?—:e’d’sl
+ dz’—fe“7’s2+
.+ ‘i—]‘(e‘q’sk + -]
= P(X =0)+ P(Egp)s + P(Eggp)e?=D
From the pgf, we obtain the expectation of X:
E(X) = G'(1) = P(Esg) + P(Egsp)$
_ PapA+ T +ngH +noQ)+ A+ D
B 0
Taking (E, A, I, H, Q) = (E,, Ay, Iy, Hy. Q,), where the latter are the ini-
tial numbers of exposed, asymptomatic, symptomatic, hospitalized, and
quarantined individuals, E(X) becomes E,(X). For further reading on
pgfs and their properties and epidemiological applications, see Miller
(2018) and University of Cambridge (2008).
Next, we obtain y as a function of f*. Letting E, ;(X) and E 4-(X)
be the initial expectations when the non-SSE rates are # and * < # and
setting Ej 5(X) = Ej g«(X), we have:

Yo L=
LI¢2 + (¢ = DI

I] =71AAO+IO+”HHO+’1QQO

I =nyAp+ Iy
Q' =0Ey+(rs + 844 )
+ (o +wg +v+6p)1
+((vyg +ryg +6)H,
+(vg + 70 +00)Q
Note that y is only defined for I,, $£2' +pI,(¢—1) > 0. The requirement
that w be of the above form constitutes our constancy condition.

Also note that y is invariant under scaling with respect to
(Eg, Ag, 1y, Hy, Qp). Indeed, letting ¢ € R, 0 = (Eg, Ag, Iy, Hy, Op)s
and @ = (0,14, @p>©> Vs VsV > Y1 Vi Y0 645 61,61, 69) and
noting that I,(c7; &) = cI;(T; ), I,(cT; ) = cI,(T; w), and Q'(cT; w) =
¢ (0; ), we have:

_ 1 (c0; 0)(f — f*)€2' (cT; 1)
T L(cB D) (¢! (cT: ) + BI, (e D) — )]
_ I (T; ) (B — f*)e ' (; 1)

¢ I, (; 10)[pe 2' (T; 10) + fel, (T ©)($p — 1]
_ 1,(0; 0)(f — )2/ (; 1)

L0 )2 (U; 10) + 1, (0 0)(¢ — D]
=y (T; D)

w(cl; W)

This property motivates our choice of initial conditions when simulat-
ing the CTMC model (see Section 2.4).

2.4. Model simulation

Because our model is a CTMC, it may be simulated using Gille-
spie’s direct algorithm (Keeling and Rohani, 2008; Gillespie, 1976).
The algorithm is a direct (versus approximate; see Wilasang et al.
(2022)) method for simulating stochastic processes (Gillespie, 1976).
We simulated the model under the following scenarios:

(i). Neither hospitalization nor quarantine (NHQ), in which hospi-
talization, quarantine, premature hospital discharge, and quar-
antine violation are excluded from the model; this is equivalent
to excluding E;_ y, E;_ o, Ey_, and Ey_,; from the model
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(ii). Realistic hospitalization and quarantine (RHQ), in which hospi-
talization, quarantine, premature hospital discharge, and quar-
antine violation are included in the model; this is equivalent to
including E;_y, E;_ g, Ey_, and Eg_,; in the model

(iii). Idealistic hospitalization and quarantine (IHQ), in which hospi-
talization and quarantine are included in the model but prema-
ture hospital discharge and quarantine violation are excluded;
this is equivalent to including E;_ ; and E,_, in the model but
excluding Ey_,; and Egy_,

Note that RHQ corresponds to the baseline COVID-19 model (1).
We also simulated the model under RHQ with low quarantine vi-
olation (lgv) and high quarantine violation (hqv). We denote these
sub-scenarios as RHQ,,,, and RHQ,,,.. For lqv, we halved the fitted value
of quarantine violation (%vQ), and for hqv, we doubled the fitted value
of quarantine violation 2vp).

Events were excluded by setting their corresponding stochastic in-
stantaneous rates to zero. In NHQ, wy, @g, vy, and vp were set to
zero, thereby eliminating hospitalization, quarantine, premature hospi-
tal discharge, and quarantine violation; in RHQ, wy, wg, vy, and v,
remained set to their fitted values (see Table 1); and in IHQ, wy and
®, remained set to their fitted values, while vy and v, were set to
zero, thereby eliminating premature hospital discharge and quarantine
violation.

The initial conditions for NHQ, RHQ, and IHQ were
(Egr A, Iy, Hy, Qp) = (15,2,4,0,0), (14,2,2,1,1), and (14,2,2,1,1),
respectively; the CTMC model is independent of S, and R,. These
initial conditions were obtained by simulating the baseline COVID-
19 model (1) under each scenario with (S, Ey, Ag, Iy, Hy, Qg. Ry) =
(10'°,20,0,0,0,0,0) and recording the number of individuals in each
class on day 3. .S, was taken to be 10" to ensure that the depletion
of susceptible individuals had a negligible influence. Recall that the
constancy condition is not defined for (E,, Ay, I, Hy, Qy) = 0 and is
invariant under scaling of (E, A, I, Hy,Q,) (see Section 2.3). This
motivates the need for a realistic initial proportion of asymptomatic,
symptomatic, hospitalized, and quarantined individuals. The initial
conditions for RHQ,,, and RHQ,,, were taken to be the same as for
RHQ.

For NHQ, RHQ, and IHQ, « was varied from 0 to 1 in increments
of 0.1, and y was calculated for each g* value using the constancy
condition (Eq. (2)) with scenarios’ corresponding initial conditions and
parameter sets. k¥ was also varied from O to 1 in increments of 0.1 for
RHQ,,, and RHQ,,,, but y was taken to be the same as for RHQ; it
was not re-calculated using %vQ or 2v,. This allows for better isolation
of quarantine violation’s influence on quarantine effectiveness for SSE-
versus non-SSE-dominated outbreaks.

Simulations were ended once either the disease went extinct or 50
active infections were attained, similar to the approach taken in Lloyd-
Smith et al. (2005). The number of extinctions and total simulations
were recorded to estimate the probabilities of outbreak extinction,
and for surviving outbreaks, the times at which 50 active infections
were attained and the cumulative numbers of SSE-related and non-SSE-
related infections were recorded for analysis; these times are hereafter
referred to as stop times. The total simulations is the combined number
of extinction simulations, defined here as simulations in which the
disease went extinct before attaining 50 active infections, and non-
extinction simulations. Note that there are other non-extinction metrics,
such as the pathogen circulating in the population for a long period of
time (Thompson et al., 2020).

The number of non-extinction simulations depended on the vari-
ances of the stop times; additional simulations were ran until the
desired number of non-extinction simulations were completed. If the
variance was less than 1500, 50 000 non-extinction simulations were
completed; if the variance was between 1500 and 15 000, 500 000 non-
extinction simulations were completed; and if the variance was greater
than 15000, 1500000 non-extinction simulations were completed.
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Table 2

Number of non-extinction simulations completed for each parameter set. (0,0,0,0)
corresponds to  NHQ, (0.453,0.1977,0.23025,0.1301)  corresponds to RHQ,,,
(0.453,0.1977,0.4605,0.1301) ~ corresponds to RHQ,  (0.453,0.1977,0.921,0.1301)
corresponds to RHQ,,,, and (0.453,0.1977,0,0) corresponds to IHQ.

<mQ, @, Vg, Vi) K Non-extinction simulations
(0,0,0,0) [0,1] 50000
(0.453,0.1977,0.23025,0.1301) [0,0.6] 500000
(0.453,0.1977,0.23025,0.1301) [0.7,1] 50000
(0.453,0.1977,0.4605, 0.1301) [0,0.4] 500000
(0.453,0.1977,0.4605, 0.1301) [0.5,1] 50000
(0.453,0.1977,0.921,0.1301) [0,1] 50000
(0.453,0.1977,0,0) [0,0.3] 50000
(0.453,0.1977,0,0) [0.4,0.5] 500000
(0.453,0.1977,0,0) [0.6,0.8] 1500000
(0.453,0.1977,0,0) [0.9,1] 500000

Table 2 gives the number of non-extinction simulations completed for
each parameter set.

2.5. Discrete-time Markov chain models

With CTMC models, the system may assume a new state at any time
t € R*; t is thus continuous. For our CTMC model, every time-step
corresponds to a single event E;, & € Sy, occurring. With discrete-time
Markov chain (DTMC) models, the system may only assume a new state
at times {t, : k € N}; ¢ is thus discrete. For Lloyd-Smith et al.’s (2005)
and James et al.’s (2007) DTMC models, every time-step corresponds
to the death of the current generation of infected individuals and birth
of the next generation of infected individuals. The CTMC and DTMC
models’ state changes thus have different meanings.

Lloyd-Smith et al. (2005) utilize an individual-based superspread-
ing framework. They incorporate superspreading individuals into their
DTMC via the random variable v, the expected number of infections
caused by an individual. Individuals thus have different potentials to
infect others. They simulate their model under multiple scenarios, each
of which assumes a different distribution for v. We limit our comparison
(see Section 4) to the scenario which assumes v is y-distributed. James
et al. (2007) utilize an event-based framework. They incorporate SSEs
into their DTMC via p, the expected number of SSEs caused by an
individual, and 4, the expected number of infections caused by an SSE.
Every individual has the same potential to infect others.

3. Results

The results are divided by scenario, and the goals (see Section 1)
addressed by each scenario are indicated in their respective sections.
Note that G1 is addressed by all scenarios, while G2 and G3 are
addressed by only some scenarios. In each figure, x increases from 0 to
1 in increments of 0.1; increasing values of k correspond to decreasing
rates of SSEs and increasing rates of non-SSEs. Note that, while all
figures’ x-axes are the same, their y-axes differ. A table containing the
margins of error for the means of stop times’ 95% confidence intervals
is given in Appendix A (see Table 3).

Scenario (i): Neither hospitalization nor quarantine (NHQ)

NHQ addresses G1 and G2. In this scenario, hospitalization, quar-
antine, premature hospital discharge, and quarantine violation are
excluded from the model. Fig. 2(a) shows the distribution of stop times.
The maximum, mean, and median stop times strictly decrease for k €
[0, 1], while the minimum stop times are similar for « € [0,0.7) but
strictly increase for « € [0.7,1]. Figs. 2(b) and 2(c) show the variances
of stop times and probabilities of extinction, respectively. Both strictly
decrease for ¥ € [0, 1], but they do so more quickly for smaller «.
Fig. 2(d) shows the means of the cumulative numbers of SSE-related
and non-SSE-related infections. The SSE curve strictly decreases with
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Fig. 2. (a) Distributions of stops times (NHQ) (b) Variances of stop times for NHQ (c) Probabilities of extinction for NHQ (d) Means of cumulative total of SSE- and non-SSE-related

infections for NHQ; their curves are labeled as SSE and non-SSE.

increasing «, while the Non-SSE curve strictly increases. They do so
more quickly for smaller x and intersect between x = 0.4 and x = 0.5.

Scenario (ii): Realistic hospitalization and quarantine (RHQ)

RHQ also addresses G1 and G2. In this scenario, hospitalization,
quarantine, premature hospital discharge, and quarantine violation are
included in the model. Fig. 3(a) shows the distribution of stop times.
The maximum, mean, and median stop times strictly decrease for x €
[0, 1], while the minimum stop times are similar for « € [0,0.5) but
generally increase for x € [0.5, 1]. Figs. 3(b) and 3(c) show the variances
of stop times and probabilities of extinction, respectively. Both strictly
decrease for k € [0, 1], but they do so more quickly for smaller «, the
exception being the variances of stop times for « € [0,0.1]. Fig. 3(d)
shows the means of the cumulative numbers of SSE-related and non-
SSE-related infections. The SSE curve strictly decreases with increasing
k, while the Non-SSE curve strictly increases. They do so more quickly
for smaller x and intersect between x = 0.4 and « = 0.5.

Scenario (iii): Idealistic quarantine and hospitalization (IHQ)

THQ also addresses G1 and G2. In this scenario, hospitalization and
quarantine are included in the model, but premature hospital discharge
and quarantine violation are excluded. Fig. 4(a) shows the distribution
of stop times. The maximum, mean, and median stop times strictly
increase for k € [0,0.7) but strictly decrease for x € [0.7, 1]. Meanwhile,
the minimum stop times are similar for « € [0,0.8) but strictly increase
for « € [0.8,1]. Fig. 4(b) shows the variances of stop times, which
strictly increase for k € [0,0.7) but strictly decrease for x € [0.7,1].

Fig. 4(c) shows the probabilities of extinction, which strictly decrease
with increasing « for k € [0,1] but remain near 1 for x € [0,0.5)
and quickly decrease for x € [0.5,1]. Fig. 4(d) shows the means of
the cumulative numbers of SSE-related and non-SSE-related infections.
The SSE curve remains approximately constant for x € [0,0.5) but
strictly decreases for « € [0.5, 1]. Meanwhile, the Non-SSE curve strictly
increases for k € [0,0.7), remains approximately constant for x €
[0.7,0.8), and strictly decreases for « € [0.8,1]. The curves intersect
between x = 0.4 and x = 0.5.

Varying quarantine violation

RHQ,,, and RHQ,,, address G1 and G3. In RHQ,,,, RHQ’s quar-
antine violation level is halved, and in RHQ,,,, RHQ’s quarantine
violation level is doubled. Figs. 5(a), 5(b), 5(c), and 5(d) contain curves
for RHQ,,,, RHQ, and RHQ,,,,. Figs. 5(a) and 5(b) show the means
and variances of stop times for each quarantine violation level. For
RHQ,,,, both strictly increase for x € [0,0.2) but strictly decrease for
k € [0.2,1]; for RHQ and RHQy,,,, both strictly increase for x € [0, 1].
The means and variances of stop times strictly decrease going from
RHQ,,, to RHQ to RHQ,,,, for each « € [0, 1], but their differences are
greater for smaller x. Fig. 5(c) shows the probabilities of extinction.
They strictly decrease for « € [0, 1] but do so more quickly for smaller
k. The probabilities of extinction also strictly decrease going from
RHQ,,, to RHQ to RHQ,,, for x € [0,1], but their differences are
greater for smaller x. They decrease more quickly for RHQ,,, than RHQ
and RHQ,,,,. Fig. 5(d) shows the cumulative numbers of SSE-related
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infections. They strictly decrease for « € [0, 1] but do so more quickly
for smaller «, the exception being RHQ,qU for k¥ € [0,0.2).

4. Discussion

The discussion is divided into three subsections. In the first sub-
section, we discuss results from simulating the CTMC model under
the main scenarios (NHQ, RHQ, and IHQ); recall that this allows us
to investigate the effectiveness of hospitalization and quarantine as
control measures for SSE versus non-SSE-dominated outbreaks (G2).
In the second subsection, we discuss results from varying quarantine
violation (RHQ,,, and RHQ,,,); recall that this allows us to investigate
the influence of quarantine violation on the effectiveness of quarantine
for SSE- versus non-SSE-dominated outbreaks (G3). In both of the
aforementioned subsections, we discuss the results from varying SSE
and non-SSE rates, as this is done in all scenarios; recall that this allows
us to investigate the influence of SSEs relative to that of non-SSEs
on outbreak dynamics (G1). Further recall that varying SSE and non-
SSE rates is accomplished by varying «; as x increases, non-SSE rates
increase, and SSE rates decrease. If x = 0.X, X € {1,2,3,4,5,6,7,8,9},
then the non-SSE rate is X0% of its fitted value (Table 1); for example,
if ¥ = 0.5, then the non-SSE rate is 50% of its fitted value. When the
non-SSE rate is decreased from its fitted value, the SSE rate is increased
according to the constancy condition (see Section 2). In the third
subsection, we compare our results to those of other superspreading
models in literature.

Simulating the model under the main scenarios

For both NHQ and RHQ, most outbreaks are more variable but less
severe when SSE rates are higher, as evidenced by the variances of
stop times in Figs. 2(b) and 3(b) and the distributions of stop times
in Figs. 2(a) and 3(a). Here, severity is based on stop times; more
severe outbreaks are quicker to attain 50 active infections, while less
severe outbreaks are slower. Though most SSE-dominated outbreaks are
less severe, the most severe SSE-dominated outbreaks are more severe
than the most severe non-SSE-dominated outbreaks, as evidenced by
the minimum stop times in Figs. 2(a) and 3(a). While the differences
in minimum stop times are small, they are significant in practice
because the minimum stop times themselves are small; when there are
few days to formulate a public health response, every additional day
helps. For example, if there is only 3 days to respond, an additional
2 days may make a difference. Outbreaks are also more likely to go
extinct when SSE rates are higher, as evidenced by the probabilities
of extinction in 2(c) and 3(c). All of the aforementioned observations
hold for IHQ when x € [0.7,1] but not when x € [0,0.7). For IHQ
when x € [0,0.7), most outbreaks are less variable (see Fig. 4(b))
but more severe (see Fig. 4(a)) when SSE rates are higher. The most
severe SSE-dominated outbreaks are still more severe than the most
severe non-SSE-dominated outbreaks (see Fig. 4(a)), and outbreaks
are still more likely to go extinct (see Fig. 4(c)) when SSE rates are
higher. Going from NHQ (x« € [0,1]) to RHQ (x € [0,1]) to THQ
(k € [0.7,1]), outbreaks increase in variability (see Figs. 2(b), 3(b), and
4(b)), decrease in severity (see Figs. 2(a), 3(a), and 4(a)), and are more
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likely to go extinct (see Figs. 2(c), 3(c), and 4(c)). Figures showing the
variances of stop times and probabilities of extinction across scenarios
are given in Appendix B (see Figs. 6(a) and 6(b)).

Differences for IHQ when x € [0,0.7) are likely related to high
probabilities of extinction. For « € [0,0.7), outbreaks may be less
variable but more severe when SSE rates are higher because surviving
outbreaks are restricted to those with many SSE-related infections early
on. This is evidenced by the means of cumulative SSE-related infections
remaining approximately constant when x € [0,0.5) despite decreasing
SSE rates, after which they decrease with decreasing SSE rates, as
expected (see Fig. 4(d)). Meanwhile, the means of total non-SSE-related
infections increase with increasing non-SSE rates when x € [0,0.7), as
expected, but decrease when x € [0.7,1] despite increasing non-SSE
rates (see Fig. 4(d)). The weakening pull towards extinction may allow
50 active infections to be attained more quickly (see Fig. 4(a)), to the
extent that the number of cumulative infections is reduced. For NQH
and RHQ, the probabilities of extinction are lower than for IHQ (see
Figs. 2(c), 3(c), and 4(c)), and the means of cumulative SSE-related and
non-SSE-related infections for NHQ and RHQ decrease with decreasing
SSE rates and increase with increasing non-SSE rates (see Figs. 2(d)
and 3(d)), as expected. A figure showing the means of cumulative SSE-
related infections across scenarios is given in Appendix B (see Fig. 6(c)).
Note that for NHQ and RHQ, the means of cumulative SSE-related
infections decrease more quickly for smaller x (see Figs. 2(d) and 3(d)),
while for IHQ, the means of cumulative SSE-related infections decrease
more slowly for smaller x when « € [0.5,0.7) but more quickly for
smaller k¥ when « € [0.7,1] (see Fig. 4(d)). This, in conjunction with

the slight lag between the means of cumulative SSE-related infections
decreasing and outbreaks becoming more variable but less severe when
SSE rates are higher, suggests that « € [0.5,0.7) corresponds to a
transitional period. During this period, dynamics change from those
only observed for THQ to those also observed for NHQ and RHQ.
Greater variability in SSE-dominated outbreaks may limit predic-
tions. Increased variability increases prediction uncertainty, which may
decrease prediction accuracy. Increased prediction uncertainty also
shortens the time period over which predictions hold. Such limitations
impede public health responses. Meanwhile, taking more time in most
cases to attain 50 active infections when SSE rates are higher may
allow the virus to avoid detection for longer; more sensitive and
stable surveillance systems are necessary to detect the virus at low
levels. Because even slow SSE-dominated outbreaks may abruptly take
off, timeliness is also key. For further information on the stability,
sensitivity, and timeliness of surveillance systems, see Centers for Dis-
ease Control and Prevention (2001) and Centers for Disease Control
and Prevention (2021b). Persistence at low levels also facilitates the
evolution of more infectious variants (Antia et al., 2003; Woolhouse
et al,, 2005). The public health consequences associated with SSE-
dominated outbreaks are, in some cases, mitigated by high probabilities
of extinction. For THQ, SSE-dominated outbreaks almost always go
extinct; for RHQ, SSE-dominated outbreaks are somewhat likely to go
extinct. Public health consequences are thus mostly mitigated for IHQ
and somewhat mitigated for RHQ. They are not, however, mitigated
for NHQ, as outbreaks (SSE- or non-SSE-dominated) seldom go extinct
in this scenario. SSE-dominated outbreaks almost always go extinct for
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IHQ because we assume that neither hospitalized (H) nor quarantined
(Q) individuals cause SSEs, and control measures significantly reduce
the number of symptomatic (I) individuals available to cause SSEs in
IHQ; recall that in [HQ, there is perfect control, while in NHQ and RHQ,
there is no control and imperfect control, respectively. This implies
that, in general, when those capable of causing SSEs are targeted with
perfect control, SSE-dominated outbreaks almost always go extinct.

Across the board decreases in probabilities of extinction going from
IHQ to RHQ to NHQ suggest that including hospitalization and quaran-
tine and decreasing premature hospital discharge and quarantine vio-
lation forces more outbreaks to extinction. Greater differences for SSE-
dominated outbreaks versus non-SSE-dominated outbreaks imply that
hospitalization and quarantine are more effective at controlling SSE-
dominated outbreaks; likewise, premature hospital discharge and quar-
antine violation are more consequential for such outbreaks. Quicker
decreases in probabilities of extinction for IHQ, RHQ, and NHQ when
SSE rates are higher further imply that SSE-dominated outbreaks are
more sensitive to changes in hospitalization, quarantine, premature
hospital discharge, and quarantine violation. High probabilities of ex-
tinction for IHQ when SSE rates are higher, in conjunction with the
quicker decreases, imply that reducing premature hospital discharge
and quarantine violation substantially increases the effectiveness of
hospitalization and quarantine at forcing SSE-dominated outbreaks to
extinction. Altogether, these results highlight the importance of im-
plementing control measures and limiting factors that reduce control
measure effectiveness in SSE-dominated outbreaks; doing so increases

the probability of extinction from =~ 0 to ~ 1 for k¥ < 0.4 (see Figs. 2(c),
3(c), and 4(c)). When weighing the benefits and detriments of control
measures, the relative rates of SSEs versus non-SSEs should be con-
sidered; for more on the benefits and detriments of control measures,
see Jamison et al. (2018, Chapter 17). Note that in all of the afore-
mentioned, the effectiveness of hospitalization and quarantine and the
consequences of premature hospital discharge and quarantine violation
were evaluated using probabilities of extinction versus other metrics,
such as cumulative infections or deaths; the latter metrics would be
misleading because simulations were ended once either the disease
went extinct or 50 active infections were attained (see Section 2).

Varying quarantine violation

For RHQ,,,,, outbreaks are more variable but less severe on average
when SSE rates are higher (see Figs. 5(b) and 5(a)), similar to NHQ
and RHQ; for RHQy,,,, outbreaks are less variable but more severe on
average for « € [0,0.2) and more variable but less severe on average for
k € [0.2,1] when SSE rates are higher (see Figs. 5(b) and 5(a)), similar
to IHQ. For RHQ,,,, and RHQ,,,,,, outbreaks are more likely to go extinct
when SSE rates are higher (see Fig. 5(c)), similar to NHQ, RHQ, and
IHQ. The means of total SSE-related infections decrease with decreasing
SSE rates for RHQ,,,, RHQ, and RHQ,,,,,, but they do so more slowly for
RHQ,,, than RHQ or RHQ,,,, when SSE rates are higher (see Fig. 5(d)).
We expect the opposite, given that quarantined individuals cannot
cause SSEs. Going from RHQ to RHQy,,,,, the means of total SSE-related



J. Bramble et al.

infections decrease more slowly, as expected. Differences for RHQ,,,
when « € [0,0.2) may thus be related to high probabilities of extinction
(see Fig. 5(c)), with x € [0,0.2) corresponding to a transitional period,
similar to IHQ with « € [0.5,0.7).

Going from RHQ,,, (x € [0,1]) to RHQ (x € [0,1]) to RHQp,,
(x € [0.2,1]), outbreaks decrease in variability, increase in sever-
ity, and are less likely to go extinct (see Figs. 5(b), 5(a), and 5(c)).
These differences are greater for SSE-dominated outbreaks, most no-
tably with respect to variability and extinction. Taking less time on
average to attain 50 active infections when quarantine violation is
higher shortens the time period during which outbreaks may feasibly
be contained; the further outbreaks progress, the harder it becomes to
contain them (Maxmen, 2021). While lesser variability in outbreaks
when quarantine violation is higher allows for lesser prediction uncer-
tainty, it also allows for a greater number of more severe outbreaks,
given that outbreaks are more severe on average when quarantine
violation is higher. Larger numbers of infections over shorter time pe-
riods may strain resources (Centers for Disease Control and Prevention,
2021a). Across the board increases in probabilities of extinction going
from RHQ,,, to RHQ to RHQ,,, suggest that decreasing quarantine
violation forces more outbreaks to extinction. Greater differences for
SSE-dominated versus non-SSE-dominated outbreaks imply that quar-
antine violation is more consequential for SSE-dominated outbreaks.
Quicker decreases in probabilities of extinction for RHQ,,,, RHQ, and
RHQ,,,, when SSE rates are higher further imply that SSE-dominated
outbreaks are more sensitive to changes in quarantine violation. High
probabilities of extinction for RHQ,,, when SSE rates are higher, in
conjunction with the quicker decreases, imply that reducing quaran-
tine violation substantially increases the effectiveness of quarantine
at forcing SSE-dominated outbreaks to extinction. This reinforces our
previous findings regarding premature hospital discharge and quar-
antine violation. Again note that in all of the aforementioned, the
effectiveness of quarantine and consequences of quarantine violation
were evaluated using probabilities of extinction versus other metrics,
such as cumulative infections or deaths; the latter metrics would be
misleading because simulations were ended once either the disease
went extinct or 50 active infections were attained (see Section 2).

Comparison with superspreading models in literature

Lloyd-Smith et al. (2005) and James et al. (2007) utilize discrete-
time Markov Chain (DTMC) models to investigate the relative influ-
ences of SIs and SSEs on outbreak dynamics. Their DTMC models’
underlying biological process is more simplistic than ours; susceptible
individuals are infected and infected individuals recover. There are
neither exposed, asymptomatic, hospitalized, nor quarantined individ-
uals. DTMC models also evolve through time differently, and their
state changes have different meanings. For further information on how
Lloyd, et al. and James, et al. incorporate SIs and SSEs into their DTMC
models, as well as further information on the differences between
DTMCs and CTMCs, see Section 2.5.

Lloyd-Smith et al. (2005) and James et al. (2007) found that increas-
ing SIs or SSEs relative to non-SIs or non-SSEs increases the probability
that outbreaks go extinct but decreases the variability of surviving
outbreaks, which are more severe when dominated by SIs or SSEs. This
partially agrees with our findings for NHQ (x € [0, 1]), RHQ (x € [0, 1]),
and IHQ (x € [0.7,1]) — increasing SSEs relative to non-SSEs increases
both the probability that outbreaks go extinct and the variability of
surviving outbreaks, which are less severe when dominated by SSEs
- and fully agrees with our findings for IHQ (x € [0,0.7)). While the
probabilities of extinction increase with increasing influence of SIs or
SSEs relative to non-SIs or non-SSEs for Lloyd, et al.’s, James, et al.’s,
and our model, they approach different values. For the individual-based
model, they approach 1, but for the event-based models, they do not.
This suggests that SSE-dominated outbreaks are more likely to survive
than SI-dominated outbreaks.
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Differences in the variability and severity of surviving outbreaks
between Lloyd-Smith et al.’s (2005), James et al.’s (2007), and our
model for NQH (x € [0,1]), RHQ (x € [0,1]), and THQ (x € [0,0.7))
may be related to differences in probabilities of extinction, which are
higher for Lloyd-Smith et al.’s (2005), James et al.’s (2007), and our
model for IHQ (x € [0.7, 1]). Note that these differences in probabilities
of extinction may be related to any of the model differences discussed
in this subsection’s first paragraph or parameter value differences. As
discussed above, high probabilities of extinction may limit surviving
outbreaks to more severe outbreaks. As the pull towards extinction
weakens, a larger variety of outbreaks may survive. Recall that, while
most SSE-dominated outbreaks are less severe than non-SSE-dominated
outbreaks for NHQ (x € [0,1]), RHQ (x € [0,1]), and IHQ (x €
[0.7,1]), the most severe SSE-dominated outbreaks are more severe
than the most severe non-SSE-dominated outbreaks; this implies that,
if sufficiently many of the less severe SSE-dominated outbreaks were
to go extinct, most of the surviving SSE-dominated outbreaks may be
more severe than the non-SSE-dominated outbreaks, which would agree
with the Lloyd, et al.’s, James, et al.’s, and our results for IHQ (x €
[0,0.7)). Overall, differences between the individual-based and event-
based models suggest that, if outbreaks are SI- and/or SSE-dominated,
SIs and SSEs must be considered separately, as they have distinct
influences on outbreak dynamics.

5. Conclusion

To accomplish the main goals of our study (Section 1), we in-
corporated SSEs into a continuous-time Markov chain (CTMC) model
(Section 2.2), imposed a constancy condition (Section 2.3), simulated
the CTMC model under multiple scenarios (Section 2.4), and varied
quarantine violation levels (Section 2.4). When hospitalization and
quarantine are excluded or when hospitalization, quarantine, prema-
ture hospital discharge, and quarantine violation are included (either
no control or imperfect control), SSE-dominated outbreaks are more
variable, less severe, and more likely to go extinct than non-SSE-
dominated outbreaks. While most SSE-dominated outbreaks are less
severe, the most severe SSE-dominated outbreak is more severe than
the most severe non-SSE-dominated outbreaks. When hospitalization
and quarantine are included but premature hospital discharge and
quarantine violation are excluded (perfect control), SSE-dominated out-
breaks are more likely to go extinct than non-SSE-dominated outbreaks
but less variable and more severe. When hospitalization, quarantine,
premature hospital discharge, and quarantine violation are included
and quarantine violation is halved, SSE-dominated outbreaks behave
similarly to when hospitalization and quarantine are included but
premature hospital discharge and quarantine violation are excluded;
when quarantine violation is doubled, outbreaks behave similarly to
when hospitalization and quarantine are excluded.

In all scenarios, hospitalization and quarantine are more effec-
tive at controlling SSE-dominated outbreaks than non-SSE-dominated
outbreaks. Similarly, premature hospital discharge and quarantine vi-
olation are more consequential for SSE-dominated outbreaks. When
hospitalization and quarantine are excluded, SSE-dominated outbreaks
are highly unlikely to go extinct; when hospitalization, quarantine,
premature hospital discharge, and quarantine violation are included,
SSE-dominated outbreaks are moderately unlikely to go extinct; and
when hospitalization and quarantine are included but premature hos-
pital discharge and quarantine violation are excluded, SSE-dominated
outbreaks are highly likely to go extinct. Halving quarantine violation
approximately doubles the likelihood that SSE-dominated outbreaks go
extinct, while doubling quarantine violation approximately halves the
likelihood that SSE-dominated outbreaks go extinct.

Altogether, SSE-dominated outbreaks notably differ from non-SSE-
dominated outbreaks in terms of variability, severity, and likelihood of
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Fig. 6. (a) Variances of stop times across scenarios (b) Probabilities of extinction across scenarios (c) Means of total cumulative SSE-related infections across scenarios.

extinction; they also differ from SI-dominated outbreaks, albeit more
subtly (see Section 4). SSE-dominated outbreaks’ dynamics are strongly
influenced by whether individuals may be hospitalized or quarantined,
as well as whether they may be prematurely discharged from the
hospital or violate quarantine. Both hospitalization and quarantine are
highly effective control measures for SSE-dominated outbreaks, but pre-
mature hospital discharge and quarantine violation substantially reduce
their effectiveness. Note that we evaluated control measures using the
likelihood of extinction. All of the aforementioned has important public
health implications (see Section 4), which necessitates that SARS-CoV-2
modelers (1) determine the extent to which SSEs and/or SIs contribute
to spread and (2) distinguish between SSEs, SIs, and non-SSEs/non-
SIs in their models. Finally, further exploration of the individual and
combined influences of SSEs and SIs on outbreak dynamics, as well as
the effectiveness of control measures for different types of outbreaks,
is necessary to better inform containment and eradication efforts.
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Appendix A. Margins of error

Let x be the sample mean, 6 be the sample standard deviation,
and n be the sample size. Then the 95% confidence interval for x is
given by (X — zg o5 in,ic + 2005 in); ¢z0‘025% is called the margin of
error. Table 3 gives the margins of error for the means of stop times’
95% confidence intervals. The margins of error are small relative to
the means of stop times; all 95% confidence intervals are tight and
non-overlapping.

Note that the 95% confidence interval formula assumes normality.
This is reasonable because, while stop times’ distributions are not
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Table 3

Margins of error for the means of the stop times’ 95% confidence intervals for NQH, RHQ, IHQ, RHQ,,,, and RHQ,,, for x € [0,1].
Scenario k=0 k=0.1 k=02 k=03 k=04 k=05 k=0.6 k=07 k=0.8 k=09 k=1
NQH +0.1337  +£0.1143  +0.099 +0.0845 +£0.0725  +0.063 +0.0552  +£0.0482  +0.0427 +0.0379  +0.0338
RHQ +0.1474  +0.1424  +0.1311  +0.1172  +0.1015 +0.2735 +0.2283 +0.1884  +0.1568 +0.1337 +0.1127
THQ +0.0875  +0.1194 +0.1756  +0.2622  +0.1282  +0.205 +0.1807 +0.2226  +0.1881  +0.2207  +0.1471
RHQ,, +0.1743  +0.1884  +0.191 +0.1787  +0.1564  +0.1309 +0.1061  +0.2684  +0.2127 +0.1696  +0.1402
RHQ,,, +0.3393  +0.3177 +0.2916  +0.2589  +0.2294  +0.1995 +0.1721  +0.147 +0.1254  +0.1075  +0.091

normal, they are light-tailed and only slightly skewed. This, in conjunc-
tion with the “approximate” confidence intervals’ tightness about stop
times’ means, suggests the “true” confidence intervals would also be
non-overlapping.

Appendix B. Additional figures
See Fig. 6.
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