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Human footprint is associated with  
shifts in the assemblages of major 
vector-borne diseases

Eloise B. Skinner1,2, Caroline K. Glidden    1  , Andrew J. MacDonald    3,4 & 
Erin A. Mordecai    1

Predicting how increasing intensity of human–environment interactions 
affects pathogen transmission is essential to anticipate changing disease 
risks and identify appropriate mitigation strategies. Vector-borne diseases 
(VBDs) are highly responsive to environmental changes, but such responses 
are notoriously difficult to isolate because pathogen transmission depends 
on a suite of ecological and social responses in vectors and hosts that may 
differ across species. Here we use the emerging tools of cumulative pressure 
mapping and machine learning to better understand how the occurrence of 
six medically important VBDs, differing in ecology from sylvatic to urban, 
respond to multidimensional effects of human pressure. We find that not 
only is human footprint—an index of human pressure, incorporating built 
environments, energy and transportation infrastructure, agricultural lands 
and human population density—an important predictor of VBD occurrence, 
but there are clear thresholds governing the occurrence of different VBDs. 
Across a spectrum of human pressure, diseases associated with lower 
human pressure, including malaria, cutaneous leishmaniasis and visceral 
leishmaniasis, give way to diseases associated with high human pressure, 
such as dengue, chikungunya and Zika. These heterogeneous responses of 
VBDs to human pressure highlight thresholds of land-use transitions that may 
lead to abrupt shifts in infectious disease burdens and public health needs.

Humans have interacted with the environment and modified land-
scapes for millennia, but the rate of modification has accelerated in the 
past century1. Today, nearly 95% of the Earth’s terrestrial surface has 
been modified by humans, with almost 60% under intense or mode
rate pressure1,2. While anthropogenic environmental changes have 
cascading, and sometimes irreversible, impacts on natural and social 
systems3, we have only recently begun to quantify the extent and inten-
sity of human pressure on a planetary scale4,5. Advances in satellite 
imagery, computational capacity and high-resolution data have led to 
the ability to map cumulative human pressure through time and space, 

opening the door to interdisciplinary applications for understanding 
the consequences of human pressures for human and planetary health.

When humans modify landscapes—either through large-scale 
conversion of natural habitat or in more localized and smaller-scale 
ways, such as hunting, selective logging and artisanal gold mining—they 
alter habitat structures and species interactions, each of which can shift 
the transmission of vector-borne diseases (VBDs)6,7. Recent decades 
have witnessed the emergence, re-emergence and geographic shifts of 
VBDs in many regions across the globe. These changes may have arisen 
from various human impacts on the environment and local ecology, 
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pressure has been defined as areas with human footprints >12 (refs. 4,20). 
Since its early development in 2002, human footprint has been applied 
in a range of settings including biodiversity conservation20,21, climate 
change assessments22,23 and policy development24, but not to VBDs. 
Human footprint offers a unique opportunity to investigate thresholds 
of human pressure on VBDs across highly heterogenous environments 
that may promote or reduce disease risks at a broad geographic scale. 
In short, human footprint synthesizes pressures that might affect 
pathogen transmission and disease through multiple interrelated 
mechanisms, including changes in human mobility, vector (and reser-
voir host) habitat, contact between vectors and hosts, socioeconomic 
conditions and practices, and access to disease control measures and 
healthcare, among others.

We focus on Brazil as a case study of global patterns of human 
pressure and their relationships with VBDs because it is a large, eco-
logically and socio-economically diverse country that contains many 
biogeographic zones, intense and variable land-use pressures, a high 
incidence of multiple VBDs with contrasting ecologies and a long-
standing nationwide disease surveillance system. Within Brazil we 
focus our analysis on the six most common VBDs of public health 
importance: dengue, chikungunya, malaria, Zika, cutaneous leish-
maniasis and visceral leishmaniasis (Table 1). Aside from their public 
health importance, these diseases occur endemically within Brazil, are 
nationally notifiable and differ spatially and over time in patterns that 
probably reflect local socio-ecological conditions (Figs. 1 and 2). Our 
aim is to compare responses to human pressure among diseases with 
distinct ecologies, as a foundation for anticipating potential future  
disease responses to land-use change. Specifically, we test several 
key hypotheses: (1) land-use pressure and associated degradation, 
as captured by human footprint, is an important predictor of VBD 
occurrence (that is, whether or not at least one case is detected within 
a municipality in a given year); (2) the relationship with human foot-
print is nonlinear and differs predictably among VBDs on the basis 
of transmission ecology, with sylvatic and frontier diseases (malaria 
and cutaneous leishmaniasis) peaking at a lower human footprint 
than peri-urban and urban diseases (visceral leishmaniasis, dengue, 
chikungunya, Zika); (3) the predictive power of the human footprint 
on VBDs goes beyond that of total population size, capturing addi-
tional variation; (4) the suitability of other climatic factors such as 
temperature and rainfall promote VBD occurrence; and (5) in contrast 
to land-use classes alone, human footprint allows for easy-to-interpret 
comparisons of the response of multiple VBDs to human modified 
environments. Our goal is to understand the utility of human footprint 
as a predictor of VBDs with differing ecologies and to explore nonlinear 
relationships—in particular, threshold effects and transitions in disease 
assemblages across a gradient of landscapes—rather than to identify 
all possible predictors or to make causal inference, both of which are 
important future directions.

Results and Discussion
Landscapes contain multiple VBDs, and while each system  
may respond to different individual features of a landscape, human 

including economic globalization, land use and climate change8–13. 
Arthropod disease vectors and the pathogens they transmit are  
highly sensitive to their environment, through a suite of traits that 
respond in complex, nonlinear and interactive ways14,15. Often, vectors 
and pathogens (that is, disease systems) occupy their own unique niche 
so that each transmission cycle responds distinctly to environmental 
change. With increasing anthropogenic pressure, one would expect 
transitions in the occurrence of different diseases; for instance, disease 
systems adapted to agricultural mosaics may be replaced by disease 
systems that thrive in urban sprawl. Yet, limited understanding of 
the relationships between different VBDs and human–environment 
interactions hinders projections of how disease assemblages collec-
tively change across complex and changing landscapes16. The ability  
to anticipate these transitions would support a dynamic public health-
care infrastructure that can adapt to changes in disease occurrence 
through space and time.

One approach for investigating the effects of land-use change  
on VBD transmission uses broad classifications of land-use and 
land-cover classes, such as ‘urban area’ or ‘forest area’17. This is primarily  
because large-scale land conversions can be easily detected and 
monitored via space-borne satellites, and the detection of land- 
cover conversion is becoming ever more fine-scale. However, 
because pathogens respond to multidimensional features within  
a landscape (Supplementary Fig. 1), individual land-use classes are 
limited when predicting thresholds of change that may promote 
VBD occurrence. This is particularly challenging to quantify holisti-
cally across large land-use gradients and across different VBDs with 
unique ecologies. Moreover, assessments that use land-cover classes  
alone are inadequate to identify relationships between anthropogenic 
pressures on land and VBD transmission risks because they cannot  
always distinguish pressures that degrade, but do not outright  
convert, natural ecosystems5,14. This makes it difficult to separate 
the coupled natural and human processes that drive the association 
between specific land-use classes and disease.

Human footprint index (hereafter, human footprint) offers an 
ideal link between large-scale studies that use land-use classes and 
small-scale studies that have more detailed data because it is a single 
metric that captures the multidimensional influence of humans on 
land as it changes through space and time. Human footprint com-
bines cumulative pressure mapping of eight indices at a fine spatial 
resolution (30 arcsec): (1) built environments, (2) population density,  
(3) electric infrastructure, (4) crop lands, (5) pasture lands, (6) roads, 
(7) railways and (8) navigable waterways2,18,19. Calculated as a continu-
ous scale of increasing human pressure from 0 to 50, specific ranges 
of human footprint have been associated with variation in ecosystem 
function and integrity. Areas with human footprints of <4 are generally  
considered intact ecosystems that contain mostly natural habitat 
and maintain ecosystem integrity2. Studies on species extinctions 
have identified a human footprint threshold of ≥3 as a tipping point in 
which extinction events occur20. Areas with human footprints between 
4 and 7 tend to be dominated by agricultural production, which  
exerts moderate to high human pressure on land4. Intense human 

Table 1 | Selected VBDs and their associated land-use categories, vectors, vertebrate hosts and global burden

VBD Associated land-use types Disease vector(s) Vertebrate hosts Global burden

Dengue Urban28 Aedes aegypti, Aedes albopictus Humans 390 million cases yr−1 (ref. 49)

Chikungunya Urban, peri-urban50 Ae. aegypti, Ae. albopictus Humans 330,000 cases yr−1 (ref. 51)

Malaria Forest edge, agriculture52 Anopheles spp. Humans 229 million cases yr−1 (ref. 13)

Zika Urban, rural, peri-urban29 Ae. aegypti, Ae. albopictus Humans 100,000 cases yr−1 (ref. 11)

Cutaneous leishmaniasis Forest, rural53,54 >60 sandfly species Humans, rodents, xanthra, 
marsupials, primates

600,000–1,000,000 cases yr−1 (ref. 55)

Visceral leishmaniasis Rural, peri-urban, urban56 Lutzomyia longipalpis Humans, domestic dogs 50,000–90,000 cases yr−1 (ref. 55)
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footprint predicts disease occurrence across all six focal VBDs (mean 
importance = 10.46–44.91%, where the mean importance is the  
percent increase in standardized model error when the focal covariate 
is permuted). In the case of dengue and malaria, human footprint was 
greatly more important than any single land-use category (Fig. 3 and 
Supplementary Tables 1–7). As hypothesized, relationships between 
human footprint and local pathogen transmission were nonlinear 
and varied in direction among pathogens (Fig. 4a and Supplementary 

Table 8). Specifically, we found that human footprint had an increasing 
relationship with disease occurrence for the urban diseases (dengue,  
chikungunya and Zika) and a decreasing relationship for the  
sylvatic or frontier diseases (malaria and cutaneous leishmaniasis). 
The relationship of visceral leishmaniasis, a formerly rural disease 
now expanding into peri-urban areas25, with human footprint was a 
hybrid of the responses of urban and sylvatic diseases, steeply declining  
with a human footprint between 8 and 17 then increasing with a human 
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Fig. 1 | Disease incidence for the six VBDs. a–f, Log-transformed average annual 
cases per 1,000 per municipality (colour scale) for dengue (a), chikungunya 
(b), Zika (c), malaria (d), cutaneous leishmaniasis (e) and visceral leishmaniasis 
(f). The average incidence is shown here for illustration, but models are 

based on the binary occurrence of each disease within each municipality per 
year (municipality–year level response). The averages are calculated from 
2013 to 2019 in a,d–f, from 2017 to 2019 in b and from 2016 to 2019 in c. Grey 
municipalities did not report any cases of the disease during the study period.
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footprint above 17. Our results provide a basis for comparing shifts  
in VBD assemblages across landscapes, rather than focusing on  
single pathogens.

The distinct threshold responses across VBDs highlight the need 
for policies that account for the potentially varied impacts of human 
pressure on pathogen transmission. Specifically, while this analysis 
is descriptive and does not explicitly capture changes over time, we 
found that gradients in human footprint correspond to gradients in 
the occurrence of different diseases, which require distinct control 
strategies. Supporting this idea, all of the focal diseases that have been 
present in Brazil since the early twenty-first century have shifted in 
distribution and incidence in the past decade (Supplementary Fig. 2); 
however, comparable human footprint data with which to directly test 
this prediction are not available for the historical period.

Pathogen transmission is a complex process that responds to  
multiple aspects of environmental change14. For example, climate, 
land use, ecosystem transitions and mobility affect the probability 
of humans encountering infectious vectors, whose presence in turn 
depends on environmentally sensitive factors such as vector abun-
dance, contact with infectious reservoirs and vector competence. 
Identifying human footprint thresholds can help predict tipping points 
at which human activities might lead to qualitative changes in disease 
risk. Specifically, our results show that areas that have undergone high 
to intense human pressure (a human footprint between 6 and 14) are 
more likely to harbour diseases transmitted by the urban mosquito 
Aedes aegypti (dengue, chikungunya and Zika) and less likely to harbour 

the more sylvatic and rural diseases (malaria, cutaneous leishmaniasis 
and visceral leishmaniasis) (Fig. 4a and Supplementary Table 8). The 
relative importance of human footprint and the estimated human 
footprint transition threshold differs among pathogens, probably 
reflecting their unique disease ecology (Figs. 3 and 4). For example, 
the probability of malaria occurring in Brazil steeply declines at a 
human footprint above 5, which is associated with transitions between 
intact ecosystems and intensive agricultural practices, supporting 
previous findings that malaria transmission increases with frontier 
forest clearing26. By contrast, dengue, chikungunya and Zika steadily 
increase in occurrence with human footprint, and their probability of 
occurrence is maximized at a human footprint above 8–12. These values 
correspond to intense human pressure, including built environments, 
high population density and extensive transportation networks (such 
as roads, railways or navigable waterways). These urban environments 
are established habitats for populations of Ae. aegypti, the primary 
vector of dengue, chikungunya and Zika in Brazil27,28.

Total population was the most important predictor of occurrence 
for all VBDs except dengue, for which human footprint and tempera-
ture were equally important (Fig. 3). Using both human footprint and 
total population, which were not strongly correlated (correlation 
coefficient r = 0.30) (Supplementary Fig. 3), in a single model allowed 
us to distinguish the impact of humans on the land from the impact of 
the total population. Urbanization was not included in the model as 
it is the most highly weighted contributor to calculations of human  
footprint and thus was strongly correlated with human footprint2. 
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Unlike human footprint, which showed nuanced and nonlinear impacts 
that qualitatively differed by VBD ecology, population size had a  
monotonically increasing relationship with probability of disease 
occurrence (Supplementary Fig. 4). This positive relationship  
was expected because larger populations have a greater number of 
susceptible hosts, a higher probability of introduction and an increased 
capacity for disease detection and reporting.

The relationships of Zika and visceral leishmaniasis to human 
footprint merit further discussion. Although human footprint greatly 
improved model performance, for these two pathogens, human 
footprint was equal to but not better than land-class categories in 
importance for predicting occurrence (Fig. 3). Furthermore, in other 
land-class studies, Zika transmission has been associated with cropland 
and grassland areas29, but here we found the measure of footprint 
threshold (the value at which Zika reaches 50% of its highest probability 
of occurrence) to be the highest (human footprint = 12.89 with 95% 
CI of 12.82 to 12.96) of any selected VBD. The recent introduction of 
Zika into Brazil in 2015 may play a role in this discrepancy because the 
explosive, country-wide epidemic was probably driven by high host 
susceptibility and stochastic effects of early introductions30, and may 
not fully represent the equilibrium socio-environmental conditions 
associated with endemic transmission. A visual comparison with spatial 
patterns of chikungunya incidence (Fig. 1) supports this point, as the 
pathogens share a vector and socio-ecological conditions underlying 
transmission, yet had distinct incidence patterns that may reflect the 
impact of stochasticity during emerging epidemics. It is therefore 

likely that, while Zika occurrence increases with human footprint, 
epidemic case data from Brazil exaggerate this relationship due to the 
high susceptibility of human population and the explosive spread of 
emerging pathogens in urban areas31.

Visceral leishmaniasis had a non-monotonic relationship with 
human footprint, such that the probability of visceral leishmaniasis  
occurrence initially decreased and then increased with higher  
human footprint values, which was overall relatively less important  
than for the other focal VBDs (Figs. 3 and 4). By contrast, we had hypo
thesized that, as a peri-urban disease that cycles between sandflies, 
domestic dogs and humans, visceral leishmaniasis would monotoni-
cally increase with human footprint. It is possible that the observed  
relationship is a result of the low overall incidence and geographic  
range of visceral leishmaniasis, which may be confounded with  
spatial patterns of human footprint (Figs. 1 and 2). Alternatively, it is 
possible that human footprint does not capture the multiple socio- 
environmental conditions involved in visceral leishmaniasis trans-
mission ecology as well as it does for other VBDs. Recent work in the 
Brazilian state of São Paolo has found a link between deforestation and 
visceral leishmaniasis as the disease has spread from formerly endemic 
rural areas into urban areas in conjunction with the development of an 
oil pipeline25. As for most of the other focal VBDs, human population 
was very important for predicting visceral leishmaniasis occurrence, 
and in this case may represent the joint effect of human population 
on the availability of susceptible humans and dogs. The Ministry of 
Health estimates that there is one dog for every four people in Brazil, 
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suggesting a strong linear relationship between human population 
size and the number of reservoir hosts32.

In addition to the impacts of human footprint and popula-
tion size, we expected climate to play an important role in deter-
mining VBD transmission because temperature, precipitation and  
humidity are known to constrain vector distributions and biology33,34. 
We hypothesized that temperature would have a nonlinear, increasing 
relationship with the transmission of all six VBDs. All focal patho-
gens showed a positive relationship with average annual temperature  
that increased steeply between 20 °C and 27 °C, indicating an impor-
tant temperature threshold for disease occurrence. Dengue, cutane-
ous leishmaniasis and chikungunya had relatively lower threshold  
temperatures, reaching 50% of their maximum occurrence prob-
abilities at 22–23 °C, while Zika, malaria and visceral leishmaniasis  
reached 50% of their maximum occurrence probability at higher  
temperatures of 25–27 °C (Fig. 4b). Temperature directly affects  
vector ecology, competence and parasite infectivity, and our results 
support its importance for all six focal VBDs (Fig. 3). Identifying more 
precise differences in thermal responses of diseases (for example, 
ref. 33) from this kind of observational study is challenging because 
climate is confounded by the geographic associations of diseases with 
land use and other factors. For example, malaria in this region is largely 
restricted to the Amazon rainforest, which is closer to the Equator 
and therefore warmer than other parts of Brazil. Rainfall was also an 
important predictor for all six VBDs (Fig. 3), as expected from the reli-
ance of vectors on standing water and/or humid habitats for breeding.

Accelerating rates of land conversion, human population growth, 
demand for resources and climate change make it essential to iden-
tify thresholds of human pressures that correspond to increased or 

decreased risk of VBD transmission. Here we compared the multi
dimensional relationship between human activities, measured as 
human footprint, with the transmission of multiple VBDs at a broad 
geographic scale using a machine learning approach (Methods and  
Supplementary Fig. 5). This study is a first large-scale test of the 
hypothesis that human footprint has multidimensional, distinct and  
nonlinear effects on VBDs that mirror their transmission ecology,  
and our findings support this hypothesis.

There are several important limitations to this approach that 
future work should address. First, this study is observational and does 
not necessarily capture underlying causal mechanisms. It is subject 
to under-reporting of disease cases (particularly for pathogens that 
frequently cause asymptomatic infection) and measurement error 
and autocorrelation among environmental covariates. Second, while 
human footprint represents an important advance in globally acces-
sible, high-resolution mapping of multidimensional impacts of humans 
on landscapes, it is currently only available for recent time periods and 
is updated infrequently. As a result, we had to interpolate between 
2013 and 2019 and across two methods (the original computation 
and a validated machine learning method2,18) to calculate human foot-
print for each study year. This is limiting because the assumption of a 
constant, linear change in human footprint from year to year prob-
ably biases our results to be conservative because we are not able 
to catch year-specific shocks in human pressure that could result in 
rapid changes in VBD occurrence. We also hypothesize that the rate 
at which a municipality changes in human footprint from one year to 
the next is important for disease occurrence and, if available, would 
better define the tipping points in our partial dependence plots (PDPs) 
and reduce the uncertainty in our variable importance measures. 
Third, the socio-ecological predictors of disease occurrence may not 
be the same as the drivers of outbreak size, so the areas that have a 
high probability of disease occurrence are not necessarily those with  
the highest disease risk or burden. In particular, disease incidence  
can vary substantially due to variation in susceptible host popula-
tion size, vector control measures and access to healthcare and other  
services. Our primary goal was to capture the land-use niches of  
multiple VBDs in a comparative approach and to identify critical  
thresholds across which a more intense human footprint could 
lead to shifts in disease occurrence. Important directions for future  
work include conducting causal analyses to understand whether 
shifts across human footprint thresholds lead to shifts in VBD occur-
rence (and at what timescales) and investigating how human pressure  
interacts with socioeconomic variables as drivers of VBD incidence.

Comparing six important VBDs in Brazil, we found that human 
footprint is an important predictor of local occurrence and that its 
nonlinear effects vary predictably with the transmission ecology of 
each VBD. In a critical window in which human footprint changes from 
moderate (4–7) to high (7–12) to intense (>12), disease occurrence 
abruptly shifts from malaria, cutaneous leishmaniasis and visceral 
leishmaniasis to dengue, chikungunya and Zika (arboviruses transmit-
ted by the urban mosquito Ae. aegypti and diseases that require distinct 
responses in vector control, diagnostics and environmental manage-
ment). Because biomedical and chemical approaches alone have failed 
to sustainably eliminate these VBDs, managing the socio-ecological 
settings that promote pathogen transmission is a critical frontier  
for planetary health. In conjunction with climatic pressures, human 
pressure presents a major risk for disease emergence and transmission, 
threatening the well-being of humans and the environment.

Methods
Study location and VBDs
We focused our analysis on six endemic VBDs in Brazil. The diseases 
are associated with a significant global health burden (collectively  
estimated to cause more than 620 million cases worldwide annually) but 
vary in their vector and reservoir host ranges and their hypothesized 
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ecological and climatic niches. Moreover, the six VBDs encompass  
a range of diseases classically considered to be frontier, rural or  
urban. As a result, we expected variations in their responses to  
Brazil’s large range of human footprint. We initially included yellow 
fever virus as a seventh disease, but extreme data sparsity (only 64 
cases reported throughout the study period) restricted analysis of 
this pathogen. Brazil is an ideal country in which to test environmental 
predictors of VBDs because (1) data on infections are publicly available 
for more than 5,500 municipalities, (2) Brazil has diverse and con-
centrated land-use types and anthropogenic pressures (for example, 
ranging from pristine forests to intensive agricultural production and 
high-density cities), (3) Brazil spans a range of climatic conditions, 
from equatorial tropical conditions to more temperate conditions in 
the south of the country.

Data collection and preparation
For all diseases except malaria, annual case data were collected from  
the Brazilian national disease surveillance system (SINAN) for each 
municipality from 2013 to 201935. For malaria, disease notification  
data were collected from the Brazil Epidemiological Surveillance 
Information System for Malaria (SIVEP–MALARIA) for two parasites 
(Plasmodium vivax and Plasmodium falciparum) for each municipal-
ity and year36. While we collected and mapped data on case incidence  
(Fig. 1), we modelled disease occurrence (binary: whether or not a 
disease occurs in a municipality in a given year) here to capture the  
ecological niche for each disease with respect to land use and other 
environmental variables. The dengue, malaria, visceral leishmania-
sis and cutaneous leishmaniasis analyses included 38,893 munici-
pality–year observations; Zika included 22,276 municipality–year 
observations (reported in 2016–2019, inclusive); and chikungunya  
included 16,707 municipality–year observations (reported in  
2017–2019, inclusive).

Human footprint was included as the primary measure of 
anthropogenic pressure. We assumed that the probability of patho-
gen occurrence directly increases with population size and expected 
socioeconomic factors to influence rates of transmission through 
multiple pathways (for example, housing quality, investment in control 
measures, education and awareness of disease risk factors). However, 
we were primarily interested in landscape changes and environmental 
degradation, as these factors were expected to strongly influence the 
ecology of the focal vector species and the pathogens they transmit 
and how human populations interact with and use land; they may also 
be broadly predictive of disease occurrence across both ecological and 
socioeconomic contexts. Therefore, to isolate landscape level changes 
of human footprint, we included human population as a covariate in 
our models. Human footprint is a global, dimensionless index of human 
pressure on the land surface and is calculated from eight different 
human pressures: (1) built environments, (2) population density, (3) 
electric infrastructure, (4) crop lands, (5) pasture lands, (6) roads, 
(7) railways and (8) navigable waterways. The average annual human 
footprint for each municipality was calculated from two datasets: the 
estimate for 20132 and an updated machine learning estimate for 201918, 
both of which calculated human footprint at 1 km spatial resolution. 
The average human footprint for each municipality was extracted  
for 2013 and 2019 using a shapefile with municipality boundaries in  
R (version 4.0.2) (ref. 37). The extracted values were then interpolated 
for the years 2014–2018, assuming a constant rate of change. Popula-
tion data per municipality per year from 2013 to 2019 were extracted 
from the WorldPop database38.

Temperature, precipitation and humidity are known to mediate 
the transmission of VBDs through several mechanisms including repro-
duction, development, behaviour and population dynamics33,34. For our 
analysis, we were interested in climate variables that constrain vector 
biology but also capture variation between municipalities on an annual 
scale. We originally considered annual mean temperature, cumulative 

precipitation, the total number of wet days, climate extremes (minimum 
temperature, maximum temperature, minimum precipitation, maxi-
mum precipitation) and climate variance (temperature seasonality).  
There was high correlation, however, between many of these variables, 
and only the annual mean temperature, cumulative precipitation and 
the total number of wet days were used in the final analysis. Climate 
data were extracted from the Climate Research Unit, a global gridded 
satellite dataset with a resolution of 0.5° × 0.5° (ref. 39) (Fig. 2c and 
Supplementary Fig. 6a,b). Average climate data were extracted using 
a shapefile of municipality boundaries in R, for each municipality and 
year from 2013 to 2019.

Three land-class categories were included in the analysis: pasture, 
cropland and forest area (Fig. 2d and Supplementary Fig. 6c,d). For each 
municipality, the total area of each land-class category from 2013 to 
2019 was collected from MapBiomas40, a network that produces annual 
land-use and land-class maps for Brazil using Google Earth Engine cloud 
computing technology to process Landsat data. The percentage cover 
for each of the three categories was then calculated from the total area 
of the municipality for each year. Percentage cropland areas were 
log-transformed for normalization. While we included per cent cover 
of major land-use and land-cover categories (forest, cropland, pasture), 
we excluded urban cover. Urbanization is a highly weighted factor 
in human footprint, which includes built environment, night-time 
lights and the density of roads. However, because human footprint 
also includes information on population density, crop and pasture 
cover, railways and navigable rivers, our central argument here is that 
it more holistically captures the multidimensional effects of human 
pressure that may be related to VBD transmission, and therefore is a 
better predictor than urban cover alone.

Statistical analysis
The temporal resolution of human footprint and land-cover data  
limited our analysis to an annual scale. The analysis methods are  
summarized in Supplementary Fig. 2. Briefly, we used a machine  
learning approach to assess the relationships between human 
footprint, climate, land-class categories and vector presence and  
the occurrence of six VBDs in Brazil. Machine learning approaches 
are increasingly being applied in disease ecology because they  
can accommodate complexity and nonlinearity to identify link-
ages among environmental factors and disease41. To understand the  
predictors of occurrence for each VBD, we used a random forest  
model, a versatile machine learning technique that uses randomized 
recursive partitioning to solve complex prediction, regression  
and classification problems. These models work by repeatedly drawing 
bootstrap samples from the original sample and a random selection  
of predictors to grow a predetermined number of decision trees  
across which results are pooled42.

Although collinearity does not influence random forest model 
performance, it can distort the magnitude of the variable importance 
and complicate the interpretation of variable response curves43. The 
direction and strength of relationships between explanatory variables 
was assessed using Pearson’s correlation and Spearman tests and cal-
culated using the package corrplot in R44. We considered a correlation 
coefficient of >0.7 to indicate high correlation between variables45 and 
removed one of the two correlated variables based on a priori empiri-
cal knowledge. Ultimately, we excluded climate extremes (minimum 
temperature, maximum temperature, minimum precipitation, maxi-
mum precipitation), climate variance (temperature seasonality) and 
percentage urban cover.

Once the full dataset had been cleaned and compiled, the model-
ling process involved the following steps:

•	 Explanatory variables: all environmental predictors were 
included in each model, except in the supplementary model that 
includes vector occurrence (Supplementary Fig. 7), in which 
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only the presence of the most relevant vector was used for each 
disease (for example, the presence of Anopheles was only used in 
the malaria models) (Supplementary Table 9).

•	 Model training, tuning, selection: for each model iteration, the 
optimal number of variables randomly sampled as candidates 
for each split (mtry) and node size was calculated using the tune 
function in the randomforestSRC package in R46. The tune func-
tion estimated model performance (out-of-bag error) for a range 
of combinations of mtry and node size values and selected the 
optimal values as the combination that yielded the lowest model 
error. All models were grown to 500 trees to maximize model 
performance and minimize computational costs.

•	 Model analysis: classification analysis was performed with the 
imbalance function in the randomforestSRC package, using the 
random forest quantile-classifier method47.

•	 Model validation: spatiotemporal cross-validation was used to 
evaluate model performance to better understand the predic-
tive power of the model in geographic regions and years not 
used for training. Municipalities in Brazil were split geographi-
cally into 15 folds using the R package spatialsample48. The folds 
were assigned using k-means clustering, in which each munici-
pality belongs to a cluster with the nearest mean centroid. The 
data were then split into three expanding windows: (1) data  
from 2013 to 2016 were used in the training set, and data from 
2017 were used as the test set, (2) data from 2013 to 2017 were 
used for training and data from 2018 were used for testing,  
(3) data from 2013–2018 were used for training and data from 
2019 were used for testing. Within each window, the model was 
then tuned and trained 15 times, where, for each iteration,  
14 folds were used to train the model, and the hold-out fold  
was used to evaluate model performance (see below). In  
summary, the test set only contained municipalities that were 
unique in both space and time in comparison to the training 
set. In total, for all pathogens except chikungunya, the model 
was trained and tested 45 times. For chikungunya, which was 
detected in Brazil starting in 2017, the model was trained and 
tested 30 times.

We calculated three groups of metrics from the random forest 
models for each pathogen. First, we assessed overall model perfor-
mance by calculating model sensitivity, specificity and the area under 
the receiver operating characteristic curve based on the spatiotem-
poral cross-validation. For the out-of-sample model performance 
metric, we calculated the mean and 95% confidence interval around 
each of these values.

Second, we calculated variable importance, which can be inter-
preted as the contribution of each explanatory variable to the pre-
diction accuracy of the model using the computationally optimized 
‘random’ algorithm in the randomforestSRC package. The contribu-
tions to the prediction accuracy were estimated by calculating the per 
cent increase in the standardized mean squared error when the focal 
variable was permuted. To test whether each variable significantly 
contributed to model accuracy, we conducted a permutation-based 
significance test using a subsampling method. This estimated the prob-
ability (permutation-based P value) that the change in model accuracy 
when the covariate is permuted versus not permuted was greater than 
or equal to 0 (that is, that the null hypothesis is supported).

Finally, we assessed the overall form and direction in which each 
explanatory variable relates to disease occurrence using PDPs. PDPs 
depict the relationship between the probability of disease occurrence 
and the variable of interest across a range of values for that feature. 
At each value of the feature, the model was evaluated for all values 
of the other covariates; the final model output was the average pre-
dicted probability across all model inputs. The data frame under
pinning the PDPs was constructed using the plot.variable function 

in the randomforestSRC package in R, and the relationships between 
each feature and the predicted probabilities were plotted with ggplot2, 
using a loess transformation (that is, locally weighted smoothing). To 
compare the qualitative shape of PDPs across pathogens, the PDPs in 
the main text were scaled by their minimum and maximum and plotted 
on a single plot. We defined a threshold as the value at which a pathogen 
reaches 50% of its maximum occurrence probability. As a result, these 
scaled PDPs should be interpreted as comparing the direction and 
nonlinearity of responses of different diseases to environmental predic-
tors, but not their absolute magnitude or relative importance (which is 
conveyed in variable importance plots). Unscaled PDPs are presented 
in Supplementary Figs. 8–11. To generate measures of uncertainty 
around our estimates of the relationship between each covariate and 
pathogen occurrence, we used a bootstrapping approach where the 
model was iterated 50 times using different subsets of 80% of the full 
dataset. Our results displayed the average relationship across model 
iterations as well as a PDP per iteration.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All datasets that have been used for this study are publicly avail-
able and links have been provided for each within the Methods 
and in the GitHub repository at https://github.com/ckglidden/
human-footprint-index-VBD. Source data are provided with this paper.

Code availability
All code and analysis for this study are available at https://github.com/
ckglidden/human-footprint-index-VBD.
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Study description We used machine learning (random forests) to evaluate the effect of human footprint index on disease occurrence of six vector-
borne diseases in Brazil. We ran separate models for each disease, where disease occurrence was the response variable. We included 
human footprint index, human population size, climate (annual mean temperature, cumulative precipitation, and the total number of 
wet days), and land-cover data (% cover of agriculture and forest) as model covariates. 

Research sample In total, the dengue, malaria, visceral leishmaniasis, and cutaneous leishmaniasis analyses included 38,893 municipality-year 
observations; Zika included 22,276 municipality-year observations (reported in 2016-2019, inclusive); and chikungunya included 
16,707 municipality-year observations (reported between 2017-2019, inclusive).

Sampling strategy We sampled all municipalities in Brazil for the number of years we could retrieve case data. 

Data collection For all diseases (except malaria) annual case data were collected from the Brazilian national disease surveillance system (SINAN) for 
each municipality from 2013 to 2019. For malaria, disease notification data were collected from the Brazil Epidemiological 
Surveillance Information System for Malaria (SIVEP-MALARIA) for two parasites (Plasmodium vivax and Plasmodium falciparum) for 
each municipality and year. Annual average human footprint for each municipality was calculated from two datasets, the estimate for 
2013 and an updated machine learning estimate for 2019 both of which calculate human footprint at 1 km spatial resolution. The 
average human footprint for each municipality was extracted for 2013 and 2019 using a shapefile with municipality boundaries in R. 
The extracted values were then interpolated for the years 2014-2018, assuming a constant rate of change. Population data per 
municipality per year from 2013-2019 were extracted from the WorldPop database. Climate data was extracted from the Climate 
Research Unit, a global gridded satellite dataset with a resolution of 0.5x0.5 degrees. Average climate data were extracted using a 
shapefile of municipality boundaries in R, for each municipality and year from 2013 to 2019. For each municipality the total area of 
each land class category from 2013 to 2019 was collected from MapBiomas. 

Timing and spatial scale In total, the dengue, malaria, visceral leishmaniasis, and cutaneous leishmaniasis analyses included 38,893 municipality-year 
observation (one observation per municipality per year) from 2013-2019. Zika included 22,276 municipality-year observations 
spanning 2016-2019. Chikungunya included 16,707 municipality-year observations spanning 2017-2019. Time scales were 
determined by disease incidence availability within the time-frame that human footprint index was measured (2013-2019).  

Data exclusions No data were excluded from this study. 

Reproducibility To verify reproducibility, we have posted all code and datasets used on GitHub.

Randomization Randomization does not apply to our study design. Sampling units were municipality per year. Data was grouped by municipality as 
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Randomization this was the spatial resolution of the disease data. Data was then grouped by year as this was the temporal resolution of the land-use 

and human footprint data. We used temporal spatial cross- validation to account for temporal and spatial autocorrelation in our 
model performance estimates. 

Blinding Our study is an observational study where blinding is not applicable.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	Human footprint is associated with shifts in the assemblages of major vector-borne diseases

	Results and Discussion

	Methods

	Study location and VBDs

	Data collection and preparation

	Statistical analysis

	Reporting summary


	Acknowledgements

	Fig. 1 Disease incidence for the six VBDs.
	Fig. 2 Environmental covariates that predict VBD occurrence in Brazil averaged from 2013 to 2019.
	Fig. 3 The importance of environmental predictors of the occurrence of the six VBDs.
	Fig. 4 Probability of disease occurrence across human footprint and temperature.
	Table 1 Selected VBDs and their associated land-use categories, vectors, vertebrate hosts and global burden.




