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Predicting how increasing intensity of human-environment interactions
affects pathogen transmission is essential to anticipate changing disease

risks and identify appropriate mitigation strategies. Vector-borne diseases
(VBDs) are highly responsive to environmental changes, but such responses
are notoriously difficult to isolate because pathogen transmission depends
onasuite of ecological and social responses in vectors and hosts that may
differ across species. Here we use the emerging tools of cumulative pressure
mapping and machine learning to better understand how the occurrence of
sixmedically important VBDs, differing in ecology from sylvatic to urban,
respond to multidimensional effects of human pressure. We find that not
onlyis human footprint—anindex of human pressure, incorporating built
environments, energy and transportation infrastructure, agricultural lands
and human population density—an important predictor of VBD occurrence,
but there are clear thresholds governing the occurrence of different VBDs.
Across aspectrum of human pressure, diseases associated with lower
human pressure, including malaria, cutaneous leishmaniasis and visceral
leishmaniasis, give way to diseases associated with high human pressure,
such asdengue, chikungunya and Zika. These heterogeneous responses of
VBDs to human pressure highlight thresholds of land-use transitions that may
lead to abrupt shifts in infectious disease burdens and public health needs.

Humans have interacted with the environment and modified land-
scapes for millennia, but the rate of modification has accelerated in the
past century'. Today, nearly 95% of the Earth'’s terrestrial surface has
been modified by humans, with almost 60% under intense or mode-
rate pressure’”. While anthropogenic environmental changes have
cascading, and sometimes irreversible, impacts on natural and social
systems?, we have only recently begun to quantify the extent and inten-
sity of human pressure on a planetary scale*’. Advances in satellite
imagery, computational capacity and high-resolution datahaveled to
the ability to map cumulative human pressure through time and space,

openingthe doortointerdisciplinary applications for understanding
the consequences of human pressures forhuman and planetary health.

When humans modify landscapes—either through large-scale
conversion of natural habitat or in more localized and smaller-scale
ways, such as hunting, selective logging and artisanal gold mining—they
alter habitat structures and speciesinteractions, each of which can shift
the transmission of vector-borne diseases (VBDs)®’. Recent decades
have witnessed the emergence, re-emergence and geographic shifts of
VBDsin many regions across the globe. These changes may have arisen
from various human impacts on the environment and local ecology,
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Table 1| Selected VBDs and their associated land-use categories, vectors, vertebrate hosts and global burden

VBD Associated land-use types Disease vector(s) Vertebrate hosts Global burden

Dengue Urban® Aedes aegypti, Aedes albopictus ~ Humans 390 million cases yr™ (ref.*°)
Chikungunya Urban, peri-urban®® Ae. aegypti, Ae. albopictus Humans 330,000 cases yr™' (ref.”")
Malaria Forest edge, agriculture®®  Anopheles spp. Humans 229 million cases yr™ (ref.”™)
Zika Urban, rural, peri-urban®  Ae. aegypti, Ae. albopictus Humans 100,000 cases yr™ (ref.")

Cutaneous leishmaniasis  Forest, rural®** >60 sandfly species

Humans, rodents, xanthra,  600,000-1,000,000 cases yr (ref.*)

marsupials, primates

Visceral leishmaniasis Rural, peri-urban, urban®  Lutzomyia longipalpis

Humans, domestic dogs 50,000-90,000 cases yr™ (ref.®)

including economic globalization, land use and climate change® ™.

Arthropod disease vectors and the pathogens they transmit are
highly sensitive to their environment, through a suite of traits that
respond in complex, nonlinear and interactive ways'*". Often, vectors
and pathogens (that s, disease systems) occupy their own unique niche
so that each transmission cycle responds distinctly to environmental
change. With increasing anthropogenic pressure, one would expect
transitions in the occurrence of different diseases; for instance, disease
systems adapted to agricultural mosaics may be replaced by disease
systems that thrive in urban sprawl. Yet, limited understanding of
the relationships between different VBDs and human-environment
interactions hinders projections of how disease assemblages collec-
tively change across complex and changing landscapes'®. The ability
to anticipate these transitions would support adynamic public health-
care infrastructure that can adapt to changes in disease occurrence
through space and time.

One approach for investigating the effects of land-use change
on VBD transmission uses broad classifications of land-use and
land-cover classes, such as ‘urban area’ or ‘forest area’. Thisis primarily
because large-scale land conversions can be easily detected and
monitored via space-borne satellites, and the detection of land-
cover conversion is becoming ever more fine-scale. However,
because pathogens respond to multidimensional features within
alandscape (Supplementary Fig. 1), individual land-use classes are
limited when predicting thresholds of change that may promote
VBD occurrence. This is particularly challenging to quantify holisti-
cally across large land-use gradients and across different VBDs with
unique ecologies. Moreover, assessments that use land-cover classes
aloneareinadequatetoidentify relationships between anthropogenic
pressures on land and VBD transmission risks because they cannot
always distinguish pressures that degrade, but do not outright
convert, natural ecosystems>'*. This makes it difficult to separate
the coupled natural and human processes that drive the association
between specific land-use classes and disease.

Human footprint index (hereafter, human footprint) offers an
ideal link between large-scale studies that use land-use classes and
small-scale studies that have more detailed data because it is a single
metric that captures the multidimensional influence of humans on
land as it changes through space and time. Human footprint com-
bines cumulative pressure mapping of eight indices at a fine spatial
resolution (30 arcsec): (1) built environments, (2) population density,
(3) electric infrastructure, (4) crop lands, (5) pasture lands, (6) roads,
(7) railways and (8) navigable waterways>'*". Calculated as a continu-
ous scale of increasing human pressure from 0 to 50, specific ranges
of human footprint have been associated with variationin ecosystem
function and integrity. Areas with human footprints of <4 are generally
considered intact ecosystems that contain mostly natural habitat
and maintain ecosystem integrity?. Studies on species extinctions
haveidentified ahuman footprint threshold of >3 as a tipping pointin
which extinction events occur®. Areas with human footprints between
4 and 7 tend to be dominated by agricultural production, which
exerts moderate to high human pressure on land®. Intense human

pressure has been defined as areas with human footprints >12 (refs. “°).
Sinceits early developmentin 2002, human footprint hasbeen applied
in arange of settings including biodiversity conservation®*?, climate
change assessments®>* and policy development®, but not to VBDs.
Human footprint offers aunique opportunity to investigate thresholds
of human pressure on VBDs across highly heterogenous environments
that may promote or reduce disease risks atabroad geographicscale.
In short, human footprint synthesizes pressures that might affect
pathogen transmission and disease through multiple interrelated
mechanisms, including changes in human mobility, vector (and reser-
voir host) habitat, contact between vectors and hosts, socioeconomic
conditions and practices, and access to disease control measures and
healthcare, among others.

We focus on Brazil as a case study of global patterns of human
pressure and their relationships with VBDs because it is a large, eco-
logically and socio-economically diverse country that contains many
biogeographic zones, intense and variable land-use pressures, a high
incidence of multiple VBDs with contrasting ecologies and a long-
standing nationwide disease surveillance system. Within Brazil we
focus our analysis on the six most common VBDs of public health
importance: dengue, chikungunya, malaria, Zika, cutaneous leish-
maniasis and visceral leishmaniasis (Table 1). Aside from their public
healthimportance, these diseases occur endemically within Brazil, are
nationally notifiable and differ spatially and over time in patterns that
probably reflect local socio-ecological conditions (Figs. 1and 2). Our
aimis to compare responses to human pressure among diseases with
distinct ecologies, as a foundation for anticipating potential future
disease responses to land-use change. Specifically, we test several
key hypotheses: (1) land-use pressure and associated degradation,
as captured by human footprint, is an important predictor of VBD
occurrence (thatis, whether or not atleast one caseis detected within
amunicipality in a given year); (2) the relationship with human foot-
print is nonlinear and differs predictably among VBDs on the basis
of transmission ecology, with sylvatic and frontier diseases (malaria
and cutaneous leishmaniasis) peaking at a lower human footprint
than peri-urban and urban diseases (visceral leishmaniasis, dengue,
chikungunya, Zika); (3) the predictive power of the human footprint
on VBDs goes beyond that of total population size, capturing addi-
tional variation; (4) the suitability of other climatic factors such as
temperature and rainfall promote VBD occurrence; and (5) in contrast
toland-use classes alone, human footprint allows for easy-to-interpret
comparisons of the response of multiple VBDs to human modified
environments. Our goalis to understand the utility of human footprint
asapredictor of VBDs with differing ecologies and to explore nonlinear
relationships—in particular, threshold effects and transitions in disease
assemblages across a gradient of landscapes—rather than to identify
all possible predictors or to make causal inference, both of which are
important future directions.

Results and Discussion
Landscapes contain multiple VBDs, and while each system
may respond to different individual features of a landscape, human
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Fig.1|Disease incidence for the six VBDs. a-f, Log-transformed average annual
cases per 1,000 per municipality (colour scale) for dengue (a), chikungunya

(b), Zika (c¢), malaria (d), cutaneous leishmaniasis (e) and visceral leishmaniasis
(f). The average incidence is shown here for illustration, but models are

based on the binary occurrence of each disease within each municipality per
year (municipality-year level response). The averages are calculated from
2013t02019 ina,d-f, from 2017 t0 2019 in b and from 2016 to 2019 in c. Grey
municipalities did not report any cases of the disease during the study period.

footprint predicts disease occurrence across all six focal VBDs (mean
importance =10.46-44.91%, where the mean importance is the
percentincreaseinstandardized model error when the focal covariate
ispermuted). Inthe case of dengue and malaria, human footprint was
greatly more important than any single land-use category (Fig. 3 and
Supplementary Tables 1-7). As hypothesized, relationships between
human footprint and local pathogen transmission were nonlinear
andvariedindirectionamong pathogens (Fig.4aand Supplementary

Table 8). Specifically, we found that human footprinthad anincreasing
relationship with disease occurrence for the urban diseases (dengue,
chikungunya and Zika) and a decreasing relationship for the
sylvatic or frontier diseases (malaria and cutaneous leishmaniasis).
The relationship of visceral leishmaniasis, a formerly rural disease
now expanding into peri-urban areas”, with human footprint was a
hybrid of the responses of urbanand sylvatic diseases, steeply declining
withahumanfootprintbetween 8 and17 thenincreasing withahuman
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Fig.2|Environmental covariates that predict VBD occurrence in Brazil
averaged from 2013 to0 2019. a, Human footprint, ranging from 0 to 50,
for which values from 4 to 7 indicate moderate pressure (typical for

agricultural landscapes) and values greater than 12 indicate intense pressure.
b, Log-transformed human population size. ¢, Average annual temperature.
d, Percentage areaforest cover.

footprint above 17. Our results provide a basis for comparing shifts
in VBD assemblages across landscapes, rather than focusing on
single pathogens.

The distinct threshold responses across VBDs highlight the need
for policies that account for the potentially varied impacts of human
pressure on pathogen transmission. Specifically, while this analysis
is descriptive and does not explicitly capture changes over time, we
found that gradients in human footprint correspond to gradients in
the occurrence of different diseases, which require distinct control
strategies. Supporting thisidea, all of the focal diseases that have been
present in Brazil since the early twenty-first century have shifted in
distributionandincidence inthe past decade (Supplementary Fig.2);
however, comparable human footprint datawithwhichto directly test
this prediction are not available for the historical period.

Pathogen transmission is a complex process that responds to
multiple aspects of environmental change'. For example, climate,
land use, ecosystem transitions and mobility affect the probability
of humans encountering infectious vectors, whose presence in turn
depends on environmentally sensitive factors such as vector abun-
dance, contact with infectious reservoirs and vector competence.
Identifying humanfootprint thresholds can help predict tipping points
atwhich human activities might lead to qualitative changes in disease
risk. Specifically, our results show that areas that have undergone high
to intense human pressure (a human footprint between 6 and 14) are
more likely to harbour diseases transmitted by the urban mosquito
Aedes aegypti(dengue, chikungunya and Zika) and less likely to harbour

the more sylvaticand rural diseases (malaria, cutaneous leishmaniasis
and visceral leishmaniasis) (Fig. 4a and Supplementary Table 8). The
relative importance of human footprint and the estimated human
footprint transition threshold differs among pathogens, probably
reflecting their unique disease ecology (Figs. 3 and 4). For example,
the probability of malaria occurring in Brazil steeply declines at a
humanfootprintabove 5, whichis associated with transitions between
intact ecosystems and intensive agricultural practices, supporting
previous findings that malaria transmission increases with frontier
forest clearing®. By contrast, dengue, chikungunya and Zika steadily
increase in occurrence with human footprint, and their probability of
occurrence is maximized at ahuman footprint above 8-12. These values
correspond tointense human pressure, including built environments,
high population density and extensive transportation networks (such
asroads, railways or navigable waterways). These urban environments
are established habitats for populations of Ae. aegypti, the primary
vector of dengue, chikungunya and Zika in Brazil**%,

Total population was the mostimportant predictor of occurrence
for all VBDs except dengue, for which human footprint and tempera-
ture were equally important (Fig. 3). Using both human footprint and
total population, which were not strongly correlated (correlation
coefficientr=0.30) (Supplementary Fig. 3), in asingle model allowed
ustodistinguish theimpact of humans on the land from the impact of
the total population. Urbanization was not included in the model as
it is the most highly weighted contributor to calculations of human
footprint and thus was strongly correlated with human footprint?.
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Fig.3|Theimportance of environmental predictors of the occurrence of the
six VBDs. a-f, The contribution of variables to the prediction accuracy of the
overall model (multiplied by 100 for visualization) for dengue (a), chikungunya
(b), Zika (c), malaria (d), cutaneous leishmaniasis (e) and visceral leishmaniasis
(f). The point represents the mean % change in model standard error when the
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selected variable is permuted, the error bars represent the 95% confience interval
across subsampling permutation iterations. The variables are colour coded
accordingto their categories (anthropogenic, climatic and land-class variables
areshowninred, blue and green, respectively).

Unlike human footprint, which showed nuanced and nonlinearimpacts
that qualitatively differed by VBD ecology, population size had a
monotonically increasing relationship with probability of disease
occurrence (Supplementary Fig. 4). This positive relationship
was expected because larger populations have a greater number of
susceptible hosts, a higher probability of introductionand anincreased
capacity for disease detection and reporting.

The relationships of Zika and visceral leishmaniasis to human
footprint merit further discussion. Although human footprint greatly
improved model performance, for these two pathogens, human
footprint was equal to but not better than land-class categories in
importance for predicting occurrence (Fig. 3). Furthermore, in other
land-class studies, Zika transmission has been associated with cropland
and grassland areas”, but here we found the measure of footprint
threshold (the value at which Zika reaches 50% of its highest probability
of occurrence) to be the highest (human footprint = 12.89 with 95%
Cl of 12.82t0 12.96) of any selected VBD. The recent introduction of
Zikainto Brazilin 2015 may play arole in this discrepancy because the
explosive, country-wide epidemic was probably driven by high host
susceptibility and stochastic effects of early introductions®’, and may
not fully represent the equilibrium socio-environmental conditions
associated with endemic transmission. A visual comparison with spatial
patterns of chikungunya incidence (Fig. 1) supports this point, as the
pathogens share a vector and socio-ecological conditions underlying
transmission, yet had distinct incidence patterns that may reflect the
impact of stochasticity during emerging epidemics. It is therefore

likely that, while Zika occurrence increases with human footprint,
epidemic case datafrom Brazil exaggerate thisrelationship due to the
high susceptibility of human population and the explosive spread of
emerging pathogens in urban areas®.

Visceral leishmaniasis had a non-monotonic relationship with
human footprint, such that the probability of visceral leishmaniasis
occurrence initially decreased and then increased with higher
human footprint values, which was overall relatively less important
thanfor the other focal VBDs (Figs. 3 and 4). By contrast, we had hypo-
thesized that, as a peri-urban disease that cycles between sandflies,
domestic dogs and humans, visceral leishmaniasis would monotoni-
cally increase with human footprint. It is possible that the observed
relationship is a result of the low overall incidence and geographic
range of visceral leishmaniasis, which may be confounded with
spatial patterns of human footprint (Figs. 1 and 2). Alternatively, it is
possible that human footprint does not capture the multiple socio-
environmental conditions involved in visceral leishmaniasis trans-
mission ecology as well as it does for other VBDs. Recent work in the
Brazilian state of Sao Paolo has found alink between deforestation and
visceral leishmaniasis as the disease has spread from formerly endemic
ruralareasinto urbanareasin conjunctionwiththe development ofan
oil pipeline®. As for most of the other focal VBDs, human population
was very important for predicting visceral leishmaniasis occurrence,
and in this case may represent the joint effect of human population
on the availability of susceptible humans and dogs. The Ministry of
Health estimates that there is one dog for every four people in Brazil,
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Fig. 4 | Probability of disease occurrence across human footprint and
temperature. a,b, VBDs respond distinctly and nonlinearly to human footprint
(a) and average annual temperature (b). Thin lines represent model output from
each bootstrapped iteration, and thicker lines represent the mean value across
theiterations. The dashed linesinarepresent the threshold value at whicha
pathogen reaches 50% of its maximum occurrence probability.

suggesting a strong linear relationship between human population
size and the number of reservoir hosts®.

In addition to the impacts of human footprint and popula-
tion size, we expected climate to play an important role in deter-
mining VBD transmission because temperature, precipitation and
humidity are known to constrain vector distributions and biology****.
We hypothesized that temperature would have anonlinear, increasing
relationship with the transmission of all six VBDs. All focal patho-
gens showed a positive relationship with average annual temperature
that increased steeply between 20 °C and 27 °C, indicating an impor-
tant temperature threshold for disease occurrence. Dengue, cutane-
ous leishmaniasis and chikungunya had relatively lower threshold
temperatures, reaching 50% of their maximum occurrence prob-
abilities at 22-23 °C, while Zika, malaria and visceral leishmaniasis
reached 50% of their maximum occurrence probability at higher
temperatures of 25-27 °C (Fig. 4b). Temperature directly affects
vector ecology, competence and parasite infectivity, and our results
supportitsimportance for all six focal VBDs (Fig. 3). Identifying more
precise differences in thermal responses of diseases (for example,
ref. **) from this kind of observational study is challenging because
climateis confounded by the geographic associations of diseases with
land use and other factors. For example, malariain this regionis largely
restricted to the Amazon rainforest, which is closer to the Equator
and therefore warmer than other parts of Brazil. Rainfall was also an
important predictor for all six VBDs (Fig. 3), as expected from the reli-
ance of vectors on standing water and/or humid habitats for breeding.

Accelerating rates of land conversion, human population growth,
demand for resources and climate change make it essential to iden-
tify thresholds of human pressures that correspond to increased or

decreased risk of VBD transmission. Here we compared the multi-
dimensional relationship between human activities, measured as
human footprint, with the transmission of multiple VBDs at a broad
geographic scale using a machine learning approach (Methods and
Supplementary Fig. 5). This study is a first large-scale test of the
hypothesis that human footprint has multidimensional, distinct and
nonlinear effects on VBDs that mirror their transmission ecology,
and our findings support this hypothesis.

There are several important limitations to this approach that
future work should address. First, this study is observational and does
not necessarily capture underlying causal mechanisms. It is subject
to under-reporting of disease cases (particularly for pathogens that
frequently cause asymptomatic infection) and measurement error
and autocorrelation among environmental covariates. Second, while
human footprint represents an important advance in globally acces-
sible, high-resolution mapping of multidimensionalimpacts of humans
onlandscapes, itis currently only available for recent time periods and
is updated infrequently. As a result, we had to interpolate between
2013 and 2019 and across two methods (the original computation
and avalidated machine learning method**®) to calculate human foot-
print for each study year. This is limiting because the assumption of a
constant, linear change in human footprint from year to year prob-
ably biases our results to be conservative because we are not able
to catch year-specific shocks in human pressure that could result in
rapid changes in VBD occurrence. We also hypothesize that the rate
at which a municipality changes in human footprint from one year to
the next is important for disease occurrence and, if available, would
better define the tipping pointsin our partial dependence plots (PDPs)
and reduce the uncertainty in our variable importance measures.
Third, the socio-ecological predictors of disease occurrence may not
be the same as the drivers of outbreak size, so the areas that have a
high probability of disease occurrence are not necessarily those with
the highest disease risk or burden. In particular, disease incidence
can vary substantially due to variation in susceptible host popula-
tion size, vector control measures and access to healthcare and other
services. Our primary goal was to capture the land-use niches of
multiple VBDs in a comparative approach and to identify critical
thresholds across which a more intense human footprint could
lead to shifts in disease occurrence. Important directions for future
work include conducting causal analyses to understand whether
shifts across human footprint thresholds lead to shifts in VBD occur-
rence (and at what timescales) and investigating how human pressure
interacts with socioeconomic variables as drivers of VBD incidence.

Comparing six important VBDs in Brazil, we found that human
footprint is an important predictor of local occurrence and that its
nonlinear effects vary predictably with the transmission ecology of
each VBD.Inacritical window in which human footprint changes from
moderate (4-7) to high (7-12) to intense (>12), disease occurrence
abruptly shifts from malaria, cutaneous leishmaniasis and visceral
leishmaniasis to dengue, chikungunya and Zika (arboviruses transmit-
ted by the urban mosquito Ae. aegyptiand diseases that require distinct
responses in vector control, diagnostics and environmental manage-
ment). Because biomedical and chemical approaches alone have failed
to sustainably eliminate these VBDs, managing the socio-ecological
settings that promote pathogen transmission is a critical frontier
for planetary health. In conjunction with climatic pressures, human
pressure presents amajor risk for disease emergence and transmission,
threatening the well-being of humans and the environment.

Methods

Study location and VBDs

We focused our analysis on six endemic VBDs in Brazil. The diseases
are associated with a significant global health burden (collectively
estimated to cause more than 620 million cases worldwide annually) but
vary in their vector and reservoir host ranges and their hypothesized

Nature Sustainability


http://www.nature.com/natsustain

Article

https://doi.org/10.1038/s41893-023-01080-1

ecological and climatic niches. Moreover, the six VBDs encompass
a range of diseases classically considered to be frontier, rural or
urban. As a result, we expected variations in their responses to
Brazil’s large range of human footprint. We initially included yellow
fever virus as a seventh disease, but extreme data sparsity (only 64
cases reported throughout the study period) restricted analysis of
this pathogen. Brazilis anideal country in which to test environmental
predictors of VBDs because (1) dataoninfections are publicly available
for more than 5,500 municipalities, (2) Brazil has diverse and con-
centrated land-use types and anthropogenic pressures (for example,
ranging from pristine forests to intensive agricultural production and
high-density cities), (3) Brazil spans a range of climatic conditions,
from equatorial tropical conditions to more temperate conditions in
the south of the country.

Data collection and preparation

For all diseases except malaria, annual case data were collected from
the Brazilian national disease surveillance system (SINAN) for each
municipality from 2013 to 2019%. For malaria, disease notification
data were collected from the Brazil Epidemiological Surveillance
Information System for Malaria (SIVEP-MALARIA) for two parasites
(Plasmodium vivax and Plasmodium falciparum) for each municipal-
ity and year*. While we collected and mapped data on case incidence
(Fig. 1), we modelled disease occurrence (binary: whether or not a
disease occurs in amunicipality in a given year) here to capture the
ecological niche for each disease with respect to land use and other
environmental variables. The dengue, malaria, visceral leishmania-
sis and cutaneous leishmaniasis analyses included 38,893 munici-
pality-year observations; Zika included 22,276 municipality-year
observations (reported in 2016-2019, inclusive); and chikungunya
included 16,707 municipality-year observations (reported in
2017-2019, inclusive).

Human footprint was included as the primary measure of
anthropogenic pressure. We assumed that the probability of patho-
gen occurrence directly increases with population size and expected
socioeconomic factors to influence rates of transmission through
multiple pathways (for example, housing quality, investment in control
measures, education and awareness of disease risk factors). However,
we were primarily interested inlandscape changes and environmental
degradation, as these factors were expected to strongly influence the
ecology of the focal vector species and the pathogens they transmit
and how human populationsinteract with and use land; they may also
bebroadly predictive of disease occurrence across both ecological and
socioeconomic contexts. Therefore, toisolate landscape level changes
of human footprint, we included human population as a covariate in
our models. Humanfootprintis aglobal, dimensionless index of human
pressure on the land surface and is calculated from eight different
human pressures: (1) built environments, (2) population density, (3)
electric infrastructure, (4) crop lands, (5) pasture lands, (6) roads,
(7) railways and (8) navigable waterways. The average annual human
footprint for each municipality was calculated from two datasets: the
estimate for 2013?and an updated machine learning estimate for 2019,
both of which calculated human footprint at 1 km spatial resolution.
The average human footprint for each municipality was extracted
for 2013 and 2019 using a shapefile with municipality boundaries in
R (version 4.0.2) (ref. *). The extracted values were then interpolated
for the years 2014-2018, assuming a constant rate of change. Popula-
tion data per municipality per year from 2013 to 2019 were extracted
from the WorldPop database®.

Temperature, precipitation and humidity are known to mediate
the transmission of VBDs through several mechanisms including repro-
duction, development, behaviour and population dynamics®>*. For our
analysis, we were interested in climate variables that constrain vector
biology but also capture variation between municipalities on anannual
scale. We originally considered annual mean temperature, cumulative

precipitation, the total number of wet days, climate extremes (minimum
temperature, maximum temperature, minimum precipitation, maxi-
mum precipitation) and climate variance (temperature seasonality).
Therewas high correlation, however, between many of these variables,
and only the annual mean temperature, cumulative precipitation and
the total number of wet days were used in the final analysis. Climate
datawere extracted from the Climate Research Unit, a global gridded
satellite dataset with a resolution of 0.5° x 0.5° (ref. *) (Fig. 2c and
Supplementary Fig. 6a,b). Average climate data were extracted using
ashapefile of municipality boundaries in R, for each municipality and
year from 2013 to 2019.

Threeland-class categories were included in the analysis: pasture,
croplandand forestarea (Fig.2d and Supplementary Fig. 6¢,d). Foreach
municipality, the total area of each land-class category from 2013 to
2019 was collected from MapBiomas*®, anetwork that produces annual
land-use and land-class maps for Brazil using Google Earth Engine cloud
computing technology to process Landsat data. The percentage cover
foreach of thethree categories was then calculated from the total area
of the municipality for each year. Percentage cropland areas were
log-transformed for normalization. While we included per cent cover
of major land-use and land-cover categories (forest, cropland, pasture),
we excluded urban cover. Urbanization is a highly weighted factor
in human footprint, which includes built environment, night-time
lights and the density of roads. However, because human footprint
also includes information on population density, crop and pasture
cover, railways and navigable rivers, our central argument hereis that
it more holistically captures the multidimensional effects of human
pressure that may be related to VBD transmission, and therefore is a
better predictor than urban cover alone.

Statistical analysis

The temporal resolution of human footprint and land-cover data
limited our analysis to an annual scale. The analysis methods are
summarized in Supplementary Fig. 2. Briefly, we used a machine
learning approach to assess the relationships between human
footprint, climate, land-class categories and vector presence and
the occurrence of six VBDs in Brazil. Machine learning approaches
are increasingly being applied in disease ecology because they
can accommodate complexity and nonlinearity to identify link-
ages among environmental factors and disease*. To understand the
predictors of occurrence for each VBD, we used a random forest
model, a versatile machine learning technique that uses randomized
recursive partitioning to solve complex prediction, regression
and classification problems. These models work by repeatedly drawing
bootstrap samples from the original sample and a random selection
of predictors to grow a predetermined number of decision trees
across which results are pooled*.

Although collinearity does not influence random forest model
performance, it can distort the magnitude of the variable importance
and complicate the interpretation of variable response curves®. The
direction and strength of relationships between explanatory variables
was assessed using Pearson’s correlation and Spearman tests and cal-
culated using the package corrplotin R*. We considered a correlation
coefficient of >0.7 toindicate high correlation between variables® and
removed one of the two correlated variables based on a priori empiri-
cal knowledge. Ultimately, we excluded climate extremes (minimum
temperature, maximum temperature, minimum precipitation, maxi-
mum precipitation), climate variance (temperature seasonality) and
percentage urban cover.

Oncethefull dataset had been cleaned and compiled, the model-
ling process involved the following steps:

< Explanatory variables: all environmental predictors were
included in each model, except in the supplementary model that
includes vector occurrence (Supplementary Fig. 7), in which
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only the presence of the most relevant vector was used for each
disease (for example, the presence of Anopheles was only used in
the malaria models) (Supplementary Table 9).

« Model training, tuning, selection: for each model iteration, the
optimal number of variables randomly sampled as candidates
for each split (mtry) and node size was calculated using the tune
function in the randomforestSRC package in R*’. The tune func-
tion estimated model performance (out-of-bag error) for arange
of combinations of mtry and node size values and selected the
optimal values as the combination that yielded the lowest model
error. Allmodels were grown to 500 trees to maximize model
performance and minimize computational costs.

« Model analysis: classification analysis was performed with the
imbalance function in the randomforestSRC package, using the
random forest quantile-classifier method®.

» Model validation: spatiotemporal cross-validation was used to
evaluate model performance to better understand the predic-
tive power of the model in geographic regions and years not
used for training. Municipalities in Brazil were split geographi-
cally into 15 folds using the R package spatialsample*®. The folds
were assigned using k-means clustering, in which each munici-
pality belongs to a cluster with the nearest mean centroid. The
data were then split into three expanding windows: (1) data
from 2013 to 2016 were used in the training set, and data from
2017 were used as the test set, (2) data from 2013 to 2017 were
used for training and data from 2018 were used for testing,

(3) data from 2013-2018 were used for training and data from
2019 were used for testing. Within each window, the model was
then tuned and trained 15 times, where, for each iteration,

14 folds were used to train the model, and the hold-out fold
was used to evaluate model performance (see below). In
summary, the test set only contained municipalities that were
unique in both space and time in comparison to the training
set. In total, for all pathogens except chikungunya, the model
was trained and tested 45 times. For chikungunya, which was
detected in Brazil starting in 2017, the model was trained and
tested 30 times.

We calculated three groups of metrics from the random forest
models for each pathogen. First, we assessed overall model perfor-
mance by calculating model sensitivity, specificity and the areaunder
the receiver operating characteristic curve based on the spatiotem-
poral cross-validation. For the out-of-sample model performance
metric, we calculated the mean and 95% confidence interval around
each of these values.

Second, we calculated variable importance, which can be inter-
preted as the contribution of each explanatory variable to the pre-
diction accuracy of the model using the computationally optimized
‘random’ algorithm in the randomforestSRC package. The contribu-
tions to the prediction accuracy were estimated by calculating the per
cent increase in the standardized mean squared error when the focal
variable was permuted. To test whether each variable significantly
contributed to model accuracy, we conducted a permutation-based
significance test using a subsampling method. This estimated the prob-
ability (permutation-based Pvalue) that the change inmodel accuracy
whenthe covariate is permuted versus not permuted was greater than
orequalto O (thatis, that the null hypothesis is supported).

Finally, we assessed the overall form and direction in which each
explanatory variable relates to disease occurrence using PDPs. PDPs
depict therelationship between the probability of disease occurrence
and the variable of interest across a range of values for that feature.
At each value of the feature, the model was evaluated for all values
of the other covariates; the final model output was the average pre-
dicted probability across all model inputs. The data frame under-
pinning the PDPs was constructed using the plot.variable function

in the randomforestSRC package in R, and the relationships between
eachfeature and the predicted probabilities were plotted with ggplot2,
using aloess transformation (that is, locally weighted smoothing). To
compare the qualitative shape of PDPs across pathogens, the PDPs in
the main text were scaled by their minimum and maximum and plotted
onasingle plot. We defined a threshold as the value at which a pathogen
reaches 50% of its maximum occurrence probability. As aresult, these
scaled PDPs should be interpreted as comparing the direction and
nonlinearity of responses of different diseases to environmental predic-
tors, but not their absolute magnitude or relativeimportance (whichis
conveyed in variableimportance plots). Unscaled PDPs are presented
in Supplementary Figs. 8-11. To generate measures of uncertainty
around our estimates of the relationship between each covariate and
pathogen occurrence, we used a bootstrapping approach where the
model was iterated 50 times using different subsets of 80% of the full
dataset. Our results displayed the average relationship across model
iterations as well asa PDP per iteration.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All datasets that have been used for this study are publicly avail-
able and links have been provided for each within the Methods
and in the GitHub repository at https://github.com/ckglidden/
human-footprint-index-VBD. Source data are provided with this paper.

Code availability
All code and analysis for this study are available at https://github.com/
ckglidden/human-footprint-index-VBD.
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In total, the dengue, malaria, visceral leishmaniasis, and cutaneous leishmaniasis analyses included 38,893 municipality-year
observation (one observation per municipality per year) from 2013-2019. Zika included 22,276 municipality-year observations
spanning 2016-2019. Chikungunya included 16,707 municipality-year observations spanning 2017-2019. Time scales were
determined by disease incidence availability within the time-frame that human footprint index was measured (2013-2019).
No data were excluded from this study.

To verify reproducibility, we have posted all code and datasets used on GitHub.

Randomization does not apply to our study design. Sampling units were municipality per year. Data was grouped by municipality as
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Randomization this was the spatial resolution of the disease data. Data was then grouped by year as this was the temporal resolution of the land-use
and human footprint data. We used temporal spatial cross- validation to account for temporal and spatial autocorrelation in our
model performance estimates.

Blinding Our study is an observational study where blinding is not applicable.

Did the study involve field work? [] ves X No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern
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