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Optical rotation (OR) is a sensitive electronic property for which there are no clear structure-property rela-
tions. We proposed an approach to decompose the OR tensor in terms of one-electron transitions between
occupied-virtual molecular orbital pairs, called the S̃ia method. This method allows to select the transitions
with the largest magnitude that determine the overall value of the OR for a specific molecule, thus providing
useful insights for characterization. However, the individual S̃ia values are origin-dependent even if the total
OR is origin invariant. In this work, we explicitly identify the reason for the origin dependence of the S̃ia

original formulations and we propose two ways to eliminate this spurious effect and define an origin invari-
ant S̃ia within the modified velocity gauge formalism. One approach is based on averaging the electric and
magnetic-perturbed density S̃ia definitions (which have equal and opposite origin dependence that cancels
out in the average), while the second approach is based on the equal distribution of the electronic response
to an external field via Cholesky decomposition of the response matrix. Numerical results prove that the
new S̃ia definitions are indeed origin invariant and they provide the same physical picture for the OR tensor
decomposition. At the same time, we show that setting the origin of the coordinate system at the center of
mass of the molecule also provides the same physical picture when using the original S̃ia formulation, which
confirms that this is a robust approach for investigating structure-property relations in chiral molecules.
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I. INTRODUCTION

Optical rotation (OR) measurements are a common
method to characterize chiral systems, but it has proven
challenging to establish a chemically intuitive connec-
tion between the structure of a molecule and the OR
direction or magnitude it induces. With the advent of
quantum mechanical simulations of OR, significant ef-
forts have been made to clarify this structure-property
relationship. One avenue of research has focused on de-
veloping methods to decompose the OR into contribu-
tions from functional groups, bonds, or even individual
atoms within the molecule1–6.

We have recently developed a scheme, referred to as S̃ia

analysis, whereby the OR is expressed as a sum of con-
tributions from occupied i to virtual a molecular orbital
(MO) transitions.1 We can determine what physically is
driving optical activity and what parts of the molecule
are involved by analyzing the movement of charge density
described by these transitions. Using this framework, we
have investigated the influence of molecular conforma-
tion and functionalization on the OR induced by chiral
organic molecules.7 More recently, we used this approach
to understand the origin of the large specific rotation in
helicenes, and how functionalization affects the optical
response.8 We found that the major contributions come
from transitions where density moves along the conju-
gated π density. However, other transitions, which can
be described as the combination of two separate rota-
tions of the orbital density along the two-halves of the
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helix, tend to decrease the OR. Functionalization of the
helicenes influences the OR in a complex manner, where
the strength of the substituent groups and the length of
the helix may lead to cooperative or competitive effects
that are not easily predicted a priori, but can be inter-
preted with our decomposition approach. As we showed
in Ref. 9, the method is robust, providing a consistent
physical interpretation of the OR in both modified veloc-
ity gauge (MVG)10 and length gauge (LG) calculations,
regardless of the choice of perturbation used in solving
the linear response equations. The definition of S̃ia is not
limited to canonical orbitals, but localized orbitals can
be employed as well.8 Since the localization procedure is
essentially free in terms of computational cost, one can
perform the S̃ia analysis with multiple MO bases simul-
taneously and utilize the basis with the most compact
representation of the OR tensor a posteriori.

However, while both MVG and LG calculations of the
total OR are (or can be made)10,11 origin invariant, this
does not necessarily ensure that individual S̃ia values will
be origin invariant. The total OR is in general made ori-
gin invariant via cancellation, rather than elimination,
of the origin dependent terms from each S̃ia value. It
is possible that choosing a physically meaningful origin
like the center of mass may produce reasonable S̃ia val-
ues, though this is not guaranteed; e.g. typical LG CCSD
calculations of the total OR are origin dependent and us-
ing the center of mass as the origin does not consistently
lead to high accuracy in comparison with experiment12.
In any case, the reliability of the physical interpretations
provided by the S̃ia analysis would be greatly improved
by removing this origin dependence altogether.

In this article, we present two possible approaches to
compute origin invariant S̃ia values in the modified veloc-
ity gauge. Section II contains a brief review of the theory
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behind the S̃ia analysis and the derivation of the origin
invariant formulations. The first of these procedures uses
an average of the S̃ia values obtained from MVG electric
and magnetic perturbation calculations. The second ap-
proach involves splitting the response matrix in order to
form “hemi-perturbed densities” that are then contracted
to form S̃ia values. Section III describes the computa-
tional procedure for the test calculations. In Section IV,
we demonstrate that both approaches are indeed origin
invariant and we compare the results with standard S̃ia

formulations by performing calculations on two small or-
ganic molecules, P-(2,3)-pentadiene and (R)-3-chloro-1-
butene. We conclude with a discussion of the relative
merits of these two approaches in Section V.

II. THEORY

For isotropic media, the observed optical rotation is
commonly reported as a normalized quantity in units of
deg [dm (g/mL)]−1, known as specific rotation13

[α]ω =
(72 × 106)h̵2NAω

2

3c2m2
eM

Tr(β) (1)

where h̵ is the reduced Planck’s constant (J s), NA is
Avogadro’s number, c is the speed of light (m/s), me

is the electron rest mass (kg), and M is the molecular
mass (amu). The β tensor is the electric dipole-magnetic
dipole polarizability, which can be written in the velocity
gauge as
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where µV = −p is the electric dipole operator in the veloc-
ity gauge and m = −1

2
(r×p) is the magnetic dipole opera-

tor. Greek indices denote Cartesian coordinates, ω is the
frequency of the incident electromagnetic radiation while
∣ψj⟩ and ωj are the jth excited state wave function and
excitation frequency, respectively. Throughout, we use
atomic units unless otherwise specified and denote ten-
sors over Cartesian indices using bold font and matrices
over an orbital basis with an underline. This definition
is valid for non-resonant optical activity (ωj /≈ ω) calcu-
lations; resonant optical activity is discussed in greater
detail elsewhere.13–16

The sum-over-states expression for the β tensor in Eq.
2 is impractical for real calculations because the series is
slowly converging and it requires the evaluations of hun-
dreds of excited states.17,18 Therefore, this tensor is effi-
ciently evaluated through linear response theory as19–21

βαβ =
1

ω2
[µV †

α Dωmβ − µ
V †
α D0mβ] (3)

where µV
α and mβ are respectively the α and β Cartesian

components of the velocity gauge electric and magnetic

dipoles, represented as vectors over all orbital pairs in
the given basis. Dω

= Ω−1 is the linear response matrix
for the perturbation frequency ω and D0 is the zero fre-
quency response matrix. The second term in Eq. 3 is
the spurious static limit that must be subtracted out in
the velocity gauge.10 For a general self consistent field
(SCF) wavefunction, we can write the matrix elements
more explicitly as

Dω
=[(

M Q
Q∗ M∗) − ω (

1 0
0 −1

)]

−1

(4)

Qai,bj =(ai∣bj) − cHF(aj∣bi) + (ai∣vxc∣bj) (5)
Mai,bj =δijδab(ϵa − ϵi) + (ai∣jb) − cHF(ab∣ji)

+ (ai∣vxc∣jb) (6)

with i, j denoting occupied orbitals and a, b denoting vir-
tual orbitals, vxc is the exchange-correlation kernel (0 in
the case of HF), and cHF is the percentage of Hartree-
Fock exchange21–24.

As mentioned above, for experiments in isotropic me-
dia, the observed optical rotation is proportional to the
trace of β, see Eq. 1. We can gain insight into what un-
derlying physical processes are contributing to this trace
by splitting it into contributions from orbital pairs, re-
ferred to as S̃ia values9
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With these definitions, the trace of β is recovered as
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The difference between the two definitions is based on
which integrals are contracted first with the response ma-
trix: In Eq. 7a, the response matrix is contracted with
the magnetic dipole integrals (MVG-M) to form the per-
turbed density PM,ω

ia in Eq. 7b; conversely, in Eq. 7c,
the response matrix is contracted with the electric dipole
integrals (MVG-E) to form the perturbed density PE,ω

ia

in Eq. 7d. The expressions for the static frequency S̃0
ia

are the same, but with Dω replaced by D0 (the leading
factor of ω is retained). Eq. 7 is equivalent to the expres-
sions for MVG-M and MVG-E in Eq. 8 of Ref. 9; we write
them here in terms of the response matrix as this makes
it easier to present how the origin dependence emerges
(and can be removed). We have previously shown that, in
general, S̃MVG-M

ia ≠ S̃MVG-E
ia ; however, the S̃ia values for
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each choice of perturbation are associated with the same
physical process and the relative contribution of this pro-
cess to the observed OR is roughly the same9. A feature
of the S̃ia definition in Eq. 7 is that its values can be vi-
sualized as the dot product of two vectors that represent
charge transfer (µ) and charge rotation (m). These vec-
tors can be visualized and superimposed to the molecular
structure to determine what types of one-electron (1e)
transition contribute the most to the OR.1,7–9 This vec-
tor analysis holds for the MVG approach because one can
define an MVG perturbed density vector that is dotted
with the vector of the paired perturbation

S̃M,ω
ia − S̃M,0

ia =
1

ω
µV

ia ⋅ (P
M,ω
ia −PM,0

ia ) (9)

S̃E,ω
ia − S̃

E,0
ia =

1

ω
mia ⋅ (P

E,ω
ia −PE,0

ia ) (10)

While the total OR computed in the modified velocity
gauge is origin invariant regardless of the perturbation
used, this is not the case for the individual S̃ia values,
even in the limit of an exact calculation using a complete
basis set. The origin dependence of S̃ia for each choice
of perturbation follows directly from that of the full β
tensor, which is detailed for instance in Refs. 11,25,26.
For a shifted origin O′ = O + d, displaced by a vector d,
the S̃ia origin dependence can be expressed as
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where ϵ is the Levi-Civita symbol, αV is the velocity
gauge electric dipole-electric dipole polarizability. The
origin dependence for each choice of perturbation comes
from differences between the off-diagonal elements of αV

ia;
the total MVG α is symmetric, so these terms cancel out
when summing over all occupied-virtual orbital pairs, but
each αV

ia is in general not symmetric.
The form of Eqs. 11a and 11b suggests a simple ap-

proach for eliminating origin dependence from S̃ia:

S̃Avg
ia =

1

2
(S̃MVG-M

ia + S̃MVG-E
ia ) (12)

Since the origin dependent terms for S̃MVG-M
ia and

S̃MVG-E
ia are equal in magnitude but opposite in sign, they

cancel in the average, leaving S̃Avg
ia origin invariant. S̃Avg

ia
still satisfies Eq. 8, which means it can still be used
as an interpretive tool to understand which occupied to
virtual orbital transitions are driving the OR. However,
while S̃MVG-M

ia and S̃MVG-E
ia each have associated elec-

tric/magnetic dipole and perturbed density vectors de-
scribing the flow of charge during the i → a transition,
see Eq. 9, S̃Avg

ia does not have an associated set of vec-
tors. This is because simply averaging the MVG-M and
MVG-E electric/magnetic vectors and taking their dot
product is not equivalent to averaging the MVG-M and
MVG-E dot products from Eqs. 7b and d, as is done in
Eq. 12.

An alternative approach to removing the origin depen-
dence involves mixing the electric and magnetic response
prior to forming S̃ia. The origin dependence stems from
the asymmetry of αV

ia, so one can reformulate the elec-
tronic response such that the resulting α̃V

ia is symmet-
ric for every occupied-virtual orbital pair. This can be
achieved via Cholesky decomposition27 of the response
matrix

Dω
= LωLω† (13)

where Lω is a lower triangular square matrix with all pos-
itive real values along its diagonal. Note that we are not
using the Cholesky decomposition to lower the rank of a
tensor, as it is usually employed in electronic structure
methods, but simply to “evenly distribute” the response
matrix to both perturbations. By splitting the response
matrix, we can apply Lω to both the electric dipole and
magnetic dipole to obtain “hemi-perturbed” densities and
contract these to form

S̃Hemi,ω
ia =

1

ω
∑
α
∑
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(Lω
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V
α ∣ϕb⟩)(L

ω
ia,jb⟨ϕb∣mα∣ϕj⟩)

(14)
To see that this formulation of S̃ia is origin invariant,
we simply need to show that the corresponding electric
dipole polarizability

αHemi,ω
αβ,ia =

1

ω
∑
jb

(Lω
ia,jb⟨ϕj ∣µ

V
α ∣ϕb⟩)(L

ω
ia,jb⟨ϕb∣µ

V
β ∣ϕj⟩)

(15)
is symmetric, which is evident since it is formed from the
contraction of a vector with itself.

However, this method also does not allow us to assign
unique electric and magnetic vectors to each transition
as in Eq. 9. The reason is that for MVG, this approach
leads to an electric and magnetic hemi-density both for
the applied perturbation frequency and the static fre-
quency. Simply taking the difference of both perturbed
and static electric/magnetic hemi-densities and contract-
ing them does not produce the same product as Eq. 15.
Another potential issue of this hemi-density approach is
that the Cholesky decomposition is only possible for Her-
mitian, positive-semidefinite matrices (i.e. matrices with
only real eigenvalues greater than or equal to 0). While
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the response matrix is always Hermitian, it is only re-
quired to be positive-definite in the static limit21,28. This
method would also require extensive updates to the typ-
ical linear response implementation, as generally the re-
sponse matrix is not formed explicitly, but rather the per-
turbed density is formed through an iterative process.22
Therefore, we implemented it only as an external Python
script.

A third possibility to obtain individually origin-
invariant S̃ia values is to perform a singular value decom-
position (SVD) of each αV

ia tensor, to form individual βV
ia

tensors for each ia MO pairs, and to apply the inverse
SVD transformation to the βV

ia tensors. The inverse SVD
transformation would render the αV

ia tensors diagonal
and it would eliminate the origin dependence of the S̃ia

terms in Eq. 11. This transformation would be analogous
to that to obtain origin-invariant length gauge OR with-
out using London orbitals, LG(OI),11,26,29,30 and LG(OI)
rotatory strengths for electronic transitions.31 However,
in Ref. 31 it was shown that applying this transformation
to individual rotatory strengths disrupts the sum-over-
state relationship between these quantities and the over-
all OR, i.e., the equivalent of Eq. 2 for the length gauge,
where the rotatory strengths are the numerators. In the
context of the S̃ia approach, where these quantities can
be considered rotatory strengths in the space of Slater de-
terminants rather than eigenstates of the Hamiltonian,1
applying the SVD transformation to individual S̃ia would
disrupt the equality in Eq. 8. Therefore, we do not pur-
sue this route further.

III. COMPUTATIONAL DETAILS

We performed Hartree-Fock (HF) calculations with the
aug-cc-pVDZ basis set32 with a 589.3nm perturbation
wavelength to avoid resonance conditions. It is not our
intention to compute experimentally accurate OR, but
rather simply to demonstrate the origin invariance of the
S̃Avg
ia and S̃Hemi

ia definitions, see Eqs. 12 and 14, respec-
tively. Furthermore, the implementation of the S̃Hemi

ia

definition is based on a simple Python code that forms
the entire response matrix in Eq. 4, then applies the
Cholesky decomposition in Eq. 13 to form S̃Hemi

ia . The
Python code reads two-electron integrals and orbital en-
ergies from a modified version of the GAUSSIAN suite
of programs33 to form the appropriate matrices and it is
very time and memory intensive. Consequently, calcula-
tions are performed at HF (rather than density functional
theory) level to avoid the need to also read in 4-center, 1-
electron exchange-correlation integrals when computing
S̃Hemi
ia . However, the results obtained here equally ap-

ply to calculations using approximate density function-
als. All OR and S̃Avg

ia calculations were performed with
the same development version of GAUSSIAN33.

IV. RESULTS

We consider two small molecules, P-(2,3)-pentadiene
(hereafter pentadiene) and (R)-3-chloro-1-butene (here-
after chlorobutene), to compare S̃Avg

ia and S̃Hemi
ia with the

origin dependent S̃MVG-M
ia and S̃MVG-E

ia . The geometry
for pentadiene was taken from Ref. 6 while chlorobutene
was optimized at the B3LYP/aug-cc-pVDZ level; these
geometries are reported in Tables S1-S2 of the SI. This
comparison will help to determine if there are any differ-
ences in the physical interpretation of the OR suggested
by each method. Figures 1 and 2 plot S̃ia values for the 20
highest occupied and 20 lowest virtual MOs of pentadiene
and chlorobutene computed with each of the definitions
of S̃ia discussed in Section II. To demonstrate the origin
independence of the S̃Avg

ia and S̃Hemi
ia approaches, we plot

the results of calculations with the origin at the center of
mass (COM) of the molecule and with the origin shifted
by -100Å in each Cartesian direction from the COM.

Starting first with the COM plots, we can see that for
each molecule the distribution of contributions is very
similar for each of the definitions of S̃ia. For pentadiene,
the largest negative contribution is from the (HOMO-
1, LUMO+12) transition and the largest positive contri-
bution is from the (HOMO, LUMO+14) transition for
each of the definitions. Chlorobutene has a larger num-
ber of significant contributions that maintain the same
sign across definitions and the largest magnitude contri-
butions are consistently from a small band of 3 transitions
from (HOMO, LUMO+7) to (HOMO, LUMO+9). These
five largest values of S̃ia for the two molecules are shown
in Figure 3. The relative magnitude is respected across
different definitions of S̃ia, although S̃Hemi

ia provides value
that are larger in magnitude for these prominent transi-
tions (which is compensated by the remaining smaller
values as their total sum adds up to the trace of the β
tensor). The S̃MVG-M

ia and S̃MVG-E
ia distributions closely

match the origin invariant S̃Avg
ia and S̃Hemi

ia distributions,
which suggests that the center of mass is a reasonable
choice of origin.

In the shifted-origin plots for each molecule, while the
S̃Avg
ia and S̃Hemi

ia results are identical to those computed
with the COM origin (within numerical accuracy), the
origin-dependent terms of S̃MVG-M

ia and S̃MVG-E
ia domi-

nate the shifted-origin plots. The difference in sign be-
tween the origin dependent terms of S̃MVG-M

ia and S̃MVG-E
ia

is clearly visible comparing the left-hand and right-hand
side plots. For instance, for pentadiene, the (HOMO-1,
LUMO+12) and (HOMO, LUMO+14) MVG-M transi-
tions both changed sign relative to the COM calcula-
tion, while also increasing in magnitude by a factor of
3, exceeding the range of the COM origin color map.
The S̃MVG-M

ia values for the (HOMO-1, LUMO+10) and
(HOMO, LUMO+11) transitions increased in size by
more than an order of magnitude. For chlorobutene,
many transitions increased in magnitude enough to ex-
ceed the range of the COM origin color map. The
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FIG. 1. S̃ia values for the 20 highest occupied and 20 low-
est virtual MOs of P-(2,3)-pentadiene computed with (from
top to bottom) the MVG-M, MVG-E, average, and hemi-
density definitions of S̃. Results with the origin at the cen-
ter of mass and shifted by -100Å in the x, y, and z di-
rections are plotted in the left and right columns, respec-
tively. The heat maps color range is from −M to M where
M = max(∣S̃X

ia ∣),X = {MVG-M, MVG-E, Avg, Hemi} for the
center of mass calculations. The shifted origin heat maps use
the same color range, but some S̃ia exceed this range and are
simply colored the same as −M/M .

(HOMO, LUMO+7), the largest magnitude S̃MVG-M
ia of

the COM calculations, remains the largest transition
in the shifted calculations, but increases in size from
7.82 × 10−3 a.u. to 2.78 × 10−1 a.u.

V. CONCLUSIONS

We have introduced two new methods for decompos-
ing the OR into origin invariant S̃ia values. The S̃Avg

ia ap-
proach exploits the equal magnitude, opposite sign origin
dependence of S̃MVG-M

ia and S̃MVG-E
ia to cancel out the ori-

gin dependence. For S̃Hemi
ia , we contract hemi-perturbed

densities formed by splitting the linear response matrix
evenly between the electric and magnetic dipoles. The
MVG hemi-density electric dipole-electric dipole polariz-

FIG. 2. S̃ia values for the 20 highest occupied and 20 lowest
virtual MOs of (R)-3-chloro-1-butene computed with (from
top to bottom) the MVG-M, MVG-E, average, and hemi-
density definitions of S̃. Results with the origin at the cen-
ter of mass and shifted by -100Å in the x, y, and z di-
rections are plotted in the left and right columns, respec-
tively. The heat maps color range is from −M to M where
M = max(∣S̃X

ia ∣),X = {MVG-M, MVG-E, Avg, Hemi} for the
center of mass calculations. The shifted origin heat maps use
the same color range, but some S̃ia exceed this range and are
simply colored the same as −M/M .

ability for each transition αHemi
ia is inherently symmet-

ric, which eliminates the origin-dependent contribution
to S̃ia.

The tests in Figures 1-2 clearly show that these two
new definitions are indeed origin invariant. More impor-
tantly, these tests show that S̃Avg

ia and S̃Hemi
ia provide the

same physical picture for the decomposition of the OR in
terms of ia MO pairs, i.e., the same 1e transitions con-
tribute with the same relative magnitude and sign to the
overall tensor (even if the numerical values of S̃Avg

ia and
S̃Hemi
ia are different). Moreover, the results obtained at

the COM origin are consistent across all definitions of
S̃ia, either in the form in Eqs. 7, 12, or 14. This indi-
cates that setting the origin at the COM of a molecule is a
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FIG. 3. Largest S̃ia values (a.u.) for: a) P-(2,3)-pentadiene
and b) (R)-3-chloro-1-butene, computed with the MVG-M,
MVG-E, average, and hemi-density definitions of S̃.

good choice and further confirms that this orbital decom-
position of the β tensor is robust and can provide useful
insights into the electronic and geometrical features that
determine the OR of chiral molecules.

Between the two approaches, S̃Hemi
ia is computation-

ally more demanding because it requires the evalution
of the whole response matrix, see Eq. 13, at least in a
straightforward application, which is memory and CPU
intensive for real calculations. Furthermore, the require-
ment that the response matrix is positive definite cannot
be guaranteed for a generic system. Therefore, the S̃Avg

ia
definition is preferable because it is always well defined
and computationally cheaper. A downside of both S̃ia

definitions is that it is not straightforward to associate
transition vectors to a specific value with MVG because
in both cases the spurious static limit is mixed with the
ω-dependent term in a non-trivial fashion. Nonetheless,
these schemes provide reference values for the determi-
nation of the most important contributions to the total
OR of chiral molecules that can be used to benchmark
the standard S̃ia results computed as in Eq. 7. The
latter can then be used for a detailed analysis of the elec-
tron density redistribution for these relevant transitions
as done in our previous studies.1,7–9 Further studies will
investigate whether these formulations can be extended

to the length gauge approach, which does not have the
spurious static limit issue but where the whole tensor is
origin dependent.11,29

SUPPORTING INFORMATION

The Supporting Information includes the geometries
for P-(2,3)-pentadiene and (R)-3-chlorobutene in Tables
S1-S2.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from the
National Science Foundation through Grant No. CHE-
1650942.

1Caricato M (2015) Orbital analysis of molecular optical activity
based on configuration rotatory strength. J Chem Theory Com-
put 11(4):1349–1353. doi:10.1021/acs.jctc.5b00051

2Kirkwood JG (1937) On the theory of optical rotatory power. J
Chem Phys 5(6):479. doi:10.1063/1.1750060

3Kondru RK, Wipf P, Beratan DN (1998) Atomic con-
tributions to the optical rotation angle as a quantitative
probe of molecular chirality. Science 282(5397):2247–2250. doi:
10.1126/science.282.5397.2247

4Moore B, Srebro M, Autschbach J (2012) Analysis of optical
activity in terms of bonds and lone-pairs: The exceptionally
large optical rotation of norbornenone. J Chem Theory Comput
8(11):4336–4346. doi:10.1021/ct300839y

5Polavarapu PL, Chakraborty DK, Ruud K (2000) Molecular opti-
cal rotation: An evaluation of semiempirical models. Chem Phys
Lett 319(5):595–600. doi:10.1016/S0009-2614(00)00157-3

6Wiberg KB, Caricato M, Wang YG, et al (2013) Towards the
accurate and efficient calculation of optical rotatory dispersion
using augmented minimal basis sets. Chirality 25(10):606–616.
doi:10.1002/chir.22184

7Caricato M (2015) Conformational effects on specific rotation:
A theoretical study based on the S̃k method. J Phys Chem A
119(30):8303–8310. doi:10.1021/acs.jpca.5b05103

8Aharon T, Caricato M (2019) Configuration space analysis of the
specific rotation of helicenes. J Phys Chem A 123(20):4406–4418.
doi:10.1021/acs.jpca.9b01823

9Balduf T, Caricato M (2021) Gauge Dependence of the S̃ Molec-
ular Orbital Space Decomposition of Optical Rotation. J Phys
Chem A 125(23):4976–4985. doi:10.1021/acs.jpca.1c01653

10Pedersen TB, Koch H, Boman L, et al (2004) Origin in-
variant calculation of optical rotation without recourse to
London orbitals. Chem Phys Lett 393(4-6):319–326. doi:
10.1016/j.cplett.2004.06.065

11Caricato M (2020) Origin invariant optical rotation in the length
dipole gauge without London atomic orbitals. J Chem Phys
153(15):151,101. doi:10.1063/5.0028849

12Crawford TD, Stephens PJ (2008) Comparison of Time-
Dependent Density-Functional Theory and Coupled Cluster
Theory for the Calculation of the Optical Rotations of
Chiral Molecules. J Phys Chem A 112(6):1339–1345. doi:
10.1021/jp0774488

13Barron LD (2004) Molecular Light Scattering and Optical Activ-
ity. Cambridge University Press, Cambridge, UK; New York

14Buckingham AD, Dunn MB (1971) Optical activity of oriented
molecules. J Chem Soc Inorg Phys Theor Chem (0):1988–1991.
doi:10.1039/J19710001988

15Krykunov M, Autschbach J (2006) Calculation of origin-
independent optical rotation tensor components in approxi-



7

mate time-dependent density functional theory. J Chem Phys
125:034,102. doi:10.1063/1.2210474

16Norman P, Ruud K, Helgaker T (2004) Density-functional theory
calculations of optical rotatory dispersion in the nonresonant and
resonant frequency regions. J Chem Phys 120(11):5027–5035. doi:
10.1063/1.1647515

17Wiberg KB, Wang YG, Wilson SM, et al (2006) Sum-over-states
calculation of the specific rotations of some substituted oxiranes,
chloropropionitrile, ethane, and norbornenone. J Phys Chem A
110(51):13,995–14,002. doi:10.1021/jp0655221

18Caricato M, Vaccaro PH, Crawford TD, et al (2014) Insights
on the Origin of the Unusually Large Specific Rotation of
(1S ,4S)-Norbornenone. J Phys Chem A 118(26):4863–4871. doi:
10.1021/jp504345g

19Autschbach J, Nitsch-Velasquez L, Rudolph M (2011) Time-
dependent density functional response theory for electronic chi-
roptical properties of chiral molecules. Top Curr Chem 298:1–98.
doi:10.1007/128_2010_72

20Crawford TD, Tam MC, Abrams ML (2007) The current state of
ab initio calculations of optical rotation and electronic circular
dichroism spectra. J Phys Chem A 111(48):12,057–12,068. doi:
10.1021/jp075046u

21McWeeny R (1978) Methods of Molecular Quantum Mechanics,
2nd edn. Academic Press, San Diego

22Frisch M, Head-Gordon M, Pople J (1990) Direct analytic SCF
second derivatives and electric field properties. Chem Phys 141(2-
3):189–196. doi:10.1016/0301-0104(90)87055-G

23Izmaylov AF, Brothers EN, Scuseria GE (2006) Linear-scaling
calculation of static and dynamic polarizabilities in Hartree-Fock
and density functional theory for periodic systems. J Chem Phys
125(22):224,105. doi:10.1063/1.2404667

24Pople JA, Krishnan R, Schlegel HB, et al (1979) Derivative Stud-
ies in Hartree-Fock and Moller-Plesset Theories. Int J Quantum

Chem 13:225–241
25Lazzeretti P (2014) Invariance of Molecular Response Properties

under a Coordinate Translation. Int J Quantum Chem 114:1364–
1392

26Caricato M, Balduf T (2021) Origin invariant full optical rotation
tensor in the length dipole gauge without London atomic orbitals.
J Chem Phys 155(2):024,118. doi:10.1063/5.0053450

27Aquilante F, Boman L, Boström J, et al (2011) Cholesky De-
composition Techniques in Electronic Structure Theory. In: Za-
lesny R, Papadopoulos MG, Mezey PG, et al (eds) Linear-Scaling
Techniques in Computational Chemistry and Physics, vol 13.
Springer Netherlands, Dordrecht, p 301–343, doi:10.1007/978-
90-481-2853-2_13

28Čížek J, Paldus J (1967) Stability Conditions for the Solutions of
the Hartree—Fock Equations for Atomic and Molecular Systems.
Application to the Pi-Electron Model of Cyclic Polyenes. J Chem
Phys 47(10):3976–3985. doi:10.1063/1.1701562

29Ditchfield R (1974) Self-consistent perturbation theory of
diamagnetism I. A gauge-invariant LCAO method for
N.M.R. Chemical shifts. Mol Phys 27(4):789–807. doi:
10.1080/00268977400100711

30London F (1937) Théorie quantique des courants interatomiques
dans les combinaisons aromatiques. J Phys Radium 8(10):397–
409. doi:10.1051/jphysrad:01937008010039700

31Niemeyer N, Caricato M, Neugebauer J (2022) Origin invariant
electronic circular dichroism in the length dipole gauge without
london atomic orbitals. J Chem Phys 156(15):154,114

32Dunning TH (1989) Gaussian basis sets for use in correlated
molecular calculations. I. The atoms boron through neon and
hydrogen. J Chem Phys 90(2):1007. doi:10.1063/1.456153

33Frisch MJ, Trucks GW, Schlegel HB, et al (2020) Gaussian de-
velopment version revision J.13


