Percolation of a fine particle in static granular beds
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We study the percolation of a fine spherical particle under gravity in static randomly-packed
large-particle beds with different packing densities ¢ and large to fine particle-size ratios R ranging
from 4 to 7.5 using discrete element method simulations. The particle size ratio at the geometrical
trapping threshold, defined by three touching large particles, Ry = v/3/(2 — v/3) = 6.464, divides
percolation behavior into passing and trapping regimes. However, the mean percolation velocity and
diffusion of untrapped fine particles, which depend on both R and ¢, are similar in both regimes, and
can be collapsed over a range of R and ¢ with the appropriate scaling. An empirical relationship for
the local percolation velocity based on the local pore throat to fine particle size ratio and packing
density is obtained, which is valid for the full range of size ratio and packing density we study.
Similarly in the trapping regime, the probability for a fine particle to reach a given depth is well
described by a simple statistical model. Finally, the percolation velocity and fine particle diffusion
are found to decrease with increasing restitution coefficient.

I. INTRODUCTION

Understanding flowing granular materials is of great
importance for industrial applications in pharmaceutical,
chemical, and agricultural production as well as for vari-
ous geophysical processes [1, 2]. When granular materials
differ in size, density, or other physical properties, seg-
regation can occur, which in turn alters flow properties
and can negatively affect industrial operations. In recent
decades, numerous experimental, numerical, and theoret-
ical studies have been conducted to interpret and model
granular segregation [3, 4], with size segregation draw-
ing the most attention. Size-driven segregation can be
divided into two regimes depending on the relative sizes
of the particles. When large and small particles have a
size ratio less than about 3, a shear-induced size segrega-
tion mechanism captures the underlying physics. Small
particles tend to percolate downward under the action of
gravity through the spaces between large particles gen-
erated as the mixture is sheared due to flow [5-7]. How-
ever for larger size ratios, where we refer to the smaller
particles as “fine particles,” the relationship between the
concentration dependent segregation velocity (or, equiv-
alently, the flux) and the size ratio changes significantly.
Specifically, the propensity for segregation increases with
increasing particle size ratio when R < 3, but is nearly in-
dependent of size ratio when R 2 3 (8], where R = d;/dy
is the ratio of the large particle diameter, d;, to the fine
particle diameter, dy. This behavior has been attributed
to an increasing tendency toward free sifting, or sponta-
neous percolation, which occurs when the fine particles
are small enough to pass through the voids between large
particles even when the large particles are stationary.
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Fine particles appear in industrial solids handling pro-
cesses for various reasons, including particle attrition or
the addition of free-flow agents. Unfavorable free sifting
of fine particles can result in degraded product quality,
fouled equipment, health risks like inhalation of fine par-
ticles, and safety hazards such as dust explosions [9, 10].
Fine particles also play important roles in geophysical
flows. For example, they can act as bearing balls in long-
runout landslides when they percolate to the bottom of
the flow during the early phase of the landslide, thereby
increasing the mobility of the overlying bed of particles
during the later phase of the landslide [11-13]. However
compared to the extensive number of studies on shear-
induced segregation for size ratio less than three, few
studies have focused on the free sifting problem, espe-
cially when the particle size ratio is below the geometric
trapping threshold.

Central to understanding free sifting is identifying the
particle size ratio above which fine particles freely pass
through the smallest possible voids between static large
particles. Dodds [14] considers this problem in detail
based on the porosity of random sphere packings. The
most restrictive passage is generated when three large
particles form a triangle as shown in Fig. 1. The size
ratio of the large sphere diameter to the diameter of the
largest fine that can pass through the “pore throat” of
this triangle is Ry = d;/d, = V3/(2 — V3) = 6.464,
where d), is the pore throat diameter. This size ratio is
called the geometrical trapping threshold [15, 16]. Nu-
merical and experimental studies conducted after the
work of Dodds [14] show that the analogous size ratio
for a static randomly-packed large particle bed is about
6.67, which is slightly larger than R; due to the occa-
sional formation of jammed arches of fine particles be-
tween large particles [17, 18]. Similarly, for deep bed
filtration, where multiple fine particles in suspension are



captured by a granular bed, the particle size ratio at
the filtration threshold is about 6.62 [19], which again
is slightly larger than R;. Here we intentionally avoid
the problem of clogging and jammed arches by consider-
ing single fine particles rather than multiple fine particles
percolating simultaneously through the static bed.

Nevertheless, the dynamics of free sifting when the par-
ticle size ratio is close to and even below R; has been
largely ignored in previous studies on fine particle per-
colation in dry static granular beds driven by gravity,
which either focus on free sifting of fine particles with
R > R; [15, 16, 20-28], or explore the geometrical trap-
ping threshold for randomly-packed beds [17, 18], as indi-
cated by the key parameters of previous studies summa-
rized in Table I. Following the pioneering work of Bridg-
water et al. [20] and Bridgwater and Ingram [21], the ma-
jority of studies, both experimental and computational,
have investigated the percolation velocity, diffusion, and
residence time of fine particles falling through a static
bed of larger particles as a function of particle size ratio,
the number of fine particles, system dimensions, inter-
particle restitution coefficient e, and friction coefficient p
for particle size ratio R much larger than R;. The main
conclusions of these studies are that fine particles exhibit
a constant percolation velocity in steady state and that
the dispersion of fine particles, both perpendicular and
parallel to the direction of gravity, is diffusive [15, 16, 20—
28]. Moreover, the concentration of fine particles affects
the percolation velocity and particle dispersion, as fine-
fine particle interactions are pronounced when concentra-
tion is high. Consequently, clogging or jamming of fine
particles in a pore throat may hinder free sifting [16—
18, 28].

TABLE I. Parameters in studies of free sifting of fine particles
in static beds

Reference R 10} e
Rahman et al. [25] 14.7-10% 0.494-0.527 0.3-0.9
Zhu et al. [26] 10-10° 0.622 0.1-0.5
Richard et al. [23]* 10 0.62-0.64 0.87-0.97
Bridgwater et al. [20]*  8.8-28.5 0.63 0.2-0.92
Ippolito et al. [15]* 8.6-22.9 0.55-0.59  n.s.P
Remond [28] 8-12.5 0.573 n.s.?
Bridgwater & Ingram [21]* 7.4-45.5 0.63 0.2-0.92
Li et al. [27] 6.7-10° 058  0.1-0.95
Lominé & Oger [24]* 6.5-16 ~0.6 0.74-094
Lominé & Oger [16]* R;-20 ~ 0.6 0.6-0.99
Kerimov et al. [18] 3.3-10% 0.609-0.625 0.3
Roozbahani et al. [17] 2-20 0.581 n.s.P

2 experimental results
b not specified

Although free sifting is usually thought to be signifi-
cant only for size ratios larger than the geometrical trap-
ping threshold in static large-particle beds, it has been
hypothesized to be important in flowing beds even for
R < R, [8]. Hence, to provide a basis for the study of
free sifting in flowing granular materials, here we study
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FIG. 1. (left) Perspective view of computational box and
two representative fine particle trajectories (sampled at 5ms
intervals) in the free sifting regime (R = 6.5) for a static large-
particle bed with ¢ = 0.577. color map indicates dimension-
less time, t/+/d;i/g, during the trajectory. (upper-right) Top
view of the trajectory of one particle. (bottom-right) Pore
throat with a fine particle (red) at the geometrical trapping
threshold limit.

the simpler problem of free sifting of a fine particle in
random static packings of large particles for an interme-
diate size ratio range 4 < R < 7.5. We consider pack-
ing densities from ¢ = 0.526 to 0.639 over a wide range
of restitution coeflicients using discrete element method
(DEM) simulations [29]. The particle size ratio range we
consider encompasses the geometrical trapping thresh-
old Ry = 6.464, such that both the passing and trap-
ping regimes of the fine particles are investigated. We
focus on the dynamic features of fine particle percolation
through a bed of static large particles, namely the per-
colation velocity and fine particle diffusion coefficient in
both the passing and trapping regimes. The structure of
the random packings is characterized using the Delaunay
triangulation method [30-33] in order to relate it to how
far and how fast fine particles percolate through a packed
bed.

The remainder of the paper is organized as follows.
Section II describes our numerical simulations and pro-
vides an overview of the procedures for generating three-
dimensional random packings of spherical particles with
different packing densities. Section III characterizes the
fine particle percolation velocity and diffusion in both
the passing and trapping regimes, as well as the effects
of the restitution and friction coefficients. This section
also describes a pore-throat size distribution based sta-
tistical model that is used to predict the depth to which
fine particles percolate in the trapping regime as well as
a local percolation velocity based on the pore-throat size
and packing density. Section IV summarizes our findings.



II. METHODS
A. Numerical simulations

Following a standard soft-sphere DEM approach for
simulating granular materials [29], we study free sifting
using our in-house DEM code [34], which runs on CUDA-
enabled GPUs and has been previously validated by ex-
periments with millimeter-sized glass spheres [34, 35].
For all simulations, a linear spring-dashpot model with
Coulomb friction and rolling friction (simulation details
are provided elsewhere [35]) determines particle-particle
contact forces using a sliding friction coefficient of u =
0.5, a rolling friction uy related to the fine particle diam-
eter as u, = 0.001dy, a restitution coefficient of e = 0.8
(unless otherwise stated), and a binary collision time of
t. = 107*s. As we will show in Sec. IIIF, the restitu-
tion coefficient affects the dynamics of free sifting signifi-
cantly. To fully resolve particle collisions, the DEM sim-
ulation time step is ¢./50. Particle density is 2500 kg m~3
for both fine and large particle species.

The computational domain is shown in Fig. 1. We gen-
erate a random packing of large bed particles with iden-
tical diameter d; = 4mm (details described in Sec. IIB)
in a 16d; x 16d; x 32d; rectangular prism. The large par-
ticle diameter remains constant for all simulations unless
otherwise noted. To eliminate wall effects [36, 37, all six
bounding planes are periodic. Depending on the packing
density, the number of large particles in the bed varies
from 8,192 to 9,984. After a packed bed is formed, the
bed particle positions are fixed to keep the structure un-
changed. Then, 10* fine particles (diameter df) are ran-
domly positioned in a horizontal plane at z = 32.5d; to
avoid overlapping any large bed particles. Individual fine
particles with zero initial velocity fall freely under grav-
ity, in this case g = 9.81 ms~2, although the influence of
the magnitude of g is removed via a simple rescaling) [21].
The periodicity of the top and bottom boundaries is re-
moved during the initialization and release of the fine
particles, but is then restored after all fine particles have
entered the bed. Consequently, fine particles that perco-
late down to z = 0 re-enter the fixed bed at z = 32d;.
Figure 1 demonstrates the trajectories of two fine parti-
cles in the static bed. Each fine particle percolates along
an irregular path due to the random bed particle struc-
ture and collisional interactions with the bed particles.

Previous studies demonstrate that collective interac-
tions among percolating fine particles may clog some
pores of the granular bed, which can stop the flow even
in the free sifting regime [16-18, 28]. In order to avoid
this effect here, fine particles do not interact with each
other, i.e. they are independent intruders. As a result,
the dynamics of 10* independent intruder fine particles
are simultaneously computed in one simulation, which is
computationally efficient and provides sufficient data for
accurate statistics in most cases. Thus, our results can
be compared with previous studies in which the fine par-
ticle concentration is low enough that fine-fine particle

interactions are unimportant.

B. Static bed preparation

We create random packings with different packing
densities ¢ using a particle growth algorithm proposed
by Lubachevsky and Stillinger [38] in order to character-
ize how the structure of the static large particle bed influ-
ences free sifting. This method can generate homogenous
disordered packings over a range of packing densities up
to the random close packing limit of ¢ ~ 0.64 [39, 40].
Since the volume of the rectangular domain is constant,
random packings with a wide range of packing density
can be prepared by varying the number of bed parti-
cles. First, bed particles with a reduced initial diame-
ter are randomly generated in the rectangular computa-
tional domain. The initial bed particle diameter is typi-
cally 3.5 mm, which is smaller than the final diameter of
d; = 4mm. In order to establish homogeneous random
packings, all boundaries are periodic, gravity is turned off
during the expansion process, and inter-particle interac-
tions are perfectly elastic. To achieve the desired pack-
ing density, bed particle diameter is grown slowly over 5s
with decreasing radial velocity, i.e. d; = 4 — 0.5¢™¢, after
which d; is directly set to 4mm. As bed particles ex-
pand, interactions between them become more energetic
and frequent as they increasingly overlap momentarily
after growing. To minimize the degree of overlap and
reduce the non-physical kinetic and collisional potential
energy caused by the overlap, a relaxation process is ap-
plied in which the bed particle velocities are reset to zero
[38]. The relaxation is conducted every 0.1s until the de-
sired large particle size and packing density are reached.
Finally, the bed particles are allowed to relax for the
last time with gravity off and collisional dissipation on
to achieve a state of equilibrium (zero net kinetic and
collisional potential energy within the numerical error),
and then frozen in place. With this procedure, we obtain
homogeneous random packings (no crystalline structures
observed) with 0.526 < ¢ < 0.639. Particle overlap even
at the highest ¢ is minimal: less than 0.1% of contacts
overlap by more than 2.5% after the last relaxation. We
note that mean packing densities with ¢ < 0.55 are likely
not mechanically stable under gravity for frictional non-
cohesive particles [41], although packing densities as low
as ¢ = 0.54 may occur locally [42, 43]. Here, simulat-
ing packing densities slightly below this limit is useful
to better understand the effect of the large particle bed
structure on free sifting. We also note, and show later,
that other methods of preparing static beds, e.g., pluvi-
ation, may alter the bed packing structure but do not
change our key results showing how bed structural in-
formation can be used to determine percolation velocity
and percolation depth.
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FIG. 2. Positions of 10* non-interacting fine particles in the zz-plane at different times for packing density ¢ = 0.639 in (a)
the trapping regime (R = 5), and (b) the passing regime (R = 6.5). Black dashed outlines are the fully-periodic boundaries of
the computational domain in the xz-plane; large particles are omitted for clarity. Red curves indicate the fine particle number
distributions vs. depth, and blue dashed curves in (b) are fits to a normal distribution.

III. RESULTS
A. Passing and trapping regimes

We begin by illustrating the two regimes of fine par-
ticle motion in a bed of large particles based on the
geometrical trapping threshold, R, = 6.464 [14]. Fig-
ure 2(a) shows the positions of 10* independent fine par-
ticles at various times for R = 5 < Ry, i.e., the fine
particles are larger than the smallest pore throats that
can be formed by a static bed and will eventually become
trapped. The initial entrance time of a fine particle into
the static bed, ¢t = 0, is defined as the moment its z-
position is 1.5d; lower than the center of the highest bed
particle for the remainder of the simulation to avoid in-
cluding initial rebounds of fine particles above the free
surface. As indicated by the fine particle number dis-
tributions (red curves) and positions, some fine particles
percolate as far as 12d; into the bed, although the major-
ity are within 4d; of the surface after all motion has ended
by t/+/di;/g = 110. We call this the trapping regime—
fine particles travel different distances before they finally
cease percolating.

Contrast the trapping regime with the situation shown
in Fig. 2(b) for R = 6.5, which is only slightly larger
than R; = 6.464. Since every fine particle is smaller than
the smallest possible pore throat, none become trapped
in pore throats as they percolate downward with a con-
stant average percolation velocity. We call this the pass-
ing regime. Due to the stochastic nature of fine particle
trajectories in the passing regime, vertical dispersion in-
creases in time as is evident from the broadening of the
particle number distributions (red solid curves), which
are well fit by normal distributions (blue dashed curves).
Both the vertical and the horizontal dispersion is diffu-

sive, as we characterize in detail later in this section.

We note that in the passing regime a small number of
fine particles (typically less than 0.05%) can move very
slowly or stop moving entirely, e.g., the three green dots
in the upper-half of the domain for t/+/d;/g = 110, de-
spite the fact that our DEM contact model precludes
permanently stationary particles in the passing regime
(where there is a maximum of two point contact between
fine and bed particles) due to its lack of static rolling fric-
tion. In our simulations, both slowly moving and stopped
fine particles are associated with trajectories that impact
a bed sphere near its apex with small horizontal veloc-
ity. The former become effectively trapped over the fi-
nite duration of our simulations as they slowly roll down
from the bed sphere apex, while the latter are perma-
nently stopped because the computed changes in posi-
tion (linear and angular) are all smaller than the numer-
ical resolution of the corresponding variables, i.e. particle
position remains constant. Of course in physical experi-
ments, permanently stationary particles are possible even
for R > R; due to particle imperfections (e.g., flats and
asperities) and cohesive interactions. In our simulations,
however, permanently stopped particles have negligible
influence on our results due to their very small relative
numbers.

B. Percolation velocity

As shown in Fig.1, fine particles primarily move down
in the static bed following a random route in both verti-
cal and horizontal directions due to collisions with large
particles in the bed. Consider first the passing regime,
where a steady mean percolation velocity is quickly
achieved [15, 16, 20, 21, 23, 24, 26, 27]. Here, we con-
sider the vertical displacement of each particle Az over a
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FIG. 3. Passing regime: non-dimensional mean vertical dis-
placement vs. non-dimensional time interval for fine particles
with R = 7 at various ¢.

time interval 7 starting after it enters the static bed (to
avoid inconsistencies due to fine particles entering the
static bed at different initial times or bouncing above
the top of the static bed before entering it). The average
non-dimensional vertical displacement of all fine parti-
cles, Az/d;, versus the non-dimensional time, 7/1/d;/g,
for R = 7 is plotted in Fig. 3. The percolation velocity,
which is the local slope of each curve, v, = AZ/T, is es-
sentially constant for each packing density, ¢, consistent
with previous studies for fine particles with R > R;, and
decreases as packing density increases, as expected. The
uncertainty bars, shown only for ¢ = 0.639 for clarity, in-
crease with time, consistent with the increasing vertical
dispersion of fine particles evident in Fig. 2(b). Similar
results are found for other size ratios with R > R;.

In the trapping regime, all fine particles eventually stop
(all simulations run for sufficient time to ensure that more
than 99.95% of the fine particles stop percolating), but
they stop at different instants. Consequently, there are
always two populations of fine particles in the trapping
regime at any particular time before all fine particles
stop, i.e., some are moving while the others have been
trapped. To accurately capture and demonstrate the
transient dynamics of fine particles before they cease per-
colating, we use a conditional averaging approach. The
vertical positions of fine particles over a time interval of
7/y/di/g = 15 before they stop are offset and aligned
according to their final positions, which are set to zero
at 7 = 0. The conditionally averaged data are shown in
Fig. 4 for R = 5 and various ¢. There are three sequen-
tial temporal regions: in the green region, fine particles
pass through the large particle bed at a constant aver-
age percolation velocity (as indicated by the slope) just
as observed in the passing regime, even though their size
ratio is larger than R;; in the yellow region fine particles
slow down; in the red region, particles are no longer mov-
ing. Therefore, even in the trapping regime a percolation
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FIG. 4. Trapping regime: conditionally averaged non-
dimensional mean vertical displacement vs. non-dimensional
time interval with respect to trapping time for fine particles
with R = 5 at different ¢. Symbols are defined in Fig 3. The
three regions show where fine particles percolate at a constant
velocity (green), decelerate (yellow), and stop (red). Stopping
distance, sq, is the vertical distance over which fine particles
slow to a stop.

velocity can be obtained prior to when the fine particles
slow down and stop. Similar to the passing regime, the
percolation velocity decreases as ¢ increases. Interest-
ingly, the stopping distance, sq, defined as the distance
from where the data first deviate from linear (where the
local gradient is 5% smaller than that of the linear por-
tion in the green regime) to the trapped depth, is nearly
the same for all ¢ with a value of sq ~ 0.55d;, see Fig. 4.
This indicates that the trapping region is smaller than
the static bed particle but essentially independent of ¢,
at least for the packing densities considered here. s4 de-
creases by less than about 10% when particle size ratio
is decreased from 6 to 4, which is surprisingly small, but
the decrease is consistent with the fact that larger fine
particles (R = 4) have less free space to move within the
packed bed.

We now compare the percolation velocity for both the
trapping and passing regimes for various R and ¢ based
on the slopes of the displacement versus time data using
only the portion of the fine particle trajectories where
the slope of Az vs. 7 is linear (green region in Fig. 4).
As shown in Fig. 5(a), the previously proposed dimen-
sionless percolation velocity, v,/v/gd; [21], for a fixed R
decreases nearly linearly as ¢ increases since denser pack-
ing increasingly constrains the movement of the fine par-
ticles. For constant ¢, v, increases as I increases because
fine particles are smaller compared to the bed large parti-
cle (previous studies showed that the percolation velocity
asymptotically approaches a maximum as R is further in-
creased [25, 27]). Perhaps more importantly, the percola-
tion velocity is similar for both the passing and trapping
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FIG. 5. (a) Non-dimensional percolation velocity vy/v/gdi
vs. packing density ¢ for various R across the passing and
trapping regimes for restitution coefficient e = 0.8. The
dashed curve approximates the boundary between the pass-
ing (above) and trapping (below) regimes. (b) Scaling the
non-dimensional percolation velocity by v/ R removes the R
dependence. (c) Scaling the non-dimensional percolation ve-
locity using both R and ¢ makes it nearly constant. Data
points for R = 7 and ¢ = 0.577 at different simulation condi-
tions (black x) are offset slightly to the right to make them
more visible. In (b) and (c), the dashed line is a linear fit to
the data.

regimes from two standpoints. First, the dependence of
vp on R and ¢, is similar in both cases. Second, there is
a smooth decrease in v, from the trapping regime to the
passing regime, rather than a sudden jump, even for the
condition where ¢ approaches the random close packing
limit (¢ ~ 0.64). To check that the results in Fig. 5(a)

are independent of the specific values of g and d; primar-
ily considered here, we perform additional simulations
for R = 7 and ¢ = 0.577 that are identical except with
large particle diameters of 0.5d; or 2d; or with gravita-
tional accelerations of 0.5g or 2g. Results for these four
cases [black crosses in Fig. 5(a)] almost overlap one an-
other as well as the data point for 4 mm large particles
at g, indicating that v, scales as \/gd;, which reflects the
free fall velocity of a particle over a distance that scales
with the large particle diameter, d, i.e., the pore diame-
ter [15]. Moreover, our simulation results are consistent
with a previous experimental result (small red filled cir-
cle in Fig. 5(a) [21]), accounting for its size ratio being
larger (R = 8.77) than those considered here.

Although the geometrical trapping threshold, R; =
6.464, effectively determines whether a fine particle is ul-
timately trapped or not, R; is not a sharp threshold for
delineating the dynamics of free sifting in a randomly-
packed bed. That is, fine particles can traverse a signifi-
cant distance at a significant percolation velocity through
a bed of static large particles for R well below the geomet-
rical trapping threshold, R;, in random packings. This
may have significant implications for free sifting in flow-
ing granular mixtures, where it is not only the particle
size ratio that determines when free sifting occurs, but
also the nature of the flow, which alters the packing den-
sity and causes voids between large particles to continu-
ally open up as particles flow. While flowing large parti-
cles are beyond the scope of this paper, the similarity of
results below and above R; in Fig. 5(a) suggests that the
observed change in the percolation of small particles in
granular flows for R > 3 is indeed likely a consequence of
the increasing significance of free sifting with increasing
R, as previously suggested [8].

The similar dependence of the percolation velocity on
size ratio and packing density suggests scaling the perco-
lation velocity by those parameters. We have considered
several ways to scale the percolation velocity and found
that using /gd; R (equivalent to d;+/g/dy) best collapses
the data for all R tested, as shown in Fig. 5(b). The
origin of this scaling is unclear. It is the ratio of the time
scale for a fine particle to fall a distance equal to its di-
ameter, \/ds/g, to the time scale to traverse the length
of a pore at the mean percolation velocity, d;/v, (noting
that the pore size scales with d;). And while this scaling
also works for a previous experimental result at larger R
than we consider here (small red circle [21]), it cannot
be the correct scaling in the limit of large R where the
percolation velocity eventually plateaus for R 2 30 [27].

The data can be further collapsed to a nearly con-
stant value of ~0.05 by multiplying v,/v/gd; R by ¢, see
Fig. 5(c). Thus, the scaled fine-particle percolation ve-
locity in static randomly-packed beds, vp,¢/\/gdiR, is a
constant in both the passing and trapping regimes for 4 <
R <9 and packing densities ranging from slightly below
the lower limit for frictionally-stabilized random pack-
ing [41] to random close packing (0.526 < ¢ < 0.639).
The scaled value of v, (here 0.05 for e = 0.8) is resti-
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FIG. 6. Non-dimensional mean squared displacement (MSD)
of fine particles vs. time interval At in the passing regime
(R = T7): (a) projected to the zy-plane (horizontal) and (b)
in the z-direction (vertical). Results for various ¢ are shown,
and symbols are defined in Fig. 3.

tution coefficient dependent as discussed below in the
context of Figs. 7 and 15.

C. Fine particle diffusion

In the passing regime, the percolation of a fine par-
ticle is essentially a random walk (biased in the verti-
cal direction), as is evident in the trajectories shown in
Fig. 1. Such random motion leads to position dispersion
of percolating fine particles in the packed bed, both in the
horizontal and vertical directions [15, 16, 20, 21, 24-27].
To quantify the dispersion, the mean squared displace-
ment (MSD) of all fine particle trajectories is measured.
In the horizontal direction, i.e., the xy-plane, the two-
dimensional MSD is calculated as

MSD,, (At) = (AX (At)? + AY (At)?), (1)

where AX(At) = z(tg + At) — z(to) and AY(At) =
y(to + At) — y(to) are the displacements in the z— and
y—directions, respectively. The angled brackets repre-
sent the averages over all particles and over different val-

ues of tg after the steady percolation state is achieved.
In the vertical direction (z-direction), the diffusion pro-
cess occurs with respect to a mean flow, so the MSD is
calculated as [44]

MSD, (At) = ([2(tg + At) — 2(tg) — v, At]?),  (2)

where v,At is the mean displacement of fine particles
in the z-direction over the time interval At. As shown
in Fig. 6, MSD,, and MSD, both display a transition
from a short-time-interval ballistic regime with slope of
approximately 2 [45] to a long-time-interval normal dif-
fusive regime with slope of approximately 1 [46]. For
¢ = 0.526, the slope transitions occur at At ~ 10 ms for
both MSD,,, and MSD,, which is about the average free
flight time of fine particles between collisions with large
particles [45]. The time interval also indicates the size
of the structural constraint of random packings, which is
on the order of 0.1d;. Finally, the time scale decreases by
less than 10% as ¢ increases to 0.639.

The diffusion coefficients, which are based on
MSD,, = 4D,,At and MSD, = 2D,At [47], respec-
tively, are determined by fitting the linear portion (with
slope of 1) of the MSD curves in Fig. 6. For the trapping
regime, we consider only the portion of the fine parti-
cle trajectories for which the fine particles pass through
the large particle bed at a constant percolation veloc-
ity (green region in Fig. 4). The diffusion coefficient,
non-dimensionalized by 1/gd? based on the assumption
that it scales with the space between the large bed par-
ticles, is plotted for various packing densities and size
ratios in Figs. 7(a) and 7(d). We omit the results for
R =4, and R = 5 for ¢ > 0.577, because fine par-
ticles are trapped quickly in these situations, hindering
the accumulation of sufficient data to accurately evalu-
ate the MSD at the time intervals of interest. As would
be expected, for a fixed size ratio, the diffusion coeffi-
cient decreases as packing density increases, consistent
with a previous study [22]. And for a fixed packing den-
sity, smaller size ratios have a smaller diffusion coefficient
because the motion of larger fine particles is more con-
strained by the static packing. As was the case for the
percolation velocities, no sharp distinction exists between
the diffusion coefficients in the passing regime versus the
trapping regime. Dg, from an earlier study with ¢ = 0.6
and R = 7.5 [16] [solid red circle in Fig. 7(a)] is lower
than our closest corresponding result, but is nevertheless
consistent with our results. Again, varying the large par-
ticle size and the gravitational acceleration gives results
that are nearly identical (black crosses).

We additionally consider two alternative scaling ap-
proaches for Dy, and D.. In Figs. 7(b) and 7(e), the
diffusion coefficient is non-dimensionalized by /gd; R?
(following the scaling of percolation velocity). Similar to
the dimensionless percolation velocity in Fig 5(b), this
scaling reduces the R dependence, particularly for larger
values of ¢, although the experimental data point for
R = 7.5 does not collapse as well with our data. Using
V/9d?R (again inspired by the scaling for the percola-
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FIG. 7. Diffusion coefficient in the (a-c) zy-plane projection (horizontal) and (d-f) z-direction (vertical) scaled by (a,d) large
particle diameter, 1/gd;, (b,e) v/gdi R3, and (c,f) expressed as Péclet numbers vs. packing density for various R in the passing
and trapping regimes for restitution coefficient e = 0.8. Data symbols for R = 7 and ¢ = 0.577 at different simulation
conditions, as indicated in (a), are offset slightly to the right to make them more visible. Dashed curve in (a,d) approximates
boundary between passing (above) and trapping (below) regimes.
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only results for R = 7,¢ = 0.577 are shown for clarity.

tion velocity) is less effective in collapsing the data (not D,y and D, (similarly, Pe,, and Pe.) have similar values
shown), although the experimental data point is closer for the same R and ¢, as observed experimentally [21],
to our simulation results. indicating that diffusion is similar for the horizontal and

Finally, Bridgwater et al. [20] suggest using the Péclet vertical directions, at least when e = 0.8.

number to describe the transport of fine particles in static
beds. Figures 7(c) and 7(f) show the Péclet numbers,

Péy, = —vyd;/Dyy and Pe, = —v,d;/D., for various R D. Effects of restitution and friction coefficients
at various ¢. Results for different size ratios collapse to

some extent, although not as well as with the /gd} R® Up to this point, the restitution coefficient for particle
scaling. Additionally, Pe increases sublinearly with ¢, collisions has been fixed at e = 0.8. However, the restitu-

indicating that the percolation velocity decreases with ¢ tion coefficient affects both the percolation velocity and
more quickly than the diffusion coefficient. Furthermore, diffusion of free sifting significantly. We examine its in-
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FIG. 9. Probability P in the trapping regime that a fine particle reaches scaled depth (zo — z5)/d; for (a) R =4, (b) R =5,
and (c¢) R = 6 for various ¢ (symbols defined in Fig. 3). Uncertainty bars plotted in (b) for R =5, ¢ = 0.577 are due to finite
fine particle number (see text). Solid lines are model predictions using Eq. 4.

fluence in the passing regime for different ¢ and R, but
similar results occur for the trapping regime. As shown
in Fig. 8(a), for two pairs of R and ¢ values, the per-
colation velocity decreases by more than a factor of 2
with increasing restitution coefficient (from e = 0.2 to
e = 0.95) as reported previously [15, 16, 20, 21, 24, 26].
The reason for this decrease is that less dissipative inter-
actions between particles drive fine particles to rebound
more energetically when colliding with bed particles, and,
consequently, fine particles remain in the voids between
bed particles for a longer time before falling into the next
void. Moreover, the percolation velocity follows the rela-
tionship v,/v/gd; < (1 — €)/4 for more elastic collisions
(e > 0.6), consistent with a theoretical analysis for two-
dimensional percolation based on an analysis of Brownian
motion [48].

The influence of the restitution coefficient on the dif-
fusion coefficients is more complicated, as shown in
Fig. 8(b). For e > 0.6, both D,, and D, are nearly
independent of e and have similar values, as found previ-
ously [16]. This may be understood by considering that
a fine particle with higher e tends to bounce more times
in a void between bed particles before passing through
one of the void’s pore throats. Thus, the fine particle is
nearly as likely to exit the void either vertically or hori-
zontally, yielding a similar degree of diffusion regardless
of direction. For e < 0.6 and decreasing, however, D, and
D, increase significantly, with D, increasing more than
Dyy. The increase in D, and D,, with decreasing e is
expected as diffusion tracks the response of v}, which also
increases with decreasing e and to which diffusion should
be proportional [16]. The relatively larger increase in D,
relative to D, with decreasing e is apparently due to
the larger increase in the width of the velocity distribu-
tion of the former. For instance, consider a fine particle
falling toward a pore throat in the limit of e = 0. If its
trajectory is aligned or nearly aligned with the center of
the pore throat, few if any rebounds occur and its verti-
cal velocity remains large. However, if it strikes a pore-
throat constituent particle near its highest point, the fine

particle vertical velocity will be reduced to nearly zero.
In contrast to our results, however, a previous study finds
that D,, increases by about 40% as e is increased from
0.5 to 0.9 Zhu et al. [26]. This reversed result relative to
our findings may be a consequence their approach, which
considers interactions between fine particles, which we
ignore, and uses different physical particle properties.

We also consider the impact of e on the Péclet number,
shown in Fig. 8(c). Both Pe, and Pe,, decrease with in-
creasing e for e > 0.6. The trend matches previous exper-
iments for Py, [20], as shown in the figure, although the
experiments have somewhat smaller values, which may
be a result of larger particle size ratios, 8.8 < R < 28.5,
interactions between fine particles, and details of how
the diffusion coefficient was measured in the experiments.
Nevertheless, the reasonably close match between the ex-
periments and our simulations confirms the validity of
our results for e > 0.6. Pe, decreases significantly when
e < 0.6 because of the more rapid increase of D, com-
pared to v, with decreasing e.

Unlike the restitution coefficient, the friction coeffi-
cient has negligible influence on both percolation velocity
and diffusion coeflicients of free sifting when varied from
@ = 0.2 to 0.8. Low sensitivity to the friction coeflicient
value is also observed in simulations with fine particle
concentrations below 10% [28].

E. Percolation depth in the trapping regime

Returning to the trapping regime, we use a simple ap-
proach to understand and predict the vertical distance
that fine particles percolate before they are trapped. The
probability, P, that a fine particle reaches a given depth
zy is obtained by calculating the fraction of the 10* fine
particles that exceed this depth at the end of the simula-
tion. All fine particles start at the free surface, zg, so that
P =1 at dimensionless height (2o — zy)/d; = 0. P de-
creases as depth increases, indicating that fine particles
have less chance to migrate deeper into the static bed.
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FIG. 10. (a) Red sphere inscribed in a tetrahedron formed from four large bed particles. (b) Four green spheres positioned
at the narrowest point of each of the four pore throats of the tetrahedron indicate the maximum diameter of a passable fine
particle. (c) Two-dimensional illustration of two Delaunay cells that can be merged (see text) [31, 32].

Figure 9 shows the probability P that a fine particle can
reach a dimensionless displacement of (zo — zy)/d; before
it is trapped by the static bed for three different size ra-
tios, with R < Ry, and various ¢. For a given R, fine
particles have a lower probability of traveling deeply into
bed when the packing is denser. Conversely, for a given
packing density ¢, a larger size ratio R results in a higher
chance for fine particles to percolate farther because they
are smaller relative to the bed particle voids. Uncertainty
bars [49], shown in Fig. 9(b) for one case, are typically
smaller than the symbols but increase with depth because
fewer fine particles can percolate more deeply in the bed,
leading to larger uncertainty for the measured probabil-
ity. Figure 9(c) shows that for R = 6 and ¢ < 0.6,
fine particles are rarely trapped and can percolate a long
distance through the bed as indicated by the nearly hor-
izontal data sets.

From Fig. 9, it is clear that the probability P decreases
nearly linearly on the semi-logarithmic plot as a function
of the non-dimensional percolation distance, i.e.,

log P = kuy (3)
dy

where k is the slope. Similar exponentially decreas-
ing fine particle concentration with increasing percola-
tion depth has also been observed in deep bed filtra-
tion [50, 51]. To model the trapping depth probability,
we assume that the probability for a fine particle to pass
through a randomly selected pore throat is F,. Then, the
probability to pass through n pore throats consecutively
is P,", assuming independent events. If the average ver-
tical distance between pore throats along the fine particle
trajectory is AZz,, then n = (20 — 2z¢)/AZ,, and the prob-
ability P for a fine particle to travel a distance of 2o — zy
can be expressed as,

pP— P]SZ(,fzf)/AEp. (4)

This expression can be rewritten as,

log P, zo — zy¢
logP = -—-L2 = "1, )
o8 Aip/dl d; ( )

This relationship is analogous to a previous percolation
model [52], but we additionally show that the slope in
Fig. 9, log P,/(AZ,/d;), is determined by two physical
parameters related to the structure of the packed bed, P,
and AZ,, both of which are measured by characterizing
the pore-throat size distribution and the vertical spacing
of the throats.

1. Pore-throat diameter

The Voronoi-Delaunay tessellation method and several
variations on the method [53, 54] are commonly used
to characterize the void structure in porous materials.
Here, the standard Delaunay triangulation is a sufficient,

dr/dl
115
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FIG. 11. Two randomly-packed large particle beds (purple
spheres) and corresponding pore-throat spheres (color map
indicates pore-throat size) obtained using the L1 method [32]
for (a) ¢ = 0.577 and (b) ¢ = 0.639.



simple, and convenient option [30-33] that is based on
sets of non-overlapping tetrahedrons whose vertices are
the centers of four neighboring spherical particles, see
Fig. 10(a). Once the packing is partitioned into tetrahe-
drons, the Apollonius approach [55] is implemented for
each tetrahedron to obtain the largest pore sphere that
can be placed inside the four particles [single red sphere
in Fig. 10(a)] and the four pore-throat spheres [green in
Fig. 10(b)], which represent the largest fine particle able
to pass through each throat. For a regular tetrahedral ar-
rangement of four identical large bed spheres that contact
one another, the ratio of the large bed particle diameter
to the pore sphere diameter (red) is 2/(v/6 — 2) ~ 4.449,
and the ratio of the bed particle diameter to the pore-
throat sphere diameter (green) is the geometrical trap-
ping threshold, 6.464.

The triangulation process described above is denoted
as Level 0 (LO) [32]. However, the LO analysis is likely
to generate inaccurate identification of pore-throat loca-
tions and sizes in disordered packings [31, 32]. The main
reason is that a pore throat bounded by more than four
bed particles, which frequently occurs in a random pack-
ing, cannot be appropriately captured by the L0 method,
leading to the over-segmentation of a single large void
space into several overlapping smaller void spaces; see,
for example, the two-dimensional sketch in Fig. 10(c). To
avoid this problem, Reboul et al. [32] suggest a Level 1
(L1) method to combine adjacent tetrahedra if they have
overlapping pore throats, such as the blue and red circles
in Fig. 10(c). Using the L1 method, a combined pore
throat bounded by the four bed spheres [gray circles in
Fig. 10(c)] can be found. If no analytical solution is pos-
sible, only the small blue pore throat is considered as the
constraint for this combined pore space.

Since the pore-throat diameter is the length scale that
determines whether a fine particle passes through the
pore-throat or not, we use it to characterize the packing
in the following analysis. Figure 11 shows the large bed
particles (purple) and corresponding pore-throat spheres
(color scale indicates pore-throat size) for two packing
densities using the L1 approach. For the denser packing,
the pore throats are smaller (darker), while for the looser
packing the pore throats are larger (lighter). Note that
the smallest pore throats have d, = d;/6.464, consistent
with the value of R;.

2. Pore-throat size distribution

Figure 12(a) shows the probability density function
(PDF) of the pore-throat size for different bed pack-
ing densities using the L1 analysis. The minimum pore-
throat size has a value of dp,/d; = 1/R; = 1/6.464. The
maximum pore diameter depends on the packing density,
which is d,/d; = 2/3 for the loosest random packing at
¢ = 0.526, and decreases with increasing ¢. When pack-
ing density is higher, the maximum in the PDF shifts to-
ward the R; limit because the denser packing generates
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FIG. 12. (a) Pore-throat size distributions, (b) correspond-
ing cumulative distribution functions (CDF), and (c) pass-
ing probabilities vs. R = d;/ds for different ¢. Color and
corresponding ¢ values are as in Fig. 3, and only data for
¢ = 0.526,0.577,0.607, and 0.639 are shown in (a) for clarity.

more small pore throats. As packing density decreases,
the peak moves away from the R; limit, and the distri-
bution is flatter. The pore-throat size distribution result
for ¢ = 0.607 (blue squares) is similar to previous results
for ¢ ~ 0.6, where the peak occurs at d,/d; ~ 1/5 and
maximum pore-throat diameter is about 0.5d; [32, 33].
The cumulative density function (CDF'), which is the in-
tegral of the PDF with respect to d,/d;, is the fraction
of pore throats with size ratio smaller than d,/d;. As
shown in Fig. 12(b), for a given value of d,/d;, the CDF
is larger for denser packing as it produces more small
pore throats. The utility of the CDF here is that it
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FIG. 13. Average vertical distance normalized by large par-
ticle diameter, AZz,/d;, between passable pore throats on the
paths of all fine particles for different particle size ratios R
at different packing densities ¢. Uncertainty bar depicting
the standard deviation of the measurement is only shown for
R = 4 for clarity.

can be used to obtain the passing probability P, used
in Egs. 4 and 5: a fine particle of diameter d; passes
a random pore throat with passing probability P, = 1-
CDF(d,/d; = d¢/dij= 1/R). P, for fine particles with dif-
ferent particle size ratios in static packings with different
packing densities is shown in Figure 12(c). Note the en-
hanced sensitivity of P, to variation in ¢ at intermediate
R, e.g., P,(R=4,¢=0.526) ~ 2P,(R = 4, ¢ = 0.639).

8. Awverage vertical distance between pore throats

In addition to the pore-throat diameter, the other key
physical property of the packed bed is the average ver-
tical distance between pore throats, AZ,, along a fine
particle trajectory, which is obtained by determining the
pore throats that a fine particle passes through and av-
eraging the vertical distance between pore throats over
the trajectories of all fine particles. Figure 13 shows that
for any given packing density, AZ, decreases with in-
creasing R, indicating that the average distance between
accessible pore throats decreases, as would be expected.
Interestingly, for a particular size ratio R, AZ, remains
nearly unchanged for various ¢. This likely occurs be-
cause for a fine particle with a fixed size, the number
of passable pore throats decreases for a denser packing
(i.e., AZ, should increase), but a denser packing results in
the reduction of the average distance between bed parti-
cles, and accordingly a reduction in the average distance
between pore throats (i.e., AZ, should decrease). Con-
versely, for a looser packing more pore throats are pass-
able but the average vertical distance between all pore
throats is larger due to the dilation. Apparently, these
two factors counteract each other, leading to a value of

12

AZ, that is nearly independent of ¢. It is not surpris-
ing to see this structural independence with respect to
the packing density, given the nearly identical stopping
distance, sg, for all ¢, evident in Fig. 4. It is also inter-
esting to note that the stopping distance of sq ~ 0.55d;
for R = 5 in Fig. 4 is only slightly less than the value
Az, = 0.63d; for the same size ratio in Fig. 13. Obvi-
ously, the stopping distance for a fine particles should be
within the distance between pore throats as is the case
here. Furthermore, these two distances are both slightly
less than the large particle diameter, which would be ex-
pected for randomly-packed static beds for the ¢ range
examined here.

The values of P,, based on characterizing the pore-
throat size distribution using the Delaunay triangulation
method, and AZ,, based on the distance between pore
throats along fine particle paths, can be substituted into
Eq. 4 for the probability P of a fine particle with size
ratio R to penetrate to any particular depth in a ran-
dom packing with given ¢. The model’s predictions are
plotted as solid lines in Fig. 9 and match the DEM re-
sults for all cases with various R and ¢. This indicates
that our assumption that free sifting is composed of in-
dependent events (i.e., pore-throat sizes are not spatially
correlated), which is the basis for the statistical model
(Eq. 4), holds. Consequently, the depth of fine parti-
cle penetration in the trapping regime depends only on
the pore-throat size distribution and the vertical distance
between throats.

F. Local percolation velocity

With the pore-throat size distribution and vertical dis-
tance between pore throats characterized, it is possible
to consider the local percolation velocity in a pore throat
as a function of local pore throat size to better under-
stand the similarities in the overall percolation velocity,
vp, between the passing and trapping regimes evident in
Fig. 5. First, we define the local percolation velocity as
the average vertical velocity of a fine particle with its
center within a pore-throat sphere. Then the local per-
colation velocity, vy, for a given pore-throat size is aver-
aged over all fine particles within all pore-throat spheres
of such size. The vertical velocity outside of the pore-
throat spheres, i.e., in the voids, connecting pore-throat
spheres, is excluded from the average so that we can asso-
ciate the local percolation velocity with the pore-throat
diameter.

Consider first the case of R = 7.5 for the passing
regime, shown in Fig. 14(a). The non-dimensional local
percolation velocity —uv,;/+/gd; increases with increased
d,/dys, as would be expected for larger pore throats, and
decreases with increased packing density, ¢, likely due
to the associated decrease in the size of the voids be-
tween pore-throat spheres. Multiplying —uv,, ;/+/gd; by ¢
collapses the data [see Fig. 14(b)], much like for v,, as
shown in Fig 5(c). More importantly, the effects of par-
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FIG. 14. (a) Non-dimensional local percolation velocity,

vp.1/A/gd;, vs. pore throat to fine particle size ratio, dp/dy,
for R = 7.5 at various ¢. Symbols are defined in Fig. 3. (b)
Multiplying vp,.1/v/gdi by ¢ collapses the data. (c) Additional
data for other size ratios, 4 < R < 7.5, both in the trapping
and passing regimes with symbols defined in Fig. 5 (a), and
the full range of packing densities (not differentiated by sym-
bols) also collapse. Uncertainty bars indicates the standard
deviation of the measurement for ¢ = 0.577 and R = 7.5. The
white line is a linear fit through the data.

ticle size ratio R are incorporated into the pore throat to
fine particle size ratio dp/ds, because the pore sizes are
directly related to the sizes of the large particles forming
the static bed. Consequently, the relationship between
—vp1¢/V/9d; and d,, /dy holds for both trapping and pass-
ing regimes for all R and collapses all the data for v, ,
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FIG. 15. Non-dimensional local percolation velocity,

Up,1/\/gdi, vs. pore throat to fine particle size ratio, dp,/dy,
for three restitution coefficients with R = 7 and ¢ = 0.577.

as shown in Fig. 14(c).

The data collapse in Fig. 14(c) makes it possible to
predict average percolation velocity for fine particles with
various sizes in random packings with different packing
densities based on the pore-throat size distribution. The
average percolation velocity can be estimated as

o= " iy /) Pyua(dy/d)A(dy/dy),  (6)

where v, ;(d,/ds) is obtained by a linear fit to all data
in Fig. 14(c), and P,sq(d,/dy) is the pore-throat size dis-
tribution of the entire packing, which is the data from
Fig. 12(a) recast as a function of d,,/d; (based on R) in-
stead of d,/d;. The predicted average percolation veloc-
ity based on this approach generally deviates from the
measured average percolation velocity in Fig. 5 by less
than 5% for all of the cases we consider. Thus, it is the
local pore throat velocity, vp;, that determines the over-
all percolation velocity, v,, whether in the trapping or
passing regime.

At this point, we return to the restitution coefficient,
which strongly affects the percolation velocity and par-
ticle diffusion, as shown in Fig. 8. The impact of e on
the local percolation velocity for R = 7 and ¢ = 0.577 is
shown in Fig. 15. When the restitution coefficient is large
(dark blue symbols), less fine particle energy is dissipated
during inter-particle collisions. As a result, fine parti-
cles are likely to bounce repeatedly inside pore throats
and take a relatively longer time to enter or exit a pore-
throat sphere. Consequently, the local percolation veloc-
ity increases only slightly with pore-throat size. However,
when the restitution coefficient is low (light blue), the ki-
netic energy of fine particles is largely dissipated in only
a single collision. As a result, fine particles fall freely over
a longer distance with less bouncing thereby achieving a
higher velocity. Consequently, the local percolation ve-
locity for a fine particle with a low restitution coefficient
is larger than with a high restitution coefficient, partic-



ularly inside a larger pore-throat sphere. Interestingly,
the local percolation velocity for all e values appears to
plateau when d,/dy is large, analogous to sheared sys-
tems where the segregation velocity is nearly independent
of size ratio when R 2 3 [8].

Based on the characterization of the local percolation
velocity, it is possible to better understand the develop-
ment of the vertical dispersion of fine particles. First,
the particle number distribution in the passing regime
is approximately Gaussian [see Fig. 2(b)], which is con-
sistent with the central limit theorem (the sum of inde-
pendent random variables tends towards a normal dis-
tribution even if each original event is not normally dis-
tributed). An analogous situation is that the probabil-
ity distribution for the total distance covered in a two-
dimensional random walk (biased or unbiased) becomes
a normal distribution given sufficient time [56]. Second,
because the local percolation velocity varies more with
d,/ds for lower restitution collisions (Fig. 15), the dis-
tribution of the fine-particle vertical displacement over
the same time tends to be wider and, accordingly, yields
a larger vertical diffusion coefficient, D,, than that for
higher restitution coefficient, see Fig. 8(b).

IV. CONCLUSIONS

The percolation of fine intruder particles in static ran-
dom packings of identical large particles depends on the
particle size ratio, packing density, and restitution coeffi-
cient. Unlike previous studies, we consider both dynamic
features of the fine particle motion and static features of
the large particle bed for free sifting with an intermedi-
ate particle size ratio, 4 < R < 7.5, which encompasses
conditions both above and below the geometric trapping
threshold, R; = 6.464 [14].

For these size ratios, R; determines whether a fine
particle is trapped or not, leading to the passing and
trapping regimes (Fig. 2). However, no sharp transitions
for the percolation velocity and diffusion coefficients (or
Péclet numbers) between these two regimes are evident,
even when the size ratio is as low as 4, where most fine
particles are quickly trapped, or when the packing den-
sity approaches the random close packing limit (Fig. 5).
In fact, when scaled properly, the percolation velocity
is invariant across a fairly large range of size ratios and
packing densities for both passing and trapping regimes
[Fig. 5(c)], a surprising result. Likewise, the scaled local
percolation velocity in individual pore throats depends
on the local pore throat size and packing density but is
independent of whether the percolation is in the trap-
ping or passing regime [Fig. 14(b)]. This relationship
[informed by Fig. 14(c)] can be used to predict the over-
all percolation velocity for a wide range of R and ¢. The
restitution coefficient, e, also affects the dynamics of free
sifting significantly. The local percolation velocity as a
function of local pore-throat size decreases as e increases
and demonstrates less variation (Fig. 15), which in turn
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results in smaller overall percolation velocity and smaller
diffusion coefficients (Fig. 8). Both of these effects re-
sult from the more energetic interactions between the fine
particle and bed particles that occur at larger e, where
the fine particle may bounce repeatedly in a pore before
passing through it.

In the trapping regime, the probability that a fine par-
ticle is trapped at a particular depth follows a simple
relationship, suggesting that free sifting in a static bed is
a process consisting of independent sievings. The de-
pendence of the probability on particle size ratio and
packing density can be understood by characterizing the
pore structure of the static bed using the modified Delau-
nay triangulation method (L1). The structural informa-
tion informs the passing probability P, and the average
vertical distance between pore-throat spheres AZ,, upon
which the model to predict the probability for a fine par-
ticle to reach any depth is based. Similarly, character-
izing pore-throat size distributions makes it possible to
understand their influence on the local percolation veloc-
ity, which determines the overall percolation velocity. We
also note that for static beds prepared using other pack-
ing approaches, e.g., settling large bed particles under
gravity or freezing flowing large particles, our approach
for predicting the percolation depth remains accurate,
even though the pore statistics, such as the passing prob-
ability and the pore size distribution, can vary at similar
packing densities.

In addition to providing a better understanding of fine
particle percolation in static particle beds, these results
provide a framework that can be extended to sheared
flows of fine and large particles. While size segregation
due to percolation in granular flows has been successfully
characterized for R < 3 [3, 4, 7, 8], the nature of the
segregation seems to change at larger R. This has been
attributed to free sifting [8], but with the caveat that
free sifting would be expected to occur near R; = 6.464,
a much larger size ratio than that where the dominant
physics of size segregation changes. However, the results
in this study demonstrating that significant percolation
occurs in static beds at size ratios as small as R = 4,
albeit in the trapping regime, suggest that it is reasonable
that free sifting alters the physics of size segregation in
flowing granular mixtures at size ratios well below R;.
In fact, one could argue that the continuous opening of
voids in the flowing granular material might be analogous
to decreasing the packing density under the static bed
conditions considered here. Even so, it is clear that the
problem of fine particle percolation in flowing granular
materials is more complicated than that in a static bed
and deserving of further study.
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