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This article considers deep neural network (DNN)-based turbo-detection for multilayer magnetic recording (MLMR), an emerging
hard disk drive (HDD) technology that uses vertically stacked magnetic media layers with readers above the top-most layer. The
proposed system uses two layers with two upper layer tracks and one lower layer track. The reader signals are processed by
convolutional neural networks (CNNs) to separate the upper and lower layer signals and equalize them to 2-D and 1-D partial
response (PR) targets, respectively. The upper and lower layer signals feed 2-D and 1-D Bahl–Cocke–Jelinek–Raviv (BCJR) detectors,
respectively. The detectors’ soft outputs feed a multilayer CNN-based media noise predictor whose predicted noise outputs are fed
back to the BCJR equalizers to reduce their bit error rates (BERs). The BCJR equalizers also interface with low-density parity-check
(LDPC) decoders. Additional BER reductions are achieved by sending soft-information from the upper layer BCJR to the lower layer
BCJR. Simulations of this turbo-detection system on a two-layer MLMR signal generated by a grain-switching-probabilistic (GSP)
media model show density gains of 11.32% over a comparable system with no lower layer and achieve an overall density of
2.6551 terabits per square inch (Tb/in2).

Index Terms— Bahl–Cocke–Jelinek–Raviv (BCJR) detector, convolutional neural network (CNN), CNN equalizer-separator, CNN
media noise predictor, deep neural network (DNN), low-density parity-check (LDPC) decoder, multilayer magnetic recording
(MLMR), turbo-detector.

I. INTRODUCTION

MULTILAYER magnetic recording (MLMR), proposed
in [1]–[5], is an emerging technology to increase the

areal information density of hard disk drives (HDDs) using
vertically stacked magnetic media layers. The respective layers
use different bit sizes and can be independently written at dif-
ferent resonant frequencies using microwave assisted magnetic
recording (MAMR). The presence of lower layers gives a net
areal density (AD) gain compared with the case where only
the upper layer is present.
In MLMR, the readers are above the top-most layer; hence,

the readback signal is a superposition of signals from all the
layers, resulting in a joint signal separation and equalization
problem. This problem can be reduced by track interlacing
such that upper layer tracks only partially overlay lower
level tracks, as in the two-layer interlaced MLMR considered
in [6] and [7], but at the cost of less potential AD gain than
the two-layer MLMR considered in [8] and [9] and in the
present article, wherein two upper layer tracks completely
cover one lower layer track. Thus, while reader signal process-
ing techniques used in two-dimensional magnetic recording
(TDMR) [10], such as, e.g., [11]–[19] can potentially be used
to increase the per-layer AD in MLMR, such techniques can
only be used after separation of the individual MLMR layer
signals is performed.
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By viewing TDMR signals as 2-D images, TDMR detection
can be recast as an image classification problem, making
it suitable for solution via deep neural networks (DNNs).
DNN architectures such as fully connected deep neural net-
works (FCDNNs) and especially convolutional neural net-
works (CNNs) have compiled impressive results in image
classification and understanding [20]. A number of recent
articles (e.g., [15]–[19], [21], [22]) have applied DNN-based
signal processing to TDMR detection, and a few articles
(e.g., [7]–[9]) have applied DNNs to detection of two-layer
MLMR signals.
The CNN-based equalizer-separator used in the present

article was first proposed in [8] for a similar MLMR media
stack with two upper layer tracks completely overlaying one
lower layer track; however, the upper and lower layer track
pitches (TPs) in [8] were 48 and 96 nm, respectively, while
the bit lengths (BLs) were 11 and 22 nm, respectively, so that
there were four upper layer bits per lower layer bit. The
present article has upper and lower layer TPs of 24 and
48 nm, respectively, and BLs of 10 and 20 nm, respectively,
allowing significantly higher ADs than those achieved in [8].
The CNN equalizer-separator outputs in [8] were separated
into three 1-D signals (two upper layer track signals and one
lower layer track signal) and equalized to three 1-D partial
response (PR) targets. The per-track PR equalized signals were
fed into three separate 1-D soft-output Viterbi algorithm (1-D
SOVA) detectors, and the final information bits were obtained
by decoding the SOVA detector outputs with two low-density
parity-check (LDPC) decoders, one for the two upper layer
tracks (which used identical LDPC codes) and one for the
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lower layer track. The system in [8] attempted to remove both
the interlayer interference (ILI) between the layers and the
intertrack interference (ITI) between the two top-level tracks.
Also, the system in [8] did not include explicit means to
predict or cancel data-dependent media noise.
In the present article, the CNN equalizer-separator equalizes

the two upper layer tracks to a 2-D PR target and the lower
layer track to a 1-D PR target. The upper and lower layer
signals feed into 2-D and 1-D Bahl–Cocke–Jelinek–Raviv
(BCJR) [23] detectors, respectively. Thus, the CNN equalizer-
separator in the present article focuses only on removing ILI
and leaves ITI removal to the 2-D BCJR detector. The BCJR
detector outputs feed a multilayer CNN media noise predictor,
which in turn outputs media noise predictions for the upper
and lower layer tracks. By accepting inputs from both BCJR
detectors, the CNN media noise predictor can account for
3-D media noise effects between layers, as well as intra-layer
media noise. The media noise predictions are subtracted from
the per-branch conditional means in a second pass through
both BCJR detectors. Then the BCJR outputs are decoded
by LDPC decoders for the upper and lower layer tracks.
The bit error rate (BER) of the lower layer BCJR detector
is further reduced by passing log-likelihood ratios (LLRs)
for the upper layer bits from the upper layer 2-D BCJR to
the lower layer 1-D BCJR and using them as soft-decision
feedback to remove residual ILI from the lower layer bits.
An architecture that combined a 2-D BCJR detector with CNN
noise predictor and LDPC decoder was previously used for
turbo-detection of three-track TDMR signals in [18], where
it achieved an information AD of 3.88 Tb/in2 on a grain-
flipping-probabilistic (GFP) media model (which is based on
micro-magnetic simulations) with 15 nm TP and 11 nm BL.
Both the present article and [8] train and test their turbo-

equalization systems with MLMR reader waveforms generated
by a grain-switching-probabilistic (GSP) model. The GSP
model, developed in [1] and [2], is a grain-level model that
generates MLMR waveforms using a micromagnetic model
to train multi-dimensional conditional probability mass func-
tions that determine the probability that a given grain will
switch in response to an applied write field. The GSP models
enable relatively fast generation of very large MLMR datasets.
In addition to incorporating the superposition of signals from
the upper and lower layers (including the ITI) in the readback
waveforms, the GSP model uses realistic media noise models
and incorporates transition noise during the write process that
was not considered in previous models.
The contributions of the present article are as follows.
1) A turbo-detection architecture that combines the
CNN-based equalizer-separator of [8] with the
1-D/2-D BCJR detector and CNN media noise
predictor of [18] and includes innovations to both these
components to enable improved detection of two-layer
MLMR signals.

2) The equalizer-separator equalizes the upper layer to a
2-D PR target, and the upper layer signal is processed
by a 2-D BCJR detector; hence, the equalizer-separator
focuses only on ILI removal and allows the 2-D BCJR
to focus on ITI removal for the upper-layer signal.

3) The 3-D CNN media noise predictor accepts BCJR
outputs from both the layers, enabling it to account
for both inter- and intra-layer media noise and thereby
improve its noise prediction for both layers.

4) The upper layer 2-D BCJR passes LLRs to the lower
layer 1-D BCJR, which the 1-D BCJR uses as soft-
decision feedback to reduce residual ILI from upper
layer bits.

5) The simulation results on the GSP-simulated MLMR
media with two upper layer tracks at 24 nm TP and
10 nm BL and one lower layer track at 48 nm TP and
20 nm BL show an 11.32% information AD gain over
the case where only the upper layer is present and also
show a 6.63% density gain over the case where 1-D
pattern-dependent noise prediction (PDNP) is used to
detect individual upper and lower layer tracks equalized
to 1-D PR targets by the CNN equalizer-separator.

II. SYSTEM MODEL

The BCJR-LDPC-CNN turbo-detector assumes a channel
model for the kth output of the lth CNN equalizer-separator
ŝl(k), l ∈ {1, 2}

ŝl(k) = (hl ∗ u)(k) + nm(k) + ne(k) (1)

where hl is the PR target, u are the coded bits on the track, *
indicates 1-D/2-D convolution, nm(k) is the media noise, and
ne(k) is the reader electronics additive white Gaussian noise
(AWGN). Unlike PDNP, the media noise term nm(k) is not
modeled as an autoregressive (AR) process; instead, a more
general model for nm(k) is learned by the CNN noise predictor.
We use realistic GSP model data to train and evaluate

our system. The GSP waveforms are generated based on
micro-magnetic simulations of microwave-assisted magnetic
recording (MAMR) [1], [2].
Fig. 1 illustrates a two-layer recording structure. The lower

layer is farther apart from the read head compared with the
upper layer, resulting in a weaker signal from the lower layer.
To compensate for this, the bit area on the lower layer is
four times larger than that on the upper layer to allow for
sufficient signal power from the lower layer at the reader.
Moreover, there is signal attenuation due to the upper layer
material between the lower layer and the reader. In general,
the ratio of the number of bits on the upper layer to that on
the lower layer is a system parameter.
MLMR requires joint signal separation and equalization:

the readers lie just above the disk surface and hence receive
a superposition of signals from the upper and lower layers,
and the received signal now suffers from 3-D-intersymbol
interference (ISI) due to per-layer ITI and down-track ISI,
plus ILI.
The cross-track view of the MLMR system is represented

in Fig. 2. On the upper layer, six tracks at TP 24 nm and
BL 10 nm are written. There are three tracks on the lower
layer written at TP 48 nm and BL 20 nm. Hence, for each bit
on the lower layer, four bits are stored on the upper layer. The
bit sequences written on the upper left and right tracks are
denoted by a2,L and a2,R , respectively, which are the tracks of
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Fig. 1. Two-layer magnetic recording structure. The 2-D reader sensitivity function gives the 2-D response of the read head. Bits on the lower layer are
written at quarter density compared with the upper layer, as indicated by the double BL and TP. Although omitted here, the two-layer recording structure
includes a non-magnetic material in-between layers and a soft magnetic underlayer underneath the lower layer [5], [9].

Fig. 2. Cross-track view of the MLMR system.

interest on the upper layer. The two boundary tracks on the left
and right sides of a2,L and a2,R are denoted by ab,L and ab,R ,
respectively. For the lower layer, the written bit sequence a1 is
the track of interest. Readings are obtained at track positions
(relative to r0, which is centered on track ab,L ) of 0, 24, 36,
48, and 72 nm, from left to right, and denoted by r0 to r4,
respectively.

III. CNN EQUALIZER-SEPARATOR DESIGN

We investigate the CNN-based equalizer-separator to use in
MLMR system. In [8], we designed the CNN PR equalizers
for 1DMR and TDMR systems. To equalize the readings
in the MLMR case, we use two separate equalizers for the
upper and lower layers. For the lower layer, a CNN equalizer-
separator of 1DMR is used, and for the upper layer, a CNN
equalizer-separator of TDMR is used. Fig. 3 represents the
block diagram of CNN equalizer-separator for the MLMR
system. Readings within a 5 × 17 sliding window comprise
input samples to the CNN for detecting the upper layer bits.
Since each reader collects two samples per lower layer bit,
and to maintain a 17-bit down-track footprint, a rate converter
multiplexes these additional readings across-track, resulting in
size 10×17 lower layer input samples. The 17-bit down-track
span was chosen based on autocorrelation plots and tuning
experiments for BER. We get most of the significant BER
performance gains by increasing the window to 17 bits.

Fig. 3. Block diagram of a CNN equalizer-separator.

A. Nonlinear CNN Equalizer-Separator System

In [8], we designed the CNN equalizer-separator for the bit
sequences a1, a2,L , and a2,R from input readings. In this work,
we input the five sequences of the readings r0, . . . , r4 to the
CNN to generate the equalized waveforms ŝ2 and ŝ1 for the
two upper tracks and the lower track.
The commonly used 1-D or 2-D linear PR equalizers

minimize the mean-squared error (MSE) between ideal PR
signals and the actual output of the equalizer. For the CNN
equalizer-separator proposed in the present article, during
training, the CNN equalizer iterates with a constrained MSE
solver to adjust the PR target masks. Using stochastic gradient
descent (SGD) on mini-batches, the equalizer CNN minimizes
the average MSE JMSE between its output and the ideal PR
waveforms.
The input to the CNN equalizer consists of the readings

r0, . . . , r4 obtained over a sliding window. The outputs are
the equalized signals to be fed to the BCJR detector. Training
the CNN equalizer is performed as follows [8]. Given a
fixed target, the CNN equalizer is trained to minimize JMSE.
After the CNN equalizer converges, a constrained MSE solver
accepts the fixed CNN equalizer output. Given such output,
the solver minimizes the constrained MSE. The constrained
MSE solver finds a new MSE-optimal target by adjusting the
target coefficients. The new target is used to generate ideal
PR signals. Then, the CNN equalizer is retrained on the new
ideal PR signal. Iterating between the CNN equalizer and the
constrained MSE solver continues until no more significant
reductions in JMSE are achieved.
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For the lower layer, a rate converter with factor parameter
of 2× is used to multiplex the lower layer readings. In this
case, the down-track footprint would be 17 bits, same as the
upper layer. The CNN receives the five reading sequences and
generates the equalized signal ŝ1 for the lower track, using
1× 3 PR target.
The 2-D PR equalizer uses a 3×3 PR target h2 and accepts

five adjacent reading sequences to generate the equalized
signal ŝ2 for the two upper central tracks.
For the outer tracks, we need to generate the realistic bound-

aries for the 2-D BCJR detector in the turbo-detection system.
In this case, we use a 1-D CNN with the same architecture
as the lower layer without a rate converter. To equalize the
samples for ab,L , the readings r0, . . . , r3 with an additional
reading obtained by a read-head centered over the track
immediately to the left of a1 are provided for the CNN to
produce the equalized waveforms for ab,L . After training, the
achieved BER for one block equals to 8.33% in the testing
phase. Thus, we add 8.33% BER to the input bits for the
outer tracks a2,L and a2,R to pass the realistic data to the 2-D
BCJR.

B. CNN Equalizer-Separator Architecture

The proposed CNN equalizer-separator for both the upper
and lower layers contains 12 layers. These layers consist
of one input image layer, three convolutional units, a fully
connected (FC) layer, and one output layer. After normalizing
the raw data received from the other blocks to have zero mean
and unit variance, the system passes them to the input image
layer.
Every convolutional unit includes three layers: convolutional

layer, batch normalization layer, and activation function layer.
The convolutional layer slides the filter over the input data, and
the batch normalization layer normalizes the data to speed up
network training and reduce sensitivity to the initial conditions
(of the filter coefficients and interconnection weights) in the
layers. The activation function layer assists the model to
converge with greater acceleration. We use the leaky rectified
linear unit (ReLU) as the activation function in the CNN
equalizer-separators. The output layer is a regression layer.
Every convolutional layer has three properties: the filter length,
the filter width, and the number of filters which is called the
number of channels.
Every node in each FC layer is connected to all the nodes

in the previous layer. The output of the last convolutional unit
is multiplied by a weight matrix and then a bias vector is
added to it to form the output of the FC layer. The last layer
is the regression layer, which predicts the accuracy of the
model. The regression loss function is 0.5× the MSE between
the training label equalized outputs and the CNN equalizer-
separator equalized outputs ŝl, l ∈ {1, 2}. The regression
layer is used during training, but not in testing of the CNN.
In the testing phase, the final output is generated by the FC
layer. Thus, the regression layer is not shown in the CNN
architecture figures in this article.
The input image for the equalizers has a length of 17.

For the lower layer, since we provide the readings r0, . . . , r4

Fig. 4. CNN equalizer-separator architecture for the lower layer.

Fig. 5. CNN equalizer-separator architecture for the upper layer.

and use a rate converter with factor of 2×, thus we pass ten
samples into the CNN at a time. Hence, the size of the input
image is [10 × 17]. In this layer, the CNN equalizer includes
three convolutional units with zero padding. In this case, the
size of the input and output images for each convolutional unit
is the same. The convolutional layers 1 through 3 have sizes
of [3 × 11], [3 × 3], and [3 × 3], respectively. The number
of channels for these three convolutional layers is 2, 2, and 1,
respectively. The leaky ReLU function with the slope of 0.1
for the negative numbers is used as the activation function. The
CNN output ŝ1 is the 1-D equalized waveform of the lower
layer. Fig. 4 shows the architecture of CNN equalizer-separator
for the lower layer.
For the upper layer, a CNN with three convolutional units

is used by the equalizer-separator. The architecture of CNN
equalizer-separator for the upper layer is represented in Fig. 5.
The length of the input image is 17. We pass the readings
r0, . . . , r4 as the input to the CNN, and thus the input image
has a size of [5×17]. The size of the convolutional layers, the
number of channels, and the activation function for this CNN
are the same as the CNN equalizer for the lower layer. The
CNN generates the equalized waveform ŝ2 for the two upper
tracks. These tracks are passed to the 2-D BCJR to detect the
bits.

IV. BCJR-LDPC-CNN TURBO DETECTION SYSTEM

In [24] and [18], we designed the BCJR-LDPC-CNN turbo
detection system for 1DMR and TDMR cases. In these works,
we separated the ISI/ITI detection and media noise prediction
functions into two detectors in a turbo-equalization structure.
The BCJR detectors were provided with the equalized wave-
forms to estimate the coded bit LLRs. After passing the LLR
estimates to a CNN, the media noise was predicted and fed
back to BCJR in a turbo structure. The LLR estimates and
noise predictions were exchanged iteratively between a BCJR
detector, an LDPC channel decoder, and a CNN media noise
predictor until BER convergence to a low value. The AD is
determined based on the maximum code rate achieved by
the LDPC code such that the decoded BER is below 10−5.
In this work, we use the BCJR-LDPC-CNN turbo detection
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Fig. 6. Block diagram for the MLMR turbo detection system.

systems for 1DMR and TDMR cases to investigate a new
BCJR-LDPC-CNN turbo-detector for MLMR.

A. MLMR Turbo-Detector

In Fig. 6, the block diagram for the initial version of the
MLMR turbo detection system is shown; this initial version
has separate CNN noise predictors for the upper and lower
layers. Since we have 1-D reading sequence for the lower
layer, a BCJR-LDPC-CNN turbo-detector for 1DMR is used to
receive the 1-D equalized waveforms from the CNN equalizer-
separator and generate the final LLRs. For the upper layer,
we deal with 2-D data and detect the coded bits for the two
upper tracks. Hence, we use a BCJR-LDPC-CNN detector
for TDMR to estimate the LLRs using the 2-D equalized
waveforms.
For the lower layer, the equalizer output ŝ1 is passed through

a trellis detector (a BCJR detector in this work) to generate the
LLR estimates. The 1-D BCJR handles ISI equalization based
on the PR target. In this layer, the PR target h1 has three taps
and the ISI channel has length I = 2. Hence, the 1-D BCJR
has M = 2I = 4 states and eight total branches.
In the first iteration, for the lower layer, the 1-D BCJR LLRs

LLRb0,1 and equalized waveform ŝ1 are passed to the CNN to
estimate the media noise n̂m1 . The noise n̂m1 is fed back to
the 1-D BCJR to obtain a lower BER.
The LLRs LLRb1 are input to the channel decoder 1 through

the de-interleaver (designated as “π−1” in the block diagram of
Fig. 6). The de-interleaver shuffles the coded bits to decorrelate
them before they are input to the channel decoder. This
shuffling is important because the channel decoder’s sum prod-
uct (SP) algorithm assumes that the incoming LLRs are statis-
tically independent. The decoder can produce extrinsic LLRs
relative to LLRl1 by subtracting the input LLRs (received from
the BCJR) from LLRl1 ; these extrinsic LLRs can be passed
to the CNN media noise predictors if a second iteration is
done. We use an irregular repeat accumulate (IRA) LDPC
decoder as the channel decoder [25]. Henceforth, we refer
to the “IRA decoder” or simply “IRA” to indicate the specific
LDPC decoder used in this article. The IRA decoder uses coset

Fig. 7. State input block for the 2-D trellis-based detector with two state
bits per track on two tracks.

decoding since the GSP data bits are randomly distributed. The
IRA encoding and decoding is done separately for each track;
hence, different code rates can be used on different tracks. The
channel decoder produces the output LLRs, and then scales
and magnitude limits them. After limiting and scaling, they
are passed through an interleaver (indicated by “π” in the
block diagram of Fig. 6) to reorder the LLRs to be consistent
with the order of LLRb. For the lower layer, the final LLRs
LLRl1 are generated by passing the LLRs of LDPC decoder
1 through an interleaver at the end of each turbo-iteration.
For the upper layer, we use a BCJR-LDPC-CNN turbo-

detector for TDMR. In this system, we separate trellis-based
ISI/ITI detection and CNN-based media noise prediction.
The 2-D BCJR is a joint ISI/ITI equalizer; the state input

block, shown in Fig. 7, has three rows because the ITI typically
extends over one adjacent track on either side. In 2-D BCJR,
the processing of two tracks is done simultaneously to handle
the ITI from a 3 × 3 PR target mask since the two upper
tracks are affected by the ITI from its two neighboring tracks.
Fig. 7 represents the state input block for 2-D BCJR over
two tracks. The two 3 × 3 inner products (between the 3× 3
PR mask h2 and the bits indicated by either shading or
bold outline) shown in Fig. 7 are used as the conditional
means for the conditional channel probability density functions
(PDFs) of the two “current inputs” bits shown in Fig. 7.
These conditional channel PDFs are independent factors in
the gamma probabilities for the 2-D BCJR algorithm [26].
The 2-D BCJR trellis detector performs ISI/ITI equalization
on filtered input ŝ2 and generates LLR outputs. The PR target
h2 is a size of 3× 3; hence, the system has two state bits per
track, and the 2-D BCJR state input window is 2× 3, and the
trellis has 22×2 = 16 states.
The flow of exchanging LLR estimates and media noise

predictions in the turbo-detector in the upper layer is similar
to the lower layer. In the first iteration, the 2-D BCJR LLRs
LLRb0,2 and ŝ2 are passed to the CNN to estimate the media
noise n̂m2 . The noise n̂m2 is fed back to the 2-D BCJR to
obtain a lower BER. The LLRs LLRb2 are input to the LDPC
decoder 2 through the de-interleaver. The LLRs of the channel
decoder 2 are input to an interleaver to produce the final
LLRs LLRl2 .
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Fig. 8. 2-D CNN architecture of separate media noise predictor for the lower
layer.

As explained in [18], for the second iteration, extrinsic
decoder LLRs based on LLRlk can be passed as inputs to the
CNN noise predictor instead of LLRbk . In this article, we do
only one iteration of LDPC decoding; gains due to a second
decoding iteration will be investigated in future work.

V. CNN NOISE PREDICTOR ARCHITECTURE

We investigate two architectures for the CNN media noise
predictor in MLMR with two layers. In the first architecture,
we use separate CNNs for the lower and upper layers. A 2-D
CNN for the 1DMR system and a 3-D CNN for the TDMR
system are considered as the architectures for the lower and
upper layers, respectively. In the second architecture, we use a
multilayer CNN noise predictor for both the upper and lower
layers. The multilayer CNN receives the LLR estimates and
equalized waveforms from both the layers and jointly predicts
the media noise for both the layers. The multilayer CNN
can account for both residual ILI and interlayer media noise
by exploiting correlations between the LLRs and equalized
sampled data from the upper and lower layers.

A. Separate CNN Architecture

The CNN architecture extracts correlations among the data
and exploits them to obtain the information and features. For
1DMR, we stack the data as 2-D input images, and hence,
we design 2-D CNNs that use banks of 2-D finite impulse
response (FIR) filters to predict media noise. In the TDMR
detector, we stack the 2-D input images for three tracks to
make a 3-D input image. Therefore, for processing the 3-D
input image, we design a 3-D CNN architecture that uses
banks of 3-D FIR filters to estimate the media noise for the
TDMR system.
The CNNs process their input data in a sliding block

manner. For 1DMR, to estimate the kth media noise sam-
ple n̂mk , the lowest input layer of the 2-D CNN accepts a
block of Ni 1-D BCJR output LLRs LLRb0,1k

and Ni equalized
readings ŝ1k where Ni is an odd number, and the kth noise
estimate corresponds to the middle element of the Ni elements
in each block; in this article, we set Ni = 9. To estimate the
(k + 1)th media noise sample, each of the input data blocks
is shifted by exactly one sample into the future.
The TDMR system processes two tracks at a time. Hence,

for TDMR, each of the above-described 1-D input blocks of
size [1× Ni ] becomes a [2× Ni ] input block.

1) 2-D CNN Noise Predictor Architecture for 1DMR: The
2-D CNN architecture for the first iteration of the lower layer
1DMR system is shown in Fig. 8. The 2-D CNN has 18
layers including one input image layer, five convolutional
units, and one output layer. The 2-D input image layer is

Fig. 9. 3-D CNN architecture of separate media noise predictor for the upper
layer.

Fig. 10. 3-D input image for the separate CNN noise predictor of the upper
layer.

of size 18 and includes two rows consisting of nine samples
from each of the two input blocks LLRb0,1 and ŝ1. Organizing
the 1-D input blocks into a 2-D array in this manner induces
2-D spatial correlation between the blocks. We exploit this
spatial correlation using trained 2-D convolutional filters on
all the CNN layers. In CNNs designed for 1DMR, all the
convolutional layers use filters of size [2 × 3]. The number
of channels in units 1 through 5 is equal to 8, 16, 32, 64, and
128, respectively, for the first iteration. ReLU is used as the
activation function in this architecture.

2) 3-D CNN Noise Predictor Architecture for TDMR: For
the upper layer TDMR detector, we design the 3-D CNN to
predict the media noise. Fig. 9 represents the 3-D CNN noise
predictor architecture. The numbers of layers for the 3-D CNN
of TDMR system are the same as 2-D CNN for the 1DMR
system. Each of the two input layer 2-D images contains
2×9 = 18 samples, and thus the size of the CNN’s 3-D input
layer is 2 × 18 = 36 samples. The 3-D input image contains
the 2-D input images for the two tracks. By putting the two
2-D input images together, we can extract the information
from the 3-D spatial correlation between the input images
and the correlation between the two tracks of each block
simultaneously. In Fig. 10, stacking of the 2-D input images
(with two tracks each) into a 3-D input image is shown. In the
designed 3-D CNNs for TDMR, the convolutional layers have
the filters with the size of [2×3×2]. Similar to the 2-D CNN
architecture, the number of channels through convolutional
units 1 to 5 is 8, 16, 32, 64, and 128. For the activation
function, we use ReLU the same as 2-D CNN media noise
predictor.

B. Multilayer CNN Noise Predictor

For the multilayer CNN noise predictor, we investigate a
3-D CNN to estimate the media noise for both the upper
and lower layers simultaneously. Fig. 11 represents the block
diagram for the MLMR turbo detection system using the
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Fig. 11. Block diagram for MLMR turbo-detector using the multilayer CNN
media noise predictor.

Fig. 12. 3-D CNN architecture of multilayer media noise predictor for
MLMR.

multilayer media noise predictor. In this architecture, the
estimation of LLRs and the equalized waveforms for both the
upper and lower layers are passed to the CNN.
The 3-D CNN architecture for the multilayer CNN noise

predictor is shown in Fig. 12. This 3-D CNN includes 21 layers
and six convolutional units. We store the LLR estimates
and equalized waveforms for the lower track adjacent to the
corresponding data for the upper tracks. Since BL for the lower
track is twice the upper tracks’ BL, we duplicate the bits
for the lower track to have the same number of samples as
each upper track. Therefore, for the output of the lower layer,
we average two consecutive output bits to have the same
down-track length as the original lower layer’s. Since for each
track we have 18 samples for the input image, the size of
the input image would be 3 × 18 = 54. The data stacking
of the upper and lower tracks to make the 3-D input image for
the multilayer CNN noise predictor is represented in Fig. 13.
By storing the lower track’s data adjacent to the upper tracks’,
we could extract the correlations between the two layers. In the
proposed CNN, the size of the filters for all convolutional units
is [3 × 3 × 2]. The number of channels through unit 1 to 6
increases from 8 to 256 by a factor of 2×.

VI. LLR EXCHANGE BETWEEN LAYERS

Due to the residual ILI after the equalizer-separator, we
hypothesize that exchanging the LLRs between 1-D BCJR
and 2-D BCJR in the lower and upper layers could reduce
the residual ILI and improve the quality of the output LLRs
of both BCJRs. The solid and dotted lines in Fig. 11 show

Fig. 13. 3-D input image for the multilayer CNN noise predictor.

the LLR exchange between the two layers. Each BCJR could
reduce the ILI by assuming some weights for mapping the
corresponding coded bits from the other layer to the current
layer. For each layer BCJR, the mapping weights w are
obtained by solving the following least squared error (LSE)
problem:

min
w

‖ŝ − h ∗ u − w ∗ Ld‖2 (2)

where Ld is the hard-thresholded LLRs (to ±1) passed from
the other layer’s BCJR.
The solid line in Fig.11 shows the LLRs flowing from the

2-D BCJR in the upper layer to 1-D BCJR in the lower layer.
Since for the lower layer the PR target includes three taps,
we consider three samples in this layer and 12 associated
samples in the upper layer. For each track in the upper layer,
we map six samples to the lower. Hence, by solving (2), the
corresponding weights w1 and w2 for the two tracks of interest
in the upper layer are obtained as following:

wᵀ =
[

w1
w2

]ᵀ
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.0023 −0.0056
0.0247 0.0383
0.0675 0.0899
0.0556 0.0546
0.0071 0.0046

−0.0039 −0.0034

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3)

Using these weights to map the upper layer’s signals to
the lower layer, the lower layer’s MSE [computed via (2)]
decreases by 20.10%. This MSE reduction leads to the AD
improvement for the lower layer and consequently for MLMR
system which will be discussed.
After passing the upper layer’s LLRs to the 1-D BCJR

in the lower layer, we use the row-column soft decision
feedback algorithm (IRCSDFA) for the bit detection in the
lower layer’s 1-D BCJR as follows [26]. Given input vector
uk = [uk, uk−1, uk−2], the current state Sk = (uk−1, uk−2).
We denote the current equalized sample as ŝ1k , and branch
bits i = [i0, . . . , inb−1], im ∈ {−1,+1} where nb is the number
of input per trellis stage; nb is 1 in our work. The modified
conditional channel probability density function (pdf) p′(.)
sums over the values of inner products w ∗ Ld associated
with the 12 corresponding upper level bits, for the state
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transition s′ → s

p′(ŝ1k |uk = i0, Sk = s, Sk−1 = s′)
= P

(
ŝ1k |uk, s, s ′, μk + μ(Ld)

)
(4)

where

μk = h ∗ uk = h0uk + h1uk−1 + h2uk−2 (5)

μ(Ld) =
∑
Ld

P(Ld) × (w ∗ Ld) (6)

w is defined in (3), Ld is the vector of 12 upper layer bits
above lower layer bits uk , and the row probabilities

P(Ld = [l0, l1, . . . , l11]) =
11∏
j=0

P
(
l j

)
(7)

such that P(l j ) are the bit probabilities derived from the LLRs
passed from the upper layer to the lower layer. In this case, the
1-D BCJR in the lower layer can use the LLRs from the upper
layer to reduce ILI and detect the coded bits with lower BER.
The dotted line in Fig. 11 represents passing the 1-D BCJR

LLRs from the lower layer to the 2-D BCJR in the upper layer.
Since the number of samples in the upper layer is twice that
in the lower layer, we duplicate the LLRs coming from the
lower layer. The three-input three-output PR target leads us to
assume a window of weights with a size of 3 for each track to
solve the LSE problem in (2). However, the obtained weights
are too small and could not reduce the MSE. As future work,
we will investigate new techniques to use the lower layer’s
LLRs to improve the AD of the upper layer.

VII. SIMULATION RESULTS

This section presents the simulation results for the BCJR-
LDPC-CNN turbo-detector on an MLMR channel. The sim-
ulations are performed on the GSP datasets with TPs
24 and 48 nm for the upper and lower layers. We provide
the results for both linear and CNN-based PR equalization
before the turbo-detector.
The BCJRs initially assume that the media noise is zero

and compute an initial set of output LLRs LLRb0,1 and
LLRb0,2 . The CNN media noise predictors are provided with
the LLR probabilities. The estimated bit and the estimation’s
reliability can be determined by the LLR probabilities. In [24],
it is experimentally shown that CNN provided with LLR
probabilities performs better compared with when it uses the
signed LLR values. This might be due to the non-linear scale
inherent in the LLRs.

A. Datasets

We use the GSP waveform dataset which has 10 nm BL
and 24 nm TP for the upper layer and 20 nm BL and 48 nm
TP for the lower layer. The upper layer in each block contains
6 × Nu input bits, where Nu = 82 412. For this layer, the
simulation results consider the two middle tracks as the tracks
of interest and assume their side tracks as the boundary tracks.
For the lower layer, each block includes 3 × Nl input bits,
where Nl = 41 206. The track of interest in this layer is the
middle track.

For all CNN-based simulations, we use 59, 1, and 40 blocks
as the training, validation, and test datasets, respectively for
both CNN equalizer-separator and BCJR-LDPC-CNN detec-
tor. For 1-D PDNP, we use 1 and 40 blocks for the training
and testing processes, respectively.

B. Simulation Parameters

The iterations between the BCJR, IRA, and CNN are
implemented. In this work, the weight and magnitude limit
threshold for the BCJR output LLRs are set to 0.1 and 60 for
the 1DMR system and 0.7 and 100 for the TDMR system,
respectively. After scaling and limiting LLRs LLRb1 and
LLRb2 , they are passed to the de-interleaver to shuffle the code
bits. The minimum internal IRA code iteration is set to 200 and
the maximum iteration is set to 400. The weight and magnitude
limit threshold after the decoder are considered to scale and
limit the decoder output LLRs LLRl . In the proposed system,
the weight and limit threshold for the decoder output LLRs
equal 0.1 and 100 for the 1DMR system and 0.5 and 100 for
the TDMR system.
We report the results in terms of AD which is determined

based on the achieved code rate which is the highest code rate
that yields a final decoded BER equal to or less than 10−5. Due
to the difficulty in designing IRA codes with different rates,
at first, a few IRA codes with some specific code rates are
designed. To achieve the highest code rate of a new system,
we select one of the designed IRA codes as the base code, and
by puncturing process we could reach to the higher code rate.
The rate of the base code is called “base rate.” The puncturing
scheme in [27] is used to simulate puncturing bits written to
an HDD. The AD is obtained by

Areal density = achieved-code-rate/(BL× TP). (8)

The code rate for the MLMR system is computed based on
the code rates of the upper layer and lower layer as follows:
code-rateMLMR = code-rateUpper + (1/4) × code-rateLower.

(9)

Table I summarizes the results for the MLMR detectors.
The raw channel BER for the lower layer is reported for
the detected bits on the input readings of the central single-
track a1. For the upper layer, the raw channel BER is the
average detected errors on the two central tracks a2,L and a2,R .
In addition to the BER, a 95% confidence upper bound on
the BER is provided in parentheses in the last columns of
Table I. In the case of non-zero errors, the BER upper bound
is computed as

Ip(x + 1, Ntcb − x) = γ (10)

where Ip indicates the beta distribution with parameters x + 1
and Ntcb − x for γ -quantile, x is the number of errors, Ntcb is
the total number of transmitted coded bits, and γ is the
confidence threshold which we set to 0.95. In the case of
zero error count, the BER upper bound in (10) simplifies
to 3/Ntcb [28].
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TABLE I

AREAL DENSITY COMPARISON FOR MLMR. NP MEANS NOISE PREDICTION

C. Discussion of Simulation Results

Table I summarizes the results for the GSP dataset for
MLMR. The table shows the comparison of the AD perfor-
mance of the proposed BCJR-LDPC-CNN detectors with 1-D
PDNP. “1-D PDNP, Lin.-Eq.” uses the equalized waveforms
from a linear minimum mean-squared error (MMSE) equalizer
using a 1-D PR target. “1-D PDNP, CNN-Eq.” uses the same
PR target h1 as the BCJR-LDPC-CNN method for the lower
layer and two 1-D PR targets for each of the two upper tracks.
1-D PDNP has 128 trellis states, corresponding to I = 2,
L = 4, and � = 1, where I is the ISI channel length, L is
the predictor memory, and � is the predictor look-ahead. The
pattern vector length of I + 1+ L +� = 8 bits of 1-D PDNP
is comparable to the channel inputs ŝ1 and ŝ2 length of nine
sample bits for the CNN.
As a reference, we evaluate a one-layer TDMR system

(without lower layer interference) with TP 24 nm and BL
10 nm using the upper layer’s BCJR-LDPC-CNN architecture.
As a second reference, we evaluate the performance of the
one-layer TDMR system (without lower layer interference) on
a system that includes a 1-D linear PR equalizer and BCJR/1-D
PDNP detector for each of the two upper layer tracks.
The 1-D linear PR equalizer is designed according to the
method in [29].
The base code rate is 0.6030 for all the simulations in

Table I. By puncturing the base code, we could achieve the
highest code rate for every detector and layer. The ADs for
each detector are computed using (8).
Based on (9), the achieved code rate for the MLMR system

is obtained. For instance, the highest code rate for the separate
CNN noise predictor using CNN equalizer-separator for the
upper and lower layers shown as “Separate CNN NP, Upper,
CNN-Eq.” and “Separate CNN NP, Lower, CNN-Eq.” are
0.7306 and 0.8195, respectively. Thus, the achieved code rate
for the MLMR system using separate CNN noise predictor and
CNN equalizer-separator equals to 0.7306+ (1/4)×0.8195=
0.9354. The achieved AD for this case is 2.5147 based on (8).
The last column in Table I represents the AD gain of the

best result over the detector in each line. The best result in
the simulations is for the multilayer CNN noise predictor using

the CNN equalizer-separator with the LLR exchange between
the layers shown as “Multilayer CNN NP, Exchanged LLR,
CNN-Eq.” which has 2.6551 Tb/in2 density. As an instance
for the last column, the AD for the 1-D PDNP using the CNN
equalizer-separator (shown in the second and third lines of
Table I) has 2.4900 Tb/in2 density. Thus, the gain of best
result over this detector would be 6.63% represented in the last
column. The best result for the proposed method has 11.32%
AD gain over “Separate CNN NP, Reference, CNN-Eq.” as
the first reference and has AD gain of 13.18% over the “1-D
PDNP, Reference, Lin-Eq.” as the second reference. Both the
references include only upper layer as a TDMR system.
Using the multilayer CNN architecture instead of the sep-

arate CNN architecture, the AD increases from 2.5147 to
2.6506 Tb/in2 which is 5.40% gain. Also, passing the LLRs
from the upper layer’s BCJR to the lower layer’s BCJR
increases 0.73% AD for the lower layer and results in a density
gain of 0.17% for MLMR system over the case without LLRs
passing. Hence, combining these two methods leads to the
best result having 5.58% gain over the separate CNN noise
predictor using the CNN equalizer-separator.
The best achieved AD of 2.6551 Tb/in2 in Table I is greater

than the value of 1.0616 achieved in [8], as expected since the
TP in the present article is 1/2 that in [8]. Future work will
consider even smaller TPs and possibly also a higher area
ratio between the upper and lower level bits; both will result
in potentially higher information ADs.
The GSP data contain no read-head electronic AWGN, i.e.,

ne(k) = 0 in (1). The rows without label “SNR 20 dB” report
results for this case. The row which includes the label “SNR
20 dB” reports the result when non-zero AWGN ne at an SNR
of 20 dB is added to the superposition signals corresponding
to the upper layer readings r0, r1, r3, and r4. The SNR is
computed as

SNR = 10 log10

(
E

[‖r0‖2 + ‖r1‖2 + ‖r3‖2 + ‖r4‖2
]

σ 2e

)
(11)

where σ 2e indicates the AWGN variance. This SNR is com-
puted based on all the coded bits of each track. In (11),
the reading r2 corresponding to the lower layer is excluded
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TABLE II

DETECTOR COMPLEXITY FOR THE MLMR

since the AWGN is considered only for the upper layer. The
simulation results for the added AWGN at 20 dB SNR are
shown in the last line of Table I; they show that best result
with zero electronic noise has an AD gain of a reasonably
small amount (4.96%) over the same method with 20 dB SNR
for AWGN.

D. Computational Complexity Comparison

The computational complexity (per bit) figures for the
MLMR detectors are represented in Table II. The reported
numbers are computed without considering the equalizer. The
1-D PDNP which is the baseline has the lowest complexity
among the evaluated detectors. The complexity of the separate
CNN noise predictor for the upper and lower layers is shown as
“Separate CNN NP, Upper” and “Separate CNN NP, Lower,”
respectively. The upper layer’s detector is more complex than
the lower layer’s, since we use a 3-D CNN for the upper layer;
on the other hand, we use a 2-D CNN for the lower layer. The
multilayer CNN noise predictor shown as “Multilayer CNN
NP” has the highest complexity due to the processing of the
data for upper and lower layers simultaneously; specifically,
the input layer size and FIR filter sizes are larger for the
multilayer CNN compared with the separate CNNs, as per
Figs. 8, 9, and 12. Both the separate and multilayer CNN
architectures have more complexity compared with 1-D PDNP.
As future work, we will investigate trade offs between the
complexity and the performance for the proposed CNN noise
predictors in this work.

VIII. CONCLUSION

This article presents CNN-based methods for equaliza-
tion and detection of MLMR signals. Combining the CNN
equalizer-separator with the BCJR-LDPC-CNN media noise
predictor turbo-detection system enables us to remove ITI
and ILI and improve the AD of the system. In this work,
we investigate the proposed methods on a two-layer MLMR.
For the upper layer, the CNN equalizer-separator designs a
2-D PR target to equalize the readings and provides them to
turbo-detector for TDMR which uses a 2-D BCJR to detect
the coded bits for the two tracks of interest. For the lower
layer, the equalizer-separator optimizes a 1-D PR target to
equalize the 1-D sample readings. The equalized waveforms
are passed to a turbo-detection system for 1DMR which uses a
1-D BCJR. In this case, equalizer-separator focuses on ILI and
the BCJRs handle the ITI. We investigate two architectures
for the CNN noise predictor in the turbo-detection system.
In the first architecture, the 2-D and 3-D CNN are designed
for the lower and upper layers separately. In the second one,

a multilayer CNN predicts the media noise for both the layers
simultaneously, to take into account inter-layer media noise.
Also, the LLRs from the upper layer are passed to the lower
layer to reduce the residual ILI. According to the simulations,
the proposed method has AD gain of 11.32% over the same
architecture which includes only the upper layer, 13.18% AD
gain over the 1-D PDNP using linear equalizer applied only on
the upper layer, and 6.63% gain compared with 1-D PDNP on
individual tracks of both the upper and lower layers using the
CNN equalizer-separator. As future work, we will investigate
the second pass of LLRs to the CNN noise predictor in the
second iteration of the turbo-detection system. We will study
the second pass of LLRs from the upper layer’s BCJR to
lower layer’s, after noise correction is done for the second
pass of BCJR in the upper layer. Also, we will consider further
investigation of performance/complexity trade offs in the CNN
architectures.
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