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 22 

Abstract 23 

While the negative effects that pathogens have on their hosts are well-documented in humans 24 

and agricultural systems, direct evidence of pathogen-driven impacts in wild host populations 25 

is scarce and mixed. In particular, theory predicts that both ecological and evolutionary 26 

outcomes are shaped by the spatial structure of the interaction, yet comprehensive spatio-27 

temporal data from nature to test this are scarce. Here, to determine how the strength of 28 

pathogen-imposed selection depends on spatial structure, we analyse growth rates across 29 

approximately 4000 host populations of a perennial plant through time coupled with data on 30 

pathogen presence-absence. We find that infection has the most devastating effect on 31 

population growth in isolated as opposed to connected host populations. Our inoculation 32 

study reveals isolated populations to be highly susceptible to the pathogen while connected 33 

host populations support the highest levels of resistance diversity, regardless of their disease 34 

history. A spatial eco-evolutionary model predicts that non-linearity in the costs to resistance 35 

may be critical in determining this pattern. Our results show that evolutionary feedbacks may 36 

define the ecological impacts of disease in spatially structured wild populations with host 37 

gene-flow more important than disease history in determining the outcome. 38 

 39 

Main text  40 

According to coevolutionary theory, hosts may evolve resistance under pathogen-imposed negative 41 

frequency-dependent selection (NFDS), whereby rare host genotypes have an advantage over the 42 

common ones1,2. The underlying assumptions of coevolutionary theory are the strong negative 43 

fitness effect of infection, with disease-free individuals outperforming infected ones3, and costs of 44 

resistance that are central to maintenance of polymorphism within populations4. While consistent 45 



negative effects of pathogens on their host populations are well documented in humans and 46 

agricultural systems5,6, direct evidence of pathogen-driven ecological and evolutionary change in 47 

the wild is scarce and mixed 3,7–11. The theoretical expectation is that the selective importance of 48 

diseases is directly correlated with the frequency and severity of epidemics 12. However, our ability 49 

to quantify the strength of pathogen-imposed selection in natural populations is limited by few 50 

available systematic spatio-temporal data on pathogen occurrence across a sufficient number of host 51 

populations.  52 

Spatial structure and heterogeneity supported by natural host populations is in stark 53 

contrast to human-managed systems that are typically highly conductive to disease transmission due 54 

to large population sizes, high densities and low genetic variability 13. Not surprisingly, studies 55 

focusing on wild pathosystems have revealed highly variable disease prevalence levels. Moreover, 56 

local pathogen populations are typically ephemeral, persisting regionally as metapopulations 57 

through extinction and colonization events of local host populations 14–17. Even when infection takes 58 

place, the fitness consequences – and the coevolutionary outcomes 18 – may vary depending on the 59 

genetic composition of the host and pathogen populations and their environment, either directly or 60 

via GenotypeHOST x GenotypePATHOGEN x Environment –interactions 19,20. Moreover, hosts in wild 61 

populations may suffer increased mortality or reduced reproduction irrespective of their infection 62 

status due to other factors such as extreme weather 21. Hence, remarkably little is understood of how 63 

pathogens impact the fitness of their host populations in the wild.  64 

There is increasing evidence that host-pathogen dynamics, both epidemiological and 65 

evolutionary, may be shaped by the spatial structure of the interaction 13,22–24. Encounter rates 66 

between hosts and their pathogens are expected to be heavily influenced by connectivity to other 67 

populations, and the key metapopulation processes - gene flow, extinction, and colonization 68 

dynamics - are expected to contribute to the genetic structure of both the colonization dynamics, 69 

and the arrival of novel genetic variation into local populations 13. As long as rates of migration are 70 



low enough to not homogenize local populations, increasing immigration is expected to increase the 71 

diversity and evolutionary potential of both host and pathogen populations 25. While measuring 72 

migration rates in natural populations is difficult 26, population connectivity, measured as the 73 

Euclidian distances separating populations and calibrated by the species dispersal capacity, provides 74 

a powerful proxy for migration rates 27. Consequently, spatially structured eco-evolutionary 75 

feedback dynamics may emerge, with diversity accumulating in the well-connected populations. In 76 

line with this, there is evidence of spatial structure strongly influencing how resistance is 77 

distributed, with higher resistance observed in host populations that experience higher rates of gene 78 

flow16,28,29. To date, it has not been established what the relative roles of gene flow vs. pathogen-79 

imposed selection are – and how they may vary in space - in generating spatially variable patterns 80 

of resistance that have been empirically observed16,28,29.  81 

Here, we combine a spatial analysis of a wild host-pathogen populations with an 82 

inoculation experiment, and a simulation model to understand how the ecological and evolutionary 83 

impacts of disease on host resistance vary in spatially structured populations.  Specifically we ask: 84 

1) Is there evidence of pathogen-imposed selection on its host populations across a large, naturally 85 

fragmented host-pathogen metapopulation; 2) Does host population resistance structure, measured 86 

through an inoculation assay, reflect variable selection pressure indicated by the spatial analysis; 87 

and 3) Using a coevolutionary metapopulation model we explore how gene flow, selection and 88 

costs of resistance contribute to the spatial structure of resistance detected with our empirical 89 

approach.  90 

Our analysis is focused on annually recorded population size data from some ~ 4000 91 

locations of host plant Plantago lanceolata, and the presence-absence dynamics of its obligate 92 

fungal pathogen, Podosphaera plantaginis, in this host population network in the Åland islands, 93 

South-Western Finland. Plantago lanceolata is a perennial that produces wind-dispersed pollen, 94 

while seeds typically drop close to the mother plant. During the epidemic season, P. plantaginis 95 



disperses via clonally produced conidial spores that typically land within close proximity of the 96 

infected source plant (REF). The visually conspicuous symptoms caused by P. plantaginis enable 97 

accurate tracking of infection in the wild. Long-term epidemiological data have demonstrated this 98 

pathogen to persist as a highly dynamic metapopulation with frequent extinctions and 99 

(re)colonizations of local populations16. These data allow us to study whether the extent of 100 

pathogen-imposed selection depends on host population connectivity (SH) and hence, evolutionary 101 

potential governed by gene flow, and whether resistance level and diversity vary among host 102 

populations depending on their degree of connectivity and disease history. Previous metapopulation 103 

models30,31 have demonstrated the existence of overall higher resistance in well-connected 104 

populations.  To better understand the mechanisms that lead to the significant interaction between 105 

population connectivity, infection history and resistance in our inoculation study, we built a host-106 

pathogen coevolutionary metapopulation model, where we examine how different trade-off 107 

relationships impact the outcome. The model is not intended to be a replica of an empirical 108 

metapopulation, but rather is used to reveal the key factors which lead to qualitatively similar 109 

distributions of resistance and disease incidences observed in the study of the Åland islands. Hence, 110 

the purpose of the model is to determine which biological factors are likely to be crucial to the 111 

patterns observed herein. 112 

 113 

Results 114 

We used Spatial Bayesian modelling (Integrated Nested Laplace Approximation; INLA32) to 115 

analyze how changes in host population size are influenced by the pathogen. To assess whether this 116 

depends on host population connectivity, we estimated the separate effects of pathogen 117 

presence/absence in the previous year for connectivity categories - high-, low and intermediate – 118 

that were based on the 0.2 and 0.8 quantiles of the host-connectivity values (Supplementary Fig. 1). 119 



The model controls for spatio-temporal autocorrelation characteristics of spatial ecological data, 120 

that may be due to unmeasured variables, thereby providing a conservative estimate of the model 121 

parameters (Supplementary Table 1)32. 122 

Infection by P. plantaginis had a negative effect on the growth of its host populations. All 123 

the estimated mean effects of pathogen presence were smaller than the effects with pathogen 124 

absence within the same connectivity category, suggesting an overall negative effect of the 125 

pathogen on host-population change (Fig. 1A, Supplementary Table 1). Furthermore, the estimated 126 

mean effects of the pathogen within the connectivity categories supports the interpretation that the 127 

relative effect of the pathogen on population growth is most negative in the isolated host 128 

populations (Fig. 1A, Supplementary Table 1). The posterior uncertainty in the effects of pathogen 129 

on the population growth (indicated by the confidence intervals in Fig. 1A) are due to the nature of 130 

observational data: pathogen infections were rare at the metapopulation level in studied years, thus 131 

there is considerably more pathogen absence observations in these data (See supplementary Table 132 

2). The temporal autocorrelation in growth in P. lanceolata populations between consecutive years 133 

was estimated to be negative (Supplementary Table 1), indicating that local populations exhibit 134 

oscillatory dynamics, such that growth in one year is typically followed by a decline in the next year 135 

and vice versa. As many of the populations are well-established, these fluctuations could result from 136 

populations oscillating around their carrying capacities, dictated by the space and resources 137 

available for their growth. The estimated median effects for rainfall in July and August suggest that 138 

host population changes are not strongly driven by these effects, although the August rainfall had a 139 

slight positive effect on population growth (posterior mean effect 0.03, confidence interval -0.06, 140 

0.12, Fig. 1B, Supplementary Table 1). The proportion of plants expressing drought symptoms in 141 

the previous year was significantly associated with a decline in host population size (posterior mean 142 

effect -0.38, confidence interval -0.43, -0.33, Fig. 1C, Supplementary Table 1).  143 



To examine whether the diversity and level of resistance vary among host populations 144 

depending on their degree of connectivity (SH) and disease history (measured as infection status in 145 

years 2001-2014), we performed an inoculation assay to characterize resistance phenotypes in 146 

selected 19 P. lanceolata populations against four strains of P. plantaginis. These populations occur 147 

in different locations of the host network, and were selected to represent both isolated and well-148 

connected populations. Our inoculation study confirmed that host plants varied in their resistance 149 

against the tested powdery mildew strains (Table 1, Fig. 2A). We were able to identify all 16 150 

possible resistance phenotypes in the sample of 190 plants (Fig. 2A). In the connected populations, 151 

we found a greater diversity of different phenotypes, while isolated populations hosted fewer 152 

resistance phenotypes (Fig. 2A). Both the Shannon diversity index (Table 1, Fig. 2B), and the 153 

average level of resistance (Table 1, Fig. 2C), were higher in the well-connected than in the isolated 154 

host populations (Table 1, Figs. 2B and C).  155 

However, while disease history had no direct effect on phenotypic diversity nor the 156 

level of resistance, we found a significant interaction between population connectivity and infection 157 

history for both Shannon’s diversity index and level of resistance (Table 1, Figs. 2B and C). The 158 

highest diversity of phenotypes and highest resistance was measured in well-connected populations 159 

without any history of disease. In contrast, in isolated populations, we found greater diversity of 160 

resistance phenotypes and higher resistance in populations with a history of infection (Figs. 2B and 161 

C).  162 

We modeled both the ecological and coevolutionary dynamics of host and pathogen 163 

metapopulations by constructing the network in two stages to account for relatively well and poorly 164 

connected demes (see methods). We modeled the genetics of the system using a multilocus gene-165 

for-gene framework33 with haploid host and pathogen genotypes characterised by 𝐿 biallelic loci, 166 

where 0 and 1 represent the presence and absence, respectively, of resistance and infectivity alleles. 167 

Hosts and pathogen with more resistance or infectivity alleles are assumed to pay higher fitness 168 



costs, as defined in the methods. We ran 200 simulations for each of the parameter sets described in 169 

Supplementary Table 3 (example simulation dynamics are shown in Fig. 3D-F). On average, 170 

disease prevalence (D), resistance (R) and infectivity (I) were always higher in well-connected than 171 

in poorly connected populations regardless of metapopulation  structure, transmissibility of the 172 

pathogen, or the nature of the trade-offs (Supplementary Table 3). However, the difference between 173 

well and poorly connected populations was generally greater when: (1) the metapopulation structure 174 

was assortative (i.e. well connected populations are more likely to be connected to other well 175 

connected populations than by chance) than random; (2) the pathogen was more transmissible; or 176 

(3) host resistance was associated with fitness costs that diminish as resistance increases (i.e. costs 177 

of resistance decelerate, 𝑐!" < 0) (Supplementary Table 4). Overall, we found that the pattern of the 178 

empirical results shown in Fig. 2C was most likely to occur when host resistance is associated with 179 

diminishing fitness costs and is more likely for transient (Fig. 3B) than long-term dynamics (Fig. 180 

3C). 181 

 182 

Discussion 183 

Here we show, to our knowledge for the first time, that the negative effect of pathogens on their 184 

wild host populations depends on spatial structure. This finding suggests that the strength of 185 

pathogen-imposed selection may vary across space in a predictable manner. Overall, finding a 186 

consistent negative effect of infection on host population growth is noteworthy given the myriad 187 

ecological factors that may hamper our ability to quantify costs of infection in wild populations34. 188 

The effect of infection on host population growth was the least negative in well-connected host 189 

populations, while isolated host populations were most vulnerable to infection, suggesting that they 190 

lack resistance diversity to effectively counter pathogen attack. Indeed, results of the inoculation 191 

study confirmed that both the diversity and the average level of resistance were higher in the well-192 



connected than in the isolated host populations. When the interaction is characterized by strain-193 

specific resistance such as in the interaction between P. lanceolata and P. plantaginis, resistance 194 

diversity will reduce the probability of establishment by an immigrant pathogen strain, and slow 195 

down the spread of established strains due to a mismatch between the specific avirulence alleles of 196 

pathogen and resistance alleles of host35. In agriculture, even slight additions of diversity to 197 

monocultures have been shown to reduce disease levels significantly36,37. 198 

Theory predicts that pathogens maintain resistance polymorphism in their host 199 

populations38–40. As described above, our spatial statistical population model demonstrated that the 200 

isolated populations went through the strongest reductions in size  - most likely through increased 201 

mortality of infected individuals41 - which could lead to selection increasing in the frequency of 202 

resistant phenotypes locally42. Accordingly, in the isolated populations we measured higher 203 

resistance diversity in host populations with a history of infection than in host populations that had 204 

not been infected in the past. The effect of infection on host population growth rates in the well-205 

connected populations was much weaker, and hence, may explain why we did not detect signs of 206 

past selection in these populations. The resulting differences in resistance among host populations is 207 

in line with previous studies that have measured higher resistance levels in well-connected host 208 

populations16,28,29. Jointly our results reveal that this pattern is generated by eco-evolutionary 209 

feedback resulting from spatial differences in how gene flow vs. selection drive host-pathogen 210 

dynamics in the in the wild - In the well-connected populations gene flow appears more important 211 

than pathogen-imposed selection in maintaining resistance diversity. 212 

In theory, polymorphism in resistance within populations is maintained by costs of 213 

resistance in the absence of the pathogen, whereas under pathogen attack, the resistant hosts 214 

outperform the susceptible ones4. Hence, finding high levels of resistance diversity where pathogen 215 

impact has recently been negligible may appear contrary to expectations, and suggests dispersal to 216 

be critical for maintaining variation within host populations. Our metapopulation model explored 217 



scenarios under which spatial structure, disease dynamics and life-history trade-offs could yield 218 

similar outcomes. We find that the shape of the host trade-off was the critical predictor of whether 219 

the simulations would qualitatively match the empirical results. Our results suggest that the costs of 220 

resistance are most likely to diminish as resistance increases. Diminishing costs mean that there is 221 

an initial large cost associated with resistance and therefore it is less beneficial when disease is rare. 222 

While fitness costs associated with resistance have been widely identified across many plant species 223 

{REFS} and other taxa {REFS}, determining the shape of trade-offs from empirical data is 224 

challenging, especially when trade-offs are close to linear or vary with environment, and it is 225 

impossible to determine trade-off shapes when only two host phenotypes are compared (as is often 226 

the case). However, experimental evolution of bacteria and phages has demonstrated that 227 

decelerating costs of resistance are possible {REF}.  In addition, our simulations suggest that the 228 

pattern detected in the empirical results is most likely to occur prior to the system reaching 229 

equilibrium and when metapopulation connectivity is assortative. The fact that the transient 230 

simulations dynamics tend to provide a better qualitative match to the empirical results does not 231 

imply that the resistance patterns detected in the archipelago will necessarily fade in the long-term 232 

(many simulations were qualitative matches at equilibrium), although our model indicates that this 233 

is a possibility. We think that it is interesting to note that the patterns we see are found for a wider 234 

range of parameter values under transient dynamics, but we get the same inference of the key 235 

characteristics that lead to the patterns we see.  Whether or not the patterns are only transient is an 236 

empirical question. 237 

 Together, our results show how spatial fragmentation leading to isolation of host 238 

populations drives the loss of diversity and increases host vulnerability to infectious diseases. To 239 

our knowledge this is the first empirical demonstration of how spatial structure generates variation 240 

in the strength of pathogen-imposed selection, and thus provides a compelling example of how 241 

landscape fragmentation drives epidemiological and coevolutionary processes in nature.     242 
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METHODS 259 

MATERIALS AND METHODS 260 

The pathosystem 261 

Plantago lanceola L. is a perennial monoecious ribwort plantain that reproduces both clonally via 262 

the production side rosettes, and sexually via wind pollination. Seeds drop close to the mother plant 263 

and usually form a long-term seed bank43. Podospharea plantaginis (Castagne; U. Braun and S. 264 



Takamatsu) (Erysiphales, Ascomycota) is an obligate biotrophic powdery mildew that infects only 265 

P. lanceolata and requires living host tissue through its life cycle44. It completes its life cycle as 266 

localized lesions on host leaves, only the haustorial feeding roots penetrating the leaf tissue to feed 267 

nutrients from its host. Infection causes significant stress for host plant and may increase the host 268 

mortality41. The interaction between P. lanceolata and P. plantaginis is strain-specific, whereby the 269 

same host genotype may be susceptible to some pathogen genotypes while being resistant to 270 

others45. The putative resistance mechanism includes two steps. First, resistance occurs when the 271 

host plant first recognizes the attacking pathogen and blocks its growth. When the first step fails 272 

and infection takes place, the host may mitigate infection development. Both resistance traits vary 273 

among host genotypes45.  274 

Approximately 4000 P. lanceolata populations form a network covering an area of 50 275 

x 70 km in the Åland Islands, SW of Finland. Disease incidence (0/1) in these populations has been 276 

recorded systematically every year in early September since 2001 by approximately 40 field 277 

assistants, who record the occurrence of the fungus P. plantaginis in the local P. lanceolata 278 

populations46. At this time, disease symptoms are conspicuous as infected plants are covered by 279 

white mycelia and conidia. The coverage (m2) of P. lanceolata in the meadows was recorded 280 

between 2001-2008 and is used as an estimate of host population size. The proportion of P. 281 

lanceolata plants in each population suffering from drought is also estimated annually in the survey. 282 

Data on average rainfall (mm) in July and August was estimated separately for each population 283 

using detailed radar-measured rainfall (obtained by Finnish Meteorological Institute) and it was 284 

available for years 2001-2008.     285 

Host population connectivity (SH)27 for each local population i was computed with the 286 

formula that takes into account the area of host coverage (m²) of all host populations surveyed, 287 

denoted with (A j), and their spatial location compared to other host populations. We assume that 288 

the distribution of dispersal distances from a location are described by negative exponential 289 



distribution. Under this assumption, the following formula quantifies for a focal population i, the 290 

effect of all other host populations, taking into account their population sizes and how strongly they 291 

are connected through immigration to it: 292 

𝑆#! 			= (𝑒$%&!"
'(#

*𝐴' . 293 

Here, d ij is the Euclidian distance between populations i and j and 1/α equals the 294 

mean dispersal distance, which was set to be two kilometers based on results from a previous 295 

study16.          296 

The annual survey data has demonstrated that P. plantaginis infects annually 2-16% 297 

of all host populations and persists as a highly dynamic metapopulation through extinctions and re-298 

colonizations of local populations16. The number of host populations has remained relatively stable 299 

over the study period45. The first visible symptoms of P. plantaginis infection appear in late June as 300 

white-greyish lesions consisting of mycelium supporting the dispersal spores (conidia). Six to eight 301 

clonally produced generations follow one another in rapid succession, often leading to local 302 

epidemic with substantial proportion of the infected hosts by late summer within the host local 303 

population. Podosphaera plantaginis produces resting structures, chasmothecia, that appear towards 304 

the end of growing season in August-September41. Between 20-90 % of the local pathogen 305 

populations go extinct during the winter, and thus the recolonization events play an important role 306 

in the persistence of the pathogen regionally16.  307 

 308 

Inoculation assay: Effect of connectivity and disease history on phenotypic disease resistance  309 

Host and pathogen material for the experiment 310 

To examine whether the diversity and level of resistance vary among host populations depending on 311 

their degree of connectivity (SH) and disease history, we selected 20 P. lanceolata populations for 312 

an inoculation assay. These populations occur in different locations in the host network, and were 313 



selected based on their connectivity values (S H of selected populations was 37-110 in isolated and 314 

237-336 in highly connected category, Fig. 1). We did not include host populations in the 315 

intermediate connectivity category that was used in the population dynamic analyses (plese see 316 

above) in the icoculation assay due to logistic cnostraints. Podosphaera plantaginis is an obligate 317 

biotrophic pathogen that requires living host tissue throughout its life cycle, and obtaining sufficient 318 

inoculum for experiments is extremely time and space consuming. In both isolated and highly 319 

connected categories, half of the populations (IDs 193, 260, 311, 313, 337, 507, 1821, 1999, 2818, 320 

5206) were healthy during the study years 2001-2014, while half of the populations (IDs   271, 294, 321 

309, 321, 490, 609, 1553, 1556, 1676, 1847) were infected by P. plantaginis for several years 322 

during the same period. We collected P. lanceolata seeds from randomly selected ten individual 323 

plants around the patch area from each host population in August 2014.    324 

To acquire inoculum for the assay, we collected the pathogen strains as infected leaves, 325 

one leaf from ten plant individuals from four additional host populations (IDs 3301, 4684, 1784 and 326 

3108) in August 2014. None of the pathogen populations were same as the sampled host 327 

populations and hence, the strains used in the assay all represent allopatric combinations. Both host 328 

and pathogen populations selected for the study were separated by at least two kilometers. The 329 

collected leaves supporting infection were placed in Petri dishes on moist filter paper and stored at 330 

room temperature until later use.  331 

Seeds from ten mother plants from each population were sown in 2:1 mixture of potting 332 

soil and sand, and grown in greenhouse conditions at  20±2 °C (day) and 16 ±2 °C (night) with 16:8 333 

L:D photoperiod. Due to the low germination rate of collected seeds, population 260 (isolated and 334 

healthy population) was excluded from the study. Seedlings of ten different mother plants were 335 

randomly selected among the germinated plants for each population (n=190), and grown in 336 

individual pots until the plants were eight weeks old.      337 



The pathogen strains were purified through three cycles of single colony inoculations and 338 

maintained on live, susceptible leaves on Petri dishes in a growth chamber 20±2 °C with 16:8 L:D 339 

photoperiod. Every two weeks, the strains were transferred to fresh P. lanceolata leaves. Purified 340 

powdery mildew strains (M1-M4), one representing each allopatric population (3301, 4684, 1784 341 

and 3108), were used for the inoculation assay. To produce enough sporulating fungal material, 342 

repeated cycles of inoculations were performed before the assay. 343 

 344 

Inoculation assay quantifying host resistance phenotypes 345 

In order to study how the phenotypic resistance of hosts varies depending on population 346 

connectivity and infection history, we scored the resistance of 190 host genotypes, ten individuals 347 

from each study populations (n=19), in an inoculation assay. Here, one detached leaf from each 348 

plant was exposed to a single pathogen strain (M1-M4) by brushing spores gently with a fine 349 

paintbrush onto the leaf. Leaves were placed on moist filter paper in Petri dishes and kept in a 350 

growth chamber at 20±2 with a 16/8D photoperiod. All the inoculations were repeated on two 351 

individual Petri plates, leading to 760 host genotype – pathogen genotype combinations and a total 352 

of 1520 inoculations and (19 populations * 10 plant genotypes * 4 pathogen strains * 2 replicates). 353 

We then observed and scored the pathogen infection on day 12 post inoculation, under dissecting 354 

microscope. The resulting plant phenotypic response was scored as 0 = susceptible (infection) when 355 

mycelium and conidia were observed on the leaf surface, and as 1 = resistance (no infection), when 356 

no developing lesions could be detected under a dissecting microscope. A genotype was defined 357 

resistant only if both inoculated replicates showed similar response (1), and susceptible if one or 358 

both replicates became infected (0).  359 

 360 

Statistical analyses 361 



Bayesian spatio-temporal INLA model of the changes in host population size 362 

To study how the pathogen infection influences on host population growth, we analyzed the relative 363 

change in host population size (m2) (defined as population size (t) - population size (t-1)) / 364 

population size (t-1)) between consecutive years utilizing data from 2001-2008 in response to 365 

pathogen presence-absence status at t-1 (Supplementary Table 2). To assess whether this depends 366 

on host population connectivity, we estimated the separate effects of pathogen presence/absence in 367 

the previous year for connectivity categories - high-, low and intermediate – that were based on the 368 

0.2 and 0.8 quantiles of the host-connectivity values (Fig. 1A, Supplementary Fig.1).  369 

As covariates, we included the proportion (0-100%) of dry host plants measured each year 370 

within each local population as well as data on the amount of rainfall at the summer months (June, 371 

July, August) obtained from the satellite images, as these were suggested be relevant for this 372 

pathosystem in an earlier analysis16. Observations where the change in host population size, or the 373 

host population coverage had absolute values larger than their 0.99 quantiles in the whole data, 374 

were regarded as outliers and omitted from the analysis. Before the analyses, all the continuous 375 

covariates were scaled and centered, and the categorical variables were transformed into binary 376 

variables. 377 

The relative changes in local host population size between consecutive years was analyzed 378 

by a Bayesian spatio-temporal statistical model that simultaneously considers the effects of a set of 379 

biologically meaningful predictors. The linear predictor thus consists of two parts: 380 

1)        𝛽𝑋) + 𝑧)𝐴) 381 

where 𝛽 represents the correlation coefficients corresponding to the effects of environmental 382 

covariates, 𝑧) corresponds to the spatiotemporal random effect, and 𝑋) and 𝐴)	project these to the 383 



observation locations.  For 𝑧) we assume that the observations from a location in consecutive time 384 

points (t-1) and t are described by 1st order autoregressive process: 385 

2)      𝑧) = 	𝜑𝑧)$* +𝑤) 386 

where 𝑤)	corresponds to spatially structured zero-mean random noise, for which a Matern 387 

covariance function is assumed.  Statistical inference then targets jointly the covariate effects 𝛽, the 388 

temporal autocorrelation 𝜑, and the hyperparameters describing the spatial autocorrelation in 𝑤)	.	 389 

From these the overall variance, as well as spatial range, a distance after which spatial 390 

autocorrelation ceases to be significant, can be inferred, Supplementary Fig. 3). For more detailed 391 

description of the structure of the statistical model and how to do efficient inference with it using R-392 

INLA, we refer to16,47.  393 

 394 

Identification of resistance phenotypes 395 

The phenotype composition of each study population was defined by individual plant responses to 396 

the four pathogen strains, where each response could be “susceptible = 0” or “resistant = 1”. For 397 

example, a phenotype “1111” refers to a plant resistant to all four pathogen strains. The diversity of 398 

distinct resistance phenotypes within populations was estimated using the Shannon diversity index 399 

as implemented in the vegan software package 48. The Shannon diversity index for all four study 400 

groups was then analyzed using a linear model with class predictors population type (well-401 

connected or isolated), infection history (healthy or infected), and their interaction. 402 

 403 

Analysis of population connectivity and infection history effects on host resistance 404 



To test whether host population resistance varied depending on connectivity (SH) and infection 405 

history, we analyzed the inoculation responses (0=susceptible , 1=resistant) of each host-pathogen 406 

combination by using a logit mixed-effect model in the lme4 package49. The model included the 407 

binomial dependent variable (resistance-susceptible; 1/0), and class predictors population type 408 

(well-connected or isolated), infection history (healthy or infected), mildew strain (M1, M2, M3, 409 

M4) and their interactions. Plant individual and population were defined as random effects, with 410 

plant genotype (sample) hierarchically nested under population. Model fit was assessed using chi-411 

square tests on the log-likelihood values to compare different models and significant interactions, 412 

and the best model was selected based on AIC-values. P-values for regression coefficients were 413 

obtained by using the car package 50. We ran all the analyses in R software 51. 414 

 415 

The metapopulation model 416 

We model the ecological and co-evolutionary dynamics of host and pathogen metapopulations. We 417 

construct the metapopulations in two stages to account for relatively well and poorly connected 418 

demes. All demes are identical in quality (i.e. no differences in intrinsic birth or death rates between 419 

demes) and only differ in their connectivity. Our metapopulation consists of an outer network of 20 420 

demes, equally spaced around the unit square (0.2 units apart), and a 7×7 inner lattice of demes at a 421 

minimum distance of 0.2 units from the outer network (Fig. 3A), giving a total of 69 demes. Demes 422 

that are separated by a Euclidean distance of at most 0.2 are then connected to each other. This 423 

means that populations near the centre of the metapopulation are highly connected, while those on 424 

the boundary of the metapopulation are poorly connected. This also has the effect of making 425 

connections between well and poorly connected demes assortative (i.e. well/poorly connected 426 

demes tend to be connected to well/poorly connected demes). We relax the assumption of 427 

assortativity in a second type of network by randomly reassigning connections between demes, 428 



while maintaining the same degree distribution. (i.e. the probability of two demes being connected 429 

is proportionate to their degree). While well connected demes still have more connections to other 430 

well connected demes than to poorly connected demes, they are not more likely to be connected to a 431 

well connected deme than by chance based on the degree distribution. In both types of network 432 

structure, we classify a deme as well-connected if it is in the top 20% of the degree distribution and 433 

poorly connected if it is in the bottom 20%. 434 

We model the genetics using a multilocus gene-for-gene framework with haploid host 435 

and pathogen genotypes characterised by 𝐿 biallelic loci, where 0 and 1 represent the presence and 436 

absence, respectively, of resistance and infectivity alleles. Host genotype 𝑖 and pathogen genotype 𝑗 437 

are represented by binary strings: 𝑥#*𝑥#"…𝑥#, and 𝑦'*𝑦'"…𝑦',. Resistance acts multiplicatively such 438 

that the probability of host 𝑖 being infected when challenged by pathogen 𝑗 is 𝑄#' = 𝜎&!", where 𝜎 is 439 

the reduction in infectivity per effective resistance allele and 𝑑#' = ∑ 𝑥#-(1 − 𝑦'-),
-.*  is the number 440 

of effective resistance alleles (i.e. the number of loci where hosts have a resistance allele but 441 

pathogens do not have a corresponding infectivity allele). Hosts and pathogens with more resistance 442 

or infectivity alleles are assumed to pay higher fitness costs, 𝑐!(𝑖) and 𝑐/(𝑗), with: 443 

 444 

𝑐!(𝑖) = 𝑐!* A
1 − 𝑒
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and 446 

𝑐/(𝑗) = 𝑐/* A
1 − 𝑒
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$
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where 0 < 𝑐!* , 𝑐/* ≤ 1 control the overall strength of the costs (i.e. the maximum proportional 448 

reduction in reproduction (hosts) or transmission rate (pathogens)) and 𝑐!" , 𝑐/" ∈ ℝ(4 control the 449 



shape of the trade-off. When 𝑐!" , 𝑐/" < 0 the costs decelerate (increasing returns) and when 𝑐!" , 𝑐/" >450 

0 the costs accelerate the costs accelerate (decreasing returns). This formulation therefore allows for 451 

a wide-range of trade-off shapes that may occur in nature. 452 

The dynamics of the (finite) host and pathogen populations are modelled 453 

stochastically using the tau-leap method with a fixed step size of 𝜏 = 1. For population 𝑝, the mean 454 

host birth rate at time 𝑡 for host 𝑖 is  455 

𝐵#
5(𝑡) = L𝑎N1 − 𝑐!(𝑖)O − 𝑞𝑁5(𝑡)R 𝑆#

5(𝑡) 456 

where 𝑎 is the maximum per-capita birth rate, 𝑞 is the strength of density-dependent competition on 457 

births, 𝑁5(𝑡) = 	𝑆#
5(𝑡) + 𝐼#∘

5(𝑡) is the local host population size, 𝑆#
5(𝑡) and 𝐼#∘

5(𝑡) = ∑ 𝐼#'
5(𝑡)7

'.*  are 458 

the local sizes of susceptible and infected individuals of genotype 𝑖, and 𝐼#'
5(𝑡) is the local size of 459 

hosts of genotype 𝑖 infected by pathogen 𝑗. Host mutations occur at an average rate of 𝜇! per loci 460 

(limited to at most one mutation per time step), so that the mean number of mutations from host 461 

type 𝑖 to 𝑖′ is 𝜇!𝑚##*𝐵#
5(𝑡), where 𝑚##* = 1 if genotypes 𝑖 and 𝑖′ differ at exactly one locus, and is 0 462 

otherwise. 463 

The mean local mortalities for susceptible and infected individuals are 𝑏𝑆#
5(𝑡) and 464 

(𝑏 + 𝛼)𝐼#'
5(𝑡), respectively, where 𝑏 is the natural mortality rate and 𝛼 is the disease-associated 465 

mortality rate. The average number of infected hosts that recover is 𝛾𝐼#'
5(𝑡), where 𝛾 is the recovery 466 

rate. 467 

The mean number of new local infections of susceptible host type 𝑖 by pathogen 𝑗 is: 468 

𝐼𝑁𝐹#'
5(𝑡) = 𝛽N1 − 𝑐/(𝑗)O𝑄#'𝑆#

5(𝑡)𝑌'
5(𝑡) 469 

where 𝛽 is the baseline transmission rate and 𝑌'
5(𝑡) is the local number of pathogen propagules 470 

following mutation and dispersal. Pathogen mutations occur in a similar manner to host mutations, 471 



with mutations from type 𝑗 to 𝑗′ occurring at rate 𝜇/𝑚''*𝐼∘'
5 (𝑡) where 𝜇/ is the mutation rate per loci 472 

(limited to at most one mutation per timestep) and 𝐼∘'
5 (𝑡) = ∑ 𝐼#'

5(𝑡)7
#.*  is the local number of 473 

pathogen 𝑗. Following mutation, the local number of pathogens of type 𝑗 is: 474 

𝑊'
5(𝑡) = 𝐼∘'

5 (𝑡)(1 − 𝜇/𝐿) + 𝜇/𝑚''*𝐼∘'
5 (𝑡) 475 

Pathogen dispersal occurs following mutation at a rate of 𝜌 between connected demes, given by the 476 

adjacency matrix 𝐺58, with 𝐺95 the total number of connections for deme 𝑝. The mean local number 477 

of pathogen propagules following mutation and dispersal is therefore: 478 

𝑌'
5(𝑡) = 𝑊'

5(𝑡)N1 − 𝜌𝐺95O + 𝜌( 𝐺58𝑊'8(𝑡)
:+

8.*
 479 

We focus our parameter sweep on: (i) the structure of the network (assortative or random 480 

connections); (ii) the strength (𝑐!* , 𝑐/*) and shape (𝑐!" , 𝑐/") of the trade-offs; (iii) the transmission rate 481 

(𝛽); and (iv) the dispersal rate (𝜌), fixing the remaining parameters as described in Supplementary 482 

Table 1 (preliminary investigations suggested they had less of an impact on the qualitative outcome) 483 

and conducting 100 simulations per parameter set. For each simulation we initially seed all 484 

populations with the most susceptible host type and place the least infective pathogen type in one of 485 

the well-connected populations to minimise the risk of early extinction. We then solve the dynamics 486 

for 10,000 time steps (preliminary investigations indicated this was a sufficient period for the 487 

metapopulations to reach a quasi-equilibrium in terms of overall resistance). We calculate the 488 

average level of resistance (proportion of loci with a resistance allele) between time steps 4,001 and 489 

5,000 (transient dynamics) and over the final 1,000 time steps (long-term dynamics) for well and 490 

poorly connected demes, categorised according to whether disease is present in (infected) or absent 491 

from (uninfected) the local population at a given time point and discarding simulations where the 492 

pathogen is driven globally extinct.  493 



We compare the mean level of resistance in infected/uninfected poorly/well-connected 494 

populations across all simulations to the empirical results. We say that a simulation is a qualitative 495 

‘match’ for the empirical findings if: (i) in poorly connected demes, the infected populations are on 496 

average at least 5% more resistant than uninfected populations; and (ii) in well-connected demes, 497 

the uninfected populations are on average at least 5% more resistant than infected populations. In 498 

other words, if 𝑅;< is the mean resistance for a population with connectivity 𝐶 (𝐶 = 𝑊 and 𝐶 = 𝑃 499 

for well and poorly connected demes, respectively) and infection status 𝑆 (𝑆 = 𝑈 and 𝑆 = 𝐼 for 500 

uninfected and infected populations, respectively), then a parameter set is a qualitative ‘match’ for 501 

the empirical findings if 𝑅=> > 1.05𝑅=? and 1.05𝑅/? > 1.05𝑅/>. If these criteria are not met, 502 

then the parameter set is a qualitative ‘mismatch’ for the empirical findings.  503 

 504 

Data and code availability 505 

Data and code will be made available upon acceptance. 506 
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Tables and Figures 613 

Table 1. The effects and effect sizes of connectivity and disease history on resistance diversity 614 

(Shannon diversity), and the average level of resistance in the 19 studied Plantago lanceolata 615 

populations. Statistics for minimum adequate models with smallest AIC values are reported. 616 

Significant values are highlighted in bold.  617 

Source (Shannon diversity) d.f. F P 
Connectivity 1 14.95 0.001 
Disease history 1 1.61 0.2 
Connectivity x Disease History 1 7.68 0.01 
Shannon diversity coefficients   Estimate sd.  
Intercept   1.85 0.13 
History (Infected)   -0.18 0.18 
Connectivity (Isolated)   -0.93 0.19 
History (Infected) * Connectivity (Isolated)   0.76 0.27 
Source (Resistance) d.f. X² P 
Connectivity 1 16.55 <0.0001 
Disease history 1 0.01 0.9 
Connectivity x Disease History 1 9.91 0.001 
Mildew strain 3 36.34 <0.0001 
Random   Variance sd. 
Population   0.227 0.477 
Sample (Population)   1.206 1.09 
Resistance fixed effects   Estimate sd. 
Intercept   0.5 0.34 
Connectivity (Isolated)   -2.67 0.53 
History (Infected)   -0.95 0.44 
Mildew_strain2   -0.86 0.27 
Mildew_Strain3   -0.6 0.26 
Mildew_strain4   0.65 0.25 
History (Infected) * Connectivity (Isolated)   2.17 0.69 
 618 
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 620 
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622 

 623 

Fig. 1: Model estimated effects on Plantago lanceolata population size changes in the Åland 624 

islands in 2001-2008.  The estimated median effects for host population growth with 95% 625 

credibility intervals of the fixed effects of the Bayesian INLA model: A The effect of pathogen 626 

presence and absence in the host populations in the three connectivity categories, B The effect of 627 

rainfall in July and August; and C The effect of detected drought symptoms in the host populations 628 

in the previous and current year.  629 



 630 

 631 

 632 

Fig. 2: Resistance of Plantago lanceolata populations depends on connectivity (SH) and disease 633 

history. A The matrix of detected resistance phenotypes in the inoculation study shows clustering of 634 

similar phenotypic profiles detected in populations in each of the four connectivity (SH)–infection 635 

history categories.  The columns of the matrix correspond to resistance phenotypes, where the i’th 636 



element of the vector is 1, if resistance to pathogen strain I was detected, and zero otherwise. The rows 637 

of the matrix encode the observed frequencies of resistance phenotypes within the studied populations. 638 

The dendrogram visualizes the similarity structure between the populations, distance along the tree 639 

encoding for the degree of similarity between the populations. It is based on a hierarchical clustering 640 

(implemented with complete linkage method, aiming to find similar clusters), applied to Euclidean 641 

distances between the phenotype profiles within the populations. B The average Shannon diversity 642 

index of host populations in each connectivity (SH)-disease history category, and C the average 643 

resistance of the same populations in each category. The centre lines of the boxplots (B-C) show the 644 

medians, box limits show the 25% and 75% quantiles, and the whiskers span to the data extremes. 645 

Purple colours depict isolated populations, and green colours well-connected populations. 646 
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 656 

 657 

Fig. 3: Metapopulation simulation results. A Example snapshot of the simulation dynamics at 658 

t=10,000 across a metapopulation with assortative connectivity, highlighting well (green) and 659 

poorly (purple) connected populations (unshaded populations are neither well nor poorly connected) 660 

that are currently infected (squares) and uninfected (circles). The size of each node corresponds to 661 

the mean resistance of the local population. B-C Proportion of simulations which qualitatively 662 

match the empirical results as the shape of the host and pathogen cost functions are varied for 663 

transient (B) and long-term (C) dynamics: (strong decel. (decelerating): 𝑐!" , 𝑐/" = −10; weak decel.: 664 

𝑐!" , 𝑐/" = −3; weak accel. (accelerating): 𝑐!" , 𝑐/" = 3; strong accel.: 𝑐!" , 𝑐/" = 10). D-F Example 665 

simulation results, showing mean (bold line) and standard deviations (shading) for disease 666 

prevalence (D), resistance (E), and infectivity (F) in well (green) and poorly (purple) connected 667 

populations (𝑐!" = −3, 𝑐/" = 10, 𝛽 = 0.01, with assortative network structure). Fixed parameters as 668 

defined in Supplementary Table 3. 669 
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