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Abstract

Our understanding of the evolution of quantitative traits in nature is still limited by the chal-

lenge of including realistic trait distributions in the context of frequency-dependent selection

and ecological feedbacks. We extend to class-structured populations a recently introduced

“oligomorphic approximation” which bridges the gap between adaptive dynamics and quan-

titative genetics approaches and allows for the joint description of the dynamics of ecological

variables and of the moments of multimodal trait distributions. Our theoretical framework

allows us to analyse the dynamics of populations composed of several morphs and structured

into distinct classes (e.g. age, size, habitats, infection status, species...). We also introduce a

new approximation to simplify the eco-evolutionary dynamics using reproductive values. We

illustrate the effectiveness of this approach by applying it to the important conceptual case of

two-habitat migration-selection models. In particular, we show that our approach allows us

to predict both the long-term evolutionary endpoints and the short-term transient dynamics

of the eco-evolutionary process, including fast evolution regimes. We discuss the theoretical

and practical implications of our results and sketch perspectives for future work.
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Secondary title

構造化された集団における複数モルフの生態進化ダイナミクス

Secondary abstract

自然界における量的形質の進化に関する我々の理解は、頻度依存淘汰と生態学的フィードバックの文脈に、集

団の現実的な形質分布を取り入れるという困難な課題によって、依然として強い制約を受けている。我々は、

適応力学的アプローチと量的遺伝学的アプローチの間のギャップを埋めるために最近提唱された「オリゴモル

フ近似」をクラス構造集団に拡張することによって、生態学的変数と多峰的な形質分布のモーメントの両方の

動態を記述することを可能にした。この理論的枠組みにより、年齢、サイズ、生息地、感染状況、種などの異

なるクラスに構造化され、複数のモルフからなるような集団の動態解析が可能になる。また、繁殖価を用いて

生態進化の動態を単純化する新しい近似を導入する。これらのアプローチの有効性を、2生息地の移動分散と

淘汰のモデルという概念的に重要なモデルに適用することによって示す。とりわけ、我々のアプローチが、生

態進化過程の長期的な進化の終点と共に、迅速な進化における短期的で過渡的なダイナミクスの両方の予測を

可能にすることが示される。最後に我々の結果の理論的、実用的な意味について議論し、今後の研究の展望を

述べる。
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Many experimental and empirical studies in evolutionary ecology aim at understanding

how ecological processes affect how trait distributions change over time. This has moti-

vated the development of quantitative genetics methods (QG) to analyse the dynamics of

quantitative traits (Bulmer, 1992; Falconer, 1996; Lande, 1979; Walsh and Lynch, 2018). Fol-

lowing Lande (1976, 1979, 1982)’s seminal work, most quantitative genetics models assume

unimodal trait distributions and frequency-independent selection, leaving aside the problem

of how multimodal distributions can be generated by frequency-dependent disruptive selec-

tion. Under these assumptions, dynamical equations for the mean and higher moments of

a trait distribution can be derived for tightly clustered trait distributions (Barton and Turelli,

1987, 1991; Turelli and Barton, 1990). Assuming that trait distributions are narrowly localised

around a single mean also allows one to incorporate frequency-dependence to some extent

(Abrams et al., 1993; Iwasa et al., 1991), but typically models rely on the more classical as-

sumption that trait distributions are and remain normally distributed. However, empirical

evidence of skewed (Bonamour et al., 2017) or multimodal distributions highlight the need

for an alternative approach.

A major limitation of current quantitative genetics theory is the reliance on simplified eco-

logical scenarios that are not representative of the complexity of eco-evolutionary feedbacks

in nature. This led to the development of adaptive dynamics theory (AD), which, under

the assumption that evolution is limited by rare mutations, provides a mathematical frame-

work to study the interplay between ecological and evolutionary processes (Dieckmann and

Law, 1996; Geritz et al., 1998; Metz et al., 1996, 1992). Many authors have noted the similari-

ties and subtle differences between AD and QG approaches under the assumptions of small

mutational steps and narrow trait distributions respectively (Abrams, 2001; Abrams et al.,

1993; Day, 2005; Lion, 2018c). However, there is a clear conceptual gap in the canonical ap-

proaches to AD and QG: while adaptive dynamics has been successful in taking into account

environmental feedbacks and the emergence of polymorphism under frequency-dependent

disruptive selection, it does so by assuming strong constraints on the mutation process and

standing variation in the population. Recently, Sasaki and Dieckmann (2011) proposed an

alternative ”oligomorphic” approximation to bridge the gap between adaptive dynamics and
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quantitative genetics theory. The crux of the approach is to decompose a multimodal trait dis-

tribution into a sum of narrow unimodal morph distributions and to derive the dynamics of

the frequency, mean trait value and variance of each morph. Suitable moment closure approx-

imations at the morph level yield a closed dynamical system. As such, this framework can

be seen as an extension of quantitative genetics theory to take into account eco-evolutionary

feedbacks and polymorphic trait distributions.

The theoretical developments of Sasaki and Dieckmann (2011) rely on a number of ad-

ditional assumptions, notably single-locus haploid genetics, large populations sizes, and un-

structured populations. In this paper, we retain the first two assumptions but investigate

how class structure affects the dynamics of quantitative trait distributions. As class struc-

ture is ubiquituous in biological populations, this is an important extension to Sasaki and

Dieckmann (2011)’s theory, allowing us to apply the method to the majority of populations

where individuals can be in distinct demographic, physiological or ecological states, such as

different age groups, developmental stages, infection status, or habitats.

The paper is organised as follows. We first give a general decomposition of the trait dis-

tribution into different morphs in a population structured into distinct classes. We then show

how, by assuming that each morph distribution is clustered around the morph mean, we can

derive equations for the dynamics of class-specific morph frequencies, morph means, and

morph variances using Taylor approximations of the vital rates describing between-classes

transitions. We also apply recent theory on reproductive value (Lion, 2018a,b; Lion and Gan-

don, 2021) to simplify the morph dynamics at the population level. As in classical theory

(Fisher, 1930; Gardner, 2015; Lehmann and Rousset, 2014; Taylor, 1990), a morph’s repro-

ductive value is a measure of how well individuals of that morph in a given class transmit

their genes to future generations, and we show that it can be used as a weight to calculate

the net effect of selection on a given morph. Finally, we derive some simpler results for the

important limit case of two-class models, and apply this general framework to three specific

models describing the interplay between migration and selection in a population distributed

over two habitats of distinct qualities coupled by migration. The first example revisits the lo-

cal adaptation models analysed by Débarre et al. (2013); Meszéna et al. (1997); Mirrahimi and
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Gandon (2020); Ronce and Kirkpatrick (2001), but our approach allows us to express these

previous results in terms of the reproductive values of each habitat and to take into account

habitat-specific mutation. The second example is a two-habitat extension of the resource com-

petition model analysed by Sasaki and Dieckmann (2011) and highlights how our framework

can shed light on frequency-dependence and disruptive selection. The third example is a

resource-consumer model and is used to show that our approach allows us to analyse tran-

sient eco-evolutionary dynamics fuelled by non-neligible standing variation at the population

level. Together these examples illustrate the potential of the approach in a wide range of

fundamental eco-evolutionary scenarios.

Densities and trait distributions

We consider a population of individuals characterised by a continuous phenotypic trait. The

total density of individuals with trait value z at time t is n(z, t) and, for simplicity, we denote

the total density of individuals as n(t) =
∫

n(z, t)dz (with a slight abuse of notation). We

further assume that the population is structured into K discrete classes, which can for instance

represent different age groups, developmental stages, or habitats. The density of individuals

with trait value z in class k at time t is nk(z, t). Similarly, we write nk(t) =
∫

nk(z, t)dz for the

total density of individuals in class k at t. See Table 1 for a description of the main notations

in the paper.

Full distributions

The within- and across-class densities represent the raw statistics of the model. They can

be used to define some useful distributions to analyse the eco-evolutionary dynamics of the

population. At the ecological level, the class distribution can be defined as

f k(t) =
nk(t)
n(t)

, (1)

which represents the fraction of individuals that are in class k at time t. Note that ∑k f k(t) = 1,

where the summation is over all classes, i.e. 1 ≤ k ≤ K (for simplicity, all summation limits

will be implicit in this article).
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At an evolutionary level, two trait distributions can be defined. The within-class trait

distribution is

ϕk(z, t) =
nk(z, t)
nk(t)

, (2)

which is the frequency of individuals with trait z in class k at time t. Averaging over classes

yields the across-class trait distribution

ϕ(z, t) =
n(z, t)
n(t)

. (3)

It is easy to check that, as expected,
∫

ϕk(z, t)dz =
∫

ϕ(z, t)dz = 1. Note that the class and

trait distributions are linked through the relationship ϕ(z, t) = ∑k ϕk(z, t) f k(t).

Multi-morph decomposition

Up to now, we have made no assumption on the trait distribution in the population. With the

notations defined so far, it is straightforward to produce a continuous-trait version of the Price

equations derived in Lion (2018a), but our aim here is slightly different, because we want to

make specific predictions on the dynamics of multimodal distributions. Following Sasaki and

Dieckmann (2011), we therefore assume that the trait distribution can be decomposed into M

morphs. Specifically, we use the term ‘morph’ to describe a cluster of continuous variants

around a phenotypic mean trait. We allow morphs to have distinct distributions in different

classes, and write the within-class trait distributions as a mixture of morph distributions,

ϕk(z, t) = ∑
i

ϕk
i (z, t) f k

i (t), (4)

where ϕk
i (z, t) is the distribution of morph i in class k at time t, and f k

i (t) is the frequency

of morph i in class k. Note that
∫

ϕk
i (z, t)dz = 1 and ∑i f k

i (t) = 1, where the summation is

implicitly over all morphs (i.e. 1 ≤ i ≤ M). Equation (4) is a class-specific version of equation

(5) in Sasaki and Dieckmann (2011). Biologically it means that the full distribution ϕk(z, t)

can be decomposed into a sum of morph distributions, ϕk
i (z, t), each weighted by the morph

frequency, f k
i (t). Figure 1 gives a graphical illustration of the multi-morph decomposition

using simulation results from a two-class, two-morph example (e.g. Example 1 below).

Intuitively, it makes sense to associate the distribution ϕk
i (z, t) to one ”peak” of a multi-

modal distribution, but it is important to note that the decomposition (4) is also valid if the
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morph distributions overlap or are similar. We can for instance start with two very similar

morphs and study how disruptive selection causes the unimodal distribution ϕk(z, t) to split

into two peaks as the morph means move away from each other. Our theoretical framework

therefore does not require the distance between morph means to be large. Similarly, our

analysis does not require a morph to have the same distribution or the same frequency in

all classes, although it will often make biological sense to consider scenarios where the trait

distributions in the different classes look similar (without being identical). Finally, while the

number of morphs can be arbitrarily chosen, it makes sense to use biological intuition to

guide this choice (for instance, two morphs for a two-resource model; see the discussion for

a more formal argument).

Morph moments

From the distributions ϕk(z, t), we can calculate class-specific moments, such as z̄k(t), the

mean trait value in class k at time t, and Vk(t), the trait variance in class k at time t. Similarly,

morph-specific moments can be calculated from the distributions ϕk
i (z, t). For instance, the

mean trait value of morph i in class k at t is z̄k
i (t), and the trait variance of morph i in class k

at t is Vk
i (t).

If higher-order moments are negligible or can be approximated using moment closure

approximations at the morph level, a morph can then be characterised by its relative abun-

dance (e.g. its frequency in each class, f k
i ), its position (e.g. the class-specific morph mean z̄k

i ),

and its width (e.g. the class-specific morph standard deviation
√

Vk
i ). Equation (4) allows us

to make connections between population-level moments and morph-specific moments. See

Table 1 for explicit definitions of the population-level and morph-specific moments, as well

as figure 1 for a graphical summary of the notations.

Notational conventions

To simplify the notations, a number of conventions will be used throughout the paper. First,

classes will be identified by superscripts and morphs by subscripts. For classes, we use the

superscripts j or k, so that an implicit summation over k means that k takes values between 1
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and K. For morphs, we use the subscript i, which thus takes values between 1 and M. The

symbol ℓ will be used either for classes or morphs, when needed. Second, whenever it is clear

from the context, we shall drop the dependency on time, writing e.g. f k instead of f k(t).

[FIGURE 1 SHOULD GO AROUND HERE]

Dynamics and separation of time scales

Having defined the statistics we need to describe the state of the population at a given time,

we now turn to their dynamics. Figure 1 illustrates how a multimodal trait distribution can

be decomposed into a mixture of unimodal morph distributions. By tracking the dynamics

of these morph distributions, we can understand how the various peaks of the multimodal

distribution move and change over time. To derive these dynamics, we first specify the rates

associated with the different events of the life cycle, then we calculate an approximation of

these rates under the assumption that the morph distributions are sufficiently narrow.

Vital rates

At a general level, the vital rates are defined by functions rjk(z, E(t)), which give the rate of

production of individuals in class j by an individual in class k with trait z at time t. The

variable E(t) represents the environmental feedback, which collects all ecological variables

needed to calculate the reproduction and survival of individuals (Lion, 2018c; Metz et al.,

2008, 1992; Mylius and Diekmann, 1995). For clonally reproducing organisms, this is sufficient

to calculate the dynamics of the density nj(z, t), as follows

dnj(z)
dt

= ∑
k

rjk(z, E(t))nk(z). (5)

Equation (9) describes the interplay of selection and ecological dynamics under the assump-

tion of perfectly faithful reproduction (that is individuals with trait z give birth to individuals

with trait z). In our initial presentation, we find it easier to omit the mutation process, but

we will consider the effect of mutation at a later stage. In addition, we do not explicitly
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Table 1: Definition of mathematical symbols used in the text

Symbol Definition Description

nk(z, t) Density of individuals with trait z in class k at t

nk(t) Total density of individuals in class k at t

n(z, t) = ∑k nk(z, t) Density of individuals with trait z at t

n(t) = ∑k nk(t) Total density of individuals at t

f k(t) = nk(t)/n(t) Fraction of individuals in class k at t

ϕk(z, t) = nk(z, t)/nk(t) Frequency of trait z in class k at t

ϕ(z, t) = n(z, t)/n(t) Total frequency of trait z at time t

f k
i (t) Morph frequencies within class k at t

ϕk
i (z, t) Morph distributions within class k at t

z̄k(t) =
∫

zϕk(z, t)dz Mean trait value in class k at t

z̄(t) =
∫

zϕ(z, t)dz Mean trait value at t in the whole population.

z̄k
i (t) =

∫
zϕk

i (z, t)dz Mean trait value of morph i in class k at t

Vk(t) =
∫
[z − z̄k(t)]2ϕk(z, t)dz Trait variance in class k at t

V(t) =
∫
[z − z̄(t)]2ϕ(z, t)dz Trait variance at t in the whole population

Vk
i (t) =

∫
[z − z̄k

i (t)]
2ϕk

i (z, t)dz Morph variance in class k at t

uk
i (t) Freq. of class-k individuals among morph-i indi-

viduals

vk
i (t) Morph-specific individual reproductive values in

class k

ck
i (t) = vk

i uk
i Morph-specific class reproductive values in class k

ϕi(z, t) = ∑k ϕk
i (z, t)uk

i (t) Morph distribution at the population level at t

(with moments z̄i, Vi, ...)

ϕ̃i(z, t) = ∑k ϕk
i (z, t)ck

i (t) RV-weighted morph distribution at the population

level at t (with moments z̃i, Ṽi, ...)

R(z) Matrix of transition rates rkj(z) (1 ≤ k, j ≤ K)

R Matrix of average transition rates r̄kj

Ri Matrix of morph-i average transition rates r̄kj
i
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model class-specific traits in this paper (but see the discussion for how this can be taken into

account).

In the remainder of the manuscript, all operations on the vital rates rjk(z, E(t)) will be

partial derivatives or integration with respect to the first argument. Hence, we shall drop

the dependency on environmental feedback and write simply rjk(z) (and R(z) for the matrix

of vital rates). However, it must be kept in mind that this notation does not imply density-

independent or frequency-independent selection. As shown in the ”Applications” section,

our formalism can be readily applied to scenarios where the vital rates depend on the density

of conspecifics or other species, on the trait distribution, or on other biotic or abiotic ecological

variables (see e.g. Lion (2018c); Sasaki and Dieckmann (2011)).

Small morph variance approximation

The crux of the oligomorphic approximation of Sasaki and Dieckmann (2011) is to assume that

the morph distributions are tightly clustered around their mean, that is the standard deviation

of the morph distribution is proportional to a small parameter ε. In a class-structured model,

this means that the quantity ξk
i = z − z̄k

i is small, and we write ξk
i = O(ε). A simple Taylor

expansion of the vital rates rjk(z) around the within-class morph mean z̄k
i yields

rjk(z) = rjk(z̄k
i ) + ξk

i
∂rjk

∂z

∣∣∣∣
z=z̄k

i

+
1
2
(ξk

i )
2 ∂2rjk

∂z2

∣∣∣∣
z=z̄k

i

+ O(ε3) (6)

Integrating over the distribution ϕk
i (z) yields an approximation for the average vital rates of

morph i, in terms of the morph-specific mean and variances z̄k
i and Vk

i . We have

r̄jk
i = rjk(z̄k

i ) +
1
2

Vk
i

∂2rjk

∂z2

∣∣∣∣
z=z̄k

i

+ O(ε4) (7)

Similarly, averaging rjk(z) over the distribution ϕk(z) yields the average vital rates r̄jk, which

can be decomposed in terms of morph averages as r̄jk = ∑i r̄jk
i f k

i . Note that, as in Sasaki and

Dieckmann (2011), we assume that the morph distributions are symmetric around their mean

throughout this paper (which is why the remainder in equation (7) is of order ε4).
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Separation of time scales

Because we assume that within-morph variation is small, the oligomorphic approximation

gives rise to a separation of time scales between ecological and evolutionary variables. Specif-

ically, the dynamics of the densities nk, class frequencies f k and morph frequencies f k
i are

all O(1) so that these can be treated as fast variables. On the other hand, the dynamics of

morph means and variances will tend to vanish as ε tends towards 0, so the morph moments

change on slower time scales. It is important to realise that this does not mean that there is no

feedback between ecology and evolution, and in fact this approximation can be used to study

situations where rapid evolution is fuelled by a large standing variance at the population level

(for instance if we have two morphs with very different mean trait values), while assuming

that the standing variation in each morph remains small. This will be explored in our Example

3 below.

Thus, the resulting coupled dynamics of densities, morph frequencies, morph means and

morph variances take the form of a fast-slow dynamical system (see Rinaldi and Scheffer

(2000) for an ecologically oriented overview). There are two ways to intepret this system.

First, it can be viewed as an approximation of the full eco-evolutionary dynamics, and can ei-

ther be numerically explored or used to gain analytical insight on the transient and long-term

dynamics of the ecological and evolutionary variables, as is typically carried out in quantita-

tive genetics approaches. Second, it can be analysed using quasi-equilibrium approximations,

following the typical practice in evolutionary invasion analyses such as adaptive dynamics.

This dictates that one first derives the equilibrium of the ecological variables and morph fre-

quencies, for fixed values of the morph means and variances, then uses this information to

calculate the dynamics of the morph means, the evolutionary singularities and the dynamics

of morph variances near these singularities.

In the following, we first derive the equations of the fast variables (the densities and morph

frequencies), then those of the slow variables (the morph means and variances). This allows us

to clarify the connections with previous approaches. For instance, the equations of the morph

frequencies are reminiscent of those governing allele frequency change in classical population
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genetics models, except that in our approach the means and variances are not fixed. Similarly,

the dynamics of the morph means are reminiscent of those of classical quantitative genetics,

but we go one step further by deriving the dynamics of morph variances instead of assuming

that they are fixed. In this way, our approach relaxes some key assumptions of classical

population and quantitative genetics, while providing a more dynamical perspective than

classical invasion analyses.

Dynamics of ecological variables and morph frequencies

In this section, we derive the dynamics of the fast variables, which are the class densities

nk(t) and class-specific morph frequencies f k
i (t). We also introduce the idea of weighting

each class by its reproductive value in order to calculate the net effect of selection on the

change of frequency of a given morph.

Dynamics of densities

Collecting all the class densities nk(t) in a vector n, we can write

dn
dt

= Rn (8)

where R is the matrix of average vital rates r̄jk. Using (7), we have r̄jk = ∑i f k
i rjk(z̄k

i ) + O(ε2),

so the dynamics of class densities only depend, to zeroth order, on the morph frequencies

and means. More explicitly, we have

dnk

dt
= ∑

j
∑

i
rkj(z̄j

i) f j
i nj + O(ε2). (9)

Similarly, the vector of class frequencies f = n/n has the following dynamics (Lion, 2018a)

df
dt

= Rf − r̄f (10)

where r̄ = 1⊤Rf = ∑j ∑k r̄jk f k is the average growth rate of the total population. Again,

expansion (7) shows that the dynamics of class frequencies is O(1) and solely determined by

the morph frequencies and morph means.
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Dynamics of morph frequencies

In Appendix A, we show that the dynamics of the within-class morph frequencies f k
i can be

written as

d f k
i

dt
= ∑

j

f j

f k

(
rkj

i f j
i − f k

i r̄kj
)
= ∑

j

f j

f k

(
rkj(z̄j

i) f j
i − f k

i ∑
ℓ

f j
ℓr

kj(z̄j
ℓ)

)
+ O(ε2) (11)

which shows that the morph frequencies f k
i also have fast dynamics that depend only on the

morph positions and frequencies. Equation (11) is the class-structured extension of the first

line of equation (17) in Sasaki and Dieckmann (2011) and is a class-structured version of the

replicator equation (Crow and Kimura, 1970; Ewens, 2004).

Later, we shall see that it is also useful to introduce the total frequency of morph i, fi =

∑k f k
i f k, and the vector ui collecting the morph frequencies uk

i = f k
i f k/ fi, which gives the

fraction of morph-i individuals which are in class k. The dynamics of ui is then

dui

dt
= Riui − r̄iui (12)

where Ri is the matrix of morph-specific average rates, r̄kj
i , and r̄i = 1⊤Riui is the average

growth rate of morph i. Hence, equation (12) is the morph-specific version of equation (10).

Note the difference between the two morph frequencies f k
i and uk

i . The frequency f k
i gives

the fraction of morph-i individuals among all class-k individuals, while the frequency uk
i is

the fraction of class-k individuals among all morph-i individuals.

Dynamics of morph reproductive values

As in Lion (2018a), equation (12) has a ”companion” equation (or adjoint equation, in mathe-

matical terms), which gives the dynamics of the vector of individual reproductive values for

morph i, vi

dv⊤
i

dt
= −v⊤

i Ri + r̄iv⊤
i (13)

The reproductive value vk
i (t) measures the relative contribution to the future of a morph-i

individual in class k at time t, and therefore gives an instantaneous measure of the relative

quality of class k from the point of view of morph i. Note that vi and ui are co-normalised
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such that v⊤
i ui = 1. This co-normalisation condition means that the average quality of a

morph-i individual is 1 at all times (Lion and Gandon, 2021). Later in the paper, we will

show that we can weight individuals in different classes by their reproductive values in order

to calculate the net effect of selection on morph i, which will allow us to reduce the dimension

of the eco-evolutionary dynamics.

Dynamics of morph means and variances

On the fast time scale where morph means and variances do not change much, (9) and (11)

are sufficient to describe the eco-evolutionary dynamics of the population. We now look at

the slower time scales corresponding to changes in the morph means z̄k
i and morph variances

Vk
i .

Dynamics of morph means

In Appendix B, we show that the dynamics of morph means take the form of a class-

structured Price equation (similar to those derived in Lion (2018a,b)). Using expansion (6),

and assuming that the morph distributions are and remain symmetric, we obtain

dz̄k
i

dt
= ∑

j

uj
i

uk
i

[
(z̄j

i − z̄k
i )r

kj(z̄j
i) + V j

i
∂rkj

∂z

∣∣∣∣
z=z̄j

i

]
+ O(ε4) (14)

The first term between brackets in equation (14) represents the effect of demographic tran-

sitions between classes, and can be viewed as a ”migration” term. In the absence of other

processes, the phenotypic differentiation z̄j
i − z̄k

i will tend to be consumed by demographic

transitions from classes j to class k, which occur at rates rkj(z̄k
i ). However, selection itself

can generate phenotypic differentiation. The second term between brackets in equation (14)

corresponds to the effect of directional selection on morph i within class j, and depends on

the variance V j
i of morph i in class j and on the marginal effect of the trait on the vital rates,

evaluated at the morph mean in class j. Finally, the ratio uj
i/uk

i gives the relative abundance

of class j and k in the population of morph-i individuals and is used as a weight to obtain

the net change of the morph mean in class k, so that classes with a low frequency in the

15



population do not contribute much. Note that, in the absence of class structure, the first term

between brackets vanishes and we recover equation (25) in Sasaki and Dieckmann (2011).

It may not be immediately obvious that z̄k
i is a slow variable. Indeed, although V j

i is O(ε2)

by assumption, the first term between brackets is not necessarily small. For many biologically

realistic applications, however, we can further assume that the morph means in the different

classes are not too different, and more precisely that the phenotypic differentiation z̄j
i − z̄k

i

is O(ε), in which case the z̄k
i ’s will change on a slower time scale compared to the morph

frequencies f k
i ’s, and the class densities nk. In a quasi-equilibrium approximation, this means

that, while the z̄k
i change slowly, the fast variables immediately track this change so that the

right-hand sides of equations (9)-(11), which all explicitly depend on the morph means z̄k
i ,

can be set to zero. More generally, we can use a perturbation expansion to show that the

z̄k
i ’s have a fast component (corresponding to the homogenisation of morph means due to

between-class demographic transitions) and a slow component (corresponding to the effect

of selection), so that we can relax the assumption that the differentiations z̄i
j − z̄k

i are initially

small (Online Appendix F.3).

Dynamics of morph variances

A classical quantitative genetics approach would typically focus on equations (14) under

the assumption of constant variances. However, this is not sufficient to understand how

disruptive selection may shape multi-morph trait distributions, and for this we need to turn

to the dynamics of the morph variances.

In Appendix B, we show that the dynamics of the class-specific morph variances can be

written as:

dVk
i

dt
= ∑

j

uj
i

uk
i

[
(V j

i − Vk
i + (z̄j

i − z̄k
i )

2)rkj(z̄j
i)

+2(z̄j
i − z̄k

i )V
j

i
∂rkj

∂z

∣∣∣∣
z=z̄j

i

+
1
2

(
Qj

i + (z̄j
i − z̄k

i )
2V j

i − V j
i Vk

i

) ∂2rkj

∂z2

∣∣∣∣
z=z̄j

i

]
+ O(ε5)

(15)

The term on the first line corresponds to the effect of demographic transitions between classes
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on variance. Basically it tells us that, even in the absence of selection, changes in the morph

variance in class k can be observed if the morph distributions are different across classes (e.g.

if the morph mean and variance in class j differ from class k). The term on the second line

represents the effect of directional selection on the morph variance in class k, which will be

greater when there is substantial phenotypic differentiation between the focal class and the

other classes. Finally, the term on the third line represents the effect of disruptive selection

on the morph variance, and depends on the means, variances, and fourth central moments

of the morph distributions in class j, Qj
i =

∫
(ξ

j
i)

4ϕ
j
i (z, t)dz. Note that, in the absence of class

structure, the first two lines vanish and we recover equation (33) in Sasaki and Dieckmann

(2011).

If we assume, as in the previous section, that z̄j
i − z̄k

i is O(ε), then the terms on the first,

second and third lines are respectively O(ε2), O(ε3) and O(ε4), and it is immediately clear

that the morph variances change on a slow time scale compared to the morph densities and

frequencies. A more general argument can be obtained using the perturbation expansion

approach detailed in Online Appendix F.3, as for the dynamics of the means.

Moment closure

As typical of moment methods, the dynamics of morph variances (15) depend on higher-

order moments, notably the fourth central moments Qj
i . Hence, we need to close the system

using a suitable moment closure approximation. For unstructured populations, Sasaki and

Dieckmann (2011) studied two moment closure approximations, namely the Gaussian ap-

proximation and the house-of-cards approximation. In this paper, we focus on the Gaussian

approximation, and therefore assume that the morph distributions ϕk
i (z) are normal. Bio-

logically, this means that the total distribution of the trait can be viewed as a weighted sum

of normal distributions. Mathematically, this entails that Qj
i = 3(V j

i )
2, which is sufficient to

close the system. Importantly, the assumption of normal morph distributions only matters

when calculating the dynamics of variances.
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Adding mutation

So far, we have analysed the effect of selection on the dynamics of densities, morph frequen-

cies, morph means and variances, in the absence of mutation. There are several ways to

incorporate mutation in our framework, but the simplest is to assume that mutation is inde-

pendent of birth events and is unbiased at the morph level. With these assumptions, we show

in Appendix E that the only effect of mutation is to increase morph variance by a term Vk
M,

which is the mutational variance in class k (that is the product of the mutation rate µk times

the variance of the mutation kernel in class k). Thus, any depletion of morph variance due to

stabilising selection will tend to be regenerated by mutation.

Morph-level dynamics: projection on RV space

The above analysis allows us to derive dynamical equations for the ecological densities,

morph frequencies, morph means and morph variances, but this results in a high-dimensional

system. In this section, we show that we can reduce the dimension of this system by tracking

the moments of average morph distributions, where the average is obtained by weighting

each class by both its quality and quantity. There are several possible weightings, but the

most convenient is to use reproductive values (RV) as weights, as this choice leads to simpler

equations and ensures that we capture the net effect of selection on a given morph (Fisher,

1930; Gardner, 2015; Grafen, 2015; Lehmann and Rousset, 2014; Lion, 2018a; Taylor, 1990).

RV-weighted trait distributions

We use the reproductive values we introduced in section to define a weighted trait distribu-

tion (Lion, 2018a)

ϕ̃i(z, t) = ∑
k

ck
i (t)ϕ

k
i (z, t), (16)

where ck
i (t) = vk

i (t)u
k
i (t) is the class reproductive value of morph i in class k at time t.

Equation (16) weighs the class-specific morph distribution by both the quantity uk
i (t) and

quality vk
i (t) of class-k individuals within the morph-i subpopulation. As intuitively expected,
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the quality and quantity of a class may change over time, so these are dynamical variables

(Lion, 2018a; Lion and Gandon, 2021). Figure 1 gives a graphical illustration of the process

by which class- and morph-specific distributions can be aggregated to obtain morph-specific

RV-weighted distributions.

Biologically, equation (16) gives us an appropriate metric to measure the average effect,

across all classes, of selection acting on a given morph. By accounting for the relative qualities

of each class, it is possible to get rid of any spurious effect due to intrinsic demographic

differences between classes (e.g. when one class has a systematically higher productivity

than the others, irrespective of the individuals’ genotypes). Any observed change in the

RV-weighted trait distribution will therefore be the result of selection only.

Projection on RV space

From a mathematical point of view, equation (16) corresponds to a projection onto a lower-

dimensional space, on which we can approximate the dynamics of the moments of the class-

specific morph distributions by the dynamics of the moments of the RV-weighted morph dis-

tribution. For simplicity, we call this approximation the projection on RV space. Mathematical

details are given in Appendix C, but the key biological insight is that, if morph distributions

are sufficiently clustered around the morph mean, the dynamics of the morph moments on

the slow time scale will closely track the moments of the reproductive-value-weighted morph

distribution.

Equation (13) shows that the dynamics of the morph reproductive values are O(1), so that

reproductive values change on the same time scale as class frequencies. On this fast time

scale, we can derive the following quasi-equilibrium approximation from equations (10) and

(13):

Riui = v⊤
i Ri = 0 (17)

so that the vectors of class frequencies and reproductive values are respectively the right and

left eigenvectors of the matrix Ri associated with eigenvalue 0, where it follows from equation

(7) that Ri has elements r̄kj
i = rkj(z̄j

i) + O(ε). This is a multi-morph extension of a standard

result from monomorphic theory (Lehmann and Rousset, 2014; Lion, 2018a,b; Priklopil and
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Lehmann, 2020; Rousset, 2004; Taylor, 1990).

Dynamics of morph means on RV space

On the slow time scale, the dynamics of the morph mean across all classes can be approx-

imated, to leading order, by the dynamics of the reproductive-weighted morph mean (Ap-

pendix C),
dz̃i

dt
= Ṽi ∑

j
∑

k
vk

i
∂rkj

∂z

∣∣∣∣
z=z̃i

uj
i + O(ε4). (18)

where z̃i and Ṽi are the mean and variance of ϕ̃i(z, t). In matrix form, equation (18) can be

written as:
dz̃i

dt
= Ṽi v⊤

i Siui + O(ε4). (19)

where

Si =
∂R
∂z

∣∣∣∣
z=z̃i

is the directional selection matrix.

The effect of selection on the morph mean is thus scaled by the morph variance, Ṽi, and

the direction of selection is given by the selection gradient, v⊤
i Siui which depends on (1) the

marginal effect of a change in the trait on the between-class transition rates rkj(z), evaluated

at the morph mean, (2) the relative quality of class k for morph-i individuals, measured

by the reproductive value vk
i , and (3) the relative quantity uk

i of class-k individuals among

morph-i individuals. The class frequencies, morph frequencies and reproductive values are

all calculated using the zeroth-order terms of the equations (8)-(11). In particular, the vectors

vi and ui satisfy equation (17).

The selection gradient v⊤
i Siui is the multi-morph extension of the classical expression

for the class-structured selection gradient of invasion analyses (Lehmann and Rousset, 2014;

Lion, 2018a,b; Priklopil and Lehmann, 2020; Rousset, 1999, 2004; Taylor, 1990), which can be

recovered by noting that, in the single-morph case, f k
i = fi = 1, so that ui = f and vi = v.

Equation (18) also has similarities with some quantitative genetics results (e.g. equation (8)

in Barfield et al. (2011)), but with two subtle differences. First, equation (8) in Barfield et al.

(2011) is derived under frequency-independence, and as a result the directional selection
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matrix depends on the derivatives of the mean transition rates r̄kj with respect to the mean

trait, instead of the derivatives of the transition rates rkj(z) with respect to z (Day, 2005; Iwasa

et al., 1991; Lion, 2018c). Second, equation (8) in Barfield et al. (2011) also depends on the

class-specific means and is therefore unclosed (see Appendix C for further discussion).

Figure 2 illustrates the convergence to RV space in a simple two-class model. The dynam-

ics of the morph means in classes A and B (black lines) quickly relax then closely follow the

prediction of equation (18) (gray line), until the eco-evolutionary dynamics stabilise.

[FIGURE 2 SHOULD GO AROUND HERE]

Dynamics of morph variances on RV space

As for the morph mean we can use reproductive values to derive an aggregate equation for

the dynamics of the morph variances. In its most compact form, it takes the form of a Price

equation (Appendix C)

dṼi

dt
= ∑

j
∑

k
vk

i Cov
ϕ

j
i

(
(z − z̃i)

2, rkj(z)
)

uj
i + ṼM,i. (20)

where the covariance is calculated over the distribution ϕ
j
i (z, t). The term ṼM,i = ∑i ck

i Vk
M is a

RV-weighted mutational variance.

The oligomorphic approximation (together with a Gaussian closure at the morph level)

allows us to further expand the covariance (see equation (21) in Appendix C) as

dṼi

dt
= 2

(
Ṽi

)2 [
v⊤

i Fiui + v⊤
i Si (di ◦ ui)

]
+ ṼM,i + O(ε5). (21)

where the notation ◦ denotes the elementwise (Hadamard) product. The first-term between

brackets depends on the matrix

Fi =
1
2

∂2R
∂z2

∣∣∣∣
z=z̃i

It is the class-structured analog of equation (37) in Sasaki and Dieckmann (2011) and gives

the net effect of the curvature of the fitness functions rkj(z) on the dynamics of variance.

The second term between brackets depends on the directional selection matrix Si, and

on the vector di of phenotypic differentiations (z̄j
i − z̃i)/Ṽi. The operation di ◦ ui returns a
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vector with elements uj
i(z̄

j
i − z̃i)/Ṽi (1 ≤ j ≤ K). This second term represents the additional

effect of directional selection on the dynamics of morph variance. Intuitively, these two effects

can be understood from the decomposition of the morph variance into class-specific morph

moments:

Ṽi = ∑
k

ck
i Vk

i + ∑
k

ck
i

[(
z̄k

i

)2
− (z̃i)

2
]

The first term shows that, when the class means are equal, the morph variance Ṽi is the

weighted average of the class-specific morph variances Vk
i . The second term shows that, even

when the class variances Vk
i are zero, substantial differentiation between classes (z̄k

i ̸= z̃i)

can contribute to morph variance. Hence, changes in the mean traits have a direct effect

on the dynamics of the variance, which is proportional to the strength of selection in each

class (captured by the matrix Si) and to the level of phenotypic differentiation in each class,

compared to the mean morph value (captured by the vector di).

Note that the second term between brackets in equation (21) still depends on the class-

specific morph means, z̄j
i . However, as shown in Lion (2018b), the vector of phenotypic differ-

entiation is a fast variable and can be approximated, on the RV space, by a quasi-equilibrium

expression which we can express solely in terms of vi, ui, R(z̄i) and Si, leading to a closed

system at the morph level (Online Appendix F.2; Lion (2018b)). Although the resulting ex-

pression in the general case is not very enlightening, we show in section ”Applications” and

Appendix D that it yields very simple expressions when the model has only two classes.

Putting everything together

The above derivation yields a coupled system of differential equations describing how eco-

logical densities, morph frequencies, morph means and morph variances change over time.

There are three main ways to use these equations, depending on whether the biological ques-

tion of interest focuses on dynamics or statics.
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Eco-evolutionary dynamics: oligomorphic approximation

The oligomorphic approximation allows us to derive an approximation of the full eco-evolutionary

dynamics that takes the form of a fast-slow system with different intrinsic time scales. We

collect these equations here, for ease of reference:

dnk

dt
= ∑

j
∑

i
rkj(z̄j

i) f j
i nj (22a)

d f k
i

dt
= ∑

j

f j

f k

(
rkj(z̄j

i) f j
i − f k

i ∑
ℓ

f j
ℓr

kj(z̄j
ℓ)

)
(22b)

dz̄k
i

dt
= ∑

j

uj
i

uk
i

[
(z̄j

i − z̄k
i )r

kj(z̄j
i) + V j

i
∂rkj

∂z

∣∣∣∣
z=z̄j

i

]
(22c)

dVk
i

dt
= ∑

j

uj
i

uk
i

[
(V j

i − Vk
i + (z̄j

i − z̄k
i )

2)rkj(z̄j
i) + 2(z̄j

i − z̄k
i )V

j
i

∂rkj

∂z

∣∣∣∣
z=z̄j

i

+
1
2

(
3(V j

i )
2 + (z̄j

i − z̄k
i )

2V j
i − V j

i Vk
i

) ∂2rkj

∂z2

∣∣∣∣
z=z̄j

i

]
+ Vk

M (22d)

Here, we have used the Gaussian moment closure and dropped the order terms for simpli-

ficity. This system can be numerically integrated and allows us to track the joint dynamics of

ecological and evolutionary variables. It also provides analytical insights into the observed

dynamics. Thus, equation (22) can be viewed as an extension of classical quantitative genetics

methods to take into account ecological feedbacks, class structure, multimodal distributions

and the dynamics of variance. The accuracy of the approximation will tend to decrease as

within-morph variation or mutation becomes too large.

Eco-evolutionary dynamics: projection on RV space

The projection on RV space can be used to reduce the dimension of our system and derive

the dynamics of the morph means and variances:

dz̃i

dt
= Ṽi v⊤

i Siui (23a)

dṼi

dt
= 2

(
Ṽi

)2 [
v⊤

i Fiui + v⊤
i Si(di ◦ ui)

]
+ ṼM,i (23b)

where di measures the phenotypic differentiation between classes. Both z̃i and Ṽi are slow

variables when the morph variances are small. We can then use a quasi-equilibrium approxi-
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mation, as typically done when dealing with fast-slow systems. In particular, the frequencies

ui and reproductive values vi satisfy the following quasi-equilibrium relationships:

0 = R(z̄i)ui = v⊤
i R(z̄i) (24)

Note that, in these equations, the matrices R, Si and Fi depend on the ecological densities and

morph frequencies (see for instance Examples 2 and 3 below), which can be calculated from

dnk

dt
= ∑

j
∑

i
rkj(z̄i) f j

i nj (25a)

d f k
i

dt
= ∑

j

f j

f k

(
rkj(z̄i) f j

i − f k
i ∑

ℓ

f j
ℓr

kj(z̄ℓ)

)
(25b)

These are simply equations (22a)-(22b) where the class means z̄j
i have been replaced by the

morph means z̄i. As the morph means z̄i change slowly, the fast variables nk and f k
i will

quickly track these changes. In practice, we can either calculate, for a given value of z̄i, the

quasi-equilibrium values of nk and f k
i by setting the right-hand sides of equations (25) to

zero, or we can numerically integrate equations (25), together with equations (23), to obtain

the values of nk and f k
i at any given time.

Eco-evolutionary statics

Although our framework is geared towards dynamics, it is interesting to show how we can use

equations (23) to derive analytical information on the potential eco-evolutionary endpoints

and their stability, and therefore recover results from invasion analyses. We then use a step-

by-step analysis. First, we assume that morph means and variances change so slowly that the

ecological dynamics reach an equilibrium attractor. We then plug this information into the

dynamics of morph means and calculate evolutionary singularities from

v̂⊤
i Ŝiûi = 0

where the ”hat” indicates that all these quantities are calculated on the ecological attractor.

This is basically the same result as we could obtain with a traditional invasion analysis (see

e.g. Priklopil and Lehmann (2020); Rousset (2004); Taylor (1990)), but in a polymorphic res-

ident population. As shown by Sasaki and Dieckmann (2011), we can use the dynamics of
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the means near these singularities to investigate their convergence stability (i.e. whether or

not they attract the trait dynamics). Similarly, we can investigate the evolutionarily stability

of these singularities (i.e. whether selection is disruptive or stabilising) by evaluating the dy-

namics of variance near these singularities. As shown by Sasaki and Dieckmann (2011), the

singularities z∗i are all evolutionarily stable if and only if the morph variances converge to

zero, leading to the conditions

v̂⊤
i F̂iûi + v̂⊤

i Ŝi(d̂i ◦ ûi) < 0

when z̃i = z∗i . The first term was previously obtained using invasion analyses (see e.g. the

first term of equation 34A in Ohtsuki et al. (2020)). The second-term captures how directional

selection in the different classes contributes to disruptive selection, and probably bears some

resemblance with the first term of equation 34B in Ohtsuki et al. (2020), although a precise

comparison of the two results is currently beyond our reach.

Applications

As proof-of-concept examples, we apply our general framework to two-habitat migration-

selection models. We start by giving general dynamical equations for these models, then

explore three different biological scenarios that illustrate various aspects of our framework.

From now on, we deliberately simplify the mathematical expressions by omitting the order

terms and using the more intuitive notations z̄i and Vi to denote the (RV-weighted) morph

means and variances, instead of the tilded versions.

General results for two-habitat migration-selection models

We consider a population inhabiting two habitats, A and B, coupled by migration. We define

mjk as the migration rate from k to j and ρk(z) as the growth rate of individuals in habitat k,
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which is a function of a focal trait z. With our notations, we have

rAA(z) = ρA(z)− mBA ,

rAB(z) = mAB ,

rBA(z) = mBA ,

rBB(z) = ρB(z)− mAB .

Because the migration rates do not depend on the focal trait z, the dynamics of morph means

and variances take the following simple form using the projection on RV space (Appendix

D):

dz̄i

dt
= Vi

[
cA

i ρ′A(z̄i) + cB
i ρ′B(z̄i)

]
(26a)

dVi

dt
= (Vi)

2

[
cA

i ρ′′A(z̄i) + cB
i ρ′′B(z̄i) + 2

(
cA

i cB
i
)3/2

√
mABmBA

(
ρ′B(z̄i)− ρ′A(z̄i)

)2

]
+ cA

i VA
M + cB

i VB
M (26b)

together with the following quasi-equilibrium expressions for the class reproductive values

(Appendix D, Online Appendix F.4)

cB
i = vB

i uB
i =

mAB(uB
i )

2

mBA(uA
i )

2 + mAB(uB
i )

2
= 1 − cA

i . (27)

In practice, the dynamics of the densities and morph frequencies can be obtained from

dnk

dt
= ∑

j
∑

i
rkj(z̄i) f j

i nj (28a)

d f k
i

dt
= ∑

j

f j

f k

(
rkj(z̄i) f j

i − f k
i ∑

ℓ

f j
ℓr

kj(z̄ℓ)

)
(28b)

which are simply equations (25).

Example 1: local adaptation under mutation-selection-migration balance

In our first example, we revisit a classic model of local adaptation and investigate how migra-

tion and selection interplay to favour or hamper the generation of polymorphism in a popu-

lation that can exploit two habitats with different qualities. In contrast with previous studies,

we provide dynamical equations that capture the notion of habitat quality in polymorphic

populations through the concept of morph-specific reproductive values we introduced in the

previous sections.
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We assume that, within each habitat, reproduction depends on a trait z. We further assume

that there is a quadratic cost to fecundity and that each habitat is characterised by a value θk

which minimises the cost and that we call the habitat optimum. We thus write

ρk(z) = b − g(z − θk)
2 − nk

where b is the birth rate, g is the fecundity cost, θk is the optimum in habitat k. The same

fitness functions were used in previous studies (Débarre et al., 2013; Meszéna et al., 1997;

Mirrahimi and Gandon, 2020; Ronce and Kirkpatrick, 2001) but, in contrast with most of these

previous studies, we consider the possibility of asymmetric migration rates (mAB ̸= mBA).

Together with equations (23), these expressions for the vital rates allow us to derive the

following equations for the dynamics of morph means and variances (Online Appendix F.6):

dz̄i

dt
= −2gVi

[
z̄i − cA

i θA − cB
i θB

]
(29)

dVi

dt
= −2gV2

i

[
1 − 4g

m
(cA

i cB
i )

3/2 (θB − θA)
2
]
+ cA

i VA
M + cB

i VB
M (30)

where m =
√

mABmBA is the geometric mean of the dispersal rates, Vk
M are the habitat-

specific mutational variances (Appendix E), and the morph-specific class reproductive values

are given by their quasi-equilibrium expressions (equation (27)). Using these equations, we

investigate three main questions: (1) What are the attractors of the eco-evolutionary dynam-

ics? (2) When does selection lead to a unimodal vs. bimodal equilibrium distribution? and

(3) What is the effect of habitat-specific mutation on the evolutionary outcome? Since a full

analysis of the model would be beyond the reach of this article, we focus on the most salient

features in the main text and briefly consider additional technicalities in Online Appendix

F.6.

Evolutionary attractors

From equation (29), we see that the morph means stabilise when

z̄i = cA
i θA + cB

i θB. (31)

It is important to note that, because of the quasi-equilibrium approximation, the class repro-

ductive values are also functions of z̄i, so that equation (31) is only implicit. Nonetheless, the
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biological implication is that the potential attractors for the dynamics of the morph means

correspond to the reproductive-value-weighted mean of the habitat optima. Hence, the out-

come of selection for a given morph depends on the relative difference in quality between

habitats, measured by cB
i − cA

i . When cB
i > cA

i , the morph mean will be biased towards the

optimum of habitat B, whereas the opposite will be observed for cB
i < cA

i . If both habitats

have similar quality (cA
i = cB

i = 1/2), the morph mean will converge towards (θA + θB)/2. In

the following, we fix θA = 0 = 1 − θB, without loss of generality.

Our analysis allows us to recover the important result that, when the mean migration

rate is sufficiently high, the eco-evolutionary dynamics settle on an unimodal distribution,

while bimodal distributions can be generated if the mean migration rate is below a threshold

mc (figure 3A; see also Débarre et al. (2013); Mirrahimi and Gandon (2020)). Simulations of

the full model, without the oligomorphic approximation, show that both the unimodal and

bimodal endpoints are accurately predicted by the projection on RV space (figure 3A).

At a unimodal distribution, the class reproductive values of the different morphs are

equal (e.g. cB
1 = cB

2 = c if we start with 2 morphs), so there is effectively a single morph in

the population with mean trait value z̄ = c (figure 3C). In contrast, if different morphs have

distinct class reproductive values (e.g. cB
1 ̸= cB

2 ), the eco-evolutionary dynamics converge

towards a bimodal equilibrium distribution, where the morphs have different means (z̄1 = cB
1

for morph 1 and z̄2 = cB
2 for morph 2), and occur with different frequencies in the two

habitats. The trait distributions in each habitat therefore have two peaks, one around z̄1 and

one around z̄2, the heights of the peaks being determined by the morph frequencies f k
i and

the densities nA and nB (figure 3B). In Online Appendix F.6, we show how the positions z̄1

and z̄2 of each morph at equilibrium can be analytically calculated, thereby allowing us to

recover previous results on local adapatation (Débarre et al., 2013; Mirrahimi and Gandon,

2020).

Disruptive selection and the balance in habitat quality

When does the interplay between migration and selection leads to unimodal vs bimodal

equilibrium trait distributions? To answer this question, we turn to the dynamics of morph
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variances (equation (30)), which provides a useful interpretation of evolutionarily stability in

terms of reproductive values. Indeed, the product cA
i cB

i is a measure of the balance in habitat

quality: it reaches its maximal value, 1/4, when the habitats have equal qualities (cA
i = cB

i =

1/2) and is zero when cB
i = 0 or cB

i = 1. Selection on morph i is therefore stabilising if the

balance in habitat quality is below a threshold determined by the ratio between migration (m)

and selection (g):

4 cA
i cB

i <

(
2m
g

)2/3

(32)

Note that, for m > g/2, this is always satisfied, but with a lower mean migration rate, stability

depends on the magnitude of habitat differentiation. Hence, for a fixed m < g/2, disruptive

selection is possible and may lead to the splitting of an initially unimodal distribution into

two peaks, provided the habitat qualities at the monomorphic evolutonary attractor are suf-

ficiently similar (cA
i cB

i large enough). Calculating cA
i cB

i at the dimorphic attractor then shows

that it is evolutionarily stable when m < g/2 and unstable otherwise. However, we note for

completeness that there is a critical value mc < g/2 above which the bimodal equilibrium

loses its demographic stability and one of the two morphs goes extinct (figure F.5A). Hence,

for m > mc, the only possible evolutionary outcome is a unimodal distribution. For m < mc,

multistability is possible, where the system can converge towards unimodal or bimodal dis-

tributions depending on initial conditions (Online Appendix F.6; Débarre et al. (2013)).

[FIGURE 3 SHOULD GO AROUND HERE]

Mutation-selection-migration balance

With mutation and stabilising selection, the morph variances can settle at a mutation-selection

equilibrium. From equation (30), the equilibrium variance is then given by

V∗
i =

√√√√ cA
i VA

M + cB
i VB

M

2g
[
1 − 4g

m (cA
i cB

i )
3/2
] (33)

The numerator is the effect of mutation on variance, which takes the form of a reproductive-

value-weighted average mutational variance, while the denominator gives the effect of se-

lection. When only one habitat is present (e.g. cA
i = 1 and cB

i = 0), the morph variance

29



at equilibrium is
√

VA
M/2g, which is equation (17) in Débarre et al. (2013). For the bimodal

attractor, both morphs have the same equilibrium variance if the mutational variance is the

same in both habitats:

V∗
1 = V∗

2 =

√√√√ VM

2g
(

1 − 4m2

g2

) (34)

On the other hand, if VA
M/VB

M ̸= 1, each morph has a different equilibrium variance, which

can be analytically calculated (Online Appendix F.6). Figure 4A shows that this accurately

predicts the equilibrium values of morph variances under mutation-selection balance.

As mutation increases, the accurary of the oligomorphic approximation is expected to

decrease, as high mutation will tend to generate broader morph distributions. Nonetheless,

figure 4B shows that our analytical prediction of the differentiation D = z̄B − z̄A remains

good even for relatively large values of the mutation variance (see Online Appendix F.6 for

a more detailed discussion). The approximation breaks down roughly when the mutation

variance is of the same order as the morph variances.

[FIGURE 4 SHOULD GO AROUND HERE]

Example 2: evolution of intra-specific competition

In our second example, we assume that, within each habitat, competition between individ-

uals depends on the competitive ability z. As previously, we further assume that there is a

quadratic cost to competitiveness and that each habitat is characterised by a value θk which

minimises the cost. We thus write

ρk(z) = b − g(z − θk)
2 − nk

∫
a(z − y)ϕk(y)dy

where the competition kernel a(z − y) represents the effect of competition by an individual

with trait y on an individual with trait z. Importantly, the fitness functions ρk now depend

on the distributions ϕk(y, t), in contrast to our Example 1. Following Sasaki and Dieckmann

(2011), we decompose this distribution into a sum of the distributions ϕℓ(y, t) and, for each

of these distributions, we use a Taylor expansion of the competition kernel near y = z̄k
ℓ to
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express the competition experienced by a focal individual in terms of the means of all the

other morphs. We obtain (Online Appendix F.7)

ρA(z) = b − g(z − θA)
2 − nA ∑

ℓ

f A
ℓ a(z − z̄A

ℓ ) + O(ε2)

and a similar expression for the growth rate in habitat B. We can use these expressions

to calculate the quantities rkj(z̄i), and the partial derivatives evaluated at z = z̄i, and plug

these expressions in equation (22) to obtain the final approximation for this model (Online

Appendix F.7).

This example is a perfect illustration of how all the equations of system (22) are coupled.

In particular we have:

∂rAA

∂z

∣∣∣∣
z=z̄i

= −2g(z̄i − θA)− nA ∑
ℓ

f A
ℓ a′(z̄A

i − z̄A
ℓ )

which shows that the competition experienced by morph i depends on the other morphs

through their frequencies f A
ℓ and mean trait values z̄A

ℓ . Hence, the dynamics of the mean of

morph i depends on the frequencies and mean traits of the other morphs.

A full analysis of the model is beyond the scope of this paper, but we show in figure

5 the dynamics for a specific choice of parameters. Figure 5C shows that, starting from an

effectively monomorphic population (where the two morphs have approximately the same

mean values), disruptive selection leads to the splitting of the population into a bimodal dis-

tribution after t ≈ 1000. Disruptive selection is indicated by the explosion of morph variances

at the same time (figure 5D). The population then stabilises around a dimorphic equlibrium

distribution with means z̄∗1 and z̄∗2 . Stabilising selection is indicated by the decrease in vari-

ance after branching. Figure 5B further shows that the morphs have different frequencies in

each habitat (i.e. morph 1 is slightly more abundant in habitat B while morph 2 is slightly

more abundant in habitat A), although they have similar values for the means and variances

in both habitats.

This latter observation suggests that it may be interesting to find a simplified description

of the population at the morph level, by aggregating habitat-specific morph moments into

a single measure. This is precisely the goal of the RV projection, and we show in Online
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Appendix F.7 that we obtain the following expression for the dynamics of morph means:

dz̄i

dt
= Vi

[
−2g(z̄i − (cA

i θA + cB
i θB))− ∑

j
eja′(z̄j − z̄i)

]
(35)

where ej measures the average net fitness effect on individuals of morph j due to competition

with the other morph. For morph 1, we have e1 = nA
2 cA

1 + nB
2 cB

1 , and the expression for e2 is

obtained by swapping 1 and 2 subscripts. This expression shows that the class reproductive

values give the proper weights to measure the intensity of competition in each habitat. Figure

5 shows that the RV projection (dotted lines) accurately predicts both the trajectories end

endpoints of the densities, morph frequencies, morph means and morph variances.

Equation (35) tells us that, starting from a quasi-monomorphic situation (i.e. z̄1 ≈ z̄2,

so that a′(z̄j − z̄i) ≈ 0), the population will converge towards the RV-weighted mean of the

habitat optima, z̄i = cA
i θA + cB

i θB. However, at this point selection becomes disruptive and a

bimodal equilibrium distribution is eventually reached, with peaks located at the equilibrium

morph means. From equation (35), the morph means satisfy:

z̄∗1 = cA
1 θA + cB

1 θB − e1

2g
a′(z̄∗1 − z̄∗2)

z̄∗2 = cA
2 θA + cB

2 θB +
e2

2g
a′(z̄∗1 − z̄∗2)

This provides an intuitive interpretation of the position of the two peaks of the equilibrium

distribution as the deviation from the morph-specific mean habitat optimum due to competi-

tion with the other morph. In the single-class case, we recover the results of Kisdi (1999) (see

e.g. her equation (10)).

[FIGURE 5 SHOULD GO AROUND HERE]

Example 3: transient out-of-equilibrium evolution in a resource-consumer

model

In our final example, we show how our approach can be used to analyse eco-evolutionary

dynamics across different time scales. We consider a resource-consumer model where the
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resource is produced at different rates in the two habitats, so that Sk(t) is the density of

resource in habitat k at time t. We focus on the evolution of a consumer’s exploitation rate, z,

and assume a type-II functional response such that

ρk(z) = b(z)
Sk

1 + τSk − d(z)− nk (36)

where b(z) is the fecundity rate, d(z) is the mortality rate, and τ depends on the handling

time. The dynamics of the resources SA and SB are given in Online Appendix F.8. In our

thought experiment, we introduce the same low density of consumers in each habitat, but

the genetic composition of each subpopulation is different: the initial distribution in each

habitat is bimodal, with two peaks representing more prudent vs more rapacious consumers,

but habitat A is predominantly seeded with more prudent consumers, while habitat B is

predominantly seeded with more rapacious consumers (figure 6A). Hence, the mean value of

the trait in habitat A is initially lower than in habitat B.

Our aim is to track how the habitat-specific means z̄A and z̄B change over time, much like

a field quantitative geneticist would measure time series for phenotypes at different locations.

In terms of the morph frequencies and morph means, we have z̄k = ∑i f k
i z̄k

i and, together with

our projection on RV space, this allows us to derive the following equation (Online Appendix

F.8)

dz̄A

dt
= (z̄1 − z̄2)

[
f A
1 (1 − f A

1 )∆ρA +
f B

f A mAB( f B
1 − f A

1 )

]
+ ∑

i
f A
i Vi

[
cA

i ρ′A(z̄i) + cB
i ρ′B(z̄i)

]
(37)

where ∆ρA = ρA(z̄1) − ρA(z̄2) is the average difference in growth rates between the two

morphs.

Equation (37) is particularly enlightening about how the different time scales of eco-

evolutionary dynamics interplay. The first line of equation (37) represents the contribution

of the dynamics of frequencies to the change in the habitat-specific mean (i.e. what happens

when the heights of the peaks change), while the second line represents the contribution of

the change in morph means (i.e. when the position of the peaks change). When the distance

between the two morphs z̄1 − z̄2 is large compared to the within-morph variances Vi, the
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dynamics of the mean trait in habitat A is dominated by the change in frequencies. The first

term between brackets is reminiscent of classical population genetics equations and tells us

that the dynamics of the mean trait in habitat A depends on the difference in growth rates

between the two morphs, scaled by the variance f A
1 (1− f A

1 ). The second term between brack-

ets captures the effect of migration from B to A and reveals that z̄A will tend to increase due

to migration if the morph with the larger trait value is more abundant in habitat B. Thus,

the first line in equation (37) captures the interplay between selection and migration typical

of classical population genetics (or two-species ecological) models, but in contrast with these

approaches it does not assume that there is no standing variation within a morph.

On the other hand, when the morph means are close (z̄2 − z̄1 is small, so that the popula-

tion can be thought of as quasi-monomorphic), the dynamics of the habitat mean is dominated

by the change in morph means, which is described by the second line of equation (37). The

term between brackets is now reminiscent of classical expressions for the selection gradient in

class-structured populations, and the contribution of each morph now depends on the slopes

of the morph’s growth rates in each habitat.

Hence, if morph 1 has a higher growth rate but a lower slope than morph 2, it can be

transiently selected in our model. In figure 6, we show that, starting with an asymmetric

bimodal distribution at time t = 0 (figure 6A), the model exhibits an increase in resource

abundance, due to resource production, while the consumer densities are still low. Note

that the model assumes that resource production is higher in habitat B. During that initial

phase, the mean trait increases in habitat A and decreases in habitat B. In this phase, the

dynamics of z̄A is dominated by the first line in equation (37). Once the peak in resource

abundance is reached, resource consumption brings the densities of consumers up, and the

resource abundance down to habitat-specific equilibrium values. As the resource abundance

decreases, the selective advantage of the more prudent morph increases, and the rapacious

morph is eventually competitively excluded in both habitats, as shown by the decrease in

habitat variances. At this point, the term between brackets in the first line of equation (37)

becomes zero, and the dynamics of z̄A are then entirely driven by the second line. The
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population is now quasi-monomorphic and we have

dz̄A

dt
= V1

[
cA

1 ρ′A(z̄i) + cB
1 ρ′B(z̄i)

]
(38)

so that the mean trait increases in the direction of the slopes of the growth rates, weighted by

the class reproductive values in each habitat. In our simulations, we assume d(z) = 1+ z and

b(z) = b0z/(1 + z), which leads to the following relationship for the equilibrium value:

z̄A
eq =

√
b0

(
cA

1
SA

1 + τSA + cB
1

SB

1 + τSB

)
− 1 (39)

This long-term equilibrium value is indicated by the gray dotted lines in figures 6B and 6C,

and we see that the slow increase of the mean trait towards this value unfolds on a much

longer time scale than the fast ouf-of-equilibrum dynamics. Note that, in figure 6, the results

of simulations of the full model are also given (dots), showing that our approximation very

accurately captures the short- and long-term dynamics of the ecological variables and of the

habitat-specific moments.

Figure 6 assumes that the initial standing variation in the population is large. This cor-

responds to what is called strong selection in invasion analyses (i.e. the two morphs have

different means). It is interesting to compare the results with the dynamics predicted when

the standing variation in the population is small, that is when the morph means are initially

close (e.g. weak selection). In this case, figure F.8 shows that, following a negligible tran-

sient increase, the mean trait in each habitat slowly decreases until the equilibrium value is

reached. This is easily understood from equation (37), because when z̄1 − z̄2 is initially small,

only the slow dynamics captured by the second line drive the dynamics of the habitat mean.

Although this rapid analysis of a toy model is by no means an extensive exploration

of its behaviour, it illustrates the value of our approach when analysing eco-evolutionary

dynamics across different time scales. In particular, equation (37) bridges the gap between

fast evolutionary dynamics in non-equilibrium population (typically analysed in ecological

and quantitative genetics models) and slow evolutionary dynamics in populations that have

reached an ecological attractor (typically analysed using adaptive dynamics).

[FIGURE 6 SHOULD GO AROUND HERE]
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Discussion

We have developed a novel theoretical framework to model the eco-evolutionary dynamics of

polymorphic, class-structured populations. Our approach leads to dynamical equations that

allow us to bridge the gap between quantitative genetics approaches, which are typically in-

terested in short-term transient dynamics under substantial standing variation, and adaptive

dynamics approaches, which focus on long-term eco-evolutionary statics under mutation-

limited evolution. Our analysis makes two key contributions. First, we extend the recently

developed oligomorphic approximation (Sasaki and Dieckmann, 2011) to class-structured

populations. Since class structure is a major feature of natural biological populations, this

allows the method to be applied to a broad range of ecological scenarios, taking into ac-

count individual differences in state including age, spatial location, infection or physiological

status, and species. Second, we combine this approximation with recent theory on reproduc-

tive values to obtain a lower-dimensional approximation of the eco-evolutionary dynamics of

multi-morph structured populations. The combination of these two approximations allows

us to obtain compact analytical expressions for the dynamics of multimodal trait distribu-

tions in structured populations under density- and frequency-dependent selection. These

analytical results are biologically insightful as they highlight how the quality and quantity of

individuals in different classes affect the eco-evolutionary dynamics.

At a general level, our theoretical framework lies at the intersection of population genetics,

quantitative genetics and adaptive dynamics. First, as in population genetics, it predicts how

the frequencies of interacting morphs change over time, but explictly takes into account eco-

evolutionary feedbacks. Second, we also describe the dynamics of the mean and variance of

the trait distribution of each morph. This is reminiscent of moment methods typically used

in quantitative genetics (Barton and Turelli, 1987, 1991; Turelli and Barton, 1990), but our

approach effectively extends these tools to multimodal distributions, frequency-dependent

selection, and a broad range of ecological scenarios. Third, while our result for the dynamics

of the mean takes the form of Lande’s univariate theorem (Barfield et al., 2011; Lande, 1976,

1979, 1982), we also track the dynamics of genetic variance and describe how initially uni-
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modal distributions can split into different modes due to frequency-dependent selection. This

effectively bridges the gap between quantitative genetics and adaptative dynamics to provide

a more complete understanding of the evolution of quantitative traits.

Our approach broadens the scope of classic quantitative genetics theory to examine the

dynamics of multimode distributions and a wider range of ecological feedbacks. Classical

quantitative genetics methods are typically restricted to unimodal character distributions.

However multimodal distributions are a very common outcome when frequency dependence

causes disruptive selection, as often occurs when ecological feedbacks are taken into account

in evolutionary models. The possibility to handle disruptive selection has been a landmark

of adaptive dynamics, but it relies on the assumption that evolution is mutation-limited, so

that the only source of variation in the population comes from rare mutations. Our approach

relaxes these assumptions and allows us to describe the joint effect of mutation and sub-

stantial standing variation on the eco-evolutionary dynamics. Although adaptive dynamics

provides tools to study evolution in polymorphic resident populations (e.g. after branching,

Durinx et al. (2008); Geritz et al. (1998); Kisdi (1999)), the resulting analysis is often diffi-

cult and restricted to potential evolutionary endpoints. In contrast, our dynamical approach

makes it possible to track the joint dynamics of ecological densities and of multimodal trait

distributions.

While these technical advances were already present in Sasaki and Dieckmann (2011)’s

original paper, our extension to class structure makes our analysis directly applicable to a

broad range of biological scenarios where individuals differ because of non-genetic factors

such as age, physiological status, or spatial location. A drawback of this increased realism is

that it inflates the number of ecological and genetic variables we need to track. We therefore

apply recent theory on reproductive values (Lion, 2018a,b; Priklopil and Lehmann, 2020) to

simplify the oligomorphic analysis and obtain a compact description of how the morph-level

trait distributions change over time when there are demographic transitions between classes.

The key idea is to define a weighted trait distribution that gives us a way of examining how

selection acts on a particular morph across all the classes (Fisher, 1930; Frank, 1998; Lehmann

and Rousset, 2014; Lion, 2018a; Rousset, 2004; Taylor and Frank, 1996). For the dynamics of
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the mean trait of a morph, the result takes the form of the structured extension of Lande’s

theorem (see also Barfield et al. (2011)), but we also provide a new description of the dy-

namics of morph variances. Application of the method to the simplified two-class case gives

insight into how stabilizing and disruptive selection are impacted by class frequencies and

reproductive values and shows when directional selection will impact disruptive selection.

As such we provide a very general tractable framework for a more complete eco-evolutionary

analysis of class-structured models.

Reproductive value is an important concept in evolutionary ecology, which is ubiquituous

whenever one has to deal with structured populations and provides a biologically intuitive

measure of quality (Fisher, 1930; Gardner, 2015; Grafen, 2006; Lehmann and Rousset, 2014;

Lion, 2018a; Rousset, 1999, 2004). As such, a limitation of previous analyses of two-habitat

migation-selection models was that they did not make a clear connection between the pre-

dictions and the concept of reproductive value. Our Example 1 thus provides a conceptually

useful complement to the analyses of Débarre et al. (2013); Meszéna et al. (1997); Mirrahimi

and Gandon (2020); Ronce and Kirkpatrick (2001) as it provides clear interpretations of direc-

tional and disruptive selection in terms of the reproductive values of the two habitats. We also

show that our reproductive-value weighted approximation accurately predicts the numerical

simulations of the full system, with or without mutation-selection balance. In addition, we

show that the condition for disruptive selection takes a very simple form and can be summed

up through a measure of habitat differentiation that depends on the class reproductive values.

Nonetheless, it would be particularly interesting to couple our approach with the Hamilton-

Jacobi framework introduced by Mirrahimi and Gandon (2020), which accurately predicts the

equilibrium trait distribution even when the mutation rate is large but does not track the

dynamics of the distribution over time.

An other important implication of our results is that they allow us to analyse the eco-

evolutionary dynamics across different time scales. As such, our approach is very relevant to

the current revival of interest on the time scales of ecological and evolutionary processes, as

it can be used to examine the role of ‘fast evolution’ when this is fueled by a large standing

variation at the population level. In our equations, this corresponds to morphs with very
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different trait means. As shown in our Example 3, our analysis allows us to shed light on the

interplay between fast and slow eco-evolutionary processes, and to examine the evolutionary

consequences of non-equilibrium dynamics. This has broad implications, as rapid or short-

term evolution is a crucial process in conservation biology or epidemiology. For instance, our

resource-consumer example predicts transient selection for increased resource exploitation,

which is similar to a classic prediction that virulent pathogen strains should be favoured

at the start of an epidemic and more prudent strains be selected for at endemic equilibrium

(Berngruber et al., 2013; Day and Gandon, 2007; Day and Proulx, 2004; Lenski and May, 1994).

Hence, our approach could be used to generate predictions for the evolutionary consequences

of non-equilibrium processes such as disease seasonality (Altizer et al., 2006; Ferris and Best,

2018; Lion and Gandon, 2021), or repeated epidemics driven by antigenic escape (Sasaki et al.,

2021). More generally, extensions of our approach could be used to better understand how

environmental fluctuations affect disruptive selection and polymorphism, as this represents

a fundamental but currently understudied research area (but see Svardal et al. (2015) for an

adaptive dynamics treatment).

Our formalism has strong links with the current interest in clarifying the connection be-

tween adaptive dynamics and quantitative genetics models (Abrams, 2001; Day, 2005; Lion,

2018c) and analysing eco-evolutionary dynamics at different time scales (see e.g. Bassar et al.

(2021)). This has led to various theoretical developments that employ very similar ideas to

those we use here, and focus on fundamental ecological questions such as transient dynamics

(Day and Proulx, 2004), community stability (Barabás and D’Andrea, 2016), multivariate traits

(Mullon and Lehmann, 2019), demographic stochasticity (Débarre and Otto, 2016) or periodic

environments (Lion and Gandon, 2021). Compared to these other works, a key advantage of

the morph decomposition we employ is that it makes it easier to consider non-Gaussian dis-

tributions at the population level, by approximating the population-level moments in terms of

morph moments, but it would be particularly interesting to couple our approach with these

other technical frameworks.

At a biological level, we expect our approach will allow us to deepen our understanding of

the processes that generate and maintain diversity in traits. Although the number of morphs
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can be arbitrarily chosen, it makes sense to use biological principles to guide this choice. For

instance, in our two-habitat model, we typicaly expect that at most 2 different morphs will

coexist due to the competitive exclusion principle. In practice, a scenario where the number

of morphs is unsufficient can be quickly identified in numerical simulations as it corresponds

to a situation where at least one morph variance diverges to infinity. At a more conceptual

level, the number of morphs in our approach is linked to the dimension of the environmental

feedback, which sets an upper limit to diversity (Lion and Metz, 2018; Meszéna et al., 2006;

Metz et al., 2008).

We illustrate the application of the approach using two-habitat migration-selection mod-

els, but this can be broadened to examine fundamental processes such as more general forms

of stage structure, species interactions, and speciation. For instance, the approach can be used

to determine the time required until a population diversifies under frequency-dependent dis-

ruptive selection, which, for asexually reproducing species, is the waiting time until adaptive

speciation. Additional insights will come from both ecological extensions – such as assortative

mating – and in particular genetic extension – such as multi-locus inheritance, recombination,

diploidy, and random genetic drift. In addition, while we have focused on the evolution of

single traits, an important extension of our work would consider multi-variate traits (see e.g.

Mullon and Lehmann (2019) for a quantitative genetics treatment without class structure, and

Sasaki et al. (2021) for a two-trait extension of the oligomorphic approximation). In particular,

plastic traits (i.e. traits that are not expressed in all classes) could be relatively easily taken

into account in a multi-variate extension of the framework we present here.

To sum up, we think our analytical approach will allow for a better understanding of the

role of ecological feedbacks, frequency- and density-dependent selection in nature, and has

the potential to facilitate a tighter integration between eco-evolutionary theory and empirical

data. At a technical level, our approach moves the field on from either focusing on unimodal

character distributions, often taken in models of quantitative genetics theory, or on negligible

within-morph variance, which is often assumed in models of adaptive dynamics. At a biolog-

ical level, it has considerable potential to advance our understanding of the ecological factors

driving the evolution and maintenance of diversity, which remains an important empirical
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and theoretical challenge in multiple fields and contexts.
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A Oligomorphic approximation

From equation (9) in the main text, it is straightforward to derive the dynamics of the within-

class trait distributions ϕk(z, t) = nk(z, t)/nk(t). We obtain, dropping the dependency on time

for simplicity
dϕk(z)

dt
= ∑

j

f j

f k

[
rkj(z)ϕj(z)− ϕk(z)r̄kj

]
(40)

To derive the oligomorphic approximatin for our class-structured population model, we pro-

ceed as in equation (6) of Sasaki and Dieckmann (2011) and define the dynamics of the

frequencies f k
i so that individuals with phenotype z have the same per-capita growth rate in

a given class, independently of which morph they belong to. This translates into

1
f k
i ϕk

i (z)
d( f k

i ϕk
i (z))

dt
=

1
ϕk(z)

dϕk(z)
dt

(41)
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which can be rewritten as
d( f k

i ϕk
i (z))

dt
=

f k
i ϕk

i (z)
ϕk(z)

dϕk(z)
dt

(42)

Integrating over z and using equation (40) yields

d f k
i

dt
= f k

i ∑
j

f j

f k

∫
rkj(z)

ϕj(z)
ϕk(z)

ϕk
i (z)dz − f k

i ∑
j

r̄kj f j

f k

To simplify this equation, we use the following equality, which simply means that if indi-

viduals with phenotype z are, say, twice more abundant in class j than class k, this ratio is

preserved irrespective of the morph to which they belong:

ϕj(z)
ϕk(z)

=
f j
i ϕ

j
i (z)

f k
i ϕk

i (z)
(43)

In Online Appendix F.1, we show that (43) naturally follows from assumption (41). Plugging

equation (43) ino the dynamics of frequencies above then leads to the first part of equation

(11):
d f k

i
dt

= ∑
j

f j

f k

(
f j
i r̄kj

i − f k
i r̄kj
)

(44)

With only one class, we recover equation (7) in Sasaki and Dieckmann (2011). The second

part of equation (11) in the main text can then be obtained by plugging the approximations

(6) and (7) into equation (44).

Similarly, to calculate the dynamics of ϕk
i (z), we rearrange equation (41) as

dϕk
i (z)
dt

=
ϕk

i (z)
ϕk(z)

dϕk(z)
dt

− ϕk
i (z)

(
1
f k
i

d f k
i

dt

)
Using equations (40), (43) and (44) then yields after some rearrangements:

dϕk
i (z)
dt

= ∑
j

f j
i f j

f k
i f k

[
ϕ

j
i (z)r

kj(z)− ϕk
i (z)r̄

kj
i

]
(45)

With a single class, we recover equation (8) in Sasaki and Dieckmann (2011).

B Dynamics of class-specific morph moments

Equation (45) can be multiplied by z or (z − z̄k
i )

2 and integrated to obtain the dynamics of the

morph means and variances respectively. For the morph means, we obtain:

dz̄k
i

dt
= ∑

j

f j
i f j

f k
i f k

Cov
ϕ

j
i

(
z, rkj(z)

)
+ ∑

j

f j
i f j

f k
i f k

r̄kj
i (z̄

j
i − z̄k

i ) (46)
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where the covariances are taken over the distributions ϕ
j
i (z, t) and take the form

Cov
ϕ

j
i

(
z, rkj(z)

)
=
∫
(z − z̄j

i)(r
kj(z)− r̄kj

i )ϕ
j
i (z)dz.

Equation (46) is a morph-specific version of equation (3) in Lion (2018a). Using the Taylor

expansion (6) in the main text, we have

Cov
ϕ

j
i

(
z, rkj(z)

)
=
∫

ξ
j
i

(
ξ

j
i

∂rkj

∂z

∣∣∣∣
z=z̄j

i

+
1
2

(
(ξ

j
i)

2 − V j
i

) ∂2rkj

∂z2

∣∣∣∣
z=z̄j

i

)
ϕ

j
i (z)dz

= V j
i

∂rkj

∂z

∣∣∣∣
z=z̄j

i

+
1
2

T j
i

∂2rkj

∂z2

∣∣∣∣
z=z̄j

i

+ O(ε4) (47)

where T j
i is the third central moment of ϕ

j
i (z), which we neglect in the following (assuming

ϕ
j
i is symmetric). Substituting equations (47) and (7) into equation (46), we then obtain:

dz̄k
i

dt
= ∑

j

f j
i f j

f k
i f k

[
(z̄j

i − z̄k
i )r

kj(z̄j
i) + V j

i
∂rkj

∂z

∣∣∣∣
z=z̄j

i

+
1
2
(z̄j

i − z̄k
i )V

j
i

∂2rkj

∂z2

∣∣∣∣
z=z̄j

i

]
+ O(ε4)

Keeping only terms up to second order in ε, we obtain equation (14) in the main text.

For the morph variances, defined as Vk
i =

∫
(ξk

i )
2ϕk

i (z)dz, we have, using equations (45),

(6) and (7),

dVk
i

dt
=∑

j

f j
i f j

f k
i f k

[∫
(ξk

i )
2

(
rkj(z̄j

i) + ξ
j
i

∂rkj

∂z

∣∣∣∣
z=z̄j

i

+
1
2
(ξ

j
i)

2 ∂2rkj

∂z2

∣∣∣∣
z=z̄j

i

)
ϕ

j
i (z)dz

−Vk
i

(
rkj(z̄j

i) +
1
2

V j
i

∂2rkj

∂z2

∣∣∣∣
z=z̄j

i

)]
+ O(ε5).

We can further simplify with the following relationships:∫
(ξk

i )
2ϕ

j
i (z)dz =

∫
(ξ

j
i + z̄j

i − z̄k
i )

2ϕ
j
i (z)dz = V j

i + (z̄j
i − z̄k

i )
2

∫
(ξk

i )
2ξ

j
i ϕ

j
i (z)dz =

∫
(ξ3

i + 2(z̄j
i − z̄k

i )(ξ
j
i)

2 + (z̄j
i − z̄k

i )
2ξ

j
i)ϕ

j
i (z)dz = T j

i + 2(z̄j
i − z̄k

i )V
j

i∫
(ξk

i )
2(ξ

j
i)

2ϕ
j
i (z)dz =

∫
(ξ4

i + 2(z̄j
i − z̄k

i )(ξ
j
i)

3 + (z̄j
i − z̄k

i )
2(ξ

j
i)

2)ϕ
j
i (z)dz = Qj

i + 2(z̄j
i − z̄k

i )T
j
i + (z̄j

i − z̄k
i )

2V j
i

This yields equation (15) in the main text, again using the assumption that the morph distri-

bution ϕ
j
i is symmetric so that T j

i = 0.

C Dynamics of population-level morph moments

The derivations in appendix B yield dynamical equations for the class-specific morph mo-

ments. Depending on the question of interest it may be useful to focus on the population-level

morph moments, averaged over all classes. This can be done in two ways.
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Unweighted morph distribution

A natural way is to introduce the following average distribution, which corresponds to the

unweighted arithmetic mean of the class-specific distributions (Lion, 2018a):

ϕi(z) = ∑
k

ϕk
i (z)u

k
i

where uk
i = f k

i f k/ fi and fi = ∑k f k
i f k is the total frequency of morph i in the population.

Integrating over z leads to a relationship between morph means: z̄i = ∑k z̄k
i uk

i , from which

the following equation can be derived

dz̄i

dt
= ∑

j
uj

iCov
ϕ

j
i

(
z, ∑

k
rkj(z)

)
+ ∑

j
uj

i

(
∑

k
r̄kj

i

)
(z̄j

i − z̄i) (48)

This is the morph-specific equivalent of equation (2) in Lion (2018a), and an oligomorphic

approximation of equation (48) can be derived using approximation (6) and (7). A similar

equation can be derived for the dynamics of the morph variance, Vi =
∫
(z − z̄i)

2ϕi(z)dz.

RV-weighted morph distribution

In equation (48), the dynamics of z̄i depends on the moments of the class-specific distributions

ϕ
j
i (z). Our goal here is to find a meaningul way to summarise the dynamics using only the

moments of the population-level morph distribution ϕi(z).

There are two equivalent ways to do this. The first approach applies the method of Lion

(2018b) at the morph level, and uses a quasi-equilibrium approximation of the phenotypic

differentiations z̄k
i − z̄i to simplify equation (48). This is summarised in Online Appendix

F.2. The second, simpler approach is to calculate the moments of the reproductive-value-

weighted distribution, as in Lion (2018a), but applied at the morph level. The time-dependent

reproductive values satisfy equation (13), and the RV-weighted morph distribution is ϕ̃i(z) =

∑k ck
i ϕk

i (z) where ck
i = vk

i uk
i . Following Lion (2018a), we obtain the following Price equation:

dz̃i

dt
= ∑

j
∑

k
vk

i Cov
ϕ

j
i

(
z, rkj(z)

)
uj

i (49)

Equation (49) is valid irrespective of the shape of the morph distribution. Comparing equa-

tions (48) and (49) shows that, when there is no covariance between the trait and the transition
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rates (i.e. when the covariance terms are zero), the RV-weighted avearge z̃i does not change

while the unweighted average z̄i can still change due to between-class transitions. Hence,

RV-weighting allows us to capture the notion that there should be no evolutionary change in

a neutral model. Moreover, the dynamics of z̃i are always O(ε2), so that z̃i is a slow variable.

If the morph distribution is sufficiently narrow, we can approximate the covariance terms

in equations (48) and (49) using equation (47). Both the QE and RV approaches then lead to

the following equation
dz̃i

dt
= ∑

j
V j

i ∑
k

vk
i

∂rkj

∂z

∣∣∣∣
z=z̄j

i

uj
i + O(ε4). (50)

Hence, for narrow morph distributions, the morph mean and the RV-weighted morph mean

have the same dynamics on the slow manifold characterised by Rn = Rf = Riui = v⊤
i Ri = 0.

Equation (50) is a frequency-dependent and polymorphic version of (8) in Barfield et al.

(2011). Importantly, the RHS of equation (50) still depends on the class-specific moments z̄j
i

and V j
i . However, after relaxation on the RV space, the quantities z̄k

i − z̃i and Vk
i − Ṽi will be

O(ε2) and O(ε4) respectively under the oligomorphic approximation (see Online Appendix

F.3). Hence, to leading order, we can replace the class-specific morph means and variances

by the corresponding moments of the RV-weighted distribution. This substitution thus intro-

duces a small error, but it will be quantitatively acceptable as long as the morph variances

remain small. This will notably be the case near evolutionary endpoints under stabilising

selection, but our simulations show that the approximation is also accurate away from evo-

lutionarily singularities. With this last approximation, we obtain equation (29) in the main

text.

We can also calculate the dynamics of the morph variances, either using a quasi-equilibrium

approach (as shown in Online Appendix F.6 for a two-class model), or by calculating the dy-

namics of the RV-weighted morph variances Ṽi. This latter approach yields the folowing Price

equation
dṼi

dt
= ∑

j
∑

k
vk

i Cov
ϕ

j
i

(
(z − z̃i)

2, rkj(z)
)

uj
i . (51)

The quadratic term in the covariance can be rewritten using the morph mean z̄j
i as follows:

(z − z̃i)
2 = (z − z̄j

i)
2 + 2(z − z̄j

i)(z̄
j
i − z̃i) + (z̄j

i − z̃i)
2. We can use this decomposition to rewrite
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equation (51) as

dṼi

dt
= ∑

j
∑

k
vk

i Cov
ϕ

j
i

(
(z − z̄j

i)
2, rkj(z)

)
uj

i + 2 ∑
j

∑
k

vk
i Cov

ϕ
j
i

(
(z − z̄j

i), rkj(z)
)
(z̄j

i − z̃i)u
j
i . (52)

Using the Taylor expansion (6) in the main text to rewrite the covariance terms, we obtain

dṼi

dt
= ∑

j
∑

k
vk

i
Qj

i − (V j
i )

2

2
∂2rkj

∂z2

∣∣∣∣
z=z̄j

i

uj
i + 2 ∑

j
V j

i ∑
k

vk
i

∂rkj

∂z

∣∣∣∣
z=z̄j

i

(z̄j
i − z̃i)u

j
i + O(ε5) (53)

With the Gaussian closure approximation Qj
i = 3(V j

i )
2 and again using z̄k

i − z̃i = O(ε2) and

Vk
i − Ṽi = O(ε4), we finally obtain

dṼi

dt
= 2V2

i

[
1
2 ∑

j
∑

k
vk

i
∂2rkj

∂z2

∣∣∣∣
z=z̃i

uj
i + ∑

j
∑

k
vk

i
∂rkj

∂z

∣∣∣∣
z=z̃i

(z̄j
i − z̃i)u

j
i

]
+ O(ε5) (54)

which can be rewritten in matrix form as equation (21) in the main text.

D Two-class models

Two-class models represent a fundamental tool to analyse structured populations. We there-

fore develop here how our oligomorphic approximation, together with the RV projection, lead

to simple dynamical equations in this case.

Consider a population structured in two classes A and B. As shown in the general case,

the dynamics of morph means and variances are given by the following system of equations:

dz̄i

dt
= Vi v⊤

i Siui (55a)

dVi

dt
= 2V2

i

[
v⊤

i Fiui + v⊤
i Si(di ◦ ui)

]
(55b)

When there are only two class, it is straightforward to show that

dz̄i

dt
= Vi

[
vA

i
∂rAA

∂z

∣∣∣∣
z̄i

uA
i + vB

i
∂rBA

∂z

∣∣∣∣
z̄i

uA
i + vA

i
∂rAB

∂z

∣∣∣∣
z̄i

uB
i + vB

i
∂rBB

∂z

∣∣∣∣
z̄i

uB
i

]
(56)

where the class-reproductive values satisfy the following quasi-equilibrium relationship:

cB
i = vB

i uB
i =

rAB(z̄i)
(
uB

i
)2

rBA(z̄i)
(
uA

i

)2
+ rAB(z̄i)

(
uB

i

)2 = 1 − cA
i . (57)

which can be derived from the equations R̄iui = R̄ivi = 0 along with the normalisation

condition uA
i vA

i + uB
i vB

i = 1 (see Online Appendix F.4).
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For the variance dynamics, we have similarly

v⊤
i Fiui =

1
2

[
vA

i
∂2rAA

∂z2

∣∣∣∣
z̄i

uA
i + vB

i
∂2rBA

∂z2

∣∣∣∣
z̄i

uA
i + vA

i
∂2rAB

∂z2

∣∣∣∣
z̄i

uB
i + vB

i
∂2rBB

∂z2

∣∣∣∣
z̄i

uB
i

]
(58)

and for the second term in equation (55b), which we note Di = v⊤
i Si(di ◦ ui), we have

Di =

(
vA

i
∂rAA

∂z

∣∣∣∣
z̃i

+ vB
i

∂rBA

∂z

∣∣∣∣
z̃i

)
(z̄A

i − z̃i)uA
i

+

(
vA

i
∂rAB

∂z

∣∣∣∣
z̃i

+ vB
i

∂rBB

∂z

∣∣∣∣
z̃i

)
(z̄B

i − z̃i)uB
i

Because z̃i = cA
i z̄A

i + cB
i z̄B

i , we have z̄A
i − z̃i = cB

i (z̄
A
i − z̄B

i ) and z̄B
i − z̃i = cA

i (z̄
B
i − z̄A

i ), and

therefore

Di =

(
∂rAA

∂z

∣∣∣∣
z̃i

+
vB

i

vA
i

∂rBA

∂z

∣∣∣∣
z̃i

)
cA

i cB
i (z̄

A
i − z̄B

i )

+

(
vA

i

vB
i

∂rAB

∂z

∣∣∣∣
z̃i

+
∂rBB

∂z

∣∣∣∣
z̃i

)
cA

i cB
i (z̄

B
i − z̃A

i )

where we have used the definition ck
i = vk

i uk
i . This leads to

Di = cA
i cB

i (z̄
B − z̄A)

(
∂rAA

∂z

∣∣∣∣
z̄i

+
vB

i

vA
i

∂rBA

∂z

∣∣∣∣
z̄i

− ∂rBB

∂z

∣∣∣∣
z̄i

−
vA

i

vB
i

∂rAB

∂z

∣∣∣∣
z̄i

)
(59)

More progress can be obtained if we treat the difference z̄A
i − z̄B

i as a fast variable (see Online

Appendix F.2 and Lion (2018b)). In a two-class model, we have

dz̄A
i

dt
= VA

i
∂rAA

∂z

∣∣∣∣
z=z̄A

i

+
f B
i nB

f A
i nA

rAB(z̄B
i )(z̄

B
i − z̄A

i ) + O(ε4)

dz̄B
i

dt
= VB

i
∂rBB

∂z

∣∣∣∣
z=z̄B

i

+
f A
i nA

f B
i nB rBA(z̄A

i )(z̄
A
i − z̄B

i ) + O(ε4)

Using these two equations to calculate the dynamics of z̄A
i − z̄B

i and setting the RHS of the

resulting equation to zero leads to the following quasi-equilibrium approximation:

z̄B
i − z̄A

i ≈
uA

i uB
i

rAB(z̄B
i )(u

B
i )

2 + rBA(z̄A
i )(u

A
i )

2

(
VB

i
∂rBB

∂z

∣∣∣∣
z̄B

i

− VA
i

∂rAA

∂z

∣∣∣∣
z̄A

i

)
(60)

which can be rewritten using equation (57) as

z̄B
i − z̄A

i ≈

√
cA

i cB
i

rAB(z̄B
i )r

BA(z̄A
i )

(
VB

i
∂rBB

∂z

∣∣∣∣
z̄B

i

− VA
i

∂rAA

∂z

∣∣∣∣
z̄A

i

)
(61)
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We can then use the morph-level closure approximation z̄k
i ≈ z̄i and Vk

i ≈ Vi to obtain finally

Di =
(cA

i cB
i )

3/2√
rAB(z̄i)rBA(z̄i)

(
∂rAA

∂z

∣∣∣∣
z̄i

− ∂rBB

∂z

∣∣∣∣
z̄i

)(
∂rAA

∂z

∣∣∣∣
z̄i

+
vB

i

vA
i

∂rBA

∂z

∣∣∣∣
z̄i

− ∂rBB

∂z

∣∣∣∣
z̄i

−
vA

i

vB
i

∂rAB

∂z

∣∣∣∣
z̄i

)
(62)

Interestingly, equation (62) shows that directional selection will have a significant effect on the

dynamics of variance if three conditions are met: (1) there is enough differentiation between

the two classes, as measured by the product of class reproductive values cA
i cB

i , (2) the slopes of

the functions rAA and rBB at the morph means are sufficiently different, and (3) the marginal

reproductive outputs of A and B individuals are sufficiently different. The latter condition is

satisfied when the second bracketed term is non-zero. Note that the ratios vB
i /vA

i and vA
i /vB

i

can be interpreted as conversion factors to evaluate the A and B descendants in the same

currency.

Finally, we note that, when r̄AB and r̄BA are independent of the trait z, as in our migration-

selection models, equation (62) can be simplified as

Di =
(cA

i cB
i )

3/2√
rAB(z̄i)rBA(z̄i)

(
∂rAA

∂z

∣∣∣∣
z̄i

− ∂rBB

∂z

∣∣∣∣
z̄i

)2

(63)

E Mutation

The impact of mutation on the oligomorphic dynamics will depend on the specific mutation

model one chooses. For simplicity, we assume here we assume that mutation occurs indepen-

dently of reproduction, at rate µ, and that the mutation effects follow a distribution Mk with

mean 0 (mutation has no directional effect) and variance σ2
M,k. Thus, mutation from pheno-

type y to phenotype z is determined by a mutation kernel mk(z, y) in class k, such that, for all

y,
∫

mk(z, y)dz = 1,
∫

zmk(z, y)dz = y (unbiased mutation) and
∫
(z − y)2mk(z, y)dz = σ2

M,k.

With these assumptions, the dynamics of the density of morph i individuals, nk
i (z) = ϕk

i (z)n
k

can be modified as follows:

dnk
i (z)
dt

+ = µ

[∫
mk(z, y)nk

i (y, t)dy − nk
i (z, t)

]
nk(t) (64)

where the + = notation means that we just add the term on the right-hand-side to the

results in absence of mutation. Note that equation (64) assumes that mutation does not
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allow transitions across morphs, which will be satisfied if mutation is sufficiently local and

the morphs sufficiently distinct. It is easy to see that, if we integrate equation (64) over z, the

mutation term vanishes, and therefore mutation has no effect on the dynamics of the densities

nk
i (t).

From equation (64), it is straightforward to derive

dϕk
i (z)
dt

= R.H.S of equation (45) + µ

[∫
mk(z, y)ϕk

i (y)dy − ϕk
i (z)

]
(65)

and following the steps in equation A, we can also show that mutation does not affect the

dynamics of morph frequencies.

Multiplying equation (65) by z and integrating, we obtain

dz̄k
i (z)
dt

= R.H.S of equation (14) + µ

[∫ ∫
zmk(z, y)dzϕk

i (y)dy −
∫

zϕk
i (z)dz

]
(66)

Assuming that mutation is unbiased, so that y =
∫

zmk(z, y)dz, it follows that the mutation

term in equation (66) vanishes, so that mutation has no impact on the dynamics of morph

means.

To calculate the variance dynamics, we multiply (65) by (z − z̄k
i )

2 and integrate to obtain

dV̄k
i

dt
= R.H.S of equation (15) + µ

[∫ ∫
(z − z̄k

i )
2mk(z, y)dzϕk

i (y)dy −
∫
(z − z̄k

i )
2ϕk

i (z)dz
]

= R.H.S of equation (15) + µ

[∫ ∫
(z − y)2mk(z, y)dzϕk

i (y)dy

+2
∫
(y − z̄k

i )
∫
(z − y)mk(z, y)dzϕk

i (y)dy +
∫
(y − z̄k

i )
2
∫

mk(z, y)dzϕk
i (y)dy − Vk

i

]
= R.H.S of equation (15) + µσ2

M,k

Hence, mutation adds a term Vk
M = µσ2

M,k to the dynamics of morph variances. VM,k is

the mutational variance in class k (Kimura, 1965; Lande, 1975; Sasaki and Dieckmann, 2011).

Finally, to derive the dynamics of the RV-weighted morph variance Ṽi = ∑i ck
i Vk

i , we simply

need to add a term ∑i ck
i Vk

M to the right-hand-side of equation (54), which yields equations

(20) and (21) in the main text.
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Figure Legends

Figure 1: Summary of the notations and approach using a two-class, two-morph example.

Panel (a) shows the fast variables, which change on the ecological time scale. These are the

densities of individuals in each class, nA(t) and nB(t), the morph frequencies in each class,

f k
i (t), and the morph-specific class reproductive values, ck

i (t). In the simulation snapshot

used to plot these graphs, morph 1 is relatively more abundant within class B ( f B
1 > f B

2 ),

but has a lower class reproductive value (cB
1 < cB

2 ). Panel (b) shows the trait distributions,

which change on the slow, evolutionary time scales. The trait distribution in class A, ϕA(z, t),

can be decomposed into a mixture of class-specific morph distributions, ϕA
i (z, t), weighted by

the class-specific morph frequencies f A
i (t). Note that, to better illustrate the decomposition,

the shaded areas represent f k
i (t)ϕ

k
i (z, t), and not the distributions ϕk

i (z, t). This multi-morph

decomposition can also be applied to class B. On the slow time scale, the relevant aggregate

distributions at the morph level are the RV-weighted morph distributions ϕ̃i(z, t). (Note that

the graphs use data from a numerical simulation of Example 1.)

Figure 2: Illustration of the relaxation to RV space in a two-class model. (A) Convergence of

the class-specific morph means z̄A
1 (black solid line) and z̄B

1 (dashed line) to the RV-weighted

mean z̃1 (grey line). (B) Convergence of the time derivatives dz̄A,1/dt (black solid line) and

dz̄B,1/dt (dashed line) and shown to converge towards the prediction of the right-hand side

of equation (18) (grey line). The simulation is the same as in figure F.3A, to which the reader

is referred for additional details.
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Figure 3: Bimodal vs. unimodal equilibrium distributions (Example 1) – Figure (a) shows

how the equilibrium distribution changes when mAB = 0.8 is fixed and mBA varies. For sim-

plicity, we only show the dimorphic solution in the bistability region. The vertical dotted line

represents the value mBA ≈ 1.06 at which the dimorphic equilibrium loses its demographic

stability and one of the two morphs goes extinct. The analytical predictions using the projec-

tion on RV space are also shown for the mean (dashed lines) ± standard deviation (dotted

lines). The white dots show the results of numerical simulations of the full model, without

the oligomorphic approximation. Figures (b) and (c) show the equilibrium trait distributions

and dynamics of mean traits in habitat A (solid line) and B (dashed line) obtained by numer-

ical integration of a 2-morph oligomorphic approximation for BA = 0.4 (b) or mBA = 1.4 (c).

The dotted lines indicate the value of the class reproductive value of habitat B for morphs

1 (blue) and 2 (orange), computed from the oligomorphic approximation. Parameter values:

b = 1, g = 2, mAB = 0.8, VM = 10−6.

Figure 4: Effect of mutation (Example 1) – (a) Effect of habitat-specific mutation. The top

panel shows the dynamics of the variances of morph 1 (blue) and 2 (orange) which converge

to mutation-selection equilibrium values, which are accurately predicted by the reproductive-

value-weighted formula (33) (dotted lines) with VA
M = 5 · 10−6 and VB

M = 10−6. The bottom

panel shows the effect of the ratio VA
M/VB

M on the variances VA
i (solid line) and VB

i (dashed

line) for morphs 1 (blue) and 2 (orange). The white dots give the results of simulations of the

full model without the oligomorphic approximation. (b) Effect of the magnitude of mutational

variance on the mean habitat differentiation D = z̄B − z̄A at equilibrium (black line). Here,

we use VM = VA
M = VB

M. The dashed line gives the analytical prediction of equation (107), the

white dots the simulations results, the blue and orange lines give the morph-specific habitat

differentiation z̄B
i − z̄A

i . Parameters in all panels: b = 1, g = 2, mAB = 0.8, mBA = 0.4.
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Figure 5: Eco-evolutionary dynamics of the resource competition model (Example 2) – (A)

Dynamics of densities of individuals nk in habitat A (solid line) and B (dashed line). (B) Dy-

namics of the morph frequencies f k
i in habitat A (solid line) and B (dashed lines) for morph

1 (blue) and 2 (orange). (C) Dynamics of the morph means z̄A
i (solid lines) and z̄B

i (dashed

lines). (D) Dynamics of the morph variances VA
i (solid lines) and VB

i (dashed lines). In all

panels, the results of a numerical integration of equations (22) are shown and the correspond-

ing predictions of the RV projection (26)-(28) are overlaid as dotted lines. Parameters: b = 1,

g = 0.1, θA = 0 = 1 − θB, mAB = mBA = 0.3, a(x) = 0.5 exp(−x2/8), VM = 10−5.

Figure 6: Eco-evolutionary dynamics of the resource-consumer model (Example 3) – Panel

(A) gives the distributions in each habitat at different times (A=plain line, B=dashed line,

morph 1= blue, morph 2 = orange). Panel (B) and (C) give the dynamics of densities nA

and nB (the consumer, black) and resources SA and SB (grey), habitat means z̄A and z̄B and

habitat variances (plain line: habitat A; dashed line: habitat B). Panels (B) and (C) show the

same simulation results, but on different times scales (t = 50 in (B), and t = 500 in (C)). In all

panels, the main results are obtained using the RV projection, and the dots show the results

of the numerical simulations of the full model without the oligomorphic approximation. The

horizontal dotted grey line is the prediction of the ESS z̄A
eq (equation (39)). Parameter values

are given in Online Appendix F.8.
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F Online Appendix for “Multi-morph eco-evolutionary dynamics

in structured populations”

F.1 Justification of equality (43)

To justify equation (43), we first start from the natural assumption that individuals with the

same phenotypes have the same per-capita growth rate in each class (say k) whichever morph

they belong:
d ln( f k

i (t)ϕ
k
i (z, t))

dt
=

d ln(ϕk(z, t))
dt

This is equation (41) in Appendix A. We write the same relationship in class j:

d ln( f j
i (t)ϕ

j
i (z, t)

dt
=

d ln(ϕj(z, t))
dt

and subtracting these two equations yields

d
dt

ln
f j
i (t)ϕ

j
i (z, t)

f k
i (z, t)ϕk

i (z, t)
=

d
dt

ln
ϕj(z, t)
ϕk(z, t)

.

Integrating both sides over t yields

ln
f j
i (t)ϕ

j
i (z, t)

f k
i (t)ϕ

k
i (z, t)

= ln
ϕj(z, t)
ϕk(z, t)

+ c (67)

where

c = ln
f j
i (0)ϕ

j
i (z, 0)ϕk(z, 0)

f k
i (0)ϕ

k
i (z, 0)ϕj(z, 0)

.

Hence,
f j
i (t)ϕ

j
i (z, t)

f k
i (t)ϕ

k
i (z, t)

= C
ϕj(z, t)
ϕk(z, t)

where

C = ec =
f j
i (0)ϕ

j
i (z, 0)ϕk(z, 0)

f k
i (0)ϕ

k
i (z, 0)ϕj(z, 0)

.

Therefore, if
f j
i (0)ϕ

j
i (z, 0)

f k
i (0)ϕ

k
i (z, 0)

=
ϕj(z, 0)
ϕk(z, 0)

initially holds, then
f j
i (t)ϕ

j
i (z, t)

f k
i (t)ϕ

k
i (z, t)

=
ϕj(z, t)
ϕk(z, t)

holds for t ≥ 0. This justifies equality (43).
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F.2 Projection on RV space: quasi-equilibrium approach

The goal of this appendix is to show how some results and arguments derived in Lion (2018b)

for unimodal distributions can be extended to multimodal distributions under the oligomor-

phic approximation by working at the morph level. Let us define ui the vector with ele-

ments f k
i f k/ fi, Ui = diag(ui), Ci the matrix with elements Cov

ϕ
j
i

(
z, rkj(z)

)
, and di the vector

of morph-specific scaled phenotypic differentiation (with elements dk
i = (z̄k

i − z̄i)/σi where

σi =
√

Vi is the standard deviation of the distribution of morph i). We can then write equation

(48) as
dz̄i

dt
= 1⊤Ciui + σi1⊤RiUidi (68)

which has the same form as equation (15) in Lion (2018b), but is morph-specific. Similarly,

the dynamics of di can be put in the form:

d(σidi)

dt
= BiCiui + Ai(σidi) (69)

which has the same form as equation (A2) in Lion (2018b). Hence, if we assume, as in Lion

(2018b), that the unimodal morph distributions are tightly clustered around the mean (which

is the crux of the oligomorphic approximation), we can follow the same approach as in that

paper, and derive a quasi-equilibrium approximation for di. This eventually yields:

dz̄i

dt
≈ v⊤

i Si iui + O(ε4) (70)

where v⊤
i and ui are calculated as the left and right eigenvectors of Ri associated to eigenvalue

0, keeping only the O(1) terms, i = diag(V1
i . . . VK

i ) and the matrix Si has elements ∂rkj/∂z

evaluated at z = z̄j
i . To leading order, we can replace z̄j

i and V j
i by z̄i and Vi (because both

z̄j
i − z̄i = O(ε2) and V j

i −Vi = O(ε4) on the slow time scale, as shown in Online Appendix F.3)

to obtain equation (19) in the main text. Doing so only contributes an O(ε4) error term.

Finally, a similar reasoning can be applied to the dynamics of variance, and we conjecture

that the dynamics of all moments of the distribution ϕi(z, t) can be approximated by those of

ϕ̃i(z, t) for small ε.
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F.3 Separation of time scales

In this appendix, we first show that the phenotypic differentiations z̄k
i − z̃i converge to zero

on the fast time scale, so that we can assume z̄k
i − z̃i = O(ε2) on the fast time scale. We then

use a perturbation expansion approach to prove the separation of time scales between class

densities and morph frequencies on the one hand, and morph means on the other hand. The

arguments for the dynamics of variance are similar.

F.3.1 Dynamics of phenotypic differentiation on the fast time scale

Let us introduce the deviations Dk = z̄k
i − z̃i, which measure the difference between the mean

trait in class k and the RV-weighted mean trait z̃i = ∑k ck
i z̄k

i . We then have

dz̄k
i

dt
= ∑

j

uj
i

uk
i

rkj(z̄j
i)(z̄

j
i − z̄k

i ) + ∑
j

uj
i

uk
i
V j

i
∂rkj

∂z

∣∣∣∣
z=z̄j

i

+ O(ε4)

dz̃i

dt
= ∑

j
uj

iV
j

i ∑
k

vk
i

∂rkj

∂z

∣∣∣∣
z=z̄j

i

uj
i + O(ε4)

Subtracting the two equations and keeping only O(1) terms yields

dDk

dt
= ∑

j

uj
i

uk
i

rkj(z̄j
i)(z̄

j
i − z̄k

i ) + O(ε2)

= ∑
j

uj
i

uk
i

rkj(z̄j
i)Dj − Dk ∑

j

uj
i

uk
i
rkj(z̄j

i) + O(ε2)

Writing the differentiation as the perturbation expansion Dk = D(0)
k + εD(1)

k + . . . , it follows

that the zeroth-order term satisfies
dD
dt

(0)

= QD0

where the matrix Q has the following elements

k ̸= j qkj =
uj

i

uk
i
rkj(z̄j

i)

qkk = − ∑
j ̸=k

uj
i

uk
i
rkj(z̄j

i)

Because ∑k ck
i Dk = 0 by definition, the system is overdetermined, but we can remove one

redundant equation and write the dynamics of D∗ =

(
D1 . . . DK−1

)
. This gives

dD(0)
∗

dt
= Q∗D(0)

∗
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where the matrix Q∗ is a (K − 1)× (K − 1) matrix obtained from Q by expressing DK as a

function of the elements of D∗ (Lion, 2018b). If we assume for convenience that the phenotypic

differentiation does not blow up and the system of class densities, morph frequencies and

phenotypic differentiations reaches an equilibrium in the limit ε → 0, and Q∗ is invertible at

this equilibrium, then we can characterise the equilibrium as D(0) = 0. Note that the same

reasoning allows us to show that D(1) = 0, and therefore

z̄k
i − z̃i = ε2D(2)

k = O(ε2) (71)

This justifies that we can replace z̄k
i by z̃i on the slow time scale (i.e. after relaxation of

the fast dynamics). Note that the argument above implicity requires that the classes must

not be isolated, otherwise the transition rates rkj are all zero for j ̸= k, and there is no

homogeneisation of the morph means on the fast time scale.

For the variance dynamics, plugging (71) into equation (15) shows that the leading-order

term of the dynamics of the variance differentiation Vk
i − Ṽi is

d(Vk
i − Ṽi)

dt
= ∑

j

uj
i

uk
i
rkj(z̄j

i)(V
j

i − Vk
i ) + O(ε4)

which has the same form as the dynamics of D(0) and therefore the same argument shows

that

V̄k
i − Ṽi = O(ε4). (72)

F.3.2 Two-class case

For the two-class case, we can use milder assumptions. Let Di(t) = z̄A
i (t)− z̄B

i (t) and Li(t) =

Di(t)2. Then, if we simply assume that rAB(z) > 0 and rBA(z) > 0 for any z (which will be

realistic for many ODE ecological models), we have in our O(1) system

dLi(t)
dt

= 2Di(t)
dDi(t)

dt
= −2

(
nB

i (t)
nA

i (t)
rAB(z̄B

i (t)) +
nA

i (t)
nB

i (t)
rBA(z̄A

i (t))

)
Di(t)2 ≤ 0,

where the equality holds only when Di = 0. Therefore Li(t) = D(t)2
i → 0.

F.3.3 Separation of time scales: perturbation expansion

Here, we use a perturbation expansion to analyse the separation of time scales in the oligor-

mophic equations. The argument is valid for a given morph i, so for simplicity we drop the i
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subscript. We have for the dynamics of class densities

dnk

dt
= ∑

j
rkj(z̄j)nj + O(ε2) (73)

and for the dynamics of class means

dz̄k

dt
= ∑

j

uj

uk rkj(z̄j, n)(z̄j − z̄k) + ∑
j

V j uj

uk
∂rkj(z, n)

∂z

∣∣∣∣
z=z̄j

+ O(ε4) (74)

It is clear that the leading-order term of equation (73) is O(1). But so is the leading-order term

of equation (74). However, we will see that after relaxation of the fast dynamics, equation (74)

is O(ε2).

To show this, we use the following perturbation expansion:

nk = nk
(0) + εnk

(1) + ε2nk
(2) + . . .

z̄k = z̄k
(0) + εzk

(1) + ε2z̄k
(2) + . . .

We first solve the system for the zeroth-order terms:

dz̄k
(0)

dt
= ∑

j

uj

uk rkj
(

z̄j
(0), n(0)

) (
z̄j
(0) − z̄k

(0)

)
This system is obtained by Taylor-expanding equation (74) and keeping only O(1) terms.

These dynamics tend to homogeneise the values of the mean traits, so (as we’ve just shown

above) we have at equilibrium

z̄j
(0) − z̄k

(0) = 0 for all j, k (75)

We can use this quasi-equilibrium result to obtain the following system for the dynamics of

zk(1)

dz̄k
(1)

dt
= ∑

j

uj

uk rkj
(

z̄j
(0), n(0)

) (
z̄j
(1) − z̄k

(1)

)
This system is obtained by Taylor-expanding equation (74) and keeping only O(ε) terms.

Again, this yields at equilibrium

z̄j
(1) − z̄k

(1) = 0 for all j, k (76)
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In particular, this means that

z̄k − z̃ = ∑
j

cj(z̄k − z̄j) = ε2 ∑
j

cj(z̄k
(2) − z̄j

(2))

and therefore

z̄k = z̃ + O(ε2).

We then use the quasi-equilibrium solutions of (75) and (76) to derive the dynamics of the

O(ε2) terms as

dz̄k
(2)

dt
= ∑

j

uj

uk rkj(z̄j
(0), n(0))(z̄

j
(2) − z̄k

(2)) + ∑
j

W j uj

uk
∂rkj

∂z
(z̄j

(0), n(0)) + O(ε2) (77)

where V j = ϵ2W j.

Thus, after relaxation of the fast dynamics, we have

dz̄k

dt
= ε2

dz̄k
(2)

dt
+ O(ε4)

where
dz̄k

(2)
dt can be calculated using equation (77).

Note that equation (77) depends on the zeroth-order terms of densities n, but actually, if

we use n instead of n(0) in equation (77), the error we make will be absorbed in the O(ε2)

remainder. Similarly, it is possible to replace z̄j
(0) by z̄j or z̃ in the arguments of rkj, so we can

also write more simply

dz̄k
(2)

dt
= ∑

j

uj

uk rkj(z̄j, n)(z̄j
(2) − z̄k

(2)) + ∑
j

W j uj

uk
∂rkj

∂z
(z̄j, n) + O(ε2) (78)

In words, this analysis indicates that, starting from distinct morph means in each class, the

morph means first change quickly to become clustered around an average value (i.e. z̄k
i ≈ z̃i)

then change more slowly along the slow manifold. On this manifold, the densities are well

approximated by the quasi-equilibrium solution of n(0).

Note that the dynamics of the RV-weighted mean trait, z̃, is O(ε2) from the start, which is

why it is much easier to use it to describe the slow dynamics.
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F.4 Quasi-equilibrium approximation of reproductive values in two-class

models

In two class models, the equations R̄iui = 0 and viR̄i = 0 can be rewritten as

rAAuA + rABuB = 0 (79a)

rBAuA + rBBuB = 0 (79b)

vArAA + vBrBA = 0 (79c)

vArAB + vBrBB = 0 (79d)

where for simplificity we remove the dependency on the morph (i.e. we write uk
i as uk, vk

i as

vk, and rkj(z̄j
i) as rkj.

Using equation (79c), we can rewrite the normalisation conditions uAvA + uBvB = 1 as

−uA rBA

rAA vB + uBvB = 1 (80)

which leads to

vB =
rAA

rAAuB − rBAuA (81)

and, using equation (79a), which can be rewritten as rAA = −rABuB/uA, we obtain finally

vB =
rABuB

rAB(uB)2 + rBA(uA)2 (82)

A similar equation can be obtained for vA (we just need to swap the A and B superscripts)

and multiplying by uB yields

cB =
rAB(uB)2

rAB(uB)2 + rBA(uA)2 = 1 − cA (83)

which is equation (57).

F.5 Oligomorphic dynamics in a two-class migration-selection model

We use equation (22) in the main text to derive the oligomorphic dynamics when there are

only two classes and when the only transitions between distinct classes correspond to migra-
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tion and are independent of the focal trait under consideration. That is, we have:

rAB(z) = mAB

rBA(z) = mBA

With this simplifying assumption, we obtain the following equations, which will be used to

analyse our three Examples:

d
dt

nA

nB

 =

∑i f A
i rAA(z̄A

i ) mAB

mBA ∑i f B
i rBB(z̄B

i )


nA

nB

+ O(ε2) (84a)

d f A
i

dt
= f A

i

[
rAA(z̄A

i )− ∑
ℓ

f A
ℓ rAA(z̄A

ℓ )

]
+

nB

nA mAB

[
f B
i − f A

i

]
+ O(ε2) (84b)

d f B
i

dt
= f B

i

[
rBB(z̄B

i )− ∑
ℓ

f B
ℓ rBB(z̄B

ℓ )

]
+

nA

nB mBA

[
f A
i − f B

i

]
+ O(ε2) (84c)

dz̄A
i

dt
= VA

i
∂rAA

∂z

∣∣∣∣
z=z̄A

i

+
f B
i nB

f A
i nA

mAB(z̄B
i − z̄A

i ) + O(ε4) (84d)

dz̄B
i

dt
= VB

i
∂rBB

∂z

∣∣∣∣
z=z̄B

i

+
f A
i nA

f B
i nB mBA(z̄A

i − z̄B
i ) + O(ε4) (84e)

dVA
i

dt
=

1
2

[
QA

i − (VA
i )2

] ∂2rAA

∂z2

∣∣∣∣
z=z̄A

i

+
f B
i nB

f A
i nA

mAB

[
VB

i − VA
i + (z̄B

i − z̄A
i )

2
]
+ O(ε5)

(84f)

dVB
i

dt
=

1
2

[
QB

i − (VB
i )

2
] ∂2rBB

∂z2

∣∣∣∣
z=z̄B

i

+
f A
i nA

f B
i nB mBA

[
VA

i − VB
i + (z̄A

i − z̄B
i )

2
]
+ O(ε5) (84g)

F.6 Example 1: A two-habitat local adaptation model

In this appendix, we carry out an explicit analysis of a specific two-habitat model to revisit the

results of Débarre et al. (2013) (see also Mirrahimi and Gandon (2020); Ronce and Kirkpatrick

(2001)). As in that paper and in Online Appendix F.5, we consider a population of individuals

distributed over two habitats, A and B, coupled by migration. Each habitat is characterised

by a habitat-specific optimum (θA and θB, respectively). The transition rates between classes
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are then

rAA(z) = b − nA − g(z − θA)
2 − mBA (85a)

rAB(z) = mAB (85b)

rBA(z) = mBA (85c)

rBB(z) = b − nB − g(z − θB)
2 − mAB (85d)

where b is the fecundity rate and g is the fecundity cost. We use quadratic cost functions for

simplicity, so that the cost is minimal at the habitat’s optimum. Also, in contrast to Débarre

et al. (2013), we consider asymmetric migration rates, with mjk the migration rate from habitat

k to habitat j (see also Mirrahimi and Gandon (2020)). Note that we assume migration rates

do not depend on the focal trait, which will lead to simplifications as the partial derivatives

of rkj(z) will vanish for j ̸= k.

Note that this model can be simply obtained from the competition model in Online Ap-

pendix F.7 by assuming a(·) = 1.

F.6.1 Oligomorphic approximation

To derive our oligormorphic approximation for this model, we combine equations (84) with

the following relationships

rkk(z̄k
i ) = b − wk(z̄k

i )− mk − nk (86a)

∂rkk

∂z

∣∣∣∣
z=z̄k

i

= −w′
k(z̄

k
i ) (86b)

∂2rkk

∂z2

∣∣∣∣
z=z̄k

i

= −w′′
k (z̄

k
i ) (86c)

where wA(z) = g(z − θA)
2, wB(z) = g(z − θB)

2, mA = mBA and mB = mAB.

Reproductive values. The resulting system can be numerically solved, but we can get some

further simplifications using reproductive values. Using equation (57), we see that class re-

productive values satisfy at quasi-equilibrium

cB
i =

mAB( f B
i f B)2

mAB( f B
i f B)2 + mBA( f A

i f A)2
= 1 − cA

i (87)
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where the morph and class frequencies are calculated using the O(1) terms of equations

(84a)-(84c).

Morph means. Using equations (70) and (49), it is straightforward to derive the following

equation for the dynamics of the morph mean, z̄i, and the RV-weighted morph mean z̃i. We

obtain
dz̄i

dt
=

dz̃i

dt
= cA

i VA
i

∂rAA

∂z

∣∣∣∣
z̄A

i

+ cB
i VB

i
∂rBB

∂z

∣∣∣∣
z̄B

i

+ O(ε4) (88)

If we only want to keep O(ε2) terms, it is sufficient to replace VA
i and VB

i by Vi, the morph

variance, and z̄A
i and z̄B

i by the morph mean z̄i (Online Appendix F.3). We then obtain for our

model:
dz̄i

dt
= −Vi

[
cA

i w′
A(z̄i) + cB

i w′
B(z̄i)

]
+ O(ε4) ≈ −2gVi

[
z̄i − cA

i θA − cB
i θB

]
(89)

An explicit derivation of equation (88) can also be obtained by calculating the dynamics of

z̄B
i − z̄A

i which is simply obtained by substracting equations (84d)-(84e). Then, treating this

phenotypic differentiation as a fast variable (Lion (2018b); Online Sections F.2; F.3), we can set

the right-hand side of the resulting equation to zero, and solve for z̄B
i − z̄A

i . This yields the

following quasi-equilibrium approximation

z̄B
i − z̄A

i ≈
f A
i f A f B

i f B

mAB( f B
i f B)2 + mBA( f A

i f A)2

(
VB

i
∂rBB

∂z

∣∣∣∣
z̄B

i

− VA
i

∂rAA

∂z

∣∣∣∣
z̄A

i

)
(90)

which can be written using equation (87) as

z̄B
i − z̄A

i ≈

√
cA

i cB
i

mABmBA

(
VB

i
∂rBB

∂z

∣∣∣∣
z̄B

i

− VA
i

∂rAA

∂z

∣∣∣∣
z̄A

i

)
(91)

Plugging the resulting expression into equations (84d) and (84e) yields

dz̄A
i

dt
=

dz̄B
i

dt
= cA

i VA
i

∂rAA

∂z

∣∣∣∣
z̄A

i

+ cB
i VB

i
∂rBB

∂z

∣∣∣∣
z̄B

i

+ O(ε4) (92)

which entails, assuming that the morph and class frequencies are calculated on their quasi-

equilibrium manifold,
dz̄i

dt
=

dz̃i

dt
=

dz̄A
i

dt
=

dz̄B
i

dt

Equation (91) shows that z̄B
i − z̄A

i = O(ε2), so that z̄A
i = z̄B

i = z̄i + O(ε2). This is consistent

with the general argument in Online Appendix F.3 and justifies that we can replace the class-

specific morph means by the morph mean in equation (88). We then obtain equation (29)
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Figure F.1: llustration of the relaxation to RV space in a two-class model. The simulation is

the same as in figure 2 and figure F.3A, to which the reader is referred for additional details.

The morph differentiation z̄B,1 − z̄A,1 (black) is shown to converge towards the value predicted

by the quasi-equilibrium approximation (90) (grey line). The inset shows a close-up of the

dynamics.

in the main text. Figure F.1 shows that the differentiation between morph means z̄B,1 −

z̄A,1 quickly converges to a small value which is well predicted by the quasi-equilibrium

approximation.

Morph variances. Similarly, we can derive the dynamics of the difference in morph variances

from equations (84f)-(84g). With Gaussian closure approximation (such that Qk
i = 3(Vk

i )
2) and

using equation (87), we obtain after some rearrangements the following quasi-equilibrium

approximation:

VB
i − VA

i ≈

√
cA

i cB
i

mABmBA

[
(VB

i )
2 ∂2rBB

∂z2

∣∣∣∣
z̄B

i

− (VA
i )2 ∂2rAA

∂z2

∣∣∣∣
z̄A

i

]
− (cB

i − cA
i )(z̄

B
i − z̄A

i )
2 (93)

Plugging this into equations (84f) and (84g) yields, again after some rearrangements

dVA
i

dt
=

dVB
i

dt
= cA

i (V
A

i )2 ∂2rAA

∂z2

∣∣∣∣
z̄A

i

+ ciB(VB
i )

2 ∂2rBB

∂z2

∣∣∣∣
z̄B

i

+ 2
√

cA
i cB

i mABmBA(z̄B
i − z̄A

i )
2 (94)

and using equation (91) finally yields

dVA
i

dt
=

dVB
i

dt
=cA

i (V
A

i )2 ∂2rAA

∂z2

∣∣∣∣
z̄A

i

+ cB
i (V

B
i )

2 ∂2rBB

∂z2

∣∣∣∣
z̄B

i

+ 2

(
cA

i cB
i
)3/2

√
mABmBA

(
VB

i
∂rBB

∂z

∣∣∣∣
z̄B

i

− VA
i

∂rAA

∂z

∣∣∣∣
z̄A

i

)2 (95)
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which again implies
dVi

dt
=

dṼi

dt
=

dVA
i

dt
=

dVB
i

dt

Another route to this result is to start with the dynamics of the RV-weighted variance,

given by equation (21). This gives for our model

dṼi

dt
≈ cA

i (V
A

i )2 ∂2rAA

∂z2

∣∣∣∣
z̄A

i

+ cB
i (V

B
i )

2 ∂2rBB

∂z2

∣∣∣∣
z̄B

i

+ 2cA
i (z̄

A
i − z̃i)VA

i
∂rAA

∂z

∣∣∣∣
z̄A

i

+ 2cB
i (z̄

B
i − z̃i)VB

i
∂rAA

∂z

∣∣∣∣
z̄B

i

(96)

(recall that vk
i uk

i = ck
i ). Noting that z̄A

i − z̃i = cB
i (z̄

A
i − z̄B

i ) and z̄B
i − z̃i = cA

i (z̄
B
i − z̄A

i ), and

using equation (91) finally yields

dṼi

dt
=cA

i (V
A

i )2 ∂2rAA

∂z2

∣∣∣∣
z̄A

i

+ cB
i (V

B
i )

2 ∂2rBB

∂z2

∣∣∣∣
z̄B

i

+ 2

(
cA

i cB
i
)3/2

√
mABmBA

(
VB

i
∂rBB

∂z

∣∣∣∣
z̄B

i

− VA
i

∂rAA

∂z

∣∣∣∣
z̄A

i

)2 (97)

From equation (93) we see that VB
i − VA

i = O(ε4), so that VA
i = VB

i = Ṽi + O(ε4). The errors

made by approximating the class-specific variances by Ṽi in equation (97) will therefore be of

higher-order than the leading-order terms.

F.6.2 Quadratic functions

For the model with quadratic functions, equations (88) and (97) simplify to

dz̄i

dt
= −2gVi

[
z̄i − cA

i θA − cB
i θB

]
(98)

dVi

dt
= −2gV2

i

[
1 − 4g√

mABmBA

(
cA

i cB
i

)3/2
(θB − θA)

2
]

(99)

Equation (98) shows that at equilibrium morph means are equal to the reproductive-value

weighted average of habitat optima, cA
i θA + cB

i θB. As shown in Sasaki and Dieckmann (2011),

the corresponding equilibra are all evolutionarily stable if and only if dVi/dt < 0 for all

morphs, which is equivalent to

√
mABmBA

4g
>
(

cA
i cB

i

)3/2
(100)

where we have set θA = 0 = 1 − θB without loss of generality.
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F.6.3 Solutions

We consider that the population is composed of two morphs (1 and 2). From equations (84b)

and (84c), together with equations (85), we can thus write the dynamics of the frequencies of

morph 1 in habitats A and B as follows:

0 = ( f A
1 (1 − f A

1 )g(z̄1 − z̄2)(z̄1 + z̄2) + mAB
f B

f A ( f B
1 − f A

1 ) (101)

0 = ( f B
1 (1 − f B

1 )g(z̄1 − z̄2)(z̄1 + z̄2 − 2) + mBA
f A

f B ( f A
1 − f B

1 ) (102)

Multiplying the first equation by f A/(mAB f B) and the second by f B/(mBA f A), then taking

the sum, gives

0 = g(z̄1 − z̄2)

[
f A f A

1 (1 − f A
1 )

mAB f B (z̄1 + z̄2) +
f B f B

1 (1 − f B
1 )

mBA f A (z̄1 + z̄2 − 2)

]
(103)

This is satisfied either if z̄1 = z̄2 which corresponds to a single-morph equilibrium, or if the

term between brackets is zero, which leads to a dimorphic equilibrium

Dimorphic equilibrium. We start with the dimorphic case, which is simpler to analyse. Setting

the term between brackets in equation (103) to zero yields

f B
1 (1 − f B

2 )

f A
1 (1 − f A

1 )
=

z̄1 + z̄2

2 − z̄1 − z̄2

mBA

mAB

(
f A

f B

)2

(104)

From the equilibrium of equation (98), we have z̄i = cB
i , and because cA

i = 1− cB
i , we thus have

z̄i/(1− z̄i) = cB
i /cA

i . From equation (87), we then have z̄i/(1− z̄i) = (mAB/mBA)( f B
i f B/( f A

i f A))2,

which we can use to simplify equation (104) as

z̄1z̄2

(1 − z̄1)(1 − z̄2)
=

(
z̄1 + z̄2

2 − z̄1 − z̄2

)2

which can be rearranged as

(z̄1 − z̄2)
2(1 − z̄1 − z̄2) = 0

Hence, because z̄1 ̸= z̄2 for the dimorphic equilibrium, the morph means must satisfy z̄1 +

z̄2 = 1. Plugging this condition into the dynamics of morph frequencies, then solving for f A
1

and f B
1 and calculating cB

1 yields

z̄1 = cB
1 =

1
2
− g(1 − 2z̄1)

2
√

4mABmBA + g2(1 − 2z̄2
1)
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Solving for z̄1 finally yields, for
√

mABmBA < g/2

z̄1 =
1
2
− 1

2

√
1 − 4mABmBA

g2 = 1 − z̄2 (105)

which, using equation (99), is evolutionarily stable if
√

mABmBA < g/2. Equation (105) corre-

sponds to the results of Mirrahimi and Gandon (2020) and, for the symmetric migration case,

to those of Débarre et al. (2013).

Equation (105) can be used to calculate the morph frequencies (see companion Mathe-

matica notebook). In the same notebook, we also derive the following expressions for the

equilibrium densities

nA = b − mBA +
mABmBA

g

nB = b − mAB +
mABmBA

g

For symmetric migration, we recover the results in Table 1 of Débarre et al. (2013).

Because the dimorphic equilibrium is characterised by the two morphs having different

frequencies in the two habitats, the habitat-specific trait distributions are distinct. We can

characterise these equilibrium distributions by calculating their moments (see companion

notebook):

• the mean trait in habitats A and B (and the differentiation D = z̄B − z̄A)

z̄A = f A
1 z̄1 + (1 − f A

1 )z̄2 =
mAB f B

g f A

z̄B = f B
1 z̄1 + (1 − f B

1 )z̄2 = 1 − mBA f A

g f B

• the global mean trait

z̄ = f A z̄A + f B z̄B = f B +
mAB f B − mBA f A

g

where the first term is the mean of the two optima ( f AθA + f BθB = f B) and the sec-

ond term is the deviation caused by the migration-selection balance. For symmetric

migration, we have z̄ = f B = 1/2.
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Figure F.2: Dynamics of habitat-specific moments. The means (a), variances (b) and third

moments (c) of the trait distributions in habitat A (solid lines) and B (dashed lines) and

shown to converge to the values predicted by the analytical formulae (dotted horizontal lines).

Parameters as in figure 3B in the main text.

• the variance in habitat A in the absence of mutation-selection balance (i.e. assuming

VA
i = 0 at equilibrium)

VA = (z̄1 − z̄A)2 f A
1 + (z̄2 − z̄B)2(1 − f A

1 ) = mAB
f A f Bg − mAB( f B)2 − mBA( f A)2

( f Ag)2

• the third moment in habitat A in the absence of mutation-selection balance (i.e. as-

suming VA
i = 0 at equilibrium), assuming the morph distribution is not skewed (e.g.

TA
i = 0)

TA = (z̄1 − z̄A)3 f A
1 + (z̄2 − z̄B)3(1 − f A

1 ) =
f Ag − 2 f BmAB

f Ag
VA

Note that, for symmetric migration, we recover the results of Débarre et al. (2013) (column

2 in their Table 1). In figure F.2, the dynamics of the moments of the trait distributions in

habitats A and B are presented and compared with the analytical predictions.

Local adaptation. At the bimodal equilibrium, the two morphs have different frequencies in

the two habitats and therefore the habitat-specific distributions are distinct (figure 3B). As
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shown by Débarre et al. (2013), local adaptation in this model is proportional to the level of

habitat differentiation in mean traits, which can be calculated as

D = z̄B − z̄A = ( f B
1 − f A

1 )(cB
1 − cB

2 ). (106)

This shows that, at equilibrium, local adaptation depends (1) on the difference in morph

frequencies between the two habitats, and (2) on the difference between the class reproductive

values of the two morphs. Using the above results, habitat differentiation can be calculated

as:

D∗ = 1 − 1
g

(
f B

f A mAB +
f A

f B mBA

)
(107)

which simplifies to D∗ = 1− 2m/g for symmetric migration, as found in Débarre et al. (2013).

Higher migration thus leads to lower local adaptation.

Single-morph equilibria. In the single-morph case, we have only one morph with frequen-

cies f A
1 = f B

1 = 1. The equilibrium densities and morph mean can be calculated from the

following system of equations:

dnA

dt
=
(

b − nA − gz̄2
1 − mBA

)
nA + mABnB = 0

dnB

dt
=
(

b − nB − g(z̄1 − 1)2 − mAB

)
nB + mBAnA = 0

z̄1 =
mAB(nB)2

mAB(nB)2 + mBA(nA)2

where the latter equation simply states that the mean trait is equal to the class reproductive

value cB
1 .

The system can only be fully solved numerically, except for symmetric migration where

at least one solution (z̄1 = 1/2 and nA = nB = b − g/4) can be analytically calculated.

Depending on the region of parameter space (and in particular the values of the migration

rates) there is typically either one or three solutions of the system.

Note that, in the limit where mAB = mBA = m, we have vA
1 = vB

1 = 1 and therefore

z̄1 = cB
1 = 1/2. The “symmetric monomorphic” singularity found by Débarre et al. (2013)

thus corresponds to the case where both habitats have equal reproductive values. As found

by Débarre et al. (2013), this solution is evolutionarily stable if m > g/2, which can be checked

using condition (99).
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Bistability. For some parameters values, the system can exhibit several evolutionary attrac-

tors (i.e. convergent and evolutionarily stable points, Geritz et al. (1998)), notably the di-

morphic equilibrium and one or two single-morph equilibria. The endpoint of the eco-

evolutionary dynamics is then determined by the initial conditions. This bistability is il-

lustrated in figure F.3 for a specific example, and the full bifurcation diagrams of the model

for mAB = 0.8 are shown in figures F.4. Note however that, as already found by Débarre et al.

(2013), the basin of attraction of the unimodal equilibrium is relatively narrow so that a little

mutation is sufficient to push the dynamics towards the bimodal equilibrium. This explains

why the simulations of the full model (the black dots in figures F.4A and F.4B) typically con-

verge towards the bimodal equilibrium when it exists. Thus, while the oligomorphic analysis

predicts bistability when m < mc, with some initial conditions leading to unimodal equilib-

rium distributions, a global stability analysis shows that the bimodal distribution is the more

robust evolutionary outcome (Mirrahimi and Gandon, 2020).

F.6.4 Accuracy of the RV projection

How accurate is it to replace the equations (22) the projection of RV space ? Figure F.4 shows

that the quantitative match is very good, except in a small region of parameter space between

mAB = 0.8 and mBA = 1, where the RV projection does not accurately predicts the single-

morph solution. This corresponds to a point where migration is close to symmetric and the

single-morph solution actually becomes a repellor. Thus the dynamics converge towards a

point where selection is disruptive but a dimorphism cannot persist. As shown in figure

F.5B, this causes the build-up of subtantial differentiation between the morph means in habi-

tats A and B, at which point the morph-centred reproductive-value-weighted oligomorphic

approximation breaks down.

F.6.5 Effect of mutation

In this section, we give additional results for the analysis of the effect of mutation variance

shown in figure 4B. In these simulations, we assume VA
M = VB

M = VM. Figure F.6 shows how

the mutational variance affects the equilibrium trait distributions in habitat A (top panel)
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Figure F.3: Illustration of the bistable dynamics of the model for sufficiently low values of

the geometric mean of the migration rate, m =
√

mABmBA. The dynamics of the mean trait

of morph 1 (blue) and 2 (black) in habitat A (solid lines) and B (dashed lines) are shown,

either leading to a polymorphic equilibrium (left panel) or to a monomorphic equilibrium

(panel b). The only difference between the two simulations is the initial trait value of the first

morph in habitat A, which is xA
1 (0) = 0.4 in panel (a), and xA

1 (0) = 0.5 in panel (b). Other

initial conditions: nA(0) = nB(0) = 1, f k
i (0) = 1/2 (for i = 1, 2 and k = A, B), xA

2 (0) = 0.34,

xB
1 (0) = 0.2, xB

2 (0) = 0.7, VA
1 (0) = VB

1 (0) = 0.002, VA
2 (0) = VB

2 (0) = 0.001. Parameters:

mAB = 0.8, mBA = 1, g = 2, b = 1.

and B (middle panel), and the morph frequencies (bottom panel). There is a sharp change

in behaviour around VM ≈ 10−3, which corresponds to the oligomorphic approximation

breaking down when the morph variances become too large and the morph distributions

collide: we then shift from a dimorphism with two distinct morphs (distinct frequencies of

morph 1 and 2 in each habitat, but the morph means are the same in each habitat z̄A
i = z̄B

i =

z̄i) to a case where one morph suddenly goes extinct, but this morph has a distinct mean in

each habitat (i.e. z̄A
1 ̸= z̄B

1 ). However, the simulations of the full model do not predict this

pattern, but rather than the model always converges towards a bimodal distributions with

two peaks, albeit with slightly wider variances when VM is larger. Since the oligomorphic

approximation relies on morph variances (i.e. the width of the peaks) being small enough,

this is an expected behaviour of our approach. Nonetheless, the oligomorphic approximation

remains accurate for relatively large mutational variance, approximately of the same order as
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Figure F.4: Bistability. Figures (a) and (b) give the bifurcation diagrams for the mean

traits. Open shapes give the predictions of a two-morph oligomorphic approximation

for the dimorphic (circles, panel b) and single-morph (diamonds, panel c) solutions, for

both morphs 1 (blue) and 2 (orange). The gray lines represent the analytical expressions

1/2 ±
√

1 − 4m2/g2/2, which are shown on both panels (b) and (c) for convenience. The

results of the full model, without the oligomorphic approximation, are presented using black

dots. On panel (b), the black lines give the predictions of the oligomorphic approximation

(solid lines represent evolutionarily stable, and dashed lines evolutionarily unstable solu-

tions). In all panels, the vertical dotted line represents the value mBA ≈ 1.06 at which the

dimorphic equilibrium loses its demographic stability and one of the two morphs goes ex-

tinct. Parameter values: b = 1, g = 2, mAB = 0.8, VM = 10−6.
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Figure F.5: This figure gives some additional results which are helpful to better understand

figure F.4 Panel (a) gives the corresponding equilibrium values of the frequencies of morphs

1 (blue) and 2 (orange) for the single-morph (diamonds) and two-morph (circles) equilibria.

Panel (b) represents the dynamics of the mean trait in habitat A (solid line) and B (dashed

line) predicted by the single-morph oligomorphic approximation for mAB = mBA = 0.8. In all

panels, the vertical dotted line represents the value mBA ≈ 1.06 at which the dimorphic equi-

librium loses its demographic stability and one of the two morphs goes extinct. Parameters

as in figure 3.
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the morph variance.

When the mutational variances are different in habitats A and B, we have the following

expression for the morph variance at the mutation-selection equilibrium:

V∗
i =

√√√√ cA
i VA

M + cB
i VB

M

2g
[
1 − 4g

m (cA
i cB

i )
3/2
] (108)

with m =
√

mABmBA. Using the expression (105) and the fact that z̄i = cB
i = 1 − cA

i at

evolutionary equilibrium, it is straightforward to obtain a closed analytical expression:

V∗
1 =

√√√√√
(

1
2 +

1
2

√
1 − 4m2

g2

)
VA

M +
(

1
2 −

1
2

√
1 − 4m2

g2

)
VB

M

2g
[
1 − 4m2

g2

] (109)

and

V∗
2 =

√√√√√
(

1
2 −

1
2

√
1 − 4m2

g2

)
VA

M +
(

1
2 +

1
2

√
1 − 4m2

g2

)
VB

M

2g
[
1 − 4m2

g2

] (110)

These expressions correspond to the horizontal dotted lines in the top panel of figure 4A.

F.7 Example 2: A two-habitat resource-competition model

In this appendix, we consider a population of individuals distributed over two habitats, A

and B, coupled by migration. We extend the resource-competition model analysed in Sasaki

and Dieckmann (2011) to model migration across classes, and class-specific trait-mediated

competition for resources. The transition rates between classes are then

rAA(z) = b − nA
∫

a(z − y)ϕA(y, t)dy − g(z − θA)
2 − mBA

rAB(z) = mAB

rBA(z) = mBA

rBB(z) = b − nB
∫

a(z − y)ϕB(y, t)dy − g(z − θB)
2 − mAB

where b is the fecundity rate and g is a fecundity cost. We use quadratic cost functions for

simplicity, so that the cost is minimal at the habitat optima θA and θB. The function a(z − y) is

the competition kernel, which gives the intensity of competition experienced by individuals

with trait z when they interact with individuals with trait y. We assume that the kernel is a
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Figure F.6: Effect of mutation. The density distribution in habitats A (panel (a)) and B (panel

(b)), and the frequencies of morph 2 in each habitat (panel (c); A: solid, B: dashed) are shown

as a function of the mutational variance VM (log scale). When VM increases, the variance of

the distributions increases. There is a threshold at VM ≈ 10−3 above which the oligomorphic

approximation breaks down.
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symmetric function of the trait difference, so that a(z − y) = a(y − z), and furthermore we

assume, as in Sasaki and Dieckmann (2011), that a(0) = 1 and a′(0) = 0. In the case where

only one habitat is present, this corresponds to the model studied by Sasaki and Dieckmann

(2011).

Oligomorphic dynamics. The dynamics of the densities, frequencies, means and variances are

given by system (84) We use the oligomorphic approximation to calculate the derivatives of

the rates rAA(z) and rBB(z) for the specific case of Example 2. As in Sasaki and Dieckmann

(2011), we first Taylor-expand the competition kernel around y = z̄j
ℓ to obtain

a(z − y) = a(z − z̄j
ℓ) + a′(z − z̄j

ℓ)(y − z̄j
ℓ) +

1
2

a′′(z − z̄j
ℓ)(y − z̄j

ℓ)
2 + O(ε3)

Multiplying by f j
ℓϕ

j
ℓ(y, t) and summing over ℓ yields

a(z− y)ϕj(y, t) = ∑
ℓ

f j
ℓa(z− z̄j

ℓ)ϕ
j
ℓ(y, t)+∑

ℓ

f j
ℓa′(z− z̄j

ℓ)(y− z̄j
ℓ)ϕ

j
ℓ(y, t)+

1
2 ∑

ℓ

f j
ℓa′′(z− z̄j

ℓ)(y− z̄j
ℓ)

2ϕ
j
ℓ(y, t)+O(ε3)

Integrating over y, we obtain:

∫
a(z − y)ϕj(y, t)dy = ∑

ℓ

f j
ℓa(z − z̄j

ℓ) +
1
2 ∑

ℓ

f j
ℓV

j
ℓ a′′(z − z̄j

ℓ) + O(ε3)

We can then write the vital rates as

rAA(z) = b − nA ∑
ℓ

f A
ℓ a(z − z̄A

ℓ )− g(z − θA)
2 − mBA + O(ε2)

rBB(z) = b − nB ∑ f B
ℓ a(z − z̄B

ℓ )− g(z − θB)
2 − mAB + O(ε2)

and the partial derivatives:

∂rAA

∂z

∣∣∣∣
z̄A

i

= −nA ∑
ℓ

f A
ℓ a′(z̄A

i − z̄A
ℓ )− 2g(z̄A

i − θA) + O(ε2)

∂2rAA

∂z2

∣∣∣∣
z̄A

i

= −nB ∑
ℓ

f A
ℓ a′′(z̄B

i − z̄B
ℓ )− 2g + O(ε2)

with similar expressions for the partial derivatives in habitat B. We can then use these ex-

pressions in equations (84) to obtain the general oligomorphic approximation of the resource

competition model. This is how the numerical simulations in figure 5 in the main text (plain

and dashed lines) were performed.
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Projection on RV space. We can also plug these expressions into equations (88) and (97) to

obtain the projection on RV space:

dz̄i

dt
= Vi

[
−2g(z̄i − cB

i )− ∑
ℓ

(cA
i nA f A

ℓ + cB
i nB f B

ℓ )a′(z̄i − z̄ℓ)

]
(111)

dVi

dt
= −V2

i

2g + ∑
ℓ

(cA
i nA f A

ℓ + cB
i nB f B

ℓ )a′′(z̄i − z̄ℓ)− 2
(cA

i cB
i )

3/2

m

[
2g − ∑

ℓ

(nA f A
ℓ + nB f B

ℓ )a′(z̄i − z̄ℓ)

]2


(112)

With only one morph and a Gaussian kernel (i.e. a(x) = κ exp(−x2/(2ω2))) such that a′(0) =

0 and a′′(0) = −κ/ω2), this yields

dz̄1

dt
= −2gV1

[
z̄1 − cB

1

]
dV1

dt
= −2gV2

1

[
1 − κ

ω2 (c
A
1 nA + cB

1 nB)− 4g
m
(cA

1 cB
1 )

3/2
]

with m =
√

mABmBA,

cB
1 =

mAB( f B)2

mBA( f A)2 + mAB( f B)2 =
mAB(nB)2

mBA(nA)2 + mAB(nB)2

(this directly follows from equation (57)) and

dnA

dt
=
(

b − nAa(0)− g(z̄1)
2 − mBA

)
nA + mABnB

dnB

dt
=
(

b − nBa(0)− g(z̄1 − 1)2 − mAB

)
nB + mBAnA

With two morphs and a Gaussian kernel, we have

dz̄1

dt
= −2gV1

[
z̄1 − cB

1 − e1

2g
a′(z̄1 − z̄2)

]
dz̄2

dt
= −2gV2

[
z̄2 − cB

2 − e2

2g
a′(z̄2 − z̄1)

]

with

cB
i =

mAB( f B
i f B)2

mBA( f A
i f A)2 + mAB( f B

i f B)2

and

e1 = cA
1 nA f A

2 + cB
1 nB f B

2 ,

e2 = cA
2 nA f A

1 + cB
2 nB f B

2 ,
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together with the dynamics of morph variances (equation (112)) and of nk(t), f k
i (t) (equations

(84a)-(84c) with z̄A
i = z̄B

i = z̄i). The dotted lines in figure 5 show the results of the numerical

integration of this two-morph system.

F.8 Example 3: A two-habitat resource-consumer model

We now consider a resource-consumer model where the fitness function of individuals with

trait z in habitat k are given by

ρk(z) = b(z)
Sk

1 + τSk − d(z)− nk (113)

where Sk is the density of resource in habitat k, b(z) is the fecundity rate, d(z) the mortality

rate, and τ the handling time (that is we assume a type-II functional response). We assume a

trade-off between fecundity and survival, and in particular, for our simulations, we will use

b(z) = b0
z

1 + z
and d(z) = 1 + z

We have the following transition rates

rAA(z) = ρA(z)− mBA

rAB(z) = mAB

rBA(z) = mBA

rBB(z) = ρB(z)− mAB

and the eco-evolutionary dynamics of the consumer population can be approximated using

equations (84), together with the following equations for the dynamics of the resources:

dSA

dt
= θν(1 − ζSA)− δSA − SA ∑

i

(
b(z̄A

i )n
A f A

i + b(z̄B
i )n

B f B
i

)
(114a)

dSB

dt
= θ(1 − ν)(1 − ζSB)− δSB − SB ∑

i

(
b(z̄A

i )n
A f A

i + b(z̄B
i )n

B f B
i

)
(114b)

We therefore assume that the resource is produced in each habitat in a biased manner (first

term on the right-hand sides), and decays at rate δ in both habitats (second term). The third

term describes the depletion of resource due to the exploitation by the consumer, and is
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simply derived by a Taylor-expansion of

∫
b(z)nkϕk(z, t)dz = nk ∑

i

∫
b(z)ϕk

i (z, t) f k
i = nk ∑

i
f k
i b(z̄k

i ) + O(ε2)

For this example, we are interested in the dynamics of the mean trait in a given habitat,

that is across the different peaks of the multi-modal distribution. The mean trait in habitat A

can be calculated as

z̄A = ∑
i

f A
i z̄A

i .

Differentiating this equation yields

dz̄A

dt
= ∑

i
z̄A

i
d f A

i
dt

+ ∑
i

f A
i

dz̄A
i

dt
(115)

The first term tells us how the mean trait in habitat A changes when the height of the peaks

change (e.g. the frequencies). This describes fast dynamics. The second term tells us how

the mean trait in habitat A changes when the positions of the peaks change (e.g. the morph

means). This describes slow dynamics. To simplify the second term, we use the projection on

RV space and write
dz̄A

i
dt

≈ dz̄i

dt
= Vi

(
cA

i ρ′A(z̄i) + cB
i ρ′B(z̄i)

)
(116)

To simplify the first term we assume that we have only two morphs. Then f A
1 = 1 − f A

2 and

we obtain

∑
i

z̄A
i

d f A
i

dt
= (z̄A

1 − z̄A
2 )

d f A
1

dt
(117)

and use equation (84b) to obtain

d f A
1

dt
= f A

1 (1 − f A
1 )∆ρ +

f B

f A mAB( f B
1 − f A

1 ) (118)

where ∆ρA = ρA(z̄1) − ρA(z̄2) is the average difference in growth rates between the two

morphs.

Using the approximation z̄A
1 − z̄A

2 ≈ z̄1 − z̄2 and inserting equations (116) and (118) into

equation (115) yields

dz̄A

dt
= (z̄1 − z̄2)

[
f A
1 (1 − f A

1 )∆ρA +
f B

f A mAB( f B
1 − f A

1 )

]
+ ∑

i
f A
i Vi

[
cA

i ρ′A(z̄i) + cB
i ρ′B(z̄i)

]
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which is equation (37) in the main text.

An interesting limit is when the population eventually becomes monomorphic (say morph

1 goes to fixation), in which case f A
1 = f B

1 = 1 and therefore the first line vanishes, and the

dynamics of z̄A collapse to:
dz̄A

dt
V1

[
cA

1 ρ′A(z̄1) + cB
1 ρ′B(z̄1)

]
(119)

and we have z̄A = z̄A
1 . The term between brackets is the selection gradient one would obtain

from an invasion analysis in a monomorphic population and allows us to calculate evolu-

tionary singularities. In this model, with the trade-off functions we choose, we obtain the

following implicit relationship:

z̄A,∗ =

√
b0

(
cA

1
SA

1 + τSA + cB
1

SB

1 + τSB

)
− 1 (120)

Additional figures. In the main text, we discuss a specific scenario and we provide here two

additional figures. Figure F.7 presents the same simulation results as in figure 6 in the main

text but presents the dynamics of the morph frequencies and morph means, instead of the

class-level means and variances. Figure F.8 presents the same scenario as in figure 6 in the

main text, but starting from two morphs that have very similar trait values, so that the overall

standing variation in the population is small.

Parameter values. For this scenario, we use the following parameter values: θ = 8, ζ = 0.25,

ν = 0.2, d = 1, δ = 0.8, b0 = 7, τ = 0.5, VM = 10−5, mAB = 0.2, mBA = 0.4. See the companion

notebook for more details on the initial conditions.
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Figure F.7: Dynamics of morph frequencies (top panel) and morph means (bottom panel)

in the simulations of figure 6 in the main text, for both short-term (a) and long-term (b)

dynamics.
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Figure F.8: Same as in figure 6 in the main text, but when the two morphs are very close.
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