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A B S T R A C T   

The high proportion of transmission events derived from asymptomatic or presymptomatic infections make 
SARS-CoV-2, the causative agent in COVID-19, difficult to control through the traditional non-pharmaceutical 
interventions (NPIs) of symptom-based isolation and contact tracing. As a consequence, many US universities 
developed asymptomatic surveillance testing labs, to augment NPIs and control outbreaks on campus throughout 
the 2020–2021 academic year (AY); several of those labs continue to support asymptomatic surveillance efforts 
on campus in AY2021–2022. At the height of the pandemic, we built a stochastic branching process model of 
COVID-19 dynamics at UC Berkeley to advise optimal control strategies in a university environment. Our model 
combines behavioral interventions in the form of group size limits to deter superspreading, symptom-based 
isolation, and contact tracing, with asymptomatic surveillance testing. We found that behavioral interventions 
offer a cost-effective means of epidemic control: group size limits of six or fewer greatly reduce superspreading, 
and rapid isolation of symptomatic infections can halt rising epidemics, depending on the frequency of 
asymptomatic transmission in the population. Surveillance testing can overcome uncertainty surrounding 
asymptomatic infections, with the most effective approaches prioritizing frequent testing with rapid turnaround 
time to isolation over test sensitivity. Importantly, contact tracing amplifies population-level impacts of all 
infection isolations, making even delayed interventions effective. Combination of behavior-based NPIs and 
asymptomatic surveillance also reduces variation in daily case counts to produce more predictable epidemics. 
Furthermore, targeted, intensive testing of a minority of high transmission risk individuals can effectively control 
the COVID-19 epidemic for the surrounding population. Even in some highly vaccinated university settings in 
AY2021–2022, asymptomatic surveillance testing offers an effective means of identifying breakthrough in
fections, halting onward transmission, and reducing total caseload. We offer this blueprint and easy-to- 
implement modeling tool to other academic or professional communities navigating optimal return-to-work 
strategies.   
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1. Introduction 

Non-pharmaceutical interventions (NPIs) to control the spread of 
infectious diseases vary in efficacy depending on the natural history of 
pathogen that is targeted (Fraser et al., 2004). Highly transmissible 
pathogens and pathogens for which the majority of onward transmission 
events take place prior to the onset of symptoms are notoriously difficult 
to control with standard public health approaches, such as isolation of 
symptomatic individuals and contact tracing (Fraser et al., 2004). 
SARS-CoV-2, the causative agent in COVID-19, is a clear example of one 
of these difficult-to-control pathogens (Ferretti et al., 2020). While the 
first SARS-CoV was effectively contained via the isolation of symptom
atic individuals following emergence in 2002 (Petersen et al., 2020), at 
the time of this article’s revision, SARS-CoV-2 remains an ongoing 
public health menace that has infected more than 240 million people 
worldwide (WHO, 2020). Though the two coronaviruses are epidemio
logically comparable in their original basic reproduction numbers (R0) 
(Petersen et al., 2020), SARS-CoV-2 has evaded control efforts largely 
because the majority of virus transmission events occur prior to the 
onset of clinical symptoms in infected persons (Ferretti et al., 2020)—in 
stark contrast to infections with the first SARS-CoV (Petersen et al., 
2020). Indeed, in many cases, SARS-CoV-2-infected individuals never 
experience symptoms at all (Oran and Topol, 2020; Mizumoto et al., 
2020; Nishiura et al., 2020; Treibel et al., 2020) but, nonetheless, remain 
capable of transmitting the infection to others (Emery et al., 2020; 
Gandhi et al., 2020; Boyles, 2020; Kam et al., 2020; Bai et al., 2020). Due 
to the challenges associated with asymptomatic and presymptomatic 
transmission (Gandhi et al., 2020), surveillance testing of asymptomatic 
individuals has played an important role in COVID-19 epidemic control 
(Larremore et al., 2021; Bergstrom et al., 2020; Paltiel et al., 2020). 
Asymptomatic surveillance testing is always valuable for research pur
poses, but its efficacy as a public health intervention will depend on both 
the epidemiology of the focal infection and the characteristics of the 
testing regime. Here, we explore the effects of both behavior-based NPIs 
and asymptomatic surveillance testing on COVID-19 control in a uni
versity environment. 

In year two of the COVID-19 pandemic, the United States still leads 
the globe with over 46 million reported cases of COVID-19 (WHO, 
2020), and universities across the nation continue to struggle to control 
epidemics in their campus communities (Hubler and Hartocollis, 2020). 
To combat this challenge in AY2020–2021, colleges adopted a variety of 
largely independent COVID-19 control tactics, ranging from entirely 
virtual formats to a mix of in-person and remote learning, paired with 
strict behavioral regulations, and—in some cases—in-house asymp
tomatic surveillance testing (Richtel, 2020). In AY2021–2022, asymp
tomatic surveillance testing continues to play a key role in expanded 
plans for university reopening (Richtel, 2020; Nietzel, 2020), even on 
some campuses which also mandate vaccination (Vaziri and Asimov, 
2021). In March 2020, shortly after the World Health Organization 
declared COVID-19 to be a global pandemic (Ghebreyesus, 2020), the 
University of California, Berkeley, launched its own pop-up SARS-CoV-2 
testing lab in the Innovative Genomics Institute (IGI) (Amen et al., 2020) 
with the aim of providing COVID diagnostic services to the UC Berkeley 
community and underserved populations in the surrounding East Bay 
region. Though the IGI RT-qPCR-based pipeline was initially developed 
to service clinical, symptomatic nasopharyngeal and oropharyngeal 
swab samples (Amen et al., 2020), the IGI subsequently inaugurated an 
asymptomatic surveillance testing program for the UC Berkeley com
munity (Ehrenberg et al., 2021), through which—at the time of this 
revision—over 60,000 faculty, students, and staff in the UC Berkeley 
community have since been serviced with over 440,000 tests and 
counting (UC Berkeley COVID-19 Dashboard, 2020). From June 
2020-May 2021, weekly asymptomatic surveillance testing was 
mandatory for any UC Berkeley community member working on 
campus; testing requirements were relaxed in May 2021 for those 
providing proof of vaccination. 

Here we developed a stochastic, agent-based branching process 
model of COVID-19 spread in a university environment to advise UC 
Berkeley on best-practice approaches for asymptomatic surveillance 
testing in our community and to offer guidelines for optimal control in 
university settings more broadly. Previous modeling efforts have used 
similar approaches to advocate for more frequent testing with more 
rapid turnaround times at the expense of heightened test sensitivity 
(Larremore et al., 2021; Bergstrom et al., 2020) or to weigh the 
cost-effectiveness of various testing regimes against symptom-based 
screening in closed university or professional environments (Paltiel 
et al., 2020). Our model is unique in combining both behavioral in
terventions with optimal testing design in a real-world setting, offering 
important insights into efficient mechanisms of epidemic control and an 
effective tool to optimize control strategies. 

2. Materials and methods 

Our model takes the form of a stochastic branching process model, in 
which a subset population of exposed individuals (0.5%, derived from 
the mean percentage of positive tests in our UC Berkeley community (UC 
Berkeley COVID-19 Dashboard, 2020)) is introduced into a hypothetical 
20,000 person community that approximates our university campus 
utilization goals from spring 2021. With each timestep, the disease pa
rameters for each infected case are drawn stochastically from distribu
tions representing the natural history of the SARS-CoV-2 virus, paired 
with realistic estimates of the timeline of corresponding public health 
interventions (Ferretti et al., 2020; Paltiel et al., 2020; Peak et al., 2020) 
(Fig. 1). Our flexible model (Text S1; published here with open-access 
R-code (Brook et al., 2020)) allows for the introduction of NPIs for 
COVID-19 control in four different forms: (1) group size limits, (2) 
symptom-based isolations, (3) asymptomatic surveillance testing iso
lations, and (4) contact tracing isolations that follow after cases are 
identified through screening from symptomatic or asymptomatic sur
veillance testing (Table 1). Because we focused our efforts on optimal 
asymptomatic surveillance testing regimes, we did not explicitly model 
other NPIs, such as social distancing and mask wearing; however, the 
effects of these behaviors were captured in our representation of 
R-effective (hereafter, RE) for both within-campus and out-of-campus 
transmission. Since vaccination against SARS-CoV-2 became widely 
available during the review process of our article (including a vaccine 
mandate across the University of California school system (R. of the U. of 
California, UC issues final COVID-19 vaccination policy, Ucnet., 2021)), 
we updated our original model to allow for flexible starting conditions 
that include a variable proportion of vaccinated individuals in a specific 
university setting. We allowed a randomly selected 5% of vaccinated 
individuals to become infected and infectious as “breakthrough cases” 
(consistent with published estimates of vaccine efficacy for the 
Pfizer-BioNTech mRNA vaccine with the most widespread uptake in the 
US (Polack et al., 2020)). For simplicity, we assumed that all infectious 
individuals were equally transmissible, regardless of vaccination status 
(though see ‘Discussion’ for future research objectives). After experi
encing infection, we further assumed that all individuals became 
recovered and immune for the remaining duration of our simulations, as 
our focal timescale of interest (the academic semester) is shorter than 
most projections of the duration of immunity to SARS-CoV-2 (Kissler 
et al., 2020; Saad-Roy et al., 2020). 

RE is the product of the pathogen basic reproduction number (R0) 
and the proportion of the population that is susceptible to disease. RE is 
thus a dynamic value which corresponds to the number of new in
fections caused by a single infection at a given timepoint within a 
specified community. We computed an independent RE for each infec
tious person in our population as a combined result of both heteroge
neity in individual infectiousness and heterogeneity in individual 
contact events that could result in transmission. To determine RE, we 
first drew a value of potential cases for each infectious individual from 
the SARS-CoV-2 negative binomial distribution for R0, estimated to have 
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a mean value of 2.5 and a dispersion parameter (k) of 0.10 (Endo et al., 
2020); in later analyses incorporating highly vaccinated university set
tings reflective of the reality of AY2021–2022, we shifted the mean to a 
value of 6 to better approximate the dynamics of highly transmissible 
variants of concern (e.g. the Delta variant) (Liu and Rocklov, 2021). 
Though representation of RE in log-normal vs. negative binomial form 
will not change the average number of cases generated per epidemic, the 
negative binomial distribution replicates the dynamics of super
spreading events, which are known to play an important role in 
SARS-CoV-2 dynamics (Jumar et al., 2020; Althouse et al., 2020; 
Hébert-Dufresne et al., 2020; Liu et al., 2020; Adam et al., 2559; Kain 
et al., 2020). Indeed, there is strong direct empirical evidence that 
COVID-19 epidemiology exhibits a negative binomial RE across multiple 
systems (Adam et al., 2559; Laxminarayan et al., 2020; Lau et al., 2020; 
Goyal et al., 2020); as few as 10% of infectious individuals may be 
responsible for 80% of onward SARS-CoV-2 transmissions (Nielsen and 
Sneppen, 2020). 

After drawing potential cases for each infectious individual, we next 
hypothesized that most university students would interact predomi
nantly with other students vs. people from the surrounding community 
and, thus, modeled only a minority (10%) of possible onward trans
missions as lost to the external community (e.g. an infectious UC Ber
keley community member infects someone outside the UC Berkeley 
community), though see ‘Results’ for discussion of sensitivity analysis of 
this assumption. 

Next, we assumed that social distancing, masking, and behavioral 
modifications in our community would modulate dynamics such that 
some of the remaining 90% (or 50% in sensitivity analyses) of the 
original R0-derived potential infections do not take place. Because we 
were specifically interested in advising UC Berkeley on group size limits 
for gatherings, we then drew a number of possible onward transmission 
events for each infectious individual from a simple Poisson distribution 
with λ = 3, signifying the average number of possible encounters (i.e. 
cross-household dining, shared car rides, indoor meetings, etc.) per 
person that could result in transmission. We then use published esti
mates of the generation time of onward transmission events for SARS- 
CoV-2 infection (Ferretti et al., 2020) to draw event times for these 
encounters and distributed each infectious person’s original number of 
R0-derived potential cases among these events at random. This ensured 
that multiple transmissions were possible at a single event; the most 
extreme superspreading events occur when persons with 

heterogeneously high infectiousness draw a large number of potential 
cases, which are concentrated within a relatively small number of 
discrete transmission events. When we imposed group size limit NPIs in 
our model, we truncated case numbers for each event at the intervention 
limit. 

For each infectious individual, we additionally generated an inde
pendent virus trajectory, using a within-host viral kinetics model for 
SARS-CoV-2 upper respiratory tract infections, structured after the 
classic target cell model (Perelson, 2002; Ho et al., 1995; Nowak and 
May, 2000; Ke et al., 2020) (Text S2). From each independent virus 
trajectory, we inferred a time-varying transmissibility, modeled as a 
Michaelis-Menten-like function of viral load (Ke et al., 2020). We fixed 
the within-host viral kinetics model constant, θ, at a value that allowed 
for a ~50% probability of infection occurring per transmissible contact 
event at an infectious individual’s peak viral load (Ke et al., 2020). 
Because all possible onward transmissions were assigned an event gen
eration time, we next evaluated the viral load of the infectious person at 
the time of each potential transmission to determine whether or not it 
actually occurred. By these metrics, our original R0-derived possible 
cases were halved, such that RE, the number of average onward in
fections caused by a single infectious person in the UC Berkeley com
munity, was reduced to just over one (RE =1.05), or just under three (RE 
=2.94) in the case of Delta variant simulations, consistent with pub
lished estimates of Bay Area RE and initial asymptomatic test results in 
our community from the first year of the pandemic (UC Berkeley 
COVID-19 Dashboard, n.d.; Schwab et al., n.d.). The majority of 
modeled transmission events occurred when the infectious host had 
higher viral titers, thus biasing new case generations towards earlier 
timesteps in an individual’s infection trajectory, often occurring prior to 
the onset of symptoms as is realistic for COVID-19 (Peak et al., 2020) 
(Fig. 1). 

In addition to modulating the probability of onward transmission 
events, each infectious individual’s virus trajectory additionally allowed 
us to compute a timing of symptom onset, which corresponded to the 
timepoint at which an individual’s virus trajectory crossed some 
threshold value for presentation of symptoms. We drew each threshold 
randomly from a log-normal distribution with a mean of 105 virus copies 
per μl of RNA; by these metrics, roughly 32% of our modeled population 
presented as asymptomatic, in keeping with published estimates for 
SARS-CoV-2 (Mizumoto et al., 2020; Nishiura et al., 2020). Using each 
infectious individual’s viral load trajectory, we were next able to 

Fig. 1. Conceptual schematic of branching process model of SARS-CoV-2 dynamics., Person A is isolated through testing after exposing Person B and Person C. 
Person B is then isolated through contact tracing, while Person C is not traced but is nonetheless ultimately isolated through symptomatic surveillance. A viral titer 
trajectory (right) is derived from a within-host viral kinetics model (Text S2)—independent trajectories from 20,000 randomly-selected individuals are shown here to 
highlight the range of possible variation. The 25th and 75th titer threshold percentile for the onset of symptoms are depicted in pink, such that 32% of individuals 
modeled in our simulations did not present symptoms. 
Schematic is adapted in concept from Hellewell et al. (2020). 
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compute a period of test sensitivity, corresponding to the time during 
which viral load is high enough for detection by the virus test in ques
tion, based on the modeled limit of detection. Asymptomatic surveil
lance testing results in higher “false-negative” test results both very 
early and very late in infection when viral loads are below the detection 
limit for the adopted assay (Kucirka et al., 2020) (Fig. 1), though most 
tests should reliably detect infectious cases with viral titers > 106 cp/μl 
(Wölfel et al., 2020; Quicke et al., 2020; La Scola et al., 2020). We 
explored dynamics across a range of published values for test limits of 
detection: 101, 103, and 105 virus copies per μl of RNA. The IGI’s 
RT-qPCR-based testing pipeline has a published sensitivity of 1 cp/μl 
(Amen et al., 2020), while the majority of SARS-CoV-2 RT-qPCR tests 
nationally are reliable above a 103 cp/μl threshold (Vogels et al., 2020); 
less-sensitive antigen-based and LAMP assays report detection limits 
around 105 cp/μl (Meyerson et al., 2020; Dao Thi et al., 2020). Some 
commercially-available COVID-19 test kits report detection limits in 
TCID50/ml, which corresponds to the median tissue culture infectious 
dose, roughly approximating a threshold for the infectious viral load. 
Though exact values will vary depending on the virus, cell type, and 
assay conditions, a 100 TCID50/ml limit of detection for SARS-CoV-2 has 
been shown to correspond to a viral load detection limit between 102 

and 103 cp/μl RNA (Bordi et al., 2020; Fiedler et al., 2021). For refer
ence, the Abbot BinaxNOW™ COVID-19 Ag card reports a limit of 
detection of 140.6 TCID50/ml (between 102 and 103 cp/μl RNA), while 
the QuickVue At-Home COVID-19 test reports a limit of detection of 
1.91 × 104 TCID50/ml (between 104 and 105 cp/μl RNA). 

In addition to within-community transmissions, all individuals in the 
modeled population were also subjected to a daily hazard (0.25% in 
standard model runs and 0.60% in Delta variant runs) of becoming 
infected from an external source, based on published estimates of RE and 
COVID-19 prevalence in Alameda County (Schwab et al., n.d.; Chitwood 
et al., 2020). We report the mean results of 100 stochastic runs of each 
proposed intervention. 

3. Results 

3.1. Comparing behavioral NPIs for COVID-19 control 

We first ran a series of epidemic simulations using a completely 
mixed population of 20,000 individuals subject to the infection dy
namics outlined above to compare and contrast the impacts of our four 
NPIs on COVID-19 control. We introduced an initial population of 100 
infectious individuals (0.5%) at timestep 0 and compared the effects of a 
single intervention on epidemic trajectories after the first 50 days of 
simulation. Less intensive or intervention-absent scenarios allowed in
fectious cases to grow at unimpeded exponential rates, rapidly 
exhausting our susceptible supply and making it necessary to compare 
results at a consistent (and early) timepoint in our simulated epidemics. 

As a consequence of our representation of RE in negative binomial 
form, we first considered the COVID-19 control effectiveness of group 
size limits on in-person gatherings, which doubled as upper thresholds in 
transmission capacity (Fig. 2). Assuming that 90% of the modeled 
population adhered to assumed group size regulations, we found that 
limiting outdoor gatherings to groups of six or fewer individuals saved a 
mean of ~7900 cases per 50-day simulation (in a 20,000 person popu
lation) and corresponded to an RE reduction of nearly 0.20 (reducing RE 
from 1.05 to subclinical 0.86; Fig. 2; Dataset S1). By contrast, a large 
group size limit of 50 persons had almost no effect on epidemic dy
namics; under published estimates of SARS-CoV-2 negative binomial RE 
(Endo et al., 2020), a group size limit of 50 will restrict transmission 
from only 0.00039% of infectious individuals (Fig. 2). Intriguingly, in 
sensitivity analyses exploring assumptions of only 50% adherence to 
group size limits, we witnessed larger caseloads only at group size limits 
of 16 or fewer individuals (Fig. S1); at group sizes of 20 or more in
dividuals, density limits were so ineffective already that reducing 
adherence had no power to further undermine the intervention’s 

Table 1 
Parameter ranges and interventions included in model.  

Parameter Values investigated Referencesa 

Basic epidemiology 
Population size  • 20,000 – 
Number initially 

infected  
• 100 – 

Possible cases per 
infectious individual 
(R0), prior to 
environmental 
corrections  

• Negative binomial 
distribution (main text): 

mean = 2.5; k = 0.10   
• Lognormal distribution 

(Fig. S2): 
mean= 2.5; sd = 0.10  
• Negative binomial 

distribution, Delta 
(Fig. S7, S8): mean = 2.5; 
k = 0.10. 

(Endo et al., 2020;Liu 
and Rocklov, 2021) 

Transmission events per 
infectious individual  

• Poisson distribution: λ =

3  
– 

Virus generation time  • Weibull distribution: k =

2.826; λ = 5.665  
(Ferretti et al., 2020) 

Proportion of 
transmissions 
maintained within the 
UCB community  

• 90% (main text)  
• 50% (Fig. S5) 

– 

Population proportion 
vaccinated  

• 0% (main text)  
• 97.7% (Fig. S7)  
• 60% (Fig. S8) 

(UC Berkeley COVID-19 
Dashboard,n.d.;  
University of Alabama 
System COVID-19 
Dashboard, n.d.) 

Proportion of vaccinated 
individuals 
experiencing 
breakthrough cases  

• 0% (main text)  
• 5% (Fig. S7, S8) 

(Polack et al., 2020) 

Threshold viral titer for 
symptom onset  

• Lognormal distribution: 
mean = 105 viral cp/μl 
RNA; sd = 104 viral cp/μ 
(main text; yields ~30% 
asymptomatic infections)  

• Lognormal distribution: 
mean = 107 viral cp/μl 
RNA; sd = 104 viral cp/μ 
(Fig. S3; yields ~50% 
asymptomatic infections) 

(Mizumoto et al., 2020; 
Nishiura et al., 2020) 

Behavior-based NPIs 
Group size limits  • 6, 12, 16, 20, 50, no limit 

(main text;Fig. S1, S2) 
– 

Population proportion 
adhering to group size 
limits  

• 90% (main text;Fig. S2)  
• 50% (Fig. S1) 

– 

Lag time to symptomatic 
isolation  

• Normal distribution: 
mean = 1,2,3,4,5 days; sd 
= 0.5 days 

– 

Lag time to contact 
tracing  

• Normal distribution: 
mean = 1 day; sd = 0.5 
days 

– 

Population proportion 
participating in 
contact tracing  

• 0% (main text)  
• 90% (Fig. S4) 

– 

Testing interventions 
Testing frequency  • semi-weekly (2x/week)  

• weekly  
• every-two-weeks 

– 

Test days per week  • 2 (main text)  
• 5, 7 (Fig. S6) 

– 

Testing turnaround time  • Normal distribution: 
mean = 1,2,3,4,5,10 
days; sd= 0.5 days 

– 

Test limit of detection  • 101, 103, 105 viral cp/μl 
RNA 

(Amen et al., 2020; 
Vogels et al., 2020; 
Meyerson et al., 2020; 
Dao Thi et al., 2020; 
Bordi et al., 2020; 
Fiedler et al., 2021)  

a if applicable; otherwise, indicates a parameter investigated in this analysis. 
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impacts. Gains in epidemic control from group size limits resulted from 
avoidance of superspreading events, an approach that was effective for 
negative binomial but not log-normal representations of RE that lack the 
transmission “tail” characteristic of a superspreader distribution (Kain 

et al., 2020) (Fig. S2). Importantly, by avoiding superspreading events, 
group size limits also reduced variance in daily case counts, yielding 
more predictable epidemics, which are easier to control through testing 
and contact tracing (Ferretti et al., 2020; Peak et al., 2020; Hellewell 

Fig. 2. Effects of group size limits on COVID-19 dynamics., A. Negative binomial RE distribution with mean = 1.05 and dispersion parameter (k) = 0.10. The colored 
vertical dashes indicate group size limits that ‘chop the tail’ on the RE distribution; for 90% of the population, coincident cases allocated to the same transmission 
event were truncated at the corresponding threshold for each intervention. B. Daily new cases and, C. Cumulative cases, across a 50-day time series with 95% 
confidence intervals by standard error depicted under corresponding, color-coded group size limits. 

Fig. 3. Impacts of NPIs on COVID-19 control., A. Mean reduction in RE * and B. cumulative cases saved across 50-day simulated epidemics under assumptions of 
differing non-pharmacological interventions (NPIs). NPIs are color-coded by threshold number of persons for group-size limits, lag-time for symptom-based iso
lations, and mean turnaround time from test positivity to isolation of infectious individuals for testing isolations. For testing isolations, shading hue corresponds to 
test limit of detection with the darkest colors indicating the most sensitive tests with a limit of detection of 101 virus copies/μl of RNA. Progressively lighter shading 
corresponds to limits of detection = 103, 105, and 107 cp/μl. *Note: RE reduction (panel A) is calculated as the difference in mean RE in the absence vs. presence of a given 
NPI. The upper confidence limit (uci) in RE reduction is calculated as the difference in uci RE in the absence vs. presence of NPI. In our model, mean RE in the absence of NPI 
equals 1.05 and uci RE in the absence of NPI equals 8.6. 

C.E. Brook et al.                                                                                                                                                                                                                                



Epidemics 37 (2021) 100527

6

et al., 2020). Over the July 4, 2020 weekend, asymptomatic surveillance 
testing resources in our UC Berkeley community were overwhelmed and 
containment efforts challenged after a single superspreading event on 
campus (U.B. Public Affairs, 2020). 

We next investigated the impacts of variation in lag time to self- 
isolation post-symptom onset for the just under 70% of individuals 
likely to present with COVID-19 symptoms in our modeled population 
(Fig. 3). At UC Berkeley, all essential students, faculty, and staff must 
complete a digital ‘Daily Symptom Screener’ before being cleared to 
work on campus; here, we effectively modeled the delay post-initial 
symptom onset to the time at which each individual recognizes symp
toms sufficiently to report to the Screener and isolate. For each infected 
individual in our population, we drew a symptom-based isolation lag 
from a log-normal distribution centered on a mean of one to five days, 
assuming the entire population to be compliant with the selected lag. 

By these metrics, a rapid, one day lag in symptom-based isolation 
was the fourth-most effective intervention in our study, with a mean of 
more than 13,100 cases saved in a 50-day simulation (again, in a 20,000 
person population), corresponding to an RE reduction of 0.67, from 1 to 
0.38 (Dataset S1). Longer lag times to isolation produced less dramatic 
results, but even an average five-day lag to isolation post-symptom onset 
nonetheless yielded more than 4,000 cases saved and reduced RE by a 
mean of 0.06. The efficacy of symptom-based isolation decreased at 
higher virus titer thresholds for symptom onset, corresponding to a 
higher asymptomatic proportion (~50%) of the population (Fig. S3); 
some empirical findings suggest that these higher titer thresholds for 
symptom onset may more accurately reflect COVID-19 epidemiology 
(Poletti et al., 2020). Because both group size limits and daily screening 
surveys to facilitate symptom-based isolation can be implemented 
without expending substantial resources, we advocate for these two 
approaches as particularly cost-effective COVID-19 control strategies for 
all university and small community environments—especially those 
lacking an on-site asymptomatic surveillance testing lab. 

4. Comparing asymptomatic surveillance testing for COVID-19 
control 

Our primary motivation in developing this model was to advise UC 
Berkeley on best-practices for asymptomatic surveillance testing. As 
such, we focused efforts on determining the most effective use of testing 
resources by comparing asymptomatic surveillance testing across a 
range of approaches that varied test frequency, test turnaround time (the 
time from which the test was administered to the timing of positive case 
isolation), and test sensitivity (based on the limit of detection). 

We compared all permutations of asymptomatic surveillance testing, 
varying test frequency across semi-weekly, weekly, and every-two-week 
regimes, investigating turnaround time across delays of one to five and 
ten days, and exploring limits of detection of 101, 103, and 105 virus 
copies per μl of RNA. These test frequency regimes reflect those 
considered by UC Berkeley administrators throughout the pandemic: 
from August-December 2020 and January-April 2021, UC Berkeley un
dergraduates residing in university residence halls were subject to 
compulsory semi-weekly asymptomatic surveillance testing, while all 
other campus community members were permitted to take part in 
voluntary testing with a recommended weekly or every-two-week fre
quency. After vaccines became widespread (and eventually mandated), 
testing requirements for vaccinated undergraduates in residence halls 
were reduced to once a month. Turnaround time values in our model 
reflect the reality in range of testing turnaround times from in-house 
university labs like that at UC Berkeley to institutions forced to out
source testing to commercial suppliers (Wu, 2020), and limits of 
detection span the range in sensitivity of available SARS-CoV-2 tests 
(Amen et al., 2020; Vogels et al., 2020; Meyerson et al., 2020; Dao Thi 
et al., 2020). 

Across testing regimes broadly, we found test frequency, followed by 
turnaround time, to be the most effective NPIs, with limit of detection 

exerting substantially less influence on epidemic dynamics, consistent 
with findings published elsewhere (Larremore et al., 2021; Bergstrom 
et al., 2020). The top three most effective NPIs in our study corre
sponded to semi-weekly testing regimes with one- and two-day turn
around times across 101 and 103 cp/μl limits of detection. These three 
scenarios yielded mean cases saved ranging from just over 14,000 to just 
over 13,500 in the first 50 days of simulation and produced an RE 
reduction capacity between 0.97 and 0.80 (Fig. 3; Dataset S1). Halving 
test frequency to a weekly regimen, under assumptions of turnaround 
time= 1 day and limit of detection= 101, resulted in a nearly 48% 
decrease in the NPI’s RE reduction capacity. By comparison, a single 
extra day lag from one to two-day turnaround time under semi-weekly 
testing conditions at limit of detection= 101 cp/μl yielded a modest 
16% decrease in RE reduction capacity. However, longer delays in 
turnaround time of up to ten days or more—not unusual in the early 
stages of the COVID-19 pandemic (Wu, 2020)—were not significantly 
different from scenarios in which no intervention was applied at all. This 
outcome results from the rapid generation time of SARS-CoV-2 (Ferretti 
et al., 2020); most infectious individuals will have already completed 
the majority of subsequent transmissions by the time a testing isolation 
with a 10-day turnaround time is implemented. Nonetheless, encour
agingly, reducing test sensitivity from 101 to 103 under a semi-weekly, 
turnaround time= 1 day regime decreased RE reduction capacity by 
only 18%, offering support to advocates for more frequent but less 
sensitive tests (Meyer and Madrigal, 2020) but also highlighting the 
added benefit incurred when university testing labs, like that at UC 
Berkeley, are able to provide both frequent and sensitive PCR-based 
testing. 

Addition of a contact tracing intervention, in which 90% of infec
tious contacts were traced and isolated within a day of the source host 
isolation, to NPI scenarios already featuring either symptom-based or 
asymptomatic surveillance testing isolation enhanced each in
tervention’s capacity for epidemic control (Fig. S4). Of note, contact 
tracing boosted performance of some of the poorest performing testing 
interventions, such that even those previously ineffective asymptomatic 
surveillance regimens with 10-day turnaround time nonetheless averted 
cases and significantly reduced RE when infectious contacts could be 
isolated. For a semi-weekly testing regime at limit of detection = 101 cp/ 
μl and turnaround time = 10 days, the addition of contact tracing 
increased mean cases saved from ~510 to > 8600 and increased RE 
reduction capacity from 0.000080 to 0.27 (Dataset S2). 

5. Optimizing combined NPIs for COVID-19 control 

Our modeled simulations suggested that it is possible to achieve 
largely equivalent gains in COVID-19 control from NPIs in the form of 
group size limits, symptom-based isolations, and asymptomatic sur
veillance testing isolations—though gains from symptom-based behav
ioral isolations were jeopardized under assumptions of a higher 
proportion of asymptomatic individuals (Fig. S3). Nonetheless, the most 
effective interventions were realized when behavioral control mecha
nisms were combined with asymptomatic surveillance testing (Fig. 4). 
Assuming a one day turnaround time and 101 cp/μl limit of detection, 
we found that adding (a) contact tracing with 90% adherence and a one- 
day lag, plus (b) symptom-based isolation with a one-day lag, plus (c) a 
group size limit of twelve persons to an every-two-week asymptomatic 
surveillance testing regimen could elevate the RE reduction capacity 
from 0.22 to 0.83 and almost double the ~6600 cases saved from the 
testing intervention alone (Dataset S3). Combining interventions 
enabled less rigorous testing regimes to rival the effectiveness of semi- 
weekly asymptomatic surveillance testing without expending addi
tional resources. In addition, combining interventions resulted in less 
variation in the cumulative case count, as many layers of opportunity for 
infection isolation helped limit the likelihood of a superspreading event 
spiraling out of control. Sensitivity analyses indicated that our findings 
were largely robust to assumptions of exacerbated insularity in 
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university settings (e.g. when only 1% of transmissions were lost to the 
outside) but that the impacts of combined interventions were reduced 
under sensitivity analyses exploring a higher proportion (e.g. 50%) of 
transmissions lost to the external community (Fig. S5), as interventions 
can only be applied within the closed campus. These findings highlight 
the vulnerability of any community public health control measure to 
disease introductions from beyond the sphere of control. On a macro
scale, isolated countries like New Zealand have struggled with this 
challenge across the course of the COVID-19 pandemic (Geoghegan 
et al., 2020). 

Finally, we also experimented with varying the distribution of days 
allocated to asymptomatic surveillance testing, without changing the 
frequency with which each individual was tested. Specifically, we 
explored semi-weekly, weekly, and every-two-week testing regimens in 
which tests were administered across two, five, and seven available 
testing days per week. More broadly distributed test days corresponded 
to fewer tests per day at a population level but, as with more interven
tion layers, resulted in less variation in the cumulative total cases 
because testing isolations more closely tracked daily exposures (Fig. S6). 

6. Modeling COVID-19 dynamics in the campus community 

We next sought to advise the IGI on asymptomatic surveillance 
testing strategies explicitly by simulating epidemics in a more realistic, 
heterogeneous population modeled after the UC Berkeley campus 

community in the spring semester of AY2020–2021 (Fig. 5). To this end, 
we subdivided our 20,000 person university population into a 5,000 
person “high transmission risk” cohort and a 15,000 person “low 
transmission risk” cohort, assuming “high transmission risk” status to 
correspond to individuals (such as undergraduates), living in high 
density housing with a majority of contacts (90%) concentrated within 
the UCB community and “low transmission risk status” to correspond to 
individuals (such as faculty members or postdoctoral scholars) with only 
limited contacts (40%) in the UCB community. We imposed a 12-person 
group size limit (with 90% adherence) on the population as a whole, as 
recommended by the City of Berkeley Public Health Department in the 
early months of the pandemic (C. of B.P.H. Officer, 2020), and assumed 
a one-day average lag in symptom-based isolation for all cohorts. To add 
additional realism, we enrolled only 50% of each transmission risk 
group in our modeled asymptomatic surveillance testing program (to 
mimic adherence—though asymptomatic surveillance testing is 
compulsory for undergraduates residing in residence halls at UC Ber
keley (UC Berkeley COVID-19 Dashboard, n.d.)). We assumed that 95% 
efficacy in contact tracing (with a mean tracing delay of one day) for 
those enrolled in our asymptomatic surveillance program but only 50% 
efficacy for those not enrolled; UC Berkeley has encouraged all com
munity members to enroll in the ‘CA Notify’ digital contract tracing app 
developed by Apple and Google (U.S.D. Health, CA Notify, 2020). For all 
testing interventions, we assumed limit of detection= 101 cp/μl and 
turnaround time= 2 days, the average for the IGI asymptomatic 

Fig. 4. Combining behavioral and asymptomatic surveillance testing NPIs for COVID-19 control., A. Mean reduction in RE * , B. cumulative cases saved, and C. daily 
case counts for the first 50 days of the epidemic, across regimes of differing testing frequency and a combination of asymptomatic surveillance testing, contact 
tracing, symptomatic isolation, and group size limit interventions. All scenarios depicted here assumed test turnaround time, symptomatic isolation lags, and contact 
tracing lags drawn from a log-normal distribution with mean=one day. Limit of detection was fixed at 101 and group size limits at 12. Dynamics shown here are from 
simulations in which testing was limited to two test days per week., *Note: RE reduction (panel A) is calculated as the difference in mean RE in the absence vs. presence of a 
given NPI. The upper confidence limit (uci) in RE reduction is calculated as the difference in uci RE in the absence vs. presence of NPI. In our model, mean RE in the absence of 
NPI equals 1.05 and uci RE in the absence of NPI equals 8.6. 
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surveillance testing lab (Amen et al., 2020). 
We found that targeted, semi-weekly testing of 50% of individuals in 

the high transmission risk cohort, paired with every-three-week testing 
of enrolled individuals in the low transmission risk cohort yielded mean 
RE reduction and cumulative cases saved on par with that achieved from 
weekly testing (and better than that achieved from every-two-week 
testing) of all enrolled individuals in the population at large (Fig. 5). 
Targeting the highest transmission-risk populations with testing allows 
practitioners to save valuable resources while simultaneously control
ling the epidemic for the entire community. Importantly, while mean RE 
reduction and cumulative cases were largely comparable between the 
targeted, semi-weekly testing regiment and the untargeted, weekly 
regimen, the observed variance in intervention efficacy (Fig. 5C) was 
substantially greater for the targeted scenario, in which the low trans
mission risk cohort was only tested once every three weeks. This results 
from a higher probability that a rare superspreading event could occur in 
the infrequently monitored low transmission risk cohort, thus reaf
firming our previous observation that more frequent asymptomatic 
surveillance testing regimens result in more predictable—and easier to 
control—epidemics. 

Notably, irrespective of intervention, the diminished transmissibility 
of the “low transmission risk” population in this heterogeneous model 
structure greatly reduced epidemic spread in subsequent simulations as 
compared with those presented previously in the perfectly mixed envi
ronment; as a result, we here compared interventions after 500 days of 
simulation, rather than 50. The heightened realism of our heterogenous 
population generated slow-moving epidemics more closely resembling 
those we witnessed in our university environment across AY2020–2021. 

7. Modeling vaccinated environments 

During the time in which this article was under review, COVID-19 
vaccines became widely available in the US, and the University of Cal
ifornia system issued a vaccine mandate for students and staff across all 
of its campuses, including UC Berkeley (R. of the U. of California, UC 
issues final COVID-19 vaccination policy, Ucnet., 2021). Simulta
neously, the highly transmissible Delta variant (R0 ~ 6 (Liu and Rocklov, 
2021)) took hold as the most widespread SARS-CoV-2 lineage in the 
United States (de Rio et al., 2021). To address this new reality, we ran 
additional simulations of our original, single-population, university 
testing model, comparing the mosaic of possible interventions exhibited 
in Fig. 4 under assumptions of R0 = 6 in university settings in which a 
variable proportion of the student population was vaccinated. Specif
ically, we compared simulations in a population that was only 60% 
vaccinated (reflecting the student population of the University of Ala
bama, Tuscaloosa, a comparably sized public university to UCB but 
without a vaccine mandate, at the time of writing (University of Ala
bama System COVID-19 Dashboard, n.d.)) to simulations in a population 
that was 97.7% vaccinated (reflecting the UC Berkeley undergraduate 
population at the time of writing (UC Berkeley COVID-19 Dashboard, n. 
d.)). Over 1000 US universities and colleges have now issued guidelines 
mandating vaccination (with some exceptions) for on-campus study 
(Thomason and O’Leery, 2021). 

In these new simulations, testing, tracing, symptomatic isolation, 
and group size limit NPIs continued to have scalable impacts on COVID- 
19 dynamics within each respective university setting (Fig. S7-S8). 
Baseline RE under Delta variant assumptions in 60% vaccinated pop
ulations without behavior- or testing-based interventions was higher 
than baseline RE in unvaccinated populations under standard trans
mission assumptions (1.12 vs. 1.05). Nonetheless, behavior- and testing- 

Fig. 5. Targeted testing of high transmission risk cohorts in a heterogenous population., A. Schematic of transmission risk group cohorts in the heterogenous model. 
The population is divided into 5000 “high transmission risk” and 15000 “low transmission risk” individuals, for which, 90% and 40% of the proportion of trans
mission events take place within the UC Berkeley community, respectively. Of those transmission events within the Berkeley community, the majority (80%) are 
restricted within the same transmission risk group as the infector, while 20% are sourced to the opposing risk group. Half of each cohort is assumed to be enrolled in 
asymptomatic surveillance testing and subjected to the differing test frequency regimes depicted in panels B. through D. Panel B. shows the progression of cumulative 
cases across 730 days of simulation for each testing regime, while panel C. and D. give, respectively, the reduction in RE * and the total cases saved achieved by each 
test regime vs. a no intervention baseline., *Note: RE reduction (panel A) is calculated as the difference in mean RE in the absence vs. presence of a given NPI. The upper 
confidence limit (uci) in RE reduction is calculated as the difference in uci RE in the absence vs. presence of NPI. In our model, mean RE in the absence of NPI equals 1.05 and uci 
RE in the absence of NPI equals 8.6. 
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based NPIs easily controlled epidemics in a less susceptible population 
(Fig. S7). Averted cases were fewer because fewer infections occurred 
altogether in the partially-vaccinated population. Daily variance in 
exposure rate narrowed and differences in impact between interventions 
of variable intensity were less extreme in this more mild epidemic sce
nario, a pattern even more pronounced in simulations assuming a 97.7% 
vaccinated population. Under assumptions of near-complete vaccination 
and Delta transmission, baseline RE equaled 0.17, and a testing only 
intervention with an every-two-week frequency was sufficient to avert 
the majority of onward transmission in the system (Fig. S8). Our findings 
offer support for some university policies which continue to mandate 
asymptomatic surveillance testing even for vaccinated individuals 
(Vaziri and Asimov, 2021), as even modest surveillance efforts still 
effectively reduced RE and averted cases in highly vaccinated settings. 
Our model is structured such that future work could investigate the 
impact of disparate population sizes, distinct R0 values reflective of 
variable contact patterns, and unique vaccination proportions in het
erogeneous subgroups within a larger community on longterm epidemic 
control. 

8. Discussion 

We built a stochastic branching process model of SARS-CoV-2 spread 
in a university environment to advise UC Berkeley on best-practice 
strategies for effective asymptomatic surveillance in our pop-up IGI 
testing lab—and to offer a model for other institutions attempting to 
control the COVID-19 epidemic in their communities. While previous 
work has explored the isolated effects of specific NPIs—including group 
association limits (Kain et al., 2020), symptomatic isolation (Ferretti 
et al., 2020; Larremore et al., 2021; Bergstrom et al., 2020; Paltiel et al., 
2020; Peak et al., 2020; Hellewell et al., 2020), asymptomatic surveil
lance testing (Larremore et al., 2021; Bergstrom et al., 2020; Paltiel 
et al., 2020), and contact tracing (Ferretti et al., 2020; Peak et al., 2020; 
Hellewell et al., 2020)—on COVID-19 control, ours is unique in inves
tigating these interventions simultaneously in a realistic and easily 
applicable setting. We offer an easy-to-implement modeling tool that 
can be applied in other educational and workplace settings to provide 
NPI recommendations tailored to the COVID-19 epidemiology of a 
specific environment. 

Results from our analysis of behavior-based NPIs support previous 
work (Ferretti et al., 2020; Larremore et al., 2021; Bergstrom et al., 
2020; Paltiel et al., 2020; Peak et al., 2020; Hellewell et al., 2020; Kain 
et al., 2020) in showing that stringent group size limitations to minimize 
superspreading events and rapid symptom-based isolations offer an 
effective means of epidemic control in the absence of asymptomatic 
surveillance testing resources. However, because of the unique natural 
history of the SARS-CoV-2 virus, for which the majority of transmission 
events result from asymptomatic or presymptomatic infections (Ferretti 
et al., 2020; Hellewell et al., 2020), symptom-based NPIs cannot reduce 
epidemic spread completely, and small community environments will 
always remain vulnerable to asymptomatic case importation. Moreover, 
symptom-based NPIs pose less effective means of epidemic control 
under scenarios assuming a higher proportion of asymptomatic in
dividuals; empirical evidence suggests that SARS-CoV-2 infection may 
result in asymptomatic infection in up to nearly 70% of the population in 
select environments (Poletti et al., 2020). For this reason, our results 
emphasize the importance of asymptomatic surveillance testing to pre
vent ongoing epidemics in universities and other small community en
vironments. As more data becomes available on both the proportion of 
asymptomatic infections and their contributions to SARS-CoV-2 trans
mission, the relative importance of group size interventions, 
symptom-based isolation, and asymptomatic surveillance testing in 
different epidemiological contexts will be possible to determine from 
our modeling framework. 

As with behavioral interventions, our exploration of optimal 
asymptomatic surveillance testing regimes supports findings that have 

been published previously but with some key extensions and critical 
novel insights. As has been recently highlighted (Larremore et al., 2021; 
Bergstrom et al., 2020), we find that the most cases are saved under 
asymptomatic testing regimes that prioritize heightened test frequency 
and rapid turnaround time over test sensitivity. Importantly, we extend 
previous work to highlight how more rigorous testing regimes—and 
those combined with one or more behavioral interventions—greatly 
reduce variance in daily case counts, leading to more predictable epi
demics. We find that the reduction in daily case variation is even more 
pronounced when test regimes of equivalent frequency are distributed 
more broadly in time (i.e. tests are offered across more days of the 
week), thus minimizing the likelihood of compounding transmission 
chains that may follow upon a superspreading event. Additionally, we 
demonstrate how a focused stringent testing regime for a subset of “high 
transmission risk” individuals can effectively control a COVID-19 
epidemic for the broader community. Importantly, the extension of 
our model to heterogenous community dynamics also paves the way for 
future work that could explicitly model age-structured mixing patterns 
and infection probabilities by assigning disparate R0 values and/or 
distinct viral load trajectories to different community subgroups. For 
example, students living in university residence halls may experience a 
higher daily hazard of infection than older adults in lower density 
housing (as captured in R0), and young adult infections may manifest 
with lower viral load trajectories that are more likely to present as 
asymptomatic. Similarly, future modeling efforts could explore variable 
infection probabilities and/or viral titer trajectories in individuals 
infected after vaccination or otherwise. Taken together, our model 
shows the utility of a multi-faceted approach to COVID-19 control and 
offers a flexible tool to aid in prioritization of interventions in different 
university or workplace settings. 

Finally, our paper presents the only COVID-19 asymptomatic sur
veillance model published to date that combines asymptomatic testing 
with contact tracing, thus highlighting the compounding gains effected 
by these two interventions: contact tracing amplifies the control impacts 
of both symptom-based and asymptomatic surveillance testing-based 
isolations, such that even intervention scenarios assuming long delays 
in isolation after symptom onset or slow turnaround-times for test re
sults can nonetheless greatly reduce the transmission capacity of COVID- 
19. These findings further emphasize the critical role that asymptomatic 
surveillance testing will continue to play in ongoing efforts to control 
COVID-19 epidemics in AY 2021–2022. Even limited asymptomatic 
surveillance testing can offer substantial gains in case reduction for 
university and workplace settings with high vaccination rates and/or 
efficient symptomatic isolation and contact tracing programs in place. 
Our model allows us to prioritize when and where these gains are most 
likely to be achieved. 

Because we do not explicitly model SARS-CoV-2 transmission in a 
mechanistic, compartmental framework (Anderson et al., 1991; Ker
mack and McKendrick, 1927), our analysis may overlook some more 
subtle insights into long-term disease dynamics. More complex analyses 
of interacting epidemics across larger spatial scales or investigations of 
the duration of immunity will necessitate implementation of a complete 
compartmental transmission model. However, our use of a stochastic 
branching process framework makes our model simple to implement 
and easily transferrable to other semi-contained small community en
vironments, including a wide range of academic settings and workplaces 
(Brook et al., 2020). We make this tool available to others interested in 
exploring the impacts of targeted public health interventions—in 
particular, asymptomatic surveillance testing regimes—on COVID-19 
control in more specific settings. We at the University of California, 
Berkeley are committed to maintaining the safest campus environment 
possible for our community, using all intervention tools at our disposal. 
We advise those in similar positions at other institutions to employ the 
behavioral interventions outlined here, in concert with effective 
asymptomatic surveillance testing regimes, to reduce community epi
demics of COVID-19 in their own communities. 
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