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Abstract: In this paper, a distributed swarm control problem is studied for large-scale multi-agent

systems (LS-MASs). Different than classical multi-agent systems, an LS-MAS brings new challenges

to control design due to its large number of agents. It might be more difficult for developing the

appropriate control to achieve complicated missions such as collective swarming. To address these

challenges, a novel mixed game theory is developed with a hierarchical learning algorithm. In the

mixed game, the LS-MAS is represented as a multi-group, large-scale leader–follower system. Then,

a cooperative game is used to formulate the distributed swarm control for multi-group leaders,

and a Stackelberg game is utilized to couple the leaders and their large-scale followers effectively.

Using the interaction between leaders and followers, the mean field game is used to continue the

collective swarm behavior from leaders to followers smoothly without raising the computational

complexity or communication traffic. Moreover, a hierarchical learning algorithm is designed to

learn the intelligent optimal distributed swarm control for multi-group leader–follower systems.

Specifically, a multi-agent actor–critic algorithm is developed for obtaining the distributed optimal

swarm control for multi-group leaders first. Furthermore, an actor–critic–mass method is designed

to find the decentralized swarm control for large-scale followers. Eventually, a series of numerical

simulations and a Lyapunov stability proof of the closed-loop system are conducted to demonstrate

the performance of the developed scheme.

Keywords: game theory; reinforcement learning; adaptive dynamic programming; LS-MAS

1. Introduction

The concept of swarming in multi-agent systems (MASs) has been adopted from
the biological swarming behavior in nature ranging from bacteria to more advanced
mammals [1]. Examples of swarming behavior include flock of birds [2], school of fish [3],
and cooperation of ants [4], which form groups of MASs to achieve certain tasks such
as threatening predators, foraging food, and energy-efficient flying during migration.
Over the past few decades, the biological swarm system has been widely adopted by
researchers [5–13]. A survey of the recent development in the control and optimization of
swarm systems was presented in [14]. Aside from that, the cooperative control problem for
the swarming system was studied in [15]. Skobelev et al. [16] proposed a prototype system
using a swarm of unmanned aerial vehicles (UAVs), which includes coordinated flight
plans with reconfiguration in the presence of disruptive events. In [17], a new formation
control scheme with smooth distributed consensus control for multi-UAV systems was
developed. The authors in [18] proposed intelligent flight decision techniques for UAVs for
cooperative target tracking using an end-to-end, cooperative, multi-agent reinforcement
learning scheme. Zhao et al. [19] developed a flocking obstacle avoidance algorithm with
shared obstacle information. Despite all of these recent efforts, the traditional cooperative
control of large-scale multi-agent systems (LS-MASs) suffers from the well-known “Curse
of Dimensionality” [20] and communication reliability [21] problem.
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To address these challenges, a mixed game theory is proposed and utilized to formulate
the optimal swarming problem for large scale multi-agent systems. The overall structure
of the developed mixed game theoretical swarming is shown in Figure 1. First, the LS-
MAS is reformulated as a multi-group large-scale leader–follower system by dividing
a large number of agents into several subgroups with a leader and a large number of
followers in each group. The objective of each group is to achieve optimal distributed
swarming behavior. To achieve desired swarming, a mixed game theory was developed by
seamlessly integrating (1) the cooperative game [22,23] to ensure the collective swarming
behavior among multi-group leaders, where the leaders from each group cooperate with
other leaders to maintain the overall multi-group swarming while avoiding inter-group
collision, (2) the Stackelberg game [24,25] to connect the leader with its corresponding
followers, where a set of coupling functions is introduced by the Stackelberg game in order
to maintain leader–follower cohesion in each group, which guarantees that the followers
from each group successfully achieve the swarming behavior of their respective leaders,
and (3) the mean field game (MFG) [26–28] between non-cooperative followers used to
continue the collective swarming behavior from the leaders to large-scale followers. The
MFG deal involves the “Curse of Dimensionality” and the communication complexity
problem of a traditional cooperative game. A probability density function (PDF) (i.e., mass)
is employed in the MFG to replace the large number of agents’ state information. Since
the mass function has the same dimension as the state space, it eliminates the correlation
between rising computing complexity and the agents’ increasing population by reducing
the dimension of the cost function.

Group 3

Group 2

Group 1

Leader
Follower

Communication

among Leaders

Multi-Group

Swarming

Swarming

Trajectory

Inter-group collision 

avoidance circle

Interaction through

Stackelberg Game

Figure 1. An illustration of mixed game-based leader–follower multi-group swarming.

However, to obtain the mass function, a new partial differential equation (PDE) (i.e.,
the Fokker–Planck–Kolmogorov (FPK) [29] equation), is adopted. Then, the optimal de-
centralized swarming control for large-scale followers in each group can be obtained by
solving coupled Hamiltonian–Jacobi–Bellman (HJB) and FPK equations [30]. Meanwhile,
the distributed optimal swarming control for multi-group leaders can be solved by us-
ing the multi-player cooperative HJB equation. However, it is very difficult and even
impossible to solve those PDEs in real time due to its complexity and coupling. Hence,
adaptive dynamic programming [31] and a reinforcement learning [32] algorithm were
adopted. Specifically, a hierarchical learning structure was developed to obtain the optimal
swarming control for the multi-group leader–follower system. This includes (1) multi-agent
actor–critic-based distributed optimal swarm control for multi-group leaders and (2) actor–
critic-mass (ACM)-based decentralized swarm control for large-scale followers. In ACM
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learning-based control, the actor neural network (NN) is used to approximate the optimal
decentralized control, the critic NN is used for approximating the optimal evaluation
function, and the mass NN approximates the FPK solution. The main contributions of the
article are as follows:

• A novel mixed game theory is developed with cooperative leaders and non-cooperative
followers in order to achieve multi-group optimal swarming control which addresses
the challenge of the curse of dimensionality and unrealistic communication.

• A hierarchical learning structure with actor–critic-based, leader-distributed swarming and
actor–critic–mass-based, large-scale followers decentralized swarming is implemented in
real time to learn the solution of the overall intelligent optimal swarming control.

The structure of this paper is as follows. Section 2 provides the significance of the
developed algorithm, and Section 3 includes the problem formulation. In Section 4, the
novel mixed game hierarchical learning-based intelligent optimal swarming control scheme
is developed. Then, the numerical simulation is shown in Section 5 to demonstrate the
effectiveness of the proposed design.

2. Significance of Mixed Game Theory-Based Intelligent Distributed Swarm Control

The traditional cooperative control [33–35] of multi-agent systems requires communi-
cation among all agents to achieve optimal control, which encounters issues with significant
computational complexity and the requirement of low-latency communication in real time.
In particular, when a swarm contains a massive population which is known as an LS-MAS,
it suffers from the following challenges: (1) a high-quality communication network is
required for exchanging information in an LS-MAS to achieve the conventional cooperative
swarming behavior, although in practice, maintaining these communication networks is
unrealistic, and (2) each agent must be aware of the states of the other agents to accomplish
the desired multi-group swarming behavior. As the number of agents increases, the com-
putational complexity problem increases substantially, which brings about the well-known
“Curse of Dimensionality” [20] problem. Aside from that, most of the existing studies focus
on the swarming behavior of single-group MASs with a limited number of agents while
avoiding multi-group large-scale MASs, whose examples in a practical environment are
ubiquitous. For instance, dividing an MAS into multiple groups can help it effectively
handle multi-task missions, whereas a single group cannot, such as in predator formation
during multi-prey hunting or cooperative searching for multiple objectives. Recently, sev-
eral studies in MASs addressed this issue to some extent. Zhang et al. [36] developed a type
of multi-group formation tracking control, where the agents are divided into several sub-
groups to form different desired sub-formations. A distributed impulsive control method
with and without the input delay for multi-group formation tracking control was presented
in [37]. Moreover, collision avoidance among multi-group UAVs was studied in [38]. In
this paper, the developed mixed game theory-based distributed control addressed the
challenges of the existing single-group traditional multi-agent cooperative control. At first,
the large-scale multi-agent system is divided into multiple groups. Then, each group is
reformulated with a leader and a large number of followers. The leader from each group
plays the cooperative game to achieve the optimal swarming behavior for all the agents
and ensure collision avoidance between the group of agents. The leader just needs to know
the PDF information of the followers’ group instead of knowing the state information of
each follower. This reduces the dimension of the cost function significantly. However, the
leaders still need to exchange the state information with other group leaders. The communi-
cation cost of exchanging information is still low compared with a large number of agents,
as the agents are divided into a few of subgroups. On the other hand, this upper-level
communication between leaders significantly ensures the optimal swarming behavior and
collision avoidance of the group of agents. In addition, the followers from each group
are guided by their respective leaders and play a non-cooperative game inside the group
to reduce the computational complexity and communication problem significantly. To
validate the effectiveness of the developed algorithm, the performance of the developed
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method is further compared against the existing traditional cooperative control method in
the simulation (Section 5.2).

3. Problem Formulation

Consider an LS-MAS being reformulated as a multi-group large-scale leader–follower
system, with each group having a leader with a large number of followers. Then, assume
there are M groups with M leaders as well as Ni

F being the number of followers in the ith
group. Next, the dynamics of the leader and follower q in group i are defined as follows.
Leader:

dxi
L = [Fa(xi

L) + Ga(xi
L)u

i
L]dt +

√
2νidωi

L (1)

where xi
L ∈ R

m denotes the system state and ui
L ∈ R

n denotes the control input. Moreover,
ωi

L ∈ R
m denotes independent wiener processes which represents the environmental noise,

and νi is a non-negative parameter. The functions Fa(.) and Ga(.) represent the intrinsic
dynamics of the leaders.
Follower:

dxi
F,q = [Fs(xi

F,q) + Gs(xi
F,q)u

i
F,q]dt +

√
2νiωi

F,q (2)

where xi
F,q ∈ R

m is the state and ui
F,q ∈ R

n is the control input of the follower q. Moreover,

ωi
F,q ∈ R

m denotes the wiener process. The functions Fs(.) and Gs(.) represent the intrinsic

dynamics of the followers.

3.1. Multi-Group Optimal Swarming Control Formulation

In this section, the mixed game theory is designed to formulate the optimal swarm-
ing control for multi-group large-scale leader–follower systems. Next, the details of the
developed scheme are given as follows:
Collective Swarming among Multi-Group Leaders: To achieve the collective swarming
behavior for all groups in the system, a predefined reference trajectory xd(t) ∈ R

m is given
to all leaders ahead of the mission. Next, the desired formation vector with respect to the
reference trajectory for a group’s ith leader can be denoted as λi

L ∈ R
m. Then, the desired

trajectory for the leader in group i is defined as follows:

xi
L,d(t) = xd(t) + λi

L (3)

Then, the tracking error of the leader i is defined as ei
L(t) = xi

L(t)− xi
L,d(t) with the

tracking error dynamic as follows:

dei
L = dxi

L − dxi
L,d

= [Far(e
i
L) + Gar(e

i
L)u

i
L]dt +

√
2νidωi

L

(4)

where Far(ei
L) = Fa(ei

L + xi
L,d)− (dxi

L,d/dt) and Gar(ei
L) = Ga(ei

L + xi
L,d). Additionally, the

tracking error function for the leader in group i is given as

ΦSE,L(xi
L) = ‖xi

L − xi
L,d‖2

QSE,L
(5)

where QSE,L is a matrix. To achieve the common goal for all groups (i.e., the collective
swarming behavior), each leader needs to communicate with the leaders in the neighbor-
hood groups to avoid inter-group collisions. Let G = {A,V , E} is a graph that describes
the connection among the leaders of M groups, with A = [aij] ∈ R

M×M is an adjacency

matrix (i.e., AT = A). In addition, V(G) = {1, 2, ..., M} denotes the set of leader vertices,
and E ∈ V × V is the set of edges. The element aij of the adjacency matrix is defined
as aij = aji = 1 if (i, j) ∈ E (i.e., the leaders of group i and j are connected); otherwise,
aij = aji = 0. Moreover, we assume that aii = 0. To define the neighborhood of each leader,
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sensing and communicating distance is needed. Let h > 0 denote the communicating
distance. Then, the neighborhood set Mi

L of the leader of group i is defined as follows:

Mi
L(t) = {j ∈ V : ‖xi

L(t)− x
j
L(t)‖2

Q1
< h, j 6= i} (6)

where Q1 is a positive definite matrix. Additionally, the communication between group
leader i and j can be possible if j ∈ Mi

L(t). Furthermore, collision avoidance between lead-
ers and their respective followers needs to be addressed for multi-group leader–follower
swarming control in order to ensure safe path planning and guide the group to their desired
swarming movement. The cost function for collision among leaders is

ΦCA,L(xi
L, x−i

L ) = wCA,L ∑
j∈Mi

L

ai,j

[

exp{‖xi
L − x

j
L‖2

QCA,L
− d

i,j
L } − 1

]−1
(7)

where QCA,L is a weighting matrix, wCA,L is a weighting parameter, and x−i
L = {x

j
L}j∈Mi

L
.

In addition, d
i,j
L is the separating distance between leaders i and j, which is chosen so that it

always ensures the avoidance of collision between two groups (i.e., collisions between any
two leaders and their corresponding followers). Moreover, to achieve collective swarming
behavior while avoiding group collision, the cohesion between the leader and large-scale
followers needs to be maintained. In this regard, the leader–follower coupling function is
introduced as follows.
Leader–Follower Coupling Functions for Swarming: To achieve a group swarming behavior,
a set of coupling functions is defined by the Stackelberg game ([24]). The coupling function
that forces the leader to keep cohesion with their corresponding followers is defined
as follows:

ΦCP,L(xi
L, ρi) = wCP,L‖xi

L −E{xi
F}‖2

QCP,L
(8)

where ρi(xi
F, t) is the probability density function (PDF) of the large-scale followers’ state in

the ith group, E{xi
F} is the expected value, and wCP,L and QCP,L are the weighting matrix

and weighting parameter, respectively. Now, the leader–follower swarming coupling
function is

ΦCP,F(xi
F,q, xi

L) = wCP,F

[

exp{ri − ‖xi
F,q − xi

L‖2
QCP,F

} − 1
]−1

(9)

where QCP,F is a weighting matrix, wCP,F is a weighting parameter, and ri is the maximum
safe distance of the ith group’s followers. This distance ri ensures inter-group collision
avoidance by keeping the followers within the safe distance limit.
Leader–Follower Coupling Functions for Swarming: The followers from each group track
their respective leaders in order to achieve the group swarming behavior. The tracking
error of the follower q in group i is derived as ei

F,q(t) = xi
F,q(t)− xi

L(t), with the tracking

error dynamics

dei
F,q =

[

Fsr(e
i
F,q) + Gsr(e

i
F,q)u

i
F,q

]

dt +
√

2νidωi
F,q (10)

where

Fsr(e
i
F,q) = Fs(e

i
F,q + xi

L)− Fa(xi
L) ; Gsr(e

i
F,q) = Gs(e

i
F,q + xi

L)− Ga(xi
L)

ui
L

ui
F,q

Now, the followers’ tracking error cost function can be derived as follows:

ΦSE,F(xi
F,q) = ‖xi

F,q − xi
L‖2

QSE,F
(11)
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where QSE,F is a positive definite matrix. Then, the same group large scale follower collision
avoidance function is as follows:

ΦCA,F(xi
F,q, ρi) = wCA,F

∫

xi
F

ρi(xi
F, t)

[ε2 + ‖xi
F,q −E{xi

F}‖2
QCA,F

]β
dxi

F (12)

where QCA,F and wCA,F are the weighting matrix and weighting parameter, respectively.
Moreover, ε and β are positive constants. Furthermore, the cohesion function of the
followers with their respective group center can be derived as follows:

ΦC,F(xi
F,q, ρi) = wC,F

{

‖xi
F,q −E{xi

F}‖2
QC,F

}

(13)

with the weighting matrix QC,F and weighting parameter wC,F. This function helps each
follower from the same group to stay close to the other members of the group.
Overall Optimal Swarming Control for Multi-Group LS-MAS: The goal of the leaders is to
achieve overall swarming control by minimizing the following cost function.
Leader:

VL(xL, ρ) =
M

∑
i=1

Vi
L(xi

L, x−i
L , ρi) =

M

∑
i=1

E

{

∫ ∞

0

[

ΦL(xi
L, x−i

L , ui
L) + ΦCP,L(xi

L, ρi)
]

dt
}

(14)

where ΦL(xi
L, x−i

L , ui
L) = ΦSE,L(xi

L) + ΦCA,L(xi
L, x−i

L ) + ‖ui
L‖2

Ri
L

, Vi
L is the cost function

of the ith group leader and Ri
L is the positive weight matrix. The functions ΦSE,L(xi

L),

ΦCA,L(xi
L, x−i

L ), and ΦCP,L(xi
L, ρi) derived in Equations (5), (7), and (8) are the tracking

error, collision avoidance, and coupling function of the leader, respectively. Moreover,
the objective of the follower q in the group i is to minimize the following cost function to
achieve the group swarming behavior.
Follower:

Vi
F,q(xi

F,q, xi
L, ρi) = E

{

∫ ∞

0

[

ΦF(xi
F,q, xi

L, ui
F,q) + ΦCA,F(xi

F,q, ρi) + ΦC,F(xi
F,q, ρi)

]

dt
}

s.t. ‖xi,o
F,q − xi

L‖ < ri
(15)

where ΦF(xi
F,q, xi

L, ui
F,q) = ΦSE,F(xi

F,q) + ΦCP,F(xi
F,q, xi

L) + ‖ui
F,q‖2

Ri
F,q

, Ri
F,q is the positive

weight matrix and xi,o
F,q is the initial state of the follower q. The functions ΦSE,F(xi

F,q),

ΦCP,F(xi
F,q, xi

L), ΦC,F(xi
F,q, ρi), and ΦCA,F(xi

F,q, ρi) derived in Equations (9) and (11)–(13)

are the follower tracking error, coupling, cohesion, and collision avoidance functions,
respectively. Here, the initial states of the followers from all groups are subject to a
constraint in order to keep the followers inside a specific region defined by the distance ri.
This distance is the radius of an enclosing circle which acts as a collision-avoiding region
for the respective groups.

3.2. Mixed Game Theory-Based Multi-Group, Large-Scale Leader–Follower-Distributed Optimal
Swarming Control

To achieve the overall swarming behavior for all groups, the overall cost function of
the leaders’ (Equation (14)) and followers’ individual cost function (Equation (15)) need
to be minimized. Now, the leader-follower Hamiltonian can be obtained using Bellman’s
principle of optimality [39] and optimal control [20]. The Hamiltonian of all the leaders is
as follows:

HL[xL, ∂xL
VL(xL, ρ)] =

M

∑
i=1

Hi
L[x

i
L, ∂xi

L
Vi

L(xi
L, x−i

L , ρi)] (16)
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with individual leaders distributed Hamiltonian:

Hi
L[x

i
L, ∂xi

L
Vi

L(xi
L, x−i

L , ρi)] = E

{[

ΦL(xi
L, x−i

L , ui
L) + ΦCP,L(xi

L, ρi) + ∂xi
L
Vi

L
T

(xi
L, x−i

L , ρi)[Fa(xi
L) + Ga(xi

L)u
i
L]

]}

(17)

The Hamiltonian for the follower q from the ith group is derived as follows:

Hi
F,q[x

i
F,q, ∂xi

F,q
Vi

F,q(xi
F,q, xi

L, ρi)] = E

{[

ΦF(xi
F,q, xi

L, ui
F,q) + ΦCA,F(xi

F,q, ρi) + ΦC,F(xi
F,q, ρi)

+∂xi
F,q

ViT

F,q(xi
F,q, xi

L, ρi) + [Fs(xi
F,q) + Gs(xi

F,q)u
i
F,q]

]}

(18)

Now, the multi-group leaders Hamiltonian–Jacobi–Bellman (HJB) equation can be
derived from the cooperative game is as follows:

E

{

ΦCP,L(xi
L, ρi)

}

= E

{[

−∂tV
i
L(xi

L, x−i
L , ρi)−

√
2νi∆Vi

L(xi
L, x−i

L , ρi)

+Hi
L[x

i
L, ∂xi

L
Vi

L(xi
L, x−i

L , ρi)]

]}

(19)

Furthermore, a coupled HJB and Fokker–Planck–Kolmogorov(FPK) equations for the
large number of followers, using MFG can be obtained as follows:
Follower (HJB):

E

{

ΦCA,F(xi
F,q, ρi) + ΦC,F(xi

F,q, ρi)
}

= E

{[

−∂tV
i
F,q(xi

F,q, xi
L, ρi)−

√
2νi∆Vi

F,q(xi
F,q,

xi
L, ρi) + Hi

F,q[x
i
F,q, ∂xi

F,q
Vi

F,q(xi
F,q, xi

L, ρi)]

]}

(20)

Follower (FPK):

E

{

∂tρ
i(xi

F,q, t)−
√

2νi∆ρi(xi
F,q, t)− div(ρiDpHi

F,q[x
i
F,q, ∂xi

F,q
Vi

F,q(xi
F,q, xi

L, ρi)])
}

= 0 (21)

Then, according to optimal control theory, the mixed game-based distributed optimal
swarming control for a multi-group leader–follower system can be attained as follows:
Leader:

ui
L(xi

L) = −1

2
E

{

Ri−1

L GT
a (xi

L)∂xi
L
Vi

L(xi
L, x−i

L , ρi)
}

(22)

Follower:

ui
F,q(xi

F,q) = −1

2
E

{

Ri−1

F,q GT
s (xi

F,q)∂xi
F,q

Vi
F,q(xi

F,q, xi
L, ρi)

}

(23)

Remark 1. The coupled HJB-FPK equations of the follower and the HJB equation for the leader
must be solved in real time in order to determine the optimal control policy. The backward HJB and
forward FPK equations, however, are coupled multidimensional nonlinear PDEs that are difficult
to solve. Therefore, in this paper, a hierarchical learning-based, multi-actor-critic–mass NN is
developed to learn the optimal control online.

4. Hierarchical Learning-Based Intelligent Optimal Distributed Swarming Control

4.1. Hierarchical Learning-Based Control for Multi-Group Leader–Follower Systems

In this section, a hierarchical learning-based actor–critic–mass algorithm (see Figure 2)
is developed and explained in detail. It includes (1) multi-agent actor–critic neural networks
(NNs) to obtain the cooperative game-based distributed optimal swarm control for multi-
group leaders and (2) actor–critic–mass-based decentralized control for large-scale followers
within the same game to obtain the mean field game-based swarming. Additionally, the
Stackelberg game integrates distributed swarming control for leaders and decentralized
control for followers into a unified framework and further obtains the overall distributed
intelligent swarming control for multi-group leader–follower systems.
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𝒅𝒙𝑳𝟏 = 𝑭𝒂 𝒙𝑳𝟏 + 𝑮𝒂 𝒙𝑳𝟏 𝒖𝑳𝟏 𝒅𝒕 + 𝟐𝝂𝟏 𝒅𝝎𝑳𝟏Leader 1 (System) 𝒅𝒙𝑳𝑴𝑳 = 𝑭𝒂 𝒙𝑳𝑴 + 𝑮𝒂 𝒙𝑳𝑴 𝒖𝑳𝑴 𝒅𝒕 + 𝟐𝝂𝑴𝒅𝝎𝑳𝑴Leader M(System)

Follower 1 (System)𝒅𝒙𝑭,𝟏𝑴 = 𝑭𝒔 𝒙𝑭,𝟏𝑴 + 𝑮𝒔 𝒙𝑭,𝟏𝑴 𝒖𝑭,𝟏𝑴 𝒅𝒕 + 𝟐𝝂𝑴𝒅𝝎𝑭,𝟏𝑴
Follower 𝑵𝑭𝑴(System)𝒅𝒙𝑭,𝑵𝑭𝑴𝑴 = 𝑭𝒔 𝒙𝑭,𝑵𝑭𝑴𝑴 + 𝑮𝒔 𝒙𝑭,𝑵𝑭𝑴𝑴 𝒖𝑭,𝑵𝑭𝑴𝑴 𝒅𝒕 + 𝟐𝝂𝑴𝒅𝝎𝑭,𝑵𝑭𝑴𝑴

Follower 1 (System)𝒅𝒙𝑭,𝟏𝟏 = 𝑭𝒔 𝒙𝑭,𝟏𝟏 + 𝑮𝒔 𝒙𝑭,𝟏𝟏 𝒖𝑭,𝟏𝟏 𝒅𝒕 + 𝟐𝝂𝟏𝒅𝝎𝑭,𝟏𝟏
Follower 𝑵𝑭𝟏(System)𝒅𝒙𝑭,𝑵𝑭𝟏𝟏 = 𝑭𝒔 𝒙𝑭,𝑵𝑭𝟏𝟏 + 𝑮𝒔 𝒙𝑭,𝑵𝑭𝟏𝟏 𝒖𝑭,𝑵𝑭𝟏𝟏 𝒅𝒕 + 𝟐𝝂𝟏𝒅𝝎𝑭,𝑵𝑭𝟏𝟏

Follower 𝑵𝑭𝟏
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Figure 2. Mixed game-based hierarchical learning structure.

Ideal Actor–Critic Set-up for Leaders:

Critic: Vi∗
L (xi

L, x−i
L , ρi) = E

{

WiT

V,Lφi
V,L + εi

HJBL

}

Actor: ui∗
L (xi

L, x−i
L , ρi) = E

{

WiT

u,Lφi
u,L + εi

u,L

} (24)

Ideal Actor–Critic–Mass Set-up for Followers:

Critic: Vi∗
F,q(xi

F,q, xi
L, ρi) = E

{

WiT

V,F,qφi
V,F,q + εi

HJBF,q

}

Actor: ui∗
F,q(xi

F,q, xi
L, ρi) = E

{

WiT

u,F,qφi
u,F,q + εi

u,F,q

}

Mass: ρi(xi
F,q, t) = E

{

WiT

ρ,F,qφi
ρ,F,q + εi

FPKF,q

}

(25)

where Wi
V,L, Wi

u,L, Wi
V,F,q, Wi

u,F,q, and Wi
ρ,F,q are the respective weights for the leader and

follower critic, actor, and mass neural network (NN). Also, φ(.) is the activation function
and ε is the reconstruction error of the respective neural networks. Then, the estimated cost
and control functions of the leader are as follows:
Estimated Actor-Critic for Multi-Group Leaders:

Critic: V̂i
L(xi

L, x−i
L , ¯̂ρi) = E

{

ŴiT

V,Lφ̂i
V,L

}

Actor: ûi
L(xi

L, x−i
L , ¯̂ρi) = E

{

ŴiT

u,Lφ̂i
u,L

} (26)

Please be aware that the leader from each group collects the estimated PDF from each
decentralized follower in the same group. Then, the leader evaluates the statistic average of
the received PDF (i.e., ¯̂ρi = ∑F,q ρ̂i

F,q). Next, The residual errors that result from substituting

the approximation in Equation (26) into Equation (19) can be utilized to adjust the weights
of the leader actor and critic neural networks by using the residual errors given as following
equations:
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E

{

ei
HJBL

}

= E

{

[

ΦCP,L(xi
L, ¯̂ρi) + ŴiT

V,L[∂tφ̂
i
V,L +

√
2νi∆φ̂i

V,L − Ĥi
L,W ]

]

}

(27)

E

{

ei
u,L

}

= E

{

ŴiT

u,Lφ̂i
u,L +

1

2
Ri−1

L GT
a (xi

L)∂xi
L
φ̂i

V,L

}

(28)

where the estimated Hamiltonian of the leader Ĥi
L is defined as

Ĥi
L = Hi

L[x
i
L, ∂xi

L
φ̂i

V,L] = ŴiT

V,L Ĥi
L,W

Now, let

E

{

Ψi
V,L(xi

L, x−i
L , ¯̂ρi)

}

= E

{

∂tφ̂V,i +
√

2νi∆φ̂V,i − Ĥi
L,W

}

and
E

{

ΦCP,L(xi
L, ¯̂ρi)

}

= E

{

ΦCP,L(xi
L, ¯̃ρi) + ΦCP,L(xi

L, ρi)
}

Then, the estimation error from the Equation (27) is therefore rewritten follows:

E

{

ei
HJBL

}

= E

{[

ΦCP,L(xi
L, ρi) + ΦCP,L(xi

L, ¯̃ρi) + ŴiT

V,LΨi
V,L(xi

L, x−i
L , ¯̂ρi)

]}

(29)

Next, the effect of the reconstruction error is considered by substituting the optimal
function from Equation (24) to the HJB Equation (19):

E

{

ΦCP,L(xi
L, ρi) + WiT

V,LΨi
V,L(xi

L, x−i
L , ρ̄i) + εi

HJBL

}

= 0 (30)

By substituting Equation (30) into Equation (29), the following HJB error equation can be
obtained with reconstruction error as:

E

{

ei
HJBL

}

= E

{[

ΦCP,L(xi
L, ¯̃ρi)− W̃iT

V,LΨ̂i
V,L(xi

L, x−i
L , ¯̂ρi)− WiT

V,LΨ̃i
V,L(xi

L, x−i
L , ¯̃ρi)− εi

HJBL

]}

(31)

Again, the leader actor NN error is as follows:

E

{

ei
u,L

}

= E

{[

−W̃iT

u,Lφ̂i
u,L(xi

L, x−i
L , ¯̂ρi)− WiT

u,Lφ̃i
u,L(xi

L, x−i
L , ¯̃ρi)− 1

2 Ri−1

L GT
a (xi

L)∂xi
L
Ṽi

L − εi
u,L

]}

(32)

where W̃i
V,L = Wi

V,L − Ŵi
V,L and W̃i

u,L = Wi
u,L − Ŵi

u,L. In addition, the approximated
functions can be represented as follows:

E

{

Ψi
V,L(xi

L, x−i
L , ¯̃ρi)

}

= E

{[

Ψi
V,L(xi

L, x−i
L , ρi)− Ψ̂i

V,L(xi
L, x−i

L , ¯̂ρi)
]}

E

{

φ̃i
u,L(xi

L, x−i
L , ¯̃ρi)

}

= E

{[

φ̃i
u,L(xi

L, x−i
L , ρi)− φ̂i

u,L(xi
L, x−i

L , ¯̂ρi)
]}

Next, the multi-agent actor–critic NNs for the leader are updated by using residual
errors (Equations (31) and (32)) with the gradient descent method as follows.
Actor–Critic Update Laws for Multi-Group Leaders:

E

{

˙̂Wi
V,L

}

= E

{

− αi
V,L

Ψ̂i
V,L(xi

L, x−i
L , ¯̂ρi)eiT

HJBL

1 + ‖Ψ̂i
V,L(xi

L, x−i
L , ¯̂ρi))‖2

}

(33)

E

{

˙̂Wi
u,L

}

= E

{

− αi
u,L

φ̂i
u,L(xi

L, x−i
L , ¯̂ρi)eiT

u,L

1 + ‖φ̂i
u,L(xi

L, x−i
L , ¯̂ρi)‖2

}

(34)

Next, the decentralized optimal swarming control for large-scale followers is as follows.
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Estimated Actor–Critic Mass for Followers in the Same Group:

Critic: V̂i
F,q(xi

F,q, xi
L, ρ̂i

F,q) = E

{

ŴiT

V,F,qφ̂i
V,F,q

}

Actor: ûi
F,q(xi

F,q, xi
L, ρ̂i

F,q) = E

{

ŴiT

u,F,qφ̂i
u,F,q

}

Mass: ρ̂i
F,q(xi

F,q, t) = E

{

ŴiT

ρ,F,qφ̂i
ρ,F,q

}

(35)

The residual error after the substitution of (35) into the HJB and FPK equations
(Equations (20) and (21)):

E

{

ei
HJBF,q

}

= E

{

[

ΦCA,F(xi
F,q, ρ̂i

F,q) + ΦC,F(xi
F,q, ρ̂i

F,q) + ŴiT

V,F,q

[∂tφ̂
i
V,F,q +

√
2νi∆φ̂i

V,F,q − Ĥi
F,q,W ]

]

}

(36)

E

{

ei
u,F,q

}

= E

{[

ŴiT

u,F,qφ̂i
u,F,q +

1
2 Ri−1

F,q GT
s (xi

F,q)∂xi
F,q

φ̂i
V,F,q

]}

(37)

E

{

ei
FPKF,q

}

= E

{

ŴiT

ρ,F,q

[

∂tφ̂
i
ρ,F,q −

√
2νi∆φ̂i

ρ,F,q − div(φ̂i
ρ,F,q)Dp Ĥi

F,q

]}

(38)

where
Ĥi

F,q = Hi
F,q[x

i
F,q, ∂xi

F,q
φ̂i

V,F,q] = ŴiT

V,F,q Ĥi
F,q,W

Again, let

E

{

Ψi
V,F,q(xi

F,q, xi
L, ρ̂i

F,q)
}

= E

{[

∂tφ̂
i
V,F,q +

√
2νi − ∆φ̂i

V,F,qĤi
F,q,W

]}

E

{

Ψi
ρ,F,q(xi

F,q, V̂i
F,q, t)

}

= E

{[

∂tφ̂
i
ρ,F,q −

√
2νi∆φ̂i

ρ,F,q − div(φ̂i
ρ,F,q)DpĤi

F,q

]}

E

{

ΦCA,F(xi
F,q, ρ̃i

F,q)
}

= E

{[

ΦCA,F(xi
F,q, ρi

F,q)− ΦCA,F(xi
F,q, ρ̂i

F,q)
]}

E

{

ΦC,F(xi
F,q, ρ̃i

F,q)
}

= E

{[

ΦC,F(xi
F,q, ρi

F,q)− ΦC,F(xi
F,q, ρ̂i

F,q)
]}

The estimation errors in Equations (36) and (38) can be simplified as follows:

E

{

ei
HJBF,q

}

= E

{

[

ΦCA,F(xi
F,q, ρi

F,q) + ΦCA,F(xi
F,q, ρ̃i

F,q) + ΦC,F(xi
F,q, ρi

F,q)

+ΦC,F(xi
F,q, ρ̃i

F,q) + ŴiT

V,F,qΨi
V,F,q(xi

F,q, xi
L, ρ̂i

F,q)

]

}

(39)

E

{

ei
FPKF,q

}

= E

{

ŴiT

ρ,F,qΨi
ρ,F,q(xi

F,q, V̂i
F,q, t)

}

(40)

By substituting the optimal functions from Equation (25) into Equations (20) and (21),
we obtain

E

{[

ΦCA,F(xi
F,q, ρi

F,q) + ΦC,F(xi
F,q, ρi

F,q) + WiT

V,F,qΨi
V,F,q(xi

F,q, xi
L, ρi

F,q) + εi
HJBF,q

]}

= 0 (41)

E

{

WiT

ρ,F,qΨi
ρ,F,q(xi

F,q, Vi
F,q, t) + εi

FPKF,q

}

= 0 (42)

By substituting Equations (41) and (42) into Equations (39) and (40), respectively,
we obtain

E

{

ei
HJBF,q

}

= E

{

[

ΦCA,F(xi
F,q, ρ̃i

F,q) + ΦC,F(xi
F,q, ρ̃i

F,q)− W̃iT

V,F,qΨ̂i
V,F,q

(xi
F,q, xi

L, ρ̂i
F,q)− WiT

V,F,qΨ̃i
V,F,q(xi

F,q, xi
L, ρ̃i

F,q)− εi
HJBF,q

]

}

(43)

E

{

ei
FPKF,q

}

= E

{[

−W̃iT

ρ,F,qΨ̂i
ρ,F,q(xi

F,q, V̂i
F,q, t)− WiT

ρ,F,qΨ̃i
ρ,F,q(xi

F,q, Ṽi
F,q, t)− εi

FPKF,q

]}

(44)
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Similarly, we can obtain

E

{

ei
u,F,q

}

= E

{





−W̃iT

u,F,qφ̂i
u,F,q(xi

F,q, xi
L, ρ̂i

F,q)− WiT

u,F,qφ̃i
u,F,q(xi

F,q, xi
L, ρ̃i

F,q)

− 1
2 Ri−1

F,q GT
s (xi

F,q)∂xi
F,q

Ṽi
F,q − εi

u,F,q





}

(45)

where W̃i
V,F,q = Wi

V,F,q − Ŵi
V,F,q, W̃i

u,F,q = Wi
u,F,q − Ŵi

u,F,q and W̃i
ρ,F,q = Wi

ρ,F,q − Ŵi
ρ,F,q. In

addition, we have

E

{

Ψ̃i
V,F,q(xi

F,q, xi
L, ρ̃i

F,q)
}

= E

{[

Ψi
V,F,q(xi

F,q, xi
L, ρi

F,q)− Ψ̂i
V,F,q(xi

F,q, xi
L, ρ̂i

F,q)
]}

E

{

φ̃i
u,F,q(xi

F,q, xi
L, ρ̃i

F,q) = E

{[

φi
u,F,q(xi

F,q, xi
L, ρi

F,q)− φ̂i
u,F,q(xi

F,q, xi
L, ρ̂i

F,q)
]}

E

{

Ψ̃i
ρ,F,q(xi

F,q, Ṽi
F,q, t)

}

= E

{[

Ψi
ρ,F,q(xi

F,q, Vi
F,q, t)− Ψ̂i

ρ,F,q(xi
F,q, V̂i

F,q, t)
]}

Using the residual errors in Equations (43)–(45), the actor–critic-mass NNs for the
followers are tuned by using gradient descent method as follows.
Actor–Critic–Mass Update Laws for Followers:

E

{

˙̂Wi
V,F,q

}

= E

{

− αi
V,F,q

Ψ̂i
V,F,q(xi

F,q, xi
L, ρ̂i

F,q)e
iT

HJBF,q

1 + ‖Ψ̂i
V,F,q(xi

F,q, xi
L, ρ̂i

F,q)‖2

}

(46)

E

{

˙̂Wi
u,F,q

}

= E

{

− αi
u,F,q

φ̂i
u,F,q(xi

F,q, xi
L, ρ̂i

F,q)e
iT

u,F,q

1 + ‖φ̂i
u,F,q(xi

F,q, xi
L, ρ̂i

F,q)‖2

}

(47)

E

{

˙̂Wi
ρ,F,q

}

= E

{

− αi
ρ,F,q

Ψ̂i
ρ,F,q(xi

F,q, V̂i
F,q, t)eiT

FPKF,q

1 + ‖Ψ̂i
ρ,F,q(xi

F,q, V̂i
F,q, t)‖2

}

(48)

where αi
V,L, αi

u,L, αi
V,F,q, αi

u,F,q, and αi
ρ,F,q are the learning rates:

Remark 2. The functions Ψ̂i
V,L(xi

L, x−i
L , ¯̂ρi), φ̂i

u,L(xi
L, x−i

L , ¯̂ρi), Ψ̂i
V,F,q(xi

F,q, xi
L, ρ̂i

F,q), φ̂i
u,F,q(xi

F,q,

xi
L, ρ̂i

F,q), and Ψ̂i
ρ,F,q(xi

F,q, V̂i
F,q, t) must satisfy the persistent excitation (PE) condition [20] in order

to let the weights converge.

4.2. Optimal Swarming Control Performance Analysis

The performance of all NNs as well as the closed-loop swarming system stability are
given in this section:

Theorem 1. Let E{Ŵi
V,L} and E{Ŵi

V,F,q} be updated as Equations (33) and (46) with the learning

rates αi
V,L > 0 and αi

V,F,q > 0, respectively. Then, the error between the actual and approximated

critic NN weights E{W̃i
V,L} and E{W̃i

V,F,q} as well as the optimal evaluation function approxima-

tion errors (i.e., E{Ṽi
L} = E{Vi

L − V̂i
L} and E{Ṽi

F,q} = E{Vi
F,q − V̂i

F,q}) are uniformly ultimately

bounded (UUB). Moreover, E{Ŵi
V,L}, E{W̃i

V,F,q}, E{Ṽi
L}, and E{Ṽi

F,q} are asymptotically stable

while the reconstruction errors are sufficiently small. Next, the bounds for the evaluation function
approximation errors Ṽi

L and Ṽi
F,q are as follows:

E

{

‖Ṽi
L(t)‖

}

= E

{

‖W̃iT

V,Lφ̂i
V,L + WiT

V,Lφ̃i
V,L + εi

HJBL
‖
}

≤ E
{

‖W̃iT

V,L‖‖φ̂i
V,L‖

}

+ lφi
V,L

E
{

‖Wi
V,L|‖ ¯̃ρi‖

}

+E
{

‖εi
HJBL

‖
}

≤ bi
W,V,LE

{

‖φ̂i
V,L‖

}

+ lφi
V,L

E
{

‖Wi
V,L‖

}

b̄i
ρ,F,q +E

{

‖εi
HJBL

‖
}

≡ bi
V,L(t) (49)
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Similarly, we have

E

{

‖Ṽi
F,q(t)‖

}

= E

{

‖W̃iT

V,F,qφ̂i
V,F,q + WiT

V,F,qφ̃i
V,F,q + εi

HJBF,q
‖
}

≤ E
{

‖W̃iT

V,F,q‖‖φ̂i
V,F,q‖

}

+ lφi
V,F,q

E
{

‖Wi
V,F,q‖‖ρ̃i

F,q‖
}

+E
{

‖εi
HJBF,q

‖
}

≤ bi
W,V,F,qE

{

‖φ̂i
V,F,q‖

}

+ lφi
V,F,q

E
{

‖Wi
V,F,q‖

}

bi
ρ,F,q +E

{

‖εi
HJBF,q

‖ ≡ bi
V,F,q(t) (50)

where lφi
v,L

and lφi
v,F,q

are the Lipschitz constants of the critic activation functions φi
V,L and φi

V,F,q,

respectively. Additionally, b̄i
ρ,F,q can be calculated by taking the average of the mass bound bi

ρ,F,q of

each follower.

Proof. See Appendix A.

Theorem 2. Let E{Ŵ
i
ρ,F,q} be updated as in Equation (48), where the learning rate αi

ρ,F,q > 0.

Then, the error between the actual and approximated mass NN weights E{W̃i
ρ,F,q} as well as the mass

function approximation errors (i.e., E{ρ̃i
F,q} = E{ρi

F,q − ρ̂i
F,q}) are uniformly ultimately bounded

(UUB). Moreover, E{W̃i
ρ,F,q} and E{ρ̃i

F,q} are asymptotically stable while the reconstruction errors

are sufficiently small. The bound for the mass approximation errors ρ̃i
F,q is as follows:

E

{

‖ρ̃i
F,q(t)‖

}

= E

{

‖W̃iT

ρ,F,qφ̂i
ρ,F,q + εi

FPKF,q
‖
}

≤ E
{

‖W̃iT

ρ,F,q‖‖φ̂i
ρ,F,q‖

}

+E
{

‖εi
FPKF,q

‖
}

≤ bi
W,ρ,F,qE

{

‖φ̂i
ρ,F,q‖

}

+E
{

‖εi
FPKF,q

‖ ≡ bi
ρ,F,q(t) (51)

Proof. See Appendix B.

Theorem 3. Let E{Ŵi
u,L} and E{Ŵi

u,F,q} be updated as in Equations (34) and (47), where the

learning rates are αi
u,L > 0 and αi

u,F,q > 0, respectively. Then, the error between the actual

and approximated actor NN weights E{W̃i
u,L} and E{W̃i

u,F,q} as well as the optimal control

approximation errors (i.e., E{ũi
L} = E{ui

L − ûi
L} and E{ũi

F,q} = E{ui
F,q − ûi

F,q}, respectively)

are uniformly ultimately bounded (UUB). Moreover, E{W̃i
u,L}, E{W̃i

u,F,q}, E{ũi
L}, and E{ũi

F,q}
are asymptotically stable while the reconstruction errors are sufficiently small. Moreover, the bounds
for the actor approximation errors ũi

L and ũi
F,q are as follows:

E

{

‖ũi
L(t)‖

}

= E

{

‖W̃iT

u,L(t)φ̂
i
u,L + WiT

u,Lφ̃i
u,L + εi

u,L‖
}

≤ E
{

‖W̃iT

u,L‖‖φ̂i
u,L‖

}

+ lφi
u,L
E
{

‖Wi
u,L‖‖ ¯̃ρi‖

}

+E
{

‖εi
u,L‖

}

≤ bi
W,u,LE

{

‖φ̂i
u,L‖

}

+ lφi
u,L
E
{

‖Wi
u,L‖‖

}

b̄i
ρ,F,q +E

{

‖εi
u,L‖

}

≡ bi
u,L(t) (52)

In addition, we have

E

{

‖ũi
F,q(t)‖

}

= E

{

‖W̃iT

u,F,qφ̂i
u,F,q + WiT

u,F,qφ̃i
u,F,q + εi

u,F,q‖
}

≤ E
{

‖W̃iT

u,F,q‖‖φ̂i
u,F,q‖

}

+ lφi
u,F,q

E
{

‖Wi
u,F,q‖‖ρ̃i

F,q‖
}

+E
{

‖εi
u,F,q‖

}

≤ bi
W,u,F,qE

{

‖φ̂i
u,F,q‖

}

+ lφi
u,F,q

E
{

‖Wi
u,F,q‖

}

bi
ρ,F,qE

{

‖εi
u,F,q‖

}

≡ bi
u,F,q(t) (53)

where lφi
u,L

and lφi
u,F,q

are the Lipschitz constants of the actor activation functions φi
u,L and φi

u,F,q,

respectively.
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Proof. See Appendix C.

Next, the closed-loop stability of a multi-group, large-scale leader–follower swarming
system with developed hierarchical learning control is analyzed:

Lemma 1. With the given stochastic error dynamics in Equations (4) and (10), there exist optimal
control policies for leaders and followers ui

L and ui
F,q which satisfy

E

{

eiT

L

[

Far(ei
L) + Gar(ei

L)u
i
L +

√
2νidωi

L
dt

]}

≤ −γ1E

{

‖ei
L‖2

}

(54)

E

{

eiT

F,q

[

Fsr(ei
F,q) + Gsr(ei

F,q)u
i
F,q +

√
2νidωi

F,q

dt

]

}

≤ −γ2E

{

‖ei
F,q‖2

}

(55)

Theorem 4 (Closed-Loop Stability). Let the leaders’ and followers’ critic, mass, and actor NN
weights be updated as in Equations (33)–(48). Additionally, consider the learning rates αi

V,L,

αi
V,F,q, αi

u,L, αi
u,F,q, and αi

ρ,F,q to be greater than zero. Then, E{W̃i
V,L}, E{W̃i

V,F,q}, E{W̃i
u,L},

E{W̃i
u,F,q}, E{W̃ρ,F,q}, E{Ṽi

L}, E{Ṽi
F,q}, E{ũi

L}, E{ũi
F,q}, E{ρ̃i

F,q}, E{ei
L}, and E{ei

F,q} are

all UUB. Moreover, E{W̃i
V,L}, E{W̃i

V,F,q}, E{W̃i
u,L}, E{W̃i

u,F,q}, E{W̃ρ,F,q}, E{Ṽi
L}, E{Ṽi

F,q},

E{ũi
L}, E{ũi

F,q}, E{ρ̃i
F,q}, E{ei

L}, and E{ei
F,q} are asymptotically stable while the reconstruction

errors are sufficiently small.

Proof. See Appendix D.

5. Simulation Results

The developed mixed game theory and hierarchical learning-based intelligent dis-
tributed swarming control algorithm is implemented in a very large-scale unmanned aerial
vehicle (UAV) system. The experiment aims to validate the effectiveness of the swarming
behavior of multiple UAV groups by using the developed techniques.

5.1. Performance Evaluation of Mixed Game Theory-Based Intelligent Distributed Swarm Control

Let, there are four groups in an area scaled to 20 × 10.
Each group had 1 leader and 500 followers. Each leader was given a predefined time-

varying trajectory. Then, to produce the swarming behavior, each leader is tracked by his
respective followers. Please note that the leader’s location is known to his corresponding
followers.

Next, the selected initial positions of the leaders were x1
L =

[

2.5 6.6
]T

, x2
L =

[

2 6.2
]T

, x3
L =

[

2.5 5.8
]T

, and x4
L =

[

2.2 5.4
]T

. Moreover, the initial state of the
followers from each group was generated using the following normal distribution. Group
1: N (µ = [2.5, 6.6]T , σ = 0.4 × I2); Group 2: N (µ = [2, 6.2]T , σ = 0.4 × I2); Group 3:
N (µ = [2.5, 5.8]T , σ = 0.4 × I2); and Group 4: N (µ = [2.2, 5.4]T , σ = 0.4 × I2).

Next, the time-varying reference trajectory was defined as follows:

xd(t) =
[

2.9t + 5 0.01sin(2.5t) + 6
]T

Additionally, the intrinsic dynamics of the leaders were selected as follows:

Fa(xi
L) =

[

−xi
L,1 +

1
2 xi2

L,2

−0.4xi2

L,2

]

, Ga(xi
L) =

[

0
1

]

with xi
L =

[

xi
L,1 xi

L,2

]T
.



Electronics 2023, 12, 89 14 of 30

Similarly, the follower’s dynamics could be derived as follows:

Fs(xi
F,q) =

[

−xi
F,q,1 +

1
2 xi2

F,q,2

−0.2xi2

F,q,2

]

, Gs(xi
F,q) =

[

1
2

]

with xi
F,q =

[

xi
F,q,1 xi

F,q,2

]T
.

Furthermore, the parameters for evaluating the cost functions (Equations (14) and (15))
were defined as νi = 0.02, h = 1.5, ri = rj = r = 0.5, Ri

L = Ri
F,q = 5, wCA,L = 5, wCP,L = 5,

wCP,F = 5, wCA,F = 5, and wC,F = 5. The total simulation time for this experiment was 15 s.
Next, hierarchical learning-based multi-agent actor–critic neural networks for the

leaders and actor–critic–mass neural networks for the followers were constructed. The
neural networks learning rate parameters were selected as αi

V,L = 2 × 10−6, αi
V,F,q =

2 × 10−5, αi
u,L = 2 × 10−4, αi

u,F,q = 2 × 10−3, and αi
ρ,F,q = 1 × 10−3.

The trajectories of the multi-group, large-scale UAVs are plotted in Figure 3 for times
t = 0 s, t = 5 s, t = 10 s, and t = 15 s. The red curve represents the reference trajectory for
all groups. Moreover, the leader trajectories are shown with green curves in the figure. For
the follower trajectories, different colors have been used. Figure 3a shows the initial
positions of all the leaders and followers and the reference trajectory. Then, the leaders and
followers from all groups begin their motion from the left region and move toward the right
region. The trajectories of the UAVs with swarming behavior are shown in Figure 3b–d.
These figures clearly show that all the leaders tracked the reference trajectory and the
followers tracked their respective leaders while avoiding collisions to achieve the collective
swarming behavior.

(a) t = 0s (b) t = 5s

(c) t = 10s (d) t = 15s

Figure 3. Large-scale leader–follower multi-group swarming. The reference trajectory is denoted by

a red curve, the green curve represents the leader trajectory, and the Followers are represented with

multiple colors.

The tracking performance of the leaders and followers from all the groups is verified
in Figures 4 and 5. Figure 4 shows the tracking error of the leaders from all four groups.
From this figure, it is clear that the error converged to zero after a certain time period. This
implies that the leaders attained the desired swarming behavior as time progressed. We
also needed to ensure that each follower could track their respective leaders to achieve the
group swarming behavior. In this regard, coupling functions ΦCP,L and ΦCP,F were used
in the leader and follower cost functions to ensure that the followers could stay close to
their respective leaders. To verify the performance of the developed method, the tracking
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errors of the followers with respect to their corresponding leaders are plotted in Figure 5.
The average distance of all the followers with respect to their leaders from each group
was calculated and plotted in Figure 5a. This figure implies that the tracking errors of the
followers from all groups converged to zero over time. To demonstrate the performance
clearly, the PDF of the follower tracking error is shown in Figure 5b. The yellow color from
time 5 s to 15 s shows the tracking error with higher probability.

Figure 4. The tracking errors for the leaders.

(a) Follower Tracking Error

(b) Follower Tracking Error PDF

Figure 5. The tracking errors and the tracking error PDF of the followers.

The neural network performance was evaluated by demonstrating the HJB equation
error of the leader and the HJB and FPK equation errors of the followers. The HJB errors of
the leader and the follower 1 in group 1 have been shown in this simulation. In Figure 6, the
HJB equation error of the leader of group 1 is plotted. In the figure, it is clear that the error
converged to zero with time. A small window is also demonstrated in this figure for time
14.5–15 s to observe the performance in detail. This implies the optimality of the leader
for achieving the desired swarming behavior. Next, the HJB equation error of follower
1 from group 1 is demonstrated in Figure 7. We can clearly see that the HJB error of the
followers converged to 0 after 2.5 s. These two figures confirm the optimality of all groups.
To confirm the convergence of the mean-field swarming error, the FPK equation error for
group 1 follower 1 is presented in Figure 8. The FPK error figure validates the follower
mean field equation solution.
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Figure 6. HJB equation error of the leader in group 1.

Figure 7. HJB equation error of follower 1 in group 1.

Figure 8. FPK equation error of follower 1 in group 1.

5.2. Performance Comparison of Mixed Game Theory against Traditional Cooperative Control

Finally, the performance of the developed mixed game theory-based distributed con-
trol was compared with the traditional cooperative centralized control [33–35] to demon-
strate the significance of our method. In this comparison, each group in the cooperative
swarm control scheme had 1 leader and 100 followers. The other parameter values used in
the cooperative swarm control scheme (e.g., the initial positions) were identical to those
used for the mixed game theory-based distributed swarm control scheme. Next, the run-
ning cost including the communication costs was evaluated to provide a comparison of the
performances. The running cost of the leader for this simulation was defined as

Ji
L = E

{

∫ ∞

0

[

ΦL(xi
L, x−i

L , ui
L) + ΦCP,L(xi

L, x̄i) + wcNi
F + wc,L(M − 1)

]

dt
}

(56)

where ΦL(xi
L, x−i

L , ui
L) = ΦSE,L(xi

L) + ΦCA,L(xi
L, x−i

L ) + ‖ui
L‖2

Ri
L

and wcNi
F is a new term

which represents the communication cost of the leader with their followers from group i.
Additionally, wc is the communication cost weight, and Ni

F is the total number of followers
in group i, while wc,L(M − 1) represents the communication cost of the leader with other
leaders from different groups. Here, wc,L is the communication cost weight, and M is the total
number of leaders.
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Figure 9 shows the performance of the developed algorithm in terms of the running
cost for the leader in group 1. From Figure 9, it is clear that the performance of our approach
against the cooperative multi-agent centralized approach was better after a certain amount
of time. In the beginning, the cost of the cooperative game-based optimal solution was
lower. However, the developed algorithm slowly outperformed the cooperative game-
based algorithm. The main reason for this is that the cost function of cooperative centralized
swarm control is penalized for high amounts of communication between the leader and
the followers in the same group. Similarly, the performance of the developed mixed game
theory-based distributed swarm control algorithm for the follower in the same group
is shown.

Figure 9. Leader running cost for developed mixed game theory-based distributed approach and the

traditional cooperative game-based centralized approach.

The running cost of the follower is defined as

Ji
F,q = E

{

∫ ∞

0

[

ΦF(xi
F,q, xi

L, ui
F,q) + ΦCA,F(xi

F,q, x̄i) + ΦC,F(xi
F,q, x̄i) + wc,F Ni

F

]

dt
}

(57)

s.t. ‖xi,o
F,q − xi

L‖ < ri (58)

with ΦF(xi
F,q, xi

L, ui
F,q) = ΦSE,F(xi

F,q) + ΦCP,F(xi
F,q, xi

L) + ‖ui
F,q‖2

Ri
F,q

, wc,F Ni
F being a new

term which represents the communication cost of follower q from group i. In addition,
wc,F is the communication cost weight, and Ni

F is the total number of followers in group i.
Similar to Figure 9, the performance of the developed distributed swarm algorithm in terms
of the running costs for the followers in group 1 are demonstrated in Figure 10. The cost of
the cooperative centralized approach was penalized here because of the communication
among a large number of followers in the same group. From Figures 9 and 10, it is clear that
the developed algorithm outperformed the traditional cooperative centralized approach.

Figure 10. Follower running cost for developed mixed game theory-based distributed approach and

the traditional cooperative game-based centralized approach.

6. Conclusions

This paper developed mixed game-based distributed intelligent swarming control
along with a hierarchical learning algorithm for multi-group, large-scale leader–follower
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systems. To attain the collective swarming behavior for a large number of agents, a mixed
game theory was designed which included a cooperative game to ensure collective swarm-
ing behavior among the multi-group leaders, a Stackelberg game to bond the group leader
with its large-scale followers, and a mean field game to continue the collective swarming
behavior to all the followers without raising computational complexity by breaking the
“Curse of Dimensionality”. Moreover, a hierarchical learning-based actor–critic algorithm
was designed to achieve the solution of intelligent optimal swarming control. This structure
includes the multi-agent actor–critic neural networks to learn the distributed swarm control
for multi-group leaders and actor–critic–mass-based neural networks to learn decentralized
swarm control for the large-scale followers. The developed mixed game-based intelligent
swarm control optimizes the collective swarming behavior and also adapts to uncertainties
in the dynamic environment. Finally, the effectiveness of the developed techniques was
validated through Lyapunov analysis and numerical simulations.
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Appendix A. Proof of Theorem 1

Leader Critic NN: Consider the following Lyapunov function candidate:

Li
V,L(t) =

1

2
tr
{

E{W̃iT

V,LW̃i
V,L}

}

(A1)

In addition, the first derivative of the leader–critic NN estimated weight from Equa-
tion (33) can be obtained as follows:

E

{

˙̃Wi
V,L

}

= E

{

− ˙̂Wi
V,L

}

= E

{

αi
V,L

Ψ̂i
V,L(xi

L, x−i
L , ¯̂ρi)eiT

HJBL

1 + ‖Ψ̂i
V,L(xi

L, x−i
L , ¯̂ρi))‖2

}

(A2)

According to the Lyapunov stability analysis, we take the first derivative of Equa-
tion (A1) and substitute the leader–critic NN weight estimation error dynamic from Equa-
tion (A2):

L̇i
V,L(t) = tr

{

E{W̃iT

V,L
˙̃Wi

V,L}
}

= αi
V,Ltr

(

E

{

W̃iT

V,L

Ψ̂i
V,L(xi

L, x−i
L , ¯̂ρi)eiT

HJBL

1 + ‖Ψ̂i
V,L(xi

L, x−i
L , ¯̂ρi))‖2

})

(A3)

Then, we let

Ψ̂i
V,L = Ψ̂i

V,L(xi
L, x−i

L , ¯̂ρi) ; Ψ̃i
V,L = Ψ̃i

V,L(xi
L, x−i

L , ¯̂ρi)

Now, by substituting Equation (31) into Equation (A3), we can obtain

L̇i
V,L(t) ≤ αi

V,Ltr
(

E

{{ W̃iT

V,LΨ̂i
V,L

1 + ‖Ψ̂i
V,L‖2

}{

Φ̃CP,L − W̃iT

V,LΨ̂i
V,L − WiT

V,LΨ̃i
V,L − εi

HJBL

}T})

≤ αi
V,Ltr

(

E

{

W̃iT

V,L

Ψ̂i
V,LΦ̃T

CP,L

1 + ‖Ψ̂i
V,L‖2

})

− αi
V,Ltr

(

E

{

W̃i
V,L

Ψ̂i
V,LΨ̂iT

V,LW̃i
V,L

1 + ‖Ψ̂i
V,L‖2

})

− αi
V,Ltr
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(

E

{

W̃iT

V,L

Ψ̂i
V,LΨ̃iT

V,LWi
V,L

1 + ‖Ψ̂i
V,L‖2

})

− αi
V,Ltr

(

E

{

W̃i
V,L

Ψ̂i
V,LεiT

HJBL

1 + ‖Ψ̂i
V,L‖2

})

(A4)

Next, the triangle inequality properties are applied to Equation (A4):

L̇i
V,L(t) ≤ −1

4
αi

V,LE

{‖Ψ̂i
V,L‖2‖W̃i

V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

− 1

4
αi

V,LE

{‖Ψ̂i
V,L‖2‖W̃i

V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

+ αi
V,Ltr

(

E

{

W̃iT

V,L

×
Ψ̂i

V,LΦ̃T
CP,L

1 + ‖Ψ̂i
V,L‖2

})

− αi
V,LE

{ ‖Φ̃CP,L‖2

1 + ‖Ψ̂i
V,L‖2

}

+ αi
V,LE

{ ‖Φ̃CP,L‖2

1 + ‖Ψ̂i
V,L‖2

}

− 1

4
αi

V,L

E

{‖Ψ̂i
V,L‖2‖W̃i

V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

− αi
V,Ltr

(

E

{

W̃iT

V,L

Ψ̂i
V,LΨ̃iT

V,LWi
V,L

1 + ‖Ψ̂i
V,L‖2

})

− αi
V,LE

{‖WiT

V,LΨ̃i
V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

+ αi
V,LE

{‖WiT

V,LΨ̃i
V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

− 1

4
αi

V,LE

{‖Ψ̂i
V,L‖2‖W̃i

V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

− αi
V,Ltr

(

E

{

W̃T
V,i

Ψ̂i
V,LεiT

HJBL

1 + ‖Ψ̂i
V,L‖2

})

−

αi
V,LE

{ ‖εi
HJBL

‖2

1 + ‖Ψ̂i
V,L‖2

}

+ αi
V,LE

{ ‖εi
HJBL

‖2

1 + ‖Ψ̂i
V,L‖2

}

(A5)

Now, Equation (A5) can be simplified using 1
4 a2 ± ab + b2 =

(

1
2 a ± b

)2
:

L̇i
V,L(t) ≤ −1

4
αi

V,LE

{‖Ψ̂i
V,L‖2‖W̃i

V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

− αi
V,LE

{ 1

1 + ‖Ψ̂i
V,L‖2

[1

4
‖Ψ̂i

V,L‖2‖W̃i
V,L‖2 − tr

{Ψ̂i
V,LW̃iT

V,LΦ̃T
CP,L}+ ‖Φ̃CP,L‖2

]}

− αi
V,LE

{ 1

1 + ‖Ψ̂i
V,L‖2

[1

4
‖Ψ̂i

V,L‖2‖W̃i
V,L‖2 + tr{W̃iT

V,LΨ̂i
V,L

Ψ̃iT

V,LWi
V,L}+ ‖WiT

V,LΨ̃i
V,L‖2

]}

− αi
V,LE

{ 1

1 + ‖Ψ̂i
V,L‖2

[1

4
‖Ψ̂i

V,L‖2‖W̃i
V,L‖2 + W̃iT

V,LΨ̂i
V,LεiT

HJBL

+ ‖εi
HJBL

‖2
]}

+ αi
V,LE

{ ‖Φ̃CP,L‖2

1 + ‖Ψ̂i
V,L‖2

}

+ αi
V,LE

{‖WiT

V,LΨ̃i
V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

+ αi
V,LE

{ ‖εi
HJBL

‖2

1 + ‖Ψ̂i
V,L‖2

}

≤ −1

4
αi

V,LE

{‖Ψ̂i
V,L‖2‖W̃i

V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

− αi
V,LE

{‖ W̃iT

V,LΨ̂i
V,L

2 − Φ̃CP,L‖2

1 + ‖Ψ̂i
V,L‖2

}

− αi
V,LE

{

‖ W̃iT

V,LΨ̂i
V,L

2 + WiT

V,LΨ̃i
V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

− αi
V,LE

{‖ W̃iT

V,LΨ̂i
V,L

2 + εi
HJBL

‖2

1 + ‖Ψ̂i
V,L‖2

}

+ αi
V,LE

{ ‖Φ̃CP,L‖2

1 + ‖Ψ̂i
V,L‖2

}

+ αi
V,LE

{‖WiT

V,LΨ̃i
V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

+ αi
V,LE

{ ‖εi
HJBL

‖2

1 + ‖Ψ̂V,i‖2

}

(A6)

By dropping several negative terms, Equation (A6) can be simplified as follows:

L̇i
V,L(t) ≤ −1

4
αi

V,LE

{‖Ψ̂i
V,L‖2‖W̃i

V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

+ Bi
W,V,L(t) (A7)

where

Bi
W,V,L(t) =

[

αi
V,L

[l
Φi

CP,L
+l

Ψi
V,L

E{‖Wi
V,L‖2]‖ ¯̃ρi‖2}

1+E{‖Ψ̂i
V,L‖2} + αi

V,LE

{ ‖εi
HJBL

‖2

1+‖Ψ̂i
V,L‖2

}

]

(A8)

Here, l
Φi

CP,L
and l

Ψi
V,L

are the Lipschitz constants, and ¯̃ρi is a mass estimation bound.
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The leader–critic NN weight estimation error will be UUB, and the bound is

E

{

‖W̃i
V,L‖

}

≤ 2E
{

√

√

√

√

(1 + ‖Ψ̂i
V,L‖2)

αi
V,L‖Ψ̂i

V,L‖2
Bi

W,V,L

}

≡ bi
W,V,L

(A9)

This completes the proof.
Follower Critic NN: Consider the following Lyapunov function candidate:

Li
V,F,q(t) =

1

2
tr
{

E{W̃iT

V,F,qW̃i
V,F,q}

}

(A10)

Additionally, the first derivative of the leader–critic NN estimated weight from Equa-
tion (47) can be obtained as follows:

E

{

˙̃Wi
V,F,q

}

= E

{

− ˙̂Wi
V,F,q

}

= E

{

αi
V,F,q

Ψ̂i
V,F,q(xi

F,q, xi
L, ρ̂i

F,q)e
iT

HJBF,q

1 + ‖Ψ̂i
V,F,q(xi

F,q, xi
L, ρ̂i

F,q)‖2

}

(A11)

According to Lyapunov stability analysis, we take the first derivative of Equation (A19)
and substitute the follower–critic NN weight estimation error dynamic from Equation (A11):

L̇i
V,F,q(t) = tr

{

E{W̃iT

V,F,q
˙̃Wi

V,F,q}
}

= αi
V,F,qtr

(

E

{

W̃iT

V,F,q

Ψ̂i
V,F,q(xi

F,q, xi
L, ρ̂i

F,q)e
iT

HJBF,q

1 + ‖Ψ̂i
V,F,q(xi

F,q, xi
L, ρ̂i

F,q)‖2

})

(A12)

Then, we let

Ψ̂i
V,F,q = Ψ̂i

V,F,q(xi
F,q, xi

L, ρ̂i
F,q) ; Ψ̃i

V,F,q = Ψ̃i
V,F,q(xi

F,q, xi
L, ρ̂i

F,q)

Now, by substituting Equation (43) into Equation (A12), we can obtain

L̇i
V,F,q(t) ≤ αi

V,F,qtr
(

E

{{ W̃iT

V,F,qΨ̂i
V,F,q

1 + ‖Ψ̂i
V,F,q‖2

}{

Φ̃CA,F + Φ̃C,F − W̃iT

V,F,qΨ̂i
V,F,q − WiT

V,F,qΨ̃i
V,F,q

− εi
HJBF,q

}T})

≤ αi
V,F,qtr

(

E

{

W̃iT

V,F,q

Ψ̂i
V,F,qΦ̃T

CA,F

1 + ‖Ψ̂i
V,F,q‖2

})

+ αi
V,F,qtr

(

E

{

W̃iT

V,F,q

Ψ̂i
V,F,qΦ̃T

C,F

1 + ‖Ψ̂i
V,F,q‖2

})

− αi
V,F,qtr

(

E

{

W̃i
V,F,q

Ψ̂i
V,F,qΨ̂iT

V,F,qW̃i
V,F,q

1 + ‖Ψ̂i
V,F,q‖2

})

− αi
V,F,qtr

(

E

{

W̃iT

V,F,q

Ψ̂i
V,F,qΨ̃iT

V,F,qWi
V,F,q

1 + ‖Ψ̂i
V,F,q‖2

})

− αi
V,F,qtr

(

E

{

W̃i
V,F,q

Ψ̂i
V,F,qεiT

HJBF,q

1 + ‖Ψ̂i
V,F,q‖2

})

(A13)

Next, the triangle inequality properties are applied to Equation (A13):

L̇i
V,F,q(t) ≤ −1

4
αi

V,F,qE

{‖Ψ̂i
V,F,q‖2‖W̃i

V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qtr ×

(

E

{

W̃iT

V,F,q

Ψ̂i
V,F,qΦ̃T

CA,F

1 + ‖Ψ̂i
V,F,q‖2

})

− αi
V,F,qE

{ ‖Φ̃CA,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qE

{ ‖Φ̃CA,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

− 1

4
αi

V,F,qE

{‖Ψ̂i
V,F,q‖2‖W̃i

V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qtr

(

E

{

W̃iT

V,F,q

Ψ̂i
V,F,qΦ̃T

C,F

1 + ‖Ψ̂i
V,F,q‖2

})

− αi
V,F,qE

{ ‖Φ̃C,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qE

{ ‖Φ̃C,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}
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− 1

4
αi

V,F,qE

{‖Ψ̂i
V,F,q‖2‖W̃i

V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

− αi
V,F,qtr

(

E

{

W̃iT

V,F,q

Ψ̂i
V,F,qΨ̃iT

V,F,qWi
V,F,q

1 + ‖Ψ̂i
V,F,q‖2

})

− αi
V,F,q

E

{‖WiT

V,F,qΨ̃i
V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qE

{‖WiT

V,F,qΨ̃i
V,F,q‖2

1 + ‖Ψ̂V,F,q‖2

}

− 1

4
αi

V,F,qE

{‖Ψ̂i
V,F,q‖2‖W̃i

V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

−

αi
V,F,qtr

(

E

{

W̃iT

V,F,q

Ψ̂i
V,F,qεiT

HJBF,q

1 + ‖Ψ̂i
V,F,q‖2

})

− αi
V,F,qE

{ ‖εi
HJBF,q

‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qE

{ ‖εi
HJBF,q

‖2

1 + ‖Ψ̂i
V,F,q‖2

}

(A14)

Now, Equation (A14) can be simplified as follows:

L̇i
V,F,q(t) ≤ −αi

V,F,qE

{ 1

1 + ‖Ψ̂i
V,F,q‖2

[1

4
‖Ψ̂i

V,F,q‖2‖W̃i
V,F,q‖2 − tr{Ψ̂i

V,F,qW̃iT

V,F,qΦ̃T
CA,F}+ ‖

Φ̃CA,F‖2
]}

− αi
V,F,qE

{ 1

1 + ‖Ψ̂i
V,F,q‖2

[1

4
‖Ψ̂i

V,F,q‖2‖W̃i
V,F,q‖2 − tr{Ψ̂i

V,F,qW̃iT

V,F,qΦ̃T
C,F}+ ‖Φ̃C,F‖2

]}

− αi
V,F,qE

{ 1

1 + ‖Ψ̂i
V,F,q‖2

[1

4
‖Ψ̂i

V,F,q‖2‖W̃i
V,F,q‖2 + tr{W̃iT

V,F,qΨ̂i
V,F,qΨ̃iT

V,F,qWi
V,F,q}+ ‖WiT

V,F,q

Ψ̃i
V,F,q‖2

]}

− αi
V,F,qE

{ 1

1 + ‖Ψ̂i
V,F,q‖2

[1

4
‖Ψ̂i

V,F,q‖2‖W̃i
V,F,q‖2 + W̃iT

V,F,qΨ̂i
V,F,qεi

HJBF,q
+

‖εi
HJBF,q

‖2
]}

+ αi
V,F,qE

{ ‖Φ̃CA,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qE

{ ‖Φ̃C,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qE

{‖WiT

V,F,qΨ̃i
V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qE

{ ‖εi
HJBF,q

‖2

1 + ‖Ψ̂i
V,F,q‖2

}

≤ −αi
V,F,qE×

{‖ W̃iT

V,F,qΨ̂i
V,F,q

2 − Φ̃CA,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

− αi
V,F,qE

{‖ W̃iT

V,F,qΨ̂i
V,F,q

2 − Φ̃C,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

− αi
V,F,qE

{

‖ W̃iT

V,F,qΨ̂i
V,F,q

2 + WiT

V,F,qΨ̃i
V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

− αi
V,F,qE

{‖ W̃iT

V,F,qΨ̂i
V,F,q

2 + εi
HJBF,q

‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qE

{ ‖Φ̃CA,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qE

{ ‖Φ̃C,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qE

{‖WiT

V,F,qΨ̃i
V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

αi
V,F,qE

{ ‖εi
HJBF,q

‖2

1 + ‖Ψ̂V,F,q‖2

}

≤ −αi
V,F,qE

{‖ W̃iT

V,F,qΨ̂i
V,F,q

2 − Φ̃CA,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

− αi
V,F,qE

{‖ W̃iT

V,F,qΨ̂i
V,F,q

2 − Φ̃C,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

−E

{ αi
V,F,q

1 + ‖Ψ̂i
V,F,q‖2

×

















‖Ψ̂i
V,F,q‖2‖W̃i

V,F,q‖2

4 +
‖Ψ̂i

V,F,q‖2‖W̃i
V,F,q‖2

2

+
‖WiT

V,F,qΨ̃i
V,F,q‖2

2

+‖WiT

V,F,qΨ̃i
V,F,q‖2

















}

− αi
V,F,qE

{‖ W̃iT

V,F,qΨ̂i
V,F,q

2 + εi
HJBF,q

‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qE

{ ‖Φ̃CA,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qE

{ ‖Φ̃C,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qE

{‖WiT

V,F,qΨ̃i
V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

αi
V,F,qE

{ ‖εi
HJBF,q

‖2

1 + ‖Ψ̂V,F,q‖2

}

≤ −3

4
αi

V,F,qE

{‖Ψ̂i
V,F,q‖2‖W̃i

V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

− 3

2
αi

V,F,qE

{‖WiT

V,F,q‖2‖Ψ̃i
V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

− αi
V,F,qE



Electronics 2023, 12, 89 22 of 30

{‖ W̃iT

V,F,qΨ̂i
V,F,q

2 − Φ̃CA,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

− αi
V,F,qE

{‖ W̃iT

V,F,qΨ̂i
V,F,q

2 − Φ̃C,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

− αi
V,F,qE

{

‖ W̃iT

V,F,qΨ̂i
V,F,q

2 + εi
HJBF,q

‖2

1 + ‖Ψ̂i
V,F,q‖2

}

++αi
V,F,qE

{ ‖Φ̃CA,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qE

{ ‖Φ̃C,F‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+

αi
V,F,qE

{‖WiT

V,F,qΨ̃i
V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ αi
V,F,qE

{ ‖εi
HJBF,q

‖2

1 + ‖Ψ̂V,F,q‖2

}

(A15)

By dropping several negative terms, the derivation can be simplified to

L̇i
V,F,q(t) ≤ −3

4
αi

V,F,qE

{‖Ψ̂i
V,F,q‖2‖W̃i

V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ Bi
W,V,F,q(t) (A16)

where

Bi
W,V,F,q(t) =







αi
V,F,q[lφi

CA,F
+ l

Φi
C,F

+ l
Ψi

V,F,q
E{‖Wi

V,F,q‖2]‖ρ̃i
F,q‖2}[1 +E

{‖Ψ̂i
V,F,q‖2}]−1 + αi

V,F,qE

{ ‖εi
HJBF,q

‖2

1+‖Ψ̂V,F,q‖2

}






(A17)

Here, l
Φi

CA,F
, l

Φi
C,F

, and l
Ψi

V,F,q
are the Lipschitz constants, and ρ̃i

F,q is the mass estimation

bound.
The follower–critic NN weight estimation error will be UUB, and the bound is

E

{

‖W̃i
V,F,q‖

}

≤ 2√
3
E

{

√

√

√

√

(1 + ‖Ψ̂V,p,i‖2)

αV,p,i‖Ψ̂V,i‖2
Bi

W,V,F,q

}

≡ bi
W,V,F,q (A18)

This completes the proof.

Appendix B. Proof of Theorem 2

Consider the Lyapunov function candidate

Li
ρ,F,q(t) =

1

2
tr
{

E{W̃iT

ρ,F,qW̃i
ρ,F,q}

}

(A19)

Additionally, the first derivative of the mass NN estimated weight from (48) can be
obtained as follows:

E
{ ˙̃Wi

ρ,F,q

}

= E

{

− ˙̂Wi
ρ,F,q

}

= E

{

αi
ρ,F,q

Ψ̂i
ρ,F,q(xi

F,q, V̂i
F,q, t)eiT

FPKF,q

1 + ‖Ψ̂i
ρ,F,q(xi

F,q, V̂i
F,q, t)‖2

}

(A20)

According to Lyapunov stability analysis, we take the first derivative of Equation (A19)
and substitute in the mass NN weight estimation error dynamic from Equation (A20):

L̇i
ρ,F,q(t) = tr

(

E

{

W̃iT

ρ,F,q
˙̃Wi

ρ,F,q

})

αi
ρ,itr

(

E

{

W̃T
ρ,i

Ψ̂i
ρ,F,q(xi

F,q, V̂i
F,q, t)eiT

FPKF,q

1 + ‖Ψ̂i
ρ,F,q(xi

F,q, V̂i
F,q, t)‖2

})

(A21)

Let

Ψ̂i
ρ,F,q = Ψi

ρ,F,q(xi
F,q, V̂i

F,q, t) ; Ψ̃i
ρ,F,q = Ψi

ρ,F,q(xi
F,q, Ṽi

F,q, t)

Now, by substituting Equation (44) into Equation (A21), we can obtain



Electronics 2023, 12, 89 23 of 30

L̇i
ρ,F,q(t) ≤ αi

ρ,F,qtr
(

E

{{ W̃iT

ρ,F,qΨ̂i
ρ,F,q

1 + ‖Ψ̂i
ρ,F,q‖2

}{

− W̃iT

ρ,F,qΨ̂i
ρ,F,q − WiT

ρ,F,qΨ̃i
ρ,F,q − εi

FPKF,q

})

≤ −αi
ρ,F,qtr

(

E

{

W̃iT

ρ,F,q

Ψ̂i
ρ,F,qΨ̂iT

ρ,F,qW̃i
ρ,F,q

1 + ‖Ψ̂i
ρ,F,q‖2

})

− αi
ρ,F,qtr

(

E

{

W̃iT

ρ,F,q

Ψ̂i
ρ,F,qΨ̃iT

ρ,F,qWi
ρ,F,q

1 + ‖Ψ̂i
ρ,F,q‖2

})

− αi
ρ,F,qtr

(

E

{

W̃iT

ρ,F,q

Ψ̂i
ρ,F,qεiT

FPKF,q

1 + ‖Ψ̂i
ρ,F,q‖2

})

(A22)

Now, the triangle inequality properties are applied to Equation (A22):

L̇i
ρ,F,q(t) ≤ −1

2
αi

ρ,F,qE

{‖Ψ̂i
ρ,F,q‖2‖W̃i

ρ,F,q‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

− 1

4
αi

ρ,F,q ×E

{‖Ψ̂i
ρ,F,q‖2‖W̃i

ρ,F,q‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

− αi
ρ,F,qtr

(

E

{

W̃iT

ρ,F,q ×
Ψ̂i

ρ,F,qΨ̃iT

ρ,F,qWi
ρ,F,q

1 + ‖Ψ̂i
ρ,F,q‖2

})

− αi
ρ,F,qE

{‖WiT

ρ,F,qΨ̃i
ρ,F,q‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

− 1

4
αi

ρ,F,qE

{

‖Ψ̂i
ρ,F,q‖2‖W̃i

ρ,F,q‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

− αi
ρ,F,qtr

(

E

{

W̃iT

ρ,F,q

Ψ̂i
ρ,F,qεiT

FPKF,q

1 + ‖Ψ̂i
ρ,F,q‖2

})

− αi
ρ,F,qE

{ ‖εi
FPKF,q

‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

+ αi
ρ,F,qE

{‖WiT

ρ,F,qΨ̃i
ρ,F,q‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

+ αi
ρ,F,qE

{ ‖εi
FPKF,q

‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

(A23)

Next, Equation (A23) can be simplified as follows:

L̇i
ρ,F,q(t) ≤ −1

2
αi

ρ,F,qE

{‖Ψ̂i
ρ,F,q‖2‖W̃i

ρ,F,q‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

− αi
ρ,F,qE

{ 1

1 + ‖Ψ̂i
ρ,F,q‖2

[1

4
‖Ψ̂i

ρ,F,q‖2

‖W̃i
ρ,F,q‖2 + tr{W̃iT

ρ,F,qΨ̂i
ρ,F,qΨ̃iT

ρ,F,qWi
ρ,F,q}+ ‖WT

ρ,iΨ̃ρ,i‖2
]}

− αi
ρ,F,qE

{ 1

1 + ‖Ψ̂i
ρ,F,q‖2

×
[1

4
‖Ψ̂i

ρ,F,q‖2‖W̃i
ρ,F,q‖2 + W̃iT

ρ,F,qΨ̂i
ρ,F,qεiT

FPKF,q
+ ‖εi

FPKF,q
‖2
]}

+ αi
ρ,F,qE

{‖WiT

ρ,F,qΨ̃i
ρ,F,q‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

+ αi
ρ,F,qE

{ ‖εi
FPKF,q

‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

≤ −1

2
αi

ρ,F,qE

{‖Ψ̂i
ρ,F,q‖2‖W̃i

ρ,F,q‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

− αi
ρ,F,qE

{‖ W̃iT

ρ,F,qΨ̂i
ρ,F,q

2 + WiT

ρ,F,qΨ̃i
ρ,F,q‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

− αi
ρ,F,q

E

{‖ W̃iT

ρ,F,qΨ̂i
ρ,F,q

2 + εi
FPKF,q

‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

+ αi
ρ,F,qE

{‖WiT

ρ,F,qΨ̃i
ρ,F,q‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

αi
ρ,F,qE

{ ‖εi
FPKF,q

‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

(A24)

After simplification, Equation (A24) can be written as follows:

L̇i
ρ,F,q(t) ≤ −1

2
αi

ρ,F,qE

{‖Ψ̂i
ρ,F,q‖2‖W̃i

ρ,F,q‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

+ Bi
W,ρ,F,q(t) (A25)



Electronics 2023, 12, 89 24 of 30

where

Bi
W,ρ,F,q =

[

αi
ρ,F,q

[l
Ψi

ρ,F,q
E{‖Wi

ρ,F,q‖2}]E{‖Ṽi
F,q‖2}

1+E{‖Ψ̂i
ρ,F,q‖2} + αi

ρ,F,qE

{ ‖εi
FPKF,q

‖2

1+‖Ψ̂i
ρ,F,q‖2

}

]

(A26)

Here, l
Ψi

ρ,F,q
is the Lipschitz constant, and Ṽi

F,q is the critic estimation error bound. The

mass NN weight estimation error will be UUB, and the bound is

E

{

‖W̃i
ρ,F,q‖

}

≤
√

2E
{

√

√

√

√

(1 + ‖Ψ̂i
ρ,F,q‖2)

αi
ρ,F,q‖Ψ̂i

ρ,F,q‖2
Bi

W,ρ,F,q

}

≡ bi
W,ρ,F,q (A27)

This completes the proof.

Appendix C. Proof of Theorem 3

Consider the Lyapunov function candidate for the leader

Li
u,L(t) =

1

2
tr
{

E{W̃T
u,iW̃u,i}

}

(A28)

The first derivative of the leader–actor NN estimated weight from (34) can be obtained:

E
{ ˙̃Wi

u,L

}

= E

{

− ˙̂Wi
u,L

}

= E

{

αi
u,L

φ̂i
u,L(xi

L, x−i
L , ¯̂ρi)eiT

u,i

1 + ‖φ̂i
u,L(xi

L, x−i
L , ¯̂ρi)‖2

}

(A29)

According to the Lyapunov stability analysis, we take the first derivative of Equa-
tion (A28) and substitute Equation (A29):

L̇i
u,L(t) = tr

(

E

{

W̃iT

u,L
˙̃Wi

u,L

})

= αi
u,Ltr

(

E

{

W̃iT

u,L

φ̂i
u,L(xi

L, x−i
L , ¯̂ρi)eiT

u,i

1 + ‖φ̂i
u,L(xi

L, x−i
L , ¯̂ρi)‖2

})

(A30)

Let

φ̂i
u,L = φ̂i

u,L(xi
L, x−i

L , ¯̂ρi) ; φ̃i
u,L = φ̃i

u,L(xi
L, x−i

L , ¯̃ρi) ; Ṽi
L = Ṽi(xi

L, x−i
L , ¯̂ρi)

Now, by substituting Equation (32) into Equation (A30), the following equation is ob-
tained:

L̇i
u,L(t) ≤ αi

u,Ltr
(

E

{{ W̃iT

u,Lφ̂i
u,L

1 + ‖φ̂i
u,L‖2

}{

− W̃iT

u,Lφ̂i
u,L − WiT

u,Lφ̃i
u,L −

1

2
Ri−1

L GT
a (xi

L)∂xi
L
Ṽi

L − εi
u,L

}T})

≤ −αi
u,Ltr

(

E

{

W̃iT

u,L

φ̂i
u,Lφ̂iT

u,LW̃i
u,L

1 + ‖φ̂i
u,L‖2

})

− αi
u,Ltr

(

E

{

W̃iT

u,L

φ̂i
u,Lφ̃iT

u,LWi
u,L

1 + ‖Ψ̂i
u,L‖2

})

− αi
u,Ltr

×
(

E

{

W̃iT

u,L

φ̂i
u,L[

1
2 Ri−1

L GT
a (xi

L)∂xi
L
Ṽi

L]

1 + ‖φ̂u,i‖2

})

− αi
u,Ltr

(

E

{

W̃iT

u,L

φ̂i
u,LεiT

u,L

1 + ‖φ̂i
u,L‖2

})

(A31)

After applying the triangle inequality property, Equation (A31) can be written as fol-
lows:

L̇i
u,L(t) ≤ −1

4
E

{

αi
u,L

‖φ̂i
u,L‖2‖W̃i

u,L‖2

1 + ‖φ̂i
u,L‖2

}

− 1

4
E

{

αi
u,L

‖φ̂i
u,L‖2‖W̃i

u,L‖2

1 + ‖φ̂i
u,L‖2

}

− αi
u,Ltr

(

E

{

W̃iT

u,L

φ̂i
u,Lφ̃iT

u,LWi
u,L

1 + ‖φ̂i
u,L‖2

})

− αi
u,LE

{‖WiT

u,Lφ̃i
u,L‖2

1 + ‖φ̂i
u,L‖2

}

+ αi
u,LE

{‖WiT

u,Lφ̃i
u,L‖2

1 + ‖φ̂i
u,L‖2

}

− 1

4
αi

u,L
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E

{‖φ̂i
u,L‖2‖W̃i

u,L‖2

1 + ‖φ̂i
u,L‖2

}

− αi
u,Ltr

(

E

{

W̃iT

u,L

φ̂i
u,L[

1
2 Ri−1

L GT
a (xi

L)∂xi
L
Ṽi

L]

1 + ‖φ̂i
u,L‖2

})

− αi
u,LE

×
{‖ 1

2 Ri−1

L GT
a (xi

L)∂xi
L
Ṽi

L‖2

1 + ‖φ̂i
u,L‖2

}

+ αi
u,LE

{‖ 1
2 Ri−1

L GT
a (xi

L)∂xi
L
Ṽi

L‖2

1 + ‖φ̂i
u,L‖2

}

− 1

4
αi

u,LE

{‖φ̂i
u,L‖2‖W̃i

u,L‖2

1 + ‖φ̂i
u,L‖2

}

− αi
u,Ltr

(

E

{

W̃iT

u,L

φ̂i
u,LεiT

u,L

1 + ‖φ̂i
u,L‖2

})

− αi
u,LE

{ ‖εi
u,L‖2

1 + ‖φ̂i
u,L‖2

}

+ αi
u,LE

{ ‖εi
u,L‖2

1 + ‖φ̂i
u,L‖2

}

≤ −1

4
αi

u,LE

{‖φ̂i
u,L‖2‖W̃i

u,L‖2

1 + ‖φ̂i
u,L‖2

}

− αi
u,LE

{ 1

1 + ‖φ̂i
u,L‖2

[1

4
× ‖φ̂i

u,L‖2‖W̃i
u,L‖2 + tr{W̃iT

u,Lφ̂i
u,L

φ̃iT

u,LWi
u,L}+ ‖WiT

u,Lφ̃i
u,L‖2

]}

− αi
u,LE

{ 1

1 + ‖φ̂i
u,L‖2

[1

4
× ‖φ̂i

u,L‖2‖W̃i
u,L‖2 + tr{W̃iT

u,Lφ̂i
u,L

[
1

2
Ri−1

L GT
a (xi

L)∂xi
L
Ṽi

L]}+ ‖1

2
Ri−1

L GT
a (xi

L)∂xi
L
Ṽi

L‖2
]}

− αi
u,LE

{ 1

1 + ‖φ̂i
u,L‖2

[1

4
‖φ̂i

u,L‖2

‖W̃i
u,L‖2 + W̃iT

u,Lφ̂i
u,LεiT

u,L + ‖εu,i‖2
]}

+ αi
u,LE

{‖WiT

u,Lφ̃i
u,L‖2

1 + ‖φ̂i
u,L‖2

}

+ αi
u,LE

{

‖Ri−1

L GT
a (xi

L)∂xi
L
Ṽi

L‖2

4(1 + ‖φ̂i
u,L‖2)

}

+ αi
u,LE

{ ‖εi
u,L‖2

1 + ‖φ̂i
u,L‖2

}

≤ −1

4
αi

u,LE

{‖φ̂i
u,L‖2‖W̃i

u,L‖2

1 + ‖φ̂i
u,L‖2

}

− αi
u,LE

{‖ W̃iT

u,Lφ̂i
u,L

2 + WiT

u,Lφ̃i
u,L‖2

1 + ‖φ̂i
u,L‖2

}

− αi
u,LE

{‖ W̃iT

u,Lφ̂i
u,L

2 + Ri−1

L GT
a (xi

L)∂xi
L
Ṽi

L‖2

1 + ‖φ̂i
u,L‖2

}

− αi
u,LE

{‖ W̃iT

u,Lφ̂i
u,L

2 + εi
u,L‖2

1 + ‖φ̂i
u,L‖2

}

+ αi
u,LE

{‖WiT

u,Lφ̃i
u,L‖2

1 + ‖φ̂i
u,L‖2

}

+ αi
u,LE

{‖Ri−1

L GT
a (xi

L)∂xi
L
Ṽi

L‖2

(1 + ‖φ̂i
u,L‖2)

}

+ αi
u,LE

{ ‖εi
u,L‖2

1 + ‖φ̂i
u,L‖2

}

(A32)

Dropping several negative terms and simplifying Equation (A32) yields

L̇i
u,L(t) ≤ −1

4
αi

u,LE

{‖φ̂i
u,L‖2‖W̃i

u,L‖2

1 + ‖φ̂i
u,L‖2

}

+ αi
u,LE

{‖WiT

u,Lφ̃i
u,L‖2

1 + ‖φ̂i
u,L‖2

}

+ αu,iE

{

‖Ri−1

L GT
a (xi

L)∂xi
L
Ṽi

L‖2

(1 + ‖φ̂i
u,L‖2)

}

+ αi
u,LE

{ ‖εi
u,L‖2

1 + ‖φ̂i
u,L‖2

}

≤ −1

4
αi

u,LE

{‖φ̂i
u,L‖2‖W̃i

u,L‖2

1 + ‖φ̂i
u,L‖2

}

+ Bi
W,u,L (A33)

where

Bi
W,u,L(t) =







αi
u,L

1+‖φ̂i
u,L‖2

{

lφi
u,L
E{‖Wi

u,L‖2‖ ¯̃ρi‖2}+E{‖Ri−1

L

GT
a (xi

L)‖2‖Ṽi
L‖2}

}

+ αi
u,L

E{‖εi
u,L‖2}

1+E{‖φ̂i
u,L‖2}







Here, Ṽi is the critic estimation error bound. The actor NN weight estimation error
will be UUB, and the bound is

E

{

‖W̃i
u,L‖

}

≤ 2E
{

√

√

√

√

(1 + ‖φ̂i
u,L‖2)

αi
u,L‖φ̂i

u,L‖2
Bi

W,u,L

}

≡ bi
W,u,L

(A34)
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Similarly, we can derive the bound for the follower–actor NN:

L̇i
u,F,q(t) ≤ −1

4
αi

u,F,qE

{‖φ̂i
u,F,q‖2‖W̃i

u,F,q‖2

1 + ‖φ̂i
u,F,q‖2

}

+ Bi
W,u,F,q (A35)

where

Bi
W,u,F,q(t) =









αi
u,F,q

1+E{‖φ̂i
u,F,q‖2}

{

lφi
u,F,q

E{‖Wi
u,F,q‖2‖ρ̃i

F,q‖2}+E{‖Ri−1

F,q

GT
s (xi

F,q)‖2 + ‖Ṽi
F,q‖2}

}

αi
u,F,q

E{‖εi
u,F,q‖2}

1+E{‖φ̂i
u,F,q‖2}









Here, li
φu,F,q

represents the Lipschitz constants, ρ̃i
F,q is the mass estimation bound, and

Ṽi
F,q is the critic estimation error bound. The follower–actor NN weight estimation error

will be UUB, and the bound is

E

{

‖W̃i
u,F,q‖

}

≤ 2E
{

√

√

√

√

(1 + ‖φ̂i
u,F,q‖2)

αi
u,F,q‖φ̂i

u,F,q‖2
Bi

W,u,F,q

}

≡ bi
W,u,F,q (A36)

This completes the proof.

Appendix D. Proof of Theorem 4

Consider the Lyapunov function to be

Li
sys(t) =

β1

2
tr
(

E

{

eiT

L (t)ei
L(t)

})

+
β2

2
tr
(

E

{

W̃iT

V,L(t)W̃
i
V,L(t)

})

+
β3

2
tr
(

E

{

W̃iT

u,L(t)

W̃i
u,L(t)

})

+
β4

2
tr
(

E

{

eiT

F,q(t)e
i
F,q(t)

})

+
β5

2
tr
(

E

{

W̃iT

V,F,q(t)W̃
i
V,F,q(t)

})

+
β6

2
tr
(

E

{

W̃iT

ρ,F,q(t)× W̃i
ρ,F,q(t)

})

+
β7

2
tr
(

E

{

W̃iT

u,F,q(t)W̃
i
u,F,q(t)

})

(A37)

By taking the first derivative and substituting Lemma 1 and Theorems 1–3 given in
Equations (A7), (A16), (A25), (A33), and (A35), we have

L̇i
sys(t) = β1tr

(

E

{

eiT

L (t)ėi
L(t)

})

+ β2tr
(

E

{

W̃iT

V,L(t)
˙̃Wi

V,L(t)
})

+ β3tr
(

E

{

W̃iT

u,L(t)

˙̃Wi
u,L(t)

})

+ β4tr
(

E

{

eiT

F,q(t)ė
i
F,q(t)

})

+ β5tr
(

E

{

W̃iT

V,F,q(t)
˙̃Wi

V,F,q(t)
})

+ β6tr
(

E

{

W̃iT

ρ,F,q(t)

× ˙̃Wi
ρ,F,q(t)

})

+ β7tr
(

E

{

W̃iT

u,F,q(t)
˙̃Wi

u,F,q(t)
})

≤ β1tr
(

E

{

eiT

L

[

Far(e
i
L(t)) + Gar(e

i
L(t))u

i
L(t) +

√
2νidωi

L

dt

]})

− β1tr
(

E

{

eiT

L Gar(e
i
L)ũ

i
L}

)

− 2β1

γ1
E

{

‖Gar(e
i
L)ũ

i
L‖2

}

+
2β1

γ1
E

{

‖Gar(e
i
L)ũ

i
L‖2

}

−
β2αi

V,L

4
E

{‖Ψ̂i
V,L‖2‖W̃i

V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

+

β2Bi
W,V,L −

β3αi
u,L

4
E

{‖φ̂i
u,L‖2‖W̃i

u,L‖2

1 + ‖φ̂i
u,L‖2

}

+ β3Bi
W,u,L + β4tr

(

E

{

eiT

F,q

[

Fsr(e
i
F,q(t)) + Gsr(e

i
F,q(t))

ui
F,q(t) +

√
2νidωi

F,q

dt

]})

− β4tr
(

E

{

eiT

F,qGsr(e
i
F,q)ũ

i
F,q}

)

− 2β4

γ2
E

{

‖Gsr(e
i
F,q)ũ

i
F,q‖2

}

+
2β4

γ2

E

{

‖Gsr(e
i
F,q)ũ

i
F,q‖2

}

−
β53αi

V,F,q

4
E

{‖Ψ̂i
V,F,q‖2‖W̃i

V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ β5Bi
W,V,F,q −

β6αi
ρ,F,q

2
E

{‖Ψ̂i
ρ,F,q‖2‖W̃i

ρ,F,q‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

+ β6Bi
W,ρ,F,q −

β7αi
u,F,q

4
E

{‖φ̂i
u,F,q‖2‖W̃i

u,F,q‖2

1 + ‖φ̂i
u,F,q‖2

}

+ β7Bi
W,u,F,q
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≤ −γ1β1

2
E

{

‖ei
L‖2

}

+
2β1g2

l1

γ1
E

{

‖ũi
L‖2

}

−
β2αi

V,L

4
E

{‖Ψ̂i
V,L‖2‖W̃i

V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

+ β2Bi
W,V,L−

β3αi
u,L

4
E

{‖φ̂i
u,L‖2‖W̃i

u,L‖2

1 + ‖φ̂i
u,L‖2

}

+ β3Bi
W,u,L −

γ2β4

2
E

{

‖ei
F,q‖2

}

+
2β4

γ2
g2

l2E

{

‖ũi
F,q‖2

}

−
β53αi

V,F,q

4
E

{‖Ψ̂i
V,F,q‖2‖W̃i

V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

+ β5Bi
W,V,F,q −

β6αi
ρ,F,q

2
E

{‖Ψ̂i
ρ,F,q‖2‖W̃i

ρ,F,q‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

+ β6

Bi
W,ρ,F,q −

β7αi
u,F,q

4
E

{‖φ̂i
u,F,q‖2‖W̃i

u,F,q‖2

1 + ‖φ̂i
u,F,q‖2

}

+ β7Bi
W,u,F,q (A38)

where gl1 and gl2 are the Lipschitz constants of the dynamic equations Gar(ei
L) and Gsr(ei

F,q),

respectively. Now, by substituting Equations (49)–(53) into Equation (A38), Equation (A38)
can be represented and simplified as follows:

L̇i
sys(t) ≤ b1 + b3 + 3b4E

{

‖W̃iT

V,L‖2‖φ̂i
V,L‖2

}

+ [3b4l2
ψi

V,L
+ b2]b̄

i2

ρ,F,q + 3b4‖εi
HJBL

‖2 + b5+

b73b8‖W̃iT

V,F,q‖2‖φ̂i
V,F,q‖2 + 2[3b8l2

ψi
V,F,q

‖Wi
V,F,q‖+ b6]‖W̃iT

ρ,F,q‖2‖ψ̂i
ρ,F,q‖2 + [3b8l2

ψi
V,F,q

‖Wi
V,F,q‖+ b6]‖εi

FPKF,q
‖2 + 3b8‖εi

HJBF,q
‖2 (A39)

where

b1 = −γ1β1

2
E

{

‖ei
L‖2

}

+
2β1g2

l1

γ1
E

{

‖ũi
L‖2

}

−
β2αi

V,L

4
E

{‖Ψ̂i
V,L‖2‖W̃i

V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

b2 = β2αi
V,L

[

[l
Φi

CP,L
+l

Ψi
V,L

E{‖Wi
V,L‖2]}

1+E{‖Ψ̂i
V,L‖2}

]

b3 =
β3αi

u,L

4
E

{‖φ̂i
u,L‖2‖W̃i

u,L‖2

1 + ‖φ̂i
u,L‖2

}

+ β2αi
V,LE

{ ‖εi
HJBL

‖2

1 + ‖Ψ̂i
V,L‖2

}

+ β3αu,i

E{‖εi
u,L‖2}

1 +E{‖φ̂i
u,L‖2}

b4 =
β3αi

u,L

1 + ‖φ̂i
u,L‖2

{

lψi
u,L
E{‖Wi

u,L‖2‖ ¯̃ρi‖2}+E{‖Ri−1

L GT
a (xi

L)‖2}
}

b5 = −γ2β4

2
E

{

‖ei
F,q‖2

}

+
2β4

γ2
g2

l2E

{

‖ũi
F,q‖2

}

−
β53αi

V,F,q

4
E

{‖Ψ̂i
V,F,q‖2‖W̃i

V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

b6 = β5αi
V,F,q[lφi

CA,F
+ l

Φi
C,F

+ l
Ψi

V,F,q
E{‖Wi

V,F,q‖2]}[1 +E{‖Ψ̂i
V,F,q‖2}]−1

b7 =
β6αi

ρ,F,q

2
E

{‖Ψ̂i
ρ,F,q‖2‖W̃i

ρ,F,q‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

−
β7αi

u,F,q

4
E

{‖φ̂i
u,F,q‖2‖W̃i

u,F,q‖2

1 + ‖φ̂i
u,F,q‖2

}

+ β5αi
V,F,qE

{ ‖εi
HJBF,q

‖2

1 + ‖Ψ̂V,F,q‖2

}

+ β6αi
ρ,F,qE

{ ‖εi
FPKF,q

‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

+ β7αi
u,F,q

E{‖εi
u,F,q‖2}

1 +E{‖φ̂i
u,F,q‖2}

b8 = β6αi
ρ,F,q

[l
Ψi

ρ,F,q
E{‖Wi

ρ,F,q‖2}]
1 +E{‖Ψ̂i

ρ,F,q‖2} + β7

αi
u,F,q

1 +E{‖φ̂i
u,F,q‖2}

{

lφi
u,F,q

E{‖Wi
u,F,q‖2‖ρ̃i

F,q‖2}+E{‖Ri−1

F,q GT
s (xi

F,q)‖2}
}

In addition, let

εNHJBi
L
= αi

V,LE

{ ‖εi
HJBL

‖2

1 + ‖Ψ̂i
V,L‖2

}

; εNi
u,L

= αi
u,L

E{‖εi
u,L‖2}

1 +E{‖φ̂i
u,L‖2}
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εNHJBi
F,q

= αi
V,F,qE

{ ‖εi
HJBF,q

‖2

1 + ‖Ψ̂V,F,q‖2

}

; εNi
u,F,q

= αi
u,F,q

E{‖εi
u,F,q‖2}

1 +E{‖φ̂i
u,F,q‖2}

εNFPKi
F,q

= αi
ρ,F,qE

{ ‖εi
FPKF,q

‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

Again, Equation (A39) can be written as follows:

L̇i
sys(t) ≤ −γ1β1

2
E

{

‖ei
L‖2

}

−
[ β2αi

V,L

4
E

{ ‖Ψ̂i
V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

− 3b4

]

E

{

‖W̃i
V,L‖2

}

−
[ β3αi

u,L

4

E

{ ‖φ̂u,i‖2

1 + ‖φ̂u,i‖2

}

− 6β1g2
l1

γ1
‖Ψ̂i

u,L‖2
]

‖W̃i
u,L‖2 − γ2β4

2
E

{

‖ei
F,q‖2

}

−
[3β5αi

V,F,q

4

E

{‖Ψ̂i
V,F,q‖2‖W̃i

V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

− 3b8‖φ̂i
V,F,q‖2

]

‖W̃i
V,F,q‖2 −

[ β7αi
u,F,q

4
E

{ ‖φ̂i
u,F,q‖2

1 + ‖φ̂i
u,F,q‖2

}

− 6β4g2
l2

γ2
E

{

‖φ̂i
u,F,q‖2

}]

E

{

‖W̃i
u,F,q‖2

}

−
[ β6αi

ρ,F,q

2
E

{ ‖Ψ̂i
ρ,F,q‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

− 12β4g2
l2

γ2

E

{

‖Wi
u,F,q‖2

}

l2
Ψi

u,F,q
E

{

‖φ̂i
ρ,F,q‖2

}

− 6b8l2
Ψi

V,F,q
E

{

‖Wi
V,F,q‖‖Ψ̂i

ρ,F,q‖2
}

− 2b6E

{

‖Ψ̂i
ρ,F,q‖2

}]

E

{

‖W̃i
ρ,F,q‖2

}

+
6β1g2

l1

γ1
E

{

‖εi
u,L‖2

}

+ β2εNHJBi
L
+ β3εNi

u,L
+ 3b4E

{

‖εi
HJBL

‖2
}12β4g2

l2

γ2

E

{

‖Wi
u,F,q‖2

}

l2
φi

u,F,q
E

{

‖εi
FPKF,q

‖2
}

+
6β4g2

l2

γ2
E

{

‖εi
u,F,q‖2

}

+ β5εNHJBi
F,q

+ β6εNFPKi
F,q

+ 6b8l2
Ψi

V,F,q
E

{

‖Wi
V,F,q‖‖εi

FPKF,q
‖2
}

+ 2b6E

{

‖εi
FPKF,q

‖2
}

+ 3b8‖εi
HJBL

‖2

≤ −γ1β1

2
E
{

‖ei
L‖2

}

− κi
V,LE

{

‖W̃i
V,L‖2

}

− κi
u,LE

{

‖W̃i
u,L‖2

}

− γ2β4

2
E
{

‖ei
F,q‖2

}

− κi
V,F,q

E
{

‖W̃i
V,F,q‖2

}

− κi
u,F,qE

{

‖W̃i
u,F,q‖2

}

− κi
ρ,F,qE

{

‖W̃i
ρ,F,q‖2

}

+ εCS (A40)

with

κi
V,L =

[ β2αi
V,L

4
E

{ ‖Ψ̂i
V,L‖2

1 + ‖Ψ̂i
V,L‖2

}

− 3b4

]

κi
u,L =

β3αi
u,L

4
E

{ ‖φ̂i
u,L‖2

1 + ‖φ̂i
u,L‖2

}

− 6β1g2
l1

γ1
E
{

‖φ̂i
u,L‖2

}

κi
V,F,q =

3β5αi
v,F,q

4
E

{‖Ψ̂i
V,F,q‖2‖W̃i

V,F,q‖2

1 + ‖Ψ̂i
V,F,q‖2

}

− 3b8E

{

‖Ψ̂i
V,F,q‖2

}

κi
u,F,q =

β7αi
u,F,q

4
E

{ ‖φ̂i
u,F,q‖2

1 + ‖φ̂i
u,F,q‖2

}

− 6β4g2
l2

γ2
E
{

‖φ̂i
u,F,q‖2

}

κi
ρ,F,q =

β6αi
ρ,F,q

2
E

{ ‖Ψ̂i
ρ,F,q‖2

1 + ‖Ψ̂i
ρ,F,q‖2

}

− 12β4g2
l2

γ2
E
{

‖Wi
u,F,q‖2

}

l2
φi

u,F,q
E
{

‖Ψ̂i
ρ,F,q‖2

}

− 6b8l2
Ψi

V,F,q

E
{

‖Wi
V,F,q‖‖Ψ̂i

ρ,F,q‖2
}

− 2b6E
{

‖Ψ̂i
ρ,F,q‖2

}

εCS =
6β1g2

l1

γ1
E
{

‖εi
u,L‖2

}

+ β2εNHJBi
L
+ β3εNi

u,L
+ 3b4‖εi

HJBL
‖2 12β4g2

l2

γ2
E
{

‖Wi
u,F,q‖2

}

l2
φi

u,F,q
E
{

‖εi
FPKF,q

‖2
}

+
6β4g2

l2

γ2
E
{

‖εi
u,F,q‖2

}

+ β5εNHJBi
F,q

+ β6εNFPKi
F,q

+ 6b8l2
Ψi

V,F,q
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E
{

‖Wi
V,F,q‖‖εi

FPKF,q
‖2
}

+ 2b6E
{

‖εi
FPKF,q

‖2
}

+ 3b8E
{

‖εi
HJBF,q

‖2
}

The derivation of the Lyapunov function L̇i
sys(t) is less than zero outside a compact

set; in other words, we have

E
{

‖ei
L‖

}

>

√

2

γ1β1
εCS ; E

{

‖W̃i
V,L‖

}

>

√

1

ki
V,L

εCS ; E
{

‖W̃i
u,L‖

}

>

√

1

ki
u,L

εCS

E
{

‖ei
F,q‖

}

>

√

2

γ2β5
εCS ; E

{

‖W̃i
V,F,q‖

}

>

√

1

ki
V,F,q

εCS ; E
{

‖W̃i
u,F,q‖

}

>

√

1

ki
u,F,q

εCS

E
{

|W̃i
ρ,F,q‖

}

>

√

1

ki
ρ,F,q

εCS

This completes the proof.
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