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Abstract—In this paper, a decentralized optimal tracking
control problem has been investigated for large scale multi-
agent system (LS-MAS) under unstructured environment. Due
to the “Curse of Dimensionality” from a large amount of agents
and constraints from the unstructured environment, conventional
optimal tracking control as well as emerging mean field game
and machine learning based design cannot be utilized directly.
To overcome those challenges, a novel barrier function has been
designed to transform the unstructured environment into a struc-
tured environment so that mean field game theory can be used
to formulate decentralized optimal tracking control for LS-MAS.
Then, the actor-critic-mass reinforcement learning algorithm has
been developed to learn the mean field game based optimal
solution under structured environment. Specifically, individual
agent has three neural networks (NN), i.e., 1) mass NN that learns
the behaviors of large population via estimating the solution of
Fokker–Planck–Kolmogorov (FPK) equation, 2) critic NN that
obtains optimal cost function by learning the solution of the
Hamilton–Jacobi–Bellman (HJB) equation, 3) actor NN that solve
the decentralized optimal tracking control based on the infor-
mation provided by the mass and critic NN. Next, the learned
decentralized optimal tracking control can be transformed from
structured environment back to unstructured environment and
implemented in real-time through barrier function. Overall, this
developed algorithm is named MFG-based barrier-actor-critic-
mass learning. The Lyapunov theorem has been used to prove
the stability of the closed-loop system. Eventually, a series of
numerical simulation has been conducted to demonstrate the
effectiveness of the developed scheme.

I. INTRODUCTION

In recent years, large-scale multi-agent systems (LS-MAS)
have attracted significant interests from both research societies
and industrial communities due to its capability of upgrading
traditional multi-agent system performance by using its diver-
sity gain [1]. For instance, [2], [3] have studied the tracking
control problem in the LS-MAS. However, It is very difficult
to directly utilize conventional control into LS-MAS due to
three challenges. The first challenge is the notorious “Curse
of Dimensionality” [4]. Since traditional cooperative control
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needs each agent to know other agents’ states, the computa-
tional complexity of distributed control will be exponentially
increased along with increased number of agents. The second
challenge is lacking a realistic reliable communication network
that can support information exchange among LS-MAS timely.
Due to the limitation of communication capability in practice,
traditional distributed cooperative control techniques [5] are
very difficult to be applied. The last challenge is the constraints
from physical system limitation and practical environment [3],
such as obstacles, might cause difficulty in LS-MAS optimal
control design.

To address those challenges, a significant number of re-
searches have been conducted. For instance, Liu et al.,[6]
developed a cooperative multi-agent traffic signal control sys-
tem, where the “Curse of Dimensionality” problem has been
addressed by integrating Q-learning with function approxi-
mation algorithm. In [7], an actor centralized-critic algorithm
has been developed to reduce the complexity of cooperation
in large scale multi-agent systems. Recently, emerging mean
field game (MFG) theory has been widely adopted to solve
the decentralized control for LS-MAS due to its capability to
handle “Curse of Dimensionality” [8] and [9].

However, using traditional MFG theory, there are two com-
mon assumptions need to be ensured, i.e. 1) all agents are
located in a structured space, and 2) all agents are homoge-
neous with respect to their dynamics and environment. When
large scale multi-agent system (LS-MAS) has been deployed
in the unstructured environment, traditional MFG cannot be
directly utilized. To address this issue and develop an efficient
decentralized tracking control for LS-MAS under unstructured
environment, barrier function [10] based approach has been
adopted. Specifically, a novel barrier function is designed to
transform the unstructured system space into a structured state
space firstly. Then, mean field game theory can be used to
formulate the decentralized optimal tracking control problem
for LS-MAS under structured space. Next, the optimal solution
can be obtained by solving a pair of forward and backward
Partial Differential Equation (PDE), called Fokker-Planck-
Kolmogorov (FPK) equation and Hamiltonian-Jacobi-Bellman
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(HJB) equation. It is very difficult and even impossible to
directly solve it since those two forward and backward PDEs
are closely coupled. To address this difficulty, adaptive dy-
namic programming and reinforcement learning [11] technique
has been adopted. An actor-critic-mass learning algorithm has
been developed with mass NN learning the behaviors of large
population via estimating the solution of FPK equation with
barrier function, critic NN obtaining optimal cost function by
learning the solution of the HJB equation with barrier function,
and actor NN solving the decentralized optimal tracking con-
trol based on the information provided by the mass and critic
NN. Eventually, using the inverse barrier function, the practical
decentralized optimal tracking control can be obtained and
implemented for LS-MAS under unstructured environment in
real-time. Overall, the developed algorithm is named as MFG-
based barrier-actor-critic-mass learning algorithm.

The key contributions of this paper are listed as follows:

• The challenge from unstructured environment has been
overcome by using a novel barrier function based ap-
proach. Through barrier function, we are not only able to
use mean field game theory for finding optimal solution
for LS-MAS under structured environment, but also ob-
tain the corresponding optimal design under unstructured
environment.

• The novel barrier-actor-critic-mass algorithm is devel-
oped to solve the constrained HJB and FPK equation
simultaneously and further obtain the optimal control for
LS-MAS in real-time.

The structure of this paper is given as follows. Section II
provides the problem formulation including barrier function
as well as LS-MAS tracking optimal problem formulation. In
Section III, the novel barrier-actor-critic-mass algorithm has
been developed. Then, the numerical simulation is shown in
Section IV to demonstrate the effectiveness of the proposed
design.

II. PROBLEM FORMULATION

Consider N represents the number of homogeneous agents
that deployed in a 2D space, where N is a countably infinite
number, i.e, N → ∞. Now, an agent i is controlled by
the stochastic differential equation with their states being
constrained

dxs,i = [f(xs,i) + g(xs,i)us,i]dt+
√
2νdσi (1)

where f(xs,i) and g(xs,i) ∈ R
2 are nonlinear functions,

xs,i =
[
x1
s,i x2

s,i

]T ∈ R
2 is the agent state, which includes

its position in x and y coordinates. Also, us,i ∈ R is the
control input, σi is the standard Brownian motion which
represents the process noise and ν is a non-negative parameter.
Moreover, the objective of each agent is to reach a predefined
destination while avoiding the obstacles in the unstructured
environment. Let, there are multiple number of static obstacles
in the unstructured space. Considering 2-D space, the bound-
ary region of each obstacle can be defined by the following
function

Obstacle 1

Obstacle 
3

Obstacle 4Obstacle 
6

Obstacle 2

(t)

(t)

UAVs

(t) (t) (t) (t) (t) (t)

Fig. 1: An illustration of an unstructured environment with
multiple obstacles

Oo(l) = {[xo(l), yo(l)] ∈ R
2 : yo(l) = h(xo(l))} (2)

where, l = 1, ..., No with No being the number of obstacles
in unstructured environment.

A. Unstructured and Structured Space Transformation via
Barrier Function

To avoid the collision with multiple distributed obstacles in
the unstructured space, we introduce a time varying barrier
function. The barrier function transform the system to a
new free space, where the LS-MAS MFG control for the
homogeneous agents are obtained. At first, the upper and lower
bound of the barrier function has been evaluated for each
agent with respect to their location at time t. In this study, we
consider a two dimensional barrier function. The bounds of the
barrier function in 2D space with x and y coordinates depends
on the boundary of the obstacles and the configuration space.
An environment has been illustrated with multiple obstacles
and corresponding boundary positions in Figure 1. The bounds
for any agent i can be evaluated by fixing any one coordinate,
i.e., horizontal or vertical position. Let, the position of the
bounds in y coordinate are the upper and lower boundary of
the configuration space. Now, the bounds positions in the x
coordinates for agent i at time t can be evaluated by using
the boundary function (2). Let Bi

xo
(t) is a set of all boundary

position in x coordinate as follows:

Bi
xo
(t) = {bixo,0

(t), bixo,1
(t), ..., bixo,p−1

(t), bixo,p
(t)}

where bxo,0
(t) and bxo,p

(t) are the upper and lower bounds
of the configuration space, and p + 1 is the total number of
boundary points for agent i at time t. Now, there exist any
subset Si

xo
(t) ⊆ Bi

xo
(t) and Si

x,o(t) = {(bix,u, bix,l) ∈ R× R |
bix,u < x1

i < bix,l}, which contains the closest two points in x
direction for agent i at time t. Now, the upper and lower bound

2022 IEEE SSCI — Symposium on Adaptive Dynamic Programming and Reinforcement Learning 901

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on March 20,2023 at 23:18:06 UTC from IEEE Xplore.  Restrictions apply. 



for agent i at time t can be represented as biu =
[
bix,u biy,u

]T
and bil =

[
bix,l biy,l

]T
, where biy,u and biy,l are the fixed upper

and lower bound in y coordinate. Now, Let the Barrier function
B(.) : R → R is defined on (bil, b

i
u). Then the state of the agent

i can be represented as

si(t) = Bi(xs,i(t)) = ln
biu(t)(b

i
l(t)− xs,i(t))

bil(t)(b
i
u(t)− xs,i(t))

(3)

where, si(t) is the transformed state of the agent i at time
t. Besides that, the Barrier function is invertible on interval
(bil(t), b

i
u(t)), i.e.,

xs,i(t) = B−1
i (si(t)) = bil(t)b

i
u(t)

e
si(t)

2 − e−
si(t)

2

bil(t)e
si(t)

2 − biu(t)e
− si(t)

2

(4)
Remark 1: The barrier function B(∗) takes finite value
when the arguments are within the above defined region and
approaches to infinity as the state approaches the boundary of
the defined region. It allows us to remove the obstacle from the
unstructured space and further transform to structured space.

B. MFG-based Decentralized Optimal Tracking Control Prob-
lem Formulation under Structured Space

The dynamics of the transformed state si can be obtained
by using following chain rule

dsi = [f(xs,i) + g(xs,i)us,i]
biu

2
e−si − 2bilb

i
u + bil

2
esi

biub
i
l
2 − bilb

i
u
2

dt

= [F (si) +G(si)ui]dt+
√
2vdσi

(5)

where, F (si) = f(xs,i)
biu

2
e−si−2bilb

i
u+bil

2
esi

biub
i
l
2−bilb

i
u
2 and

G(si) = g(xs,i)
biu

2
e−si−2bilb

i
u+bil

2
esi

biub
i
l
2−bilb

i
u
2

Assumption 1. F (si) is Lipschitz and there exists a constant
af such that, for si ∈ Ω, ‖F (si)‖ ≤ af‖si‖, where Ω is
a compact set containing the origin. Also, G(si) is bounded
on Ω, i.e., there exists a constant ag such that ‖G(si)‖ ≤ ag .
Moreover, the system in Eq. 1 is controllable over the compact
set Ω.

Now, a predefined transformed reference trajectory sr has
been given in the unstructured space. Now the objective
of each agent is to reach the destination by following the
reference trajectory

ei(t) = si(t)− sr(t) (6)

Next, the tracking error dynamics can be derived as:

dei(t) = dsi(t)− dsr(t)

= [Fa(ei) +Ga(ei)ui]dt+
√
2νdσi

(7)

where, Fa(ei) = F (ei+ sr)− (dsr/dt) and Ga(ei) = G(ei+
sr).

Now, the cost function in the transformed state can be
represented as follows:

Vi(ei, ρ) = E
{∫ ∞

0

[L(ei, ui) + Φ(ei, ρ)]dt
}

(8)

where, ρ(ei, t) denotes the probability density function(PDF)
of the population’s tracking error at time t and E{.} is the
expectation operator. Also, Φ(ei, ρ) is the mean field coupling
function which represents the interaction between agent i and
the whole population of other agents. Since the dimension of
the PDF and each agent state is same, the mean field coupling
function can greatly reduce the computational complexity
problem. Moreover, L(ei, ui) = ‖ei‖2Q+ ‖ui‖2R, where Q and
R are positive definite matrices with compatible dimensions.

Then, a Hamiltonian [12] can be defined as

Hi[ei, DVi(ei, ρ, t)] = E

{[
L(ei, ui) +DV T

i (ei, ρ, t)
[Fa(ei) +Ga(ei)ui]

]}
(9)

Next, the optimal control for each agent can be derived as

u∗
i (ei) = −1

2
E

{
R−1(Ga)

T (ei)DV ∗
i (ei, ρ, t)

}
(10)

Now, the corresponding HJB equation is obtained by substi-
tuting the optimal evaluation function into the Hamiltonian
which is shown at the bottom of this page. To obtain the HJB
equation, the probability density function (PDF), i.e. Mass
function ρ is required. The mass function can be obtained
by solving the FPK equation shown at the bottom of the page.
Remark 2: To obtain the optimal control policy, the coupled
HJB-FPK equation need to be solved in real time. However,
the HJB and FPK equations are multi-dimensional nonlinear
PDEs whose solution is difficult to achieve with state con-
straints. Therefore, in this paper, a novel barrier-actor-critic-
mass based NNs is developed to learn the solution of coupled
HJB-FPK equations.

III. BARRIER-ACTOR-CRITIC-MASS BASED OPTIMAL

CONTROL DESIGN

In this section, the Barrier-Actor-Critic-Mass (BACM) al-
gorithm is developed. In the BACM, each agent maintain
three neural networks(NN). The actor NN approximate the
optimal control policy, the critic NN approximate the optimal
evaluation function and the mass NN estimate the density
of the entire population. Meanwhile, the barrier function is
applied into three NNs to ensure both state and density
constraints being satisfied during the learning.

The optimal cost, control and mass function can be repre-
sented as:

Critic: V ∗
i (ei, ρ, t) = E

{
WT

V,iφV,i(ei, ρ) + εHJBi

}
Actor: u∗

i (ei, ρ, t) = E

{
WT

u,iφu,i(ei, ρ) + εu,i

}
Mass: ρ(ei, t) = E

{
WT

ρ,iφρ,i(ei, Vi, t) + εFPKi

} (13)

where, WV,i, Wu,i and Wu,i are the critic, actor and mass
weights, respectively. Also, φV,i, φu,i and φρ,i are the critic,
actor and mass activation functions. Moreover, φ(.) is the

902 2022 IEEE SSCI — Symposium on Adaptive Dynamic Programming and Reinforcement Learning

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on March 20,2023 at 23:18:06 UTC from IEEE Xplore.  Restrictions apply. 



HJB:

E

{
− ∂tV

∗
i (ei, ρ, t)− νΔV ∗

i (ei, ρ, t) +Hi[ei, DV ∗
i (ei, ρ, t)]

}
= E

{
Φ(ei, ρ)

}
(11)

FPK:

E

{
∂tρ(ei, t)− νΔρ(ei, t)− div(ρDpHi[ei, DV ∗

i (ei, ρ, t)])
}
= 0 (12)

Controller Transformed System

Barrier Function

System

HJB

FPK

Unstructured environment

Structured environment

Fig. 2: Structure of Barrier-Actor-Critic-Mass system

bounded and continuous activation function of the respective
neural networks. Furthermore, εHJBi, εu,i and εFPKi represents
the reconstruction error of critic, actor and mass neural net-
work, respectively.

Next, the optimal cost, control and mass distribution func-
tion can be approximated as:

Critic: V̂i(ei, ρ̂i, t) = E

{
ŴT

V,iφ̂V,i(ei, ρ̂)
}

Actor: ûi(ei, ρ̂i, t) = E

{
ŴT

u,iφ̂u,i(ei, ρ̂)
}

Mass: ρ̂(ei, ρ̄, t) = E

{
ŴT

ρ,iφ̂ρ,i(ei, V̂i, t)
} (14)

where, ρ̄ is the averaged historical density defined as ρ̄ =
1
T

∫ t−T

t
ρdρ and T is a constant historical window.

By substituting equations (14) into the HJB, FPK and
optimal control equations (11), (10) and (12), we encounter
residuals errors which can be used to tune the critic, actor and
mass neural networks:

E
{
eHJBi

}
= E

{
Φ(ei, ρ̂i) + ŴT

V,i

[
∂tφ̂V,i + νΔφ̂V,i

−Ĥi,W

]}
(15)

E
{
eFPKi

}
= E

{
ŴT

ρ,i

[
∂tφ̂ρ,i − νΔφ̂ρ,i

−div(φ̂ρ,i)DpĤi

]}
(16)

E
{
eu,i

}
= E

{
ŴT

u,iφ̂u,i +
1

2
R−1(Ga)

T (ei)DV̂i(ei, ρ̂i, t)
}
(17)

with Ĥi = WT
V,iĤi,W and Ĥi = Hi[ei, Dφ̂V,i].

Now, let

E

{
ΨV,i(ei, ρ̂i, t)

}
= E

{
∂tφ̂V,i + νΔφ̂V,i − Ĥi,W

}
E

{
Ψρ,i(ei, ρ̄i, V̂i, t)

}
= E

{[
∂tφ̂ρ,i − νΔφ̂ρ,i

−div(φ̂ρ,iDpĤi)

]}
E

{
Φ(ei, ρ̃i)

}
= E

{
Φ(ei, ρ̂i)− Φ(ei, ρi)

}
with H = WT

V,iHW and Ĥ = H[ei, Deφ̂V,i].
Then, the HJB and FPK residual errors equation (15) and

(16) can be simplified as follows:

E
{
eHJBi

}
= E

{[
Φ(ei, ρi) + Φ(ei, ρ̃i)

+ŴT
V,iΨV,i(ei, ρ̂i, t)

]}
(18)

E
{
eFPKi

}
= E

{
ŴT

ρ,iΨρ,i(ei, ρ̄i, V̂i, t)
}

(19)

Next, we consider the effect of reconstruction errors by
substituting the optimal functions from (13) into (11) and (12)

E

{
Φ(ei, ρi) +WT

V,iΨV,i(ei, ρi, t) + εHJBi

}
= 0 (20)

E

{
WT

ρ,iΨρ,i(ei, ρ̄i, Vi, t) + εFPKi

}
= 0 (21)

where, εHJBi and εFPKi are the reconstruction errors. Again,
substitute (20) and (21) into (18) and (19)

E
{
eHJBi

}
= E

{[
Φ(ei, ρ̃i)− W̃T

V,iΨV,i(ei, ρ̂i, t)

−WT
V,iΨ̃V,i(ei, ρ̃i, t)− εHJBi

]}
(22)

E
{
eFPKi

}
= E

{⎡
⎣−W̃T

ρ,iΨρ,i(ei, ρ̄i, V̂i, t)

−WT
ρ,iΨ̃ρ,i(ei, ρ̄i, Ṽi, t)

−εFPKi

⎤
⎦}

(23)

Similarly, we obtain

E
{
eu,i

}
= E

{⎡
⎣ −W̃T

u,iφ̂u,i(ei, ρ̂i, t)

−WT
u,iφ̃u,i(ei, ρ̃i, t)

− 1
2R

−1(Ga)
T (ei)DṼi(ei, ρ̃i, t)− εu,i

⎤
⎦}

(24)
where,

E

{
W̃V,i

}
= E

{
WV,i − ŴV,i

}
E

{
W̃u,i

}
= E

{
Wu,i − Ŵu,i

}
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E

{
W̃ρ,i

}
= E

{
Wρ,i − Ŵρ,i

}
E

{
Ψ̃V,i(ei, ρ̃i, t)

}
= E

{
ΨV,i(ei, ρi, t)−ΨV,i(ei, ρ̂i, t)

}
E

{
Ψ̃ρ,i(ei, ρ̄i, Ṽi, t)E

}
= E

{[
Ψρ,i(ei, ρ̄i, Vi, t)

−Ψρ,i(ei, ρ̄i, V̂i, t)

]}
E

{
φ̃u,i(ei, ρ̃i, t)

}
= E

{
φu,i(ei, ρi, t)− φu,i(ei, ρ̂i, t)

}
(25)

Next, applying the gradient descent algorithm, the critic,
mass and actor update law can be derived as:

E

{
˙̂
WV,i

}
= E

{
− αV,i

ΨV,i(ei, ρ̂i, t)e
T
HJBi

1 + ‖ΨV,i(ei, ρ̂i, t)‖2
}

(26)

E

{
˙̂
Wρ,i

}
= E

{
− αρ,i

Ψρ,i(ei, ρ̄i, V̂i, t)e
T
FPKi

1 + ‖Ψρ,i(ei, ρ̄i, V̂i, t)‖2
}

(27)

E

{
˙̂
Wu,i

}
= E

{
− αu,i

φu,i(ei, ρ̂i, t)e
T
ui

1 + ‖φu,i(ei, ρ̂i, t)‖2
}

(28)

where αV,i, αρ,i and αu,i are the learning rates.

Algorithm 1 BACM Algorithm

1: Initialize agents i’s state xs,i

2: Transform the state xs,i to si using (3)
3: Calculate error ei
4: Initialize NN weights ŴV,i, Ŵρ,i, Ŵu,i randomly
5: Initialize errors eFPKi, eHJBi, eu,i ← ∞
6: Initialize thresholds δFPK, δHJB, δu
7: while TRUE do
8: while eFPKi ≥ δFPK, eHJBi ≥ δHJB, eui ≥ δu do
9: Update NN weights by solving (26), (27), and (28),

E

{
˙̂
WV,i

}
= E

{
− αV,i

ΨV,i(ei, ρ̂i, t)e
T
HJBi

1 + ‖ΨV,i(ei, ρ̂i, t)‖2
}

E

{
˙̂
Wρ,i

}
= E

{
− αρ,i

Ψρ,i(ei, ρ̄i, V̂i, t)e
T
FPKi

1 + ‖Ψρ,i(ei, ρ̄i, V̂i, t)‖2
}

E

{
˙̂
Wu,i

}
= E

{
− αu,i

φu,i(ei, ρ̂i, t)e
T
ui

1 + ‖φu,i(ei, ρ̂i, t)‖2
}

10: Update NN errors by (22), (23), and (24)
11: end while
12: ûi(ei, ρ̂i, t) ← ŴT

u,iφ̂u,i(ei, ρ̂)
13: Execute the control ûi

14: Observe new state si
15: end while
16: Transform the state si to xs,i using (4)

The performance of all neural networks are given as follows:
Theorem 1: Let E{ŴV,i} can be updated as (26), where the
learning rate αV,i > 0. Now, we can say that the error between
actual and approximated critic NN’s weights E{W̃V,i} and
also the optimal evaluation function approximation errors, i.e.,

E
{
Ṽi

}
= E

{
Vi−V̂i

}
are uniformly ultimately bounded(UUB).

Moreover, E{W̃V,i} and Ṽi are asymptotically stable if the
NN’s structures are selected perfectly. Also, if the recon-
struction errors are sufficiently small, then the corresponding
bounds of the critic weight and optimal evaluation function
i.e., bWV,i

and bV,i are insignificant.

Theorem 2: Let E{Ŵρ,i} can be updated as (27) where the
learning rate αρ,i > 0. Now, we can say that the error between
actual and approximated mass NN’s weights E{W̃ρ,i} and also
the mass function approximation errors, i.e., E

{
ρ̃i
}
= E

{
ρi−

ρ̂i
}

are uniformly ultimately bounded(UUB). Moreover, W̃ρ,i

and E{W̃ρ,i} are asymptotically stable if the NN’s structures
are selected perfectly. Also, if the reconstruction errors are
sufficiently small, then the corresponding bounds bWρ,i

and
bρ,i are insignificant.
Theorem 3: Let E{Ŵu,i} can be updated as (28), where the
learning rate αu,i > 0. Now, we can say that the error between
actual and approximated actor NN’s weights E{W̃u,i} and
also the optimal control approximation errors, i.e., E

{
ũi

}
=

E
{
ui − ûi

}
are uniformly ultimately bounded(UUB). More-

over, E{W̃u,i} and ũi are asymptotically stable if the NN’s
structures are selected perfectly. Also, if the reconstruction
errors are sufficiently small, then the corresponding bounds
bWu,i and bu,i are insignificant.

Lemma 1: There exist optimal control policies for agent u∗
i

for the stochastic system dynamics equations given in (7)

E

{
eTi [Fa(ei(t)) +Ga(ei(t))u

∗
i (t) +

√
2νdσi

dt
]
}
≤ γE{‖ei‖2}

(29)
Theorem 4 (Closed-Loop Stability): Let the crtic, mass

and actor NNs’ weights can be updated as (26)- (28). Also,
we assume that learning rates αV,i, αρ,i and αu,i are greater
than zero. Then, E{W̃V,i}, E{W̃ρ,i}, E{W̃u,i} and E{ei} are
all UUB. Moreover, E{W̃V,i}, E{W̃ρ,i}, E{W̃u,i} and E{ei}
are asymptotically stable if the NN’s structures are selected
perfectly.

Proof: See Appendix A

IV. SIMULATION RESULTS

In this section, the developed BACM algorithm has been
implemented into the large scale multi-UAV system with
unstructured environment to address the decentralized mean
field based optimal control problem. A total of 500 Unmanned
Aerial Vehicles(UAVs) are deployed with system dynamics
under an unstructured environment with multiple obstacles.
The goal of each UAV is to reach a destination while
avoiding multiple obstacles during the mission. Therefore,
the movements of all UAVs are limited to a fixed area with
specific boundary constraints. The initial positions of all UAVs
are generated randomly following a normal distribution with
mean 0.5 and variance 0.16. Then, the system of the UAVs
are transformed to an unconstrained system by using the
barrier function. The bounds of the barrier function varies
with time depending on the boundary of the obstacles and
configuration space. After transforming the unstructured space
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to a structured space, a reference trajectory has been given
ahead of the mission planning to all the UAVs. The objective
of each UAV is to track this reference trajectory in order to
reach the goal position.

Fig. 3: Trajectory of Large number of UAVs with time while
avoiding multiple obstacles

The agents intrinsic dynamics are given as:

f(xs,i) =

[
xs,2 − xs,1

xs,2 − 2x2
s,1

]
g(xs,i) =

[
1
2

]

Also, the dynamics of the transformed state are as follows:

F (si) = f(B−1
i (si))

biu
2
e−si − 2bilb

i
u + bil

2
esi

biub
i
l
2 − bilb

i
u
2

G(si) = g(B−1
i (si))

biu
2
e−si − 2bilb

i
u + bil

2
esi

biub
i
l
2 − bilb

i
u
2

The non-negative parameter ν is selected as 0.02. The mean
field cost function is selected as Φ(ei, ρ) = ‖ei − E{ρ(ei)}‖,
which represents the difference between agent i’s current
tracking error and the current average tracking error of the
whole population. Moreover, ρ(e) = 1 denotes that the
tracking error of all agents are same.

Fig. 4: Average tracking error of all UAVs

The coefficients to evaluate the cost of actions and tracking
errors are selected as R = 1, Q = 1. The learning rate of
the neural network are defined as αu,i = 2 × 10−4, αV,i =

2×10−6, and αρ,i = 1×10−3. Also, the thresholds are defined
as δu = 1× 10−3, δFPK = 1× 10−3, and δHJB = 1× 10−4.

Firstly, the overall performance of developed BACM based
decentralized optimal tracking control is shown in Fig.3. It
is clear that the developed algorithm can force all the UAVs
to go to the destination while avoiding the obstacles in the
environment.

Fig. 5: Tracking error PDF of all UAVs

Secondly, the tracking errors of all UAVs has been analyzed.
Fig.4 shows the average tracking error of all UAVs. This figure
clearly shows that the tracking errors converge to near zero
along with time. It indicates that the designed algorithm can
track the reference trajectory to reach to a destination and
avoid the obstacles in real time.

Also, Fig.5 shows the distribution of all UAVs tracking
error, where the yellow color shows the tracking errors with
higher probabilities. This figure clearly shows that the initial
tracking error is high and randomly distributed. However, the
variance of the tracking errors decrease to zero with time. This
also proves that the system can track the reference trajectory
successfully.

Fig. 6: HJB equation errors

Next, the neural networks performance is demonstrated by
analyzing the HJB equation error along with the FPK equation
error of UAVs. Without loss of generality, we consider the
optimality for UAV 1. In Fig.6, the HJB equation error of
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the UAV 1 has been plotted. From this figure, it is clear
that the error converge to near zero after 1s. Similarly, in
Fig.7, the FPK equation error of the UAV 1 has been plotted
to demonstrate the mean field error. From Fig.6 and Fig.7,
it is clear that the HJB and mean field equation errors for
agent 1 converge to near zero with time, which proves that
the solution of the HJB-FPK coupled equation system is
successfully approximated. Therefore the ε- Nash Equilibrium
has been reached.

Fig. 7: FPK equation errors

V. CONCLUSIONS

In this paper, a novel mean field game based barrier-actor-
critic-mass (BACM) learning algorithm has been developed
to obtain the decentralized optimal tracking control for large
scale multi-agent system (LS-MAS) under unstructured envi-
ronment. In this BACM algorithm, a barrier function is used
to tranform the unstructured LS-MAS state space to structured
space. Then, decentralized optimal tracking control for LS-
MAS under structured space can be obtained by solving the
coupled HJB-FPK equations obtained from mean-field game
theory. Specifically, to solve the barrier function based mean
field game, three neural networks (NN) are employed, i.e.,
the actor NN for learning optimal control, the critic NN
for estimating optimal cost function, and the mass NN for
approximating the LS-MAS’s probaiblity density function, i.e.
Mass. Next, using the barrier function again, we can transform
back and obtain the decentralized optimal tracking control for
LS-MAS under unstructured environment. The effectiveness of
the developed technique has been ensured through a closed-
loop stability analysis and a series of numerical simulations.

APPENDIX A
PROOF OF THEOREM 1

Consider the Lyapunov function as

Lsys(t) =
β1

2
tr
(
E

{
eTi (t)ei(t)

})
+

β2

2
tr
(
E

{
W̃T

V,i(t)

× W̃V,i(t)
})

+
β3

2
tr
(
E

{
{W̃T

ρ,i(t)W̃ρ,i(t)
})

+
β4

2
tr

×
(
E

{
{W̃T

u,i(t)W̃u,i(t)
})

(30)

Taking the first derivative and substituting Lemma 1

L̇sys(t) = β1tr
(
E

{
{eTi (t)ėi(t)

})
+ β2tr

(
E

{
{W̃T

V,i(t)

× ˙̃WV,i(t)
})

+ β3tr
(
E

{
{W̃T

ρ,i(t)
˙̃Wρ,i(t)

})
+ β4tr

×
(
E

{
W̃T

u,i(t)
˙̃Wu,i(t)

})
≤ −γβ1

2
E
{‖ei‖2}− κV,iE

{‖W̃V,i‖2
}− κu,iE

{‖W̃u,i‖2
}

− κρ,iE

{
‖W̃ρ,i‖2

}
+ εCS (31)

The derivative of Lyapunov function L̇sys(t) is less than
zero outside a compact set, i.e.,

E

{
‖ei‖

}
>

√
2

γβ1
εCS or E

{
‖W̃V,i‖

}
>

√
1

κV,i
εCS

or

E

{
‖W̃u,i‖

}
>

√
1

κu,i
εCS or E

{
‖W̃ρ,i‖

}
>

√
1

κρ,i
εCS

with,

b1 = −γβ1

2
E

{
‖ei‖2

}
+

2β1g
2
l

γ
E‖ũi‖2 − β2αV,i

4

× E

{‖Ψ̂V,i‖2‖W̃V,i‖2
1 + ‖Ψ̂V,i‖2

}

b2 = αV,iβ2

[lΦ,i + lΨV,i
E{‖WV,i‖2}]

1 + E{‖Ψ̂V,i‖2}

b3 = −β3αρ,i

2
E

{‖Ψ̂ρ,i‖2‖W̃ρ,i‖2
1 + ‖Ψ̂ρ,i‖2

}
− β4αu,i

4

× E

{‖φ̂u,i‖2‖W̃u,i‖2
1 + ‖φ̂u,i‖2

}
+ β2αV,iE

{ ‖εHJBi‖2
1 + ‖Ψ̂V,i‖2

}

+ β3αρ,iE

{ ‖εFPKi‖2
1 + ‖Ψ̂ρ,i‖2

}
+ β4αu,iE

{ ‖εu,i‖2
1 + ‖φ̂u,i‖2

}

b4 = β3αρ,i

[lΨρ,iE{‖Wρ,i‖2}]
1 + E{‖Ψ̂ρ,i‖2}

+ β4αu,i

× E

{ ‖R−1GT
a ‖2

1 + ‖φ̂u,i‖2
}

(32)

κV,i = −β2αV,i

4
E

{‖Ψ̂V,i‖2‖W̃V,i‖2
1 + ‖Ψ̂V,i‖2

}
− 3b4E

{‖Ψ̂V,i‖2
}

κu,i =
β4αu,i

4
E

{‖φ̂u,i‖2‖W̃u,i‖2
1 + ‖φ̂u,i‖2

}
− 6β1g

2
l

γ
E
{‖φ̂u,i‖2

}

κρ,i =
β3αρ,i

2
E

{‖Ψ̂ρ,i‖2‖W̃ρ,i‖2
1 + ‖Ψ̂ρ,i‖2

}
− 6β1g

2
l

γ
l2φu,i

E
{‖Wu,i‖2‖Ψ̂ρ,i‖2

}− 6b4l
2
ΨV,i

E
{‖WV,i‖2‖Ψ̂ρ,i‖2

}
− 2b2E

{‖Ψ̂ρ,i‖2
}

εCS =
6β1g

2
l

γ
l2φu,i

E
{‖Wu,i‖2

}
E
{‖εFPKi‖2

}
+

6β1g
2
l

γ
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E
{‖εu,i‖2

}
+ β2εNHJBi + β3εNFPKi + β4εNu,i + 6b4l

2
ΨV,i

E
{‖WV,i‖2

}
E
{‖εFPKi‖2

}
+ 2b2E

{‖εFPKi‖2
}

3b4E
{‖εHJBi‖2

}
(33)

and,

εNHJBi = αV,i
‖εHJBi‖2

1 + ‖Ψ̂V,i‖2

εNu,i = αu,i
‖εu,i‖2

1 + ‖φ̂u,i‖2

εNFPKi = αρ,i
‖εFPKi‖2

1 + ‖Ψ̂ρ,i‖2
where, lΨρ,i , lΨV,i

and lφu,i are the Lipschitz constants and
gl is the upper bound of the function Ga(ei).
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