
IEEE TRANSACTIONS ON MAGNETICS, VOL. 59, NO. 3, MARCH 2023 3001011

Convolutional Neural Network-Based Media Noise Prediction and
Equalization for TDMR Turbo-Detection With Write/Read TMR

Amirhossein Sayyafan 1, Ahmed Aboutaleb 1, Benjamin J. Belzer 1, Krishnamoorthy Sivakumar 1,

Simon Greaves 2, Kheong Sann Chan 3, and Ashish James 4

1School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164 USA
2Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai 980-8577, Japan

3Department of Electrical and Electronic Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia
4Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore 138632

This article considers a turbo-detection system that includes a convolutional neural network (CNN)-based equalizer, a Bahl-Cocke-
Jelinek-Raviv (BCJR) trellis detector, a CNN-based media noise predictor (MNP), and a low-density parity-check (LDPC) channel
decoder for two-dimensional magnetic recording (TDMR) in the presence of track misregistration (TMR). The input readings are
passed to a 2-D partial response (PR) equalizer, which is either linear or CNN-based. The equalized waveforms are inputs to a
2-D BCJR detector, which generates log-likelihood-ratio (LLR) outputs. The CNN MNP is provided with BCJR LLRs to estimate
signal-dependent media noise samples and feed them back to the BCJR. A second pass through the BCJR produces LLRs, which
are decoded by an LDPC decoder; achieved areal density (AD) is computed from the LDPC code rate. Spatially varying read- and
write-TMR models are developed. We investigate the performance of the proposed system on simulated TDMR readback waveforms
generated by grain-switching probabilistic (GSP) simulations. We have two types of GSP datasets. Dataset #1 includes two 10 nm
bit length (BL) datasets with 18 and 24 nm track pitch (TP). Dataset #2 has 11 nm BL and 15 nm TP. The comparison baseline is
a 1-D BCJR detector with pattern-dependent noise prediction (PDNP) and soft intertrack interference (ITI) subtraction, referred
to as 1-D PDNP with LLR exchange. The write-TMR and read-TMR are modeled as cross-track-independent downtrack-correlated
random processes. In the presence of joint write- and read-TMR, the proposed turbo-detection system achieves 8.34% and 0.70%
AD gain over 1-D PDNP with LLR exchange for TP 18 and 24 nm dataset #1, respectively, and is more robust to TMR compared
to the baseline.

Index Terms— Bahl-Cocke-Jelinek-Raviv (BCJR) detector, convolutional neural network (CNN), CNN equalizer, CNN media noise
predictor (MNP), deep neural network (DNN), low-density parity-check (LDPC) decoder, turbo-detection system, two-dimensional
magnetic recording (TDMR), write/read track misregistration (TMR).

I. INTRODUCTION

THE detection of two-dimensional magnetic recording
(TDMR) subject to write and read track misregistra-

tion (TMR) is considered, assuming a streaming applica-
tion such as video storage. The write-TMR, modeled as
slowly varying cross-track-independent downtrack-correlated
random processes, induces spatially varying intertrack inter-
ference (ITI) in the received signal. The read-TMR is mod-
eled similarly, except that all three readers share the same
downtrack-correlated random drift process. In this present
article, since TDMR signals are viewed as 2-D images, a con-
volutional neural network (CNN)-based media noise predic-
tor (MNP) and equalizer are utilized in a turbo-detection
system to handle the write- and read-TMR and compare
with the pattern-dependent noise prediction (PDNP), which
is standard practice for hard disk drive (HDD) magnetic
recording [1], [2].
To maximize the areal density (AD) of a TDMR system with

single-track detectors, a systematic method for determining
the combination of multi-reader geometry, track pitch (TP),
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and bit-aspect ratio is presented in [3]. In this work, the
two-reader geometry that maximizes AD with zero skew and
zero misregistration was found to use different-sized readers
with significant overlap in the cross-track direction for the
considered head and medium.
To enhance the AD for HDD in industry, the transitioning

into array-reader-based magnetic recording (ARMR) tech-
nology [4] is used to provide an enhanced signal-to-noise
ratio for data detection by exploiting the diversity in signal,
interference, and noise provided by the multiple read elements.
In the ARMR technology, a matched 2-D equalizer matched
to the reader location on the track is employed, which may not
work well due to TMR arising from the servo control system.
To reduce the resulting TMR, Zheng et al. [5] presented the
TMR-sensitive equalization, which is an electronic servoing
scheme that estimates the location of the dual-reader on a
per-fragment basis. The estimated location is then used to
transform the reference equalizer to a new equalizer, which
is matched to the estimated one. The simulations in [5] show
that the read performance has significant improvements in the
presence of large read-/write-TMR on density of ∼1 Tb/in2.
Two previous papers [6], [7] have considered use of soft

adjacent track side information to aid the central track’s
detector. The channel models used in both these papers are sig-
nificantly simpler and less realistic than the grain-switching-
probabilistic (GSP) shingled magnetic recording (SMR) model
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employed in this article, and the technique proposed in this
present article has relatively less computational complexity.
In [6], a simple bit-patterned magnetic recording (BPMR) sep-
arable linear channel model is employed; the model includes
electronic noise but no media noise. Chang and Cruz [6]
employed a 2-D Bahl-Cocke-Jelinek-Raviv (BCJR) trellis with
a 2-D partial response (PR) target equalizer for estimation
of the center track bits, with log-likelihood ratios (LLRs)
from the adjacent tracks passed to the 2-D BCJR to provide
a priori information; simple 1-D BCJRs can be used to develop
the adjacent track LLRs. The 2-D BCJR of [6] requires
significantly more trellis states and more branches per state
than the 1-D BCJR that would be used in this present article
if no media noise were present; this present article employs
1-D BCJR with PDNP in order to predict and correct for media
noise present in the GSP model. However, Chang and Cruz [6]
passed only one LLR per each of two adjacent track bits to
estimate a central track bit since they are used to develop
a priori probabilities, whereas this present article passes three
LLRs per adjacent track in order to develop a soft estimate
of the adjacent tracks’ ITI. Because channel coding is not
considered in [6], AD gains over a comparison baseline are
not computed in that paper.
The paper [7] employs a separable linear channel model

with jitter noise (a form of media noise) and electronic
noise, to simulate an SMR channel. Similar to this present
article, three 1-D BCJR detectors (but without PDNP) are
employed, and multiple LLRs per central track bit are passed
from the outer tracks in order to develop a soft estimate
of the ITI that can be subtracted from the central track’s
intersymbol interference (ISI) equalized signal. As in this
present article, Sadeghian and Barry [7] employed per-track
low-density parity-check (LDPC) coding. A key difference is
that work [7] passes LDPC decoded LLRs from the outer
tracks, rather than detector LLRs; hence, three decoding passes
must be performed to produce one block of decoded central
track bits in [7], whereas this present article requires only
one LDPC decoding for the central track, thereby realizing
significant complexity savings. While channel decoding in [7]
improves the reliability of the outer track bit LLRs relative to
the detector LLRs employed in this present article, this present
article’s use of 1-D PDNP to correct for outer track media
noise improves the reliability of its detector LLRs relative
to [7].
For a TDMR system with two displaced readers, a machine

learning (ML) data detection channel, including a CNN for
data recovery, was utilized in [8]. The data recovery over a
wide range of ITI was studied to emulate the actual head skew
angle change over the entire disk platter. In this work, the
sampled input signals from both readers were passed to the
system; however, the CNN-based ML channel only detected
the main track data during the training and almost eliminated
the ITI-caused degradation of bit error rate (BER) completely.
In [9], for real data from a commercial HDD with TDMR

dual-reader technology, a CNN-based data detection channel
is employed. In this work, it is shown that the proposed
CNN-based detection had a comparable or slightly better per-
formance than the state-of-the-art HDD channel. In addition,

the CNN-ML channel achieves 6% recording density gain
when the second reader is available compared to the detection
with a single reader.
A neural network (NN)-based non-linear equalization is

designed for TDMR in [10]. This adaptive equalizer utilizes
the cross-entropy criterion between the true probability of the
bits and estimations of the detector. By using the cross-entropy
criterion, the equalizer tries to maximize the likelihood, which
leads to a lower BER for the detector compared to the mean
square error (MSE) criterion.
A reduced complexity NN-based equalization for TDMR

system is investigated in [11]. It is shown that the multilayer
perceptron (MLP) non-linear equalizer outperforms the linear
equalizer using the cross-entropy criterion. The authors pro-
pose some simpler architectures for their MLP-based equalizer
to reduce the complexity.
In [12], a deep neural network (DNN)-based a posteriori

probability (APP) detector is proposed for the TDMR system.
The reading samples are passed through a 2-D PR linear
equalizer; then, the equalized waveforms are fed to the DNN
APP detector. The iteration between the detector and an LDPC
decoder minimizes the BER. In [13], the designed CNN-based
detector performs the tasks of equalization and detection.
In this case, the reading samples are input to the CNN-based
detector; then, by passing the detector outputs to the LDPC
decoder, the AD is measured.
We have explored using a CNN detector as the sole detector

for the TDMR signal, similar to [9], [12], and [13]. These
approaches, while effective, require relatively more computa-
tional complexity than the system proposed here, which limits
the CNN to media noise prediction only and uses a relatively
low-complexity 2-D BCJR detector for ISI/ITI equalization.
The approaches in [12] and [13] did not consider read- and
write-TMR.
Recently, there has been increasing attention to devel-

oping CNN-based systems for multilayer magnetic record-
ing (MLMR) to increase the areal information density of
HDDs [14], [15], [16].
This present article considers the simultaneous detection

of three tracks via triple-reader technology, enabling more
effective ITI equalization and higher throughput than dual-
reader configurations. Input data for this present article is
provided by GSP simulations of HDD readback waveforms;
such simulations have been shown to give highly accurate
reproductions of actual HDD waveforms [17], [18], [19].
In this work, the turbo-detection system includes a CNN-based
equalizer, a BCJR trellis detector [20], a CNN-based MNP, and
an LDPC channel decoder for TDMR in the presence of write-
and read-TMR. The soft information is exchanged among
BCJR detector, CNN MNP, and LDPC decoder iteratively to
maximize the AD subject to a BER constraint.
The main contributions of this work are given as follows.
1) This article is one of the first to investigate the perfor-
mance of ML-based turbo-equalization in the presence
of both write- and read-TMR, especially given the
realistic GSP media models that we use.

2) A modified version of 1-D PDNP is designed to handle
the ITI from adjacent tracks in the TDMR system, which
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improves the performance compared to standard 1-D
PDNP. This modified 1-D PDNP with LLR exchange
is the comparison baseline in this work.

3) A spatially varying read-TMR model is developed and
used to train the CNN-based noise predictors and equal-
izers. The proposed system has 8.52% AD gain over the
baseline in the presence of the read-TMR at TP 18 nm.

4) A write-TMR model is developed and used to train
the CNNs in the TDMR turbo-detection system. The
proposed system achieves 8.24% AD gain over the
baseline with only write-TMR.

5) A joint write- and read-TMR model is developed and
used to train the TDMR turbo-detector. The proposed
system is more robust compared to the baseline and has
8.34% AD gain over it.

In the rest of this article, the system model and the charac-
teristics of the datasets are explained in Section II. The process
of generating read- and write-TMR is described in Section III.
In Section IV, we explain the CNN-based equalizer, and in
Section V, we propose the BCJR-LDPC-CNN turbo-detection
system. In Section VI, we present the 1-D PDNP with
soft ITI subtraction, called 1-D PDNP with LLR exchange.
In Section VII, we present and discuss the simulation results.
Concluding remarks are presented in Section VIII.

II. RECORDING CHANNEL MODEL

The BCJR-LDPC-CNN turbo-detector assumes a channel
model for the kth equalizer output y(k)

y(k) = (h ∗ u)(k) + nm(k) + ne(k) (1)

where h is the PR target, u are the coded bits on the track,
* indicates 1-D/2-D convolution, nm(k) is media noise, and
ne(k) is reader electronics additive white Gaussian noise
(AWGN). Unlike PDNP, the media noise term nm(k) is not
modeled as an autoregressive (AR) process; instead, a more
general model for nm(k) is learned by the CNN MNP.
Realistic GSP models were used to train and evaluate our

system. Two different GSP models were used, which will be
referred to hereafter as the dataset #1 model and the dataset
#2 model.
The dataset #1 model was trained on SMR. Datasets with

nominal TPs of 18 nm and 24 nm were generated. In each
case, the bit length (BL) was 10 nm, each track consisted of
32768 bits (4 kbytes), and the grain density of the recording
media was 13.2 teragrains per square inch (Tg/in2). One
hundred blocks (sectors) with no write-TMR were generated
as “dataset #1a” to allow the effect of read-TMR only to be
calculated. Fig. 1 shows a cross-track view of the dataset
#1 tracks. Six tracks were written in order from left to right.
The rightmost track ab,R2 represents the fat track present in
most TDMR systems. The centers of the first and last tracks
were at fixed cross-track positions, while the centers of the
remaining four tracks were varied systematically by ±3 nm
from their nominal position in 1 nm increments. Thus, a total
of 74 or 2401 datasets were generated as “dataset #1b” to
study write-TMR.
Readback signals r0, . . . , r4 were calculated from five read-

ers, as shown in Fig. 1. The readback signals were obtained

Fig. 1. Cross-track view of the dataset #1 model geometry.

Fig. 2. Cross-track signal obtained from the magnetization of a single track
written using the dataset #1 model with TP 24 nm.

from the three central tracks a1, a2, and a3 and the boundary
signals were read from ab,L and ab,R . The reader positions
were varied by ±3 nm from the track centers for a total of
seven offsets for each track of interest with a resolution of
1 nm.
The written track width for the dataset #1b model can be

determined from the cross-track profile of a single written
track. Fig. 2 shows an example, taken from a direct analysis
of the medium magnetization for the TP 24 nm dataset #1b.
The full-width at half-maximum (FWHM) track width was
22.2 nm, but the magnetization of the medium was changed
over a wider area than this. As a result, a TP of 24 nm will
lead to the tracks overlapping to some extent, as exemplified
by the red curve in Fig. 2, which has been shifted 24 nm
from the blue curve. The written track width is determined
by the write head and spin-torque oscillator (STO) geometry.
If either of these were changed, the GSP model would need
to be retrained.
For dataset #1b with TP 18 nm, the read-head positions for

tracks a1, a2, and a3 have minimum BER (using a 1-D BCJR
detector) at 2 nm to the left of the write head location. This
indicates that the tracks were shingled to some extent when
they were written.
The “dataset #2” model was used to write sets of five,

partially overlapping (shingled) tracks, each with 11 nm BL,
15 nm TP, and 41206 bits. In this case, the dataset #2 model
was based on micromagnetic simulations of conventional
recording [19] and the grain density was 11.4 Tg/in2. For
dataset #2, tracks are written at nominal TP only; hence,
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Fig. 3. Schematic of dataset #2 model geometry.

Fig. 4. Read-head model.

we only consider read-TMR and there is no simulation of
write-TMR.
Fig. 3 shows a schematic of the dataset #2 model. The

red and blue colors represent bits magnetized up (+1) and
down (−1). Track 0 was the first track to be written. Next,
track 1 was written, partially overlapping (erasing) part of
track 0. The writing process continued, ending with track 4.
Since track 4 was the last track to be written, it was not shin-
gled and preserved the original magnetic write width (MWW)
of 75 nm.
As shown in Fig. 3, there were 25 read-head offsets,

numbered from 0 to 24, spaced at intervals of TP/8 (1.875 nm)
and covering tracks 1, 2, and 3. The centers of these three
tracks were close to the read-head offsets 4, 12, and 20.
Readback signals from tracks 1, 2, and 3 were used as inputs
to the TDMR system. In total, 100 different blocks (sectors)
were calculated to investigate the effect of read-TMR.
The boundary track information is assumed to be provided

by two additional readers not ganged together with the central
three readers. It is assumed that the two outer boundary tracks
are processed by a relatively simple 1-D BCJR algorithm,
and the assumed BER for those tracks is set to be consistent
with that assumption. Because the boundary track information
BER is relatively high due to simplified processing, we do not
account for reader TMR in the boundary tracks.

III. READ- AND WRITE-TMR MODEL

We synthesize position errors by driving a first-order low-
pass filter (LPF) with an independent and identically distrib-
uted (i.i.d.) Gaussian random process with transfer function

H (z) = 1− α

1− αz−1 . (2)

The downtrack coherence length of the TMR is controlled by
the value of α. For datasets #1, α is set such that the impulse
response falls to 0.5 after about 66000 bits corresponding to
about two 4 kbyte sectors, i.e., α = 0.9999788.

Algorithm 1 Read-TMR
1. Tracks 0 and 4 have zero read offset, and from them we
obtain readings r0(k) and r4(k) at bit position k.
2. Generate one TMR read random process z(k), −or ≤
z(k) ≤ or , or = 3, with transfer function H (z) as in (2).
3. For central track i , i = 1, 2, 3, linearly interpolate the two
readings ri,�z(k)�(k) and ri,�z(k)�(k) to compute the readings
ri (k), where ri,l(k) indicates the lth reader offset, −or ≤ l ≤
or , for the i th track at bit position k.

Fig. 5. Example of position error used in the simulations. The actual
disturbance is quantized to the seven integer nanometer values from
−3 to +3 nm.

For the power spectral density (PSD) analysis, if we assume
a Gaussian random variable with zero mean and variance
N0/2 as the input, the PSD of the input would be SX (z) =
N0/2. Hence, by considering H (z) as in (2) and z = e2 jπ f ,
the PSD of the LPF output can be computed as follows:

SY ( f ) =
(

N0
2

)
(1− α)2

1− 2α cos(2π f ) + α2
. (3)

Therefore, the value f0 such that SY ( f ) drops to 0.5 of its
maximum value is equal to f0 = 3.367 × 10−6 or 1/ f0 ≈
297 kbits.
For the read-TMR, we consider only read misregistra-

tion. The written tracks are assumed to be placed perfectly
(i.e., no write-to-write TMR); all three read heads move
simultaneously by the same amount. The read-head model in
which the three read heads are moving together as a group
(ganged together) is shown in Fig. 4. To consider the read-
TMR, we read the signals from r0 and r4 for tracks 0 and 4 due
to the zero read offset they have. Then, we generate a TMR
read random process z(k) based on (2) and interpolate the two
readings ri,�z(k)�(k) and ri,�z(k)�(k), i = 1, 2, 3 to compute the
readings ri (k), where ri,l(k) indicates the lth reader offset for
the i th track at the bit position k. The process to generate the
read-TMR is shown in Algorithm 1; this algorithm applies to
both dataset #1a (with reader positions separated by 1 nm)
and dataset #2 (with reader positions separated by 2 nm)
under the assumption of nominal writer position for all tracks.
Fig. 5 shows an example for the position error disturbance to
produce the read-TMR.
For the write-TMR, the positions of tracks a1, a2, a3, and

ab,R are varied independently, while ab,L and ab,R2 are fixed.
Since the individual disturbances are truncated at ±3 nm, the
maximum variation in TP or squeeze is ±6 nm. The GSP write
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Fig. 6. Nominal position of the write heads for TP 24 nm dataset #1b.

Fig. 7. Position error due to the write-TMR for TP 24 nm dataset #1b.

model first creates the sets of six adjacent 4 kbyte blocks in all
of the possible 74 = 2401 written track positions. Readback
waveforms are then created for each with seven possible reader
positions. The three readers are ganged together nominally
covering tracks a1, a2, and a3 for a total of 16807 possible
sets of waveforms to sample from. Then, the addition, inde-
pendently, of the white Gaussian noise adds a further degree
of randomization.
To generate the write-TMR reading signals, we produce four

independent TMR write random processes based on (2) and
quantize each of them to a number from 0 to 6. By using these
random processes, we generate a four-digit base-seven number
mk at downtrack bit k. Then, we select a block from dataset
#1b with the index mk and read readings r0, . . . , r4 for that
block. The nominal writer positions are represented in Fig. 6.
As an example, track centers 1, 2, 3, and 4 are shifted by
+3, −3, −3, and +3 nm, respectively, which are shown in
Fig. 7. In Figs. 6 and 7, track #5 is shown as the fat track,
which corresponds to track ab,R2 shown in Fig. 1. Algorithm 2
represents the process of producing the write-TMR and only
applies to datasets #1b.
To produce the joint write- and read-TMR, we generate four

independent TMR write random processes to select a block
from dataset #1b similar to Algorithm 2. Then, we produce a
TMR read random process and linearly interpolate the two cor-
responding readings to compute the readings r0, . . . , r4 similar
to Algorithm 1. The process of generating the joint write- and
read-TMR is presented in Algorithm 3; this algorithm only
applies to datasets #1b.

IV. CNN EQUALIZER DESIGN

We investigate the CNN-based equalizer for the dataset
#1 model to use in the TDMR system. In [21, Fig. 10], the

Algorithm 2 Write-TMR
1. Tracks 0 and 5 are fixed at the nominal writer position
(zero TMR).
2. Tracks 1, 2, 3, and 4 are written at one of 7 possible
write-head positions, shifts −ow to +ow, ow = 3, to produce
74 = 2401 blocks of readings of size 4 kbytes each.
3. The blocks are indexed with a numbering scheme from
which we can deduce the write-head positions of tracks
1 to 4. The 4-digit base-seven numbers are used, i.e.
0000 through 6666, with 0 through 6 corresponding to
write-position offsets −ow to +ow, ow = 3.
4. Generate four independent TMR write random processes
v1(k), . . . , v4(k), −ow ≤ vi (k) ≤ ow, ow = 3, with transfer
function H (z) as in (2).
5. At downtrack bit k, quantize each of the four write-TMRs
vi (k) to integer numbers between 0 and 6 to produce a
4-digit base-seven integer number mk .
6. Select a block from the writer dataset with the index mk

in step 5, and from that block we obtain the readings ri (k)
for the five tracks from i = 0 to i = 4.

Algorithm 3 Joint Write- and Read-TMR
1. Select a block from the writer dataset with index mk , as in
steps 1-5 of Algorithm 2.
2. Using the selected block mk in step 1, compute the
readings r0(k) through r4(k) as in Algorithm 1.

CNN PR equalizers are proposed for the TDMR case. As a
comparison baseline, we also design and test with linear PR
equalizers designed per the method described in [22].

A. Nonlinear CNN Equalizer System

The CNN equalizer and PR target are jointly trained by an
iterative algorithm to minimize the MSE between the equalized
outputs and the equalization target; this process is described in
detail in [14] and [21]. The readings r0, . . . , r4 are provided to
the CNN equalizer. The equalized waveforms y are produced
for tracks 1, 2, and 3 by the CNN. Since the size of the window
for the input image of CNN equalizer is 17, the readings to be
equalized use a sliding window of size [5×17]. A [3×3] PR
target is employed for the equalizer. The process of training
the CNN equalizer and PR target is shown in [14, Fig. 4] and
[21, Fig. 10].

B. CNN Equalizer Architecture

The proposed CNN equalizer contains 28 layers. These
layers consist of one input image layer, five convolutional
units, a fully connected (FC) layer, and one output layer. Each
5 × 17 block of reader signals used as inputs to the CNN
equalizer is normalized to have zero mean and unit variance.
The architecture of the CNN equalizer is shown in Fig. 8.
Details of a very similar CNN equalizer architecture are

described in [16]; the difference is that the architecture in this
present article processes three tracks simultaneously, but the
CNN equalizer in [16] processes two tracks at a time.
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Fig. 8. CNN equalizer architecture for dataset #1 model.

Fig. 9. Block diagram for the TDMR turbo-detection system.

In this present article, we utilize the leaky rectified linear
unit (ReLU) and the exponential linear unit (ELU) layer as
the first and second activation functions in the CNN equalizer,
respectively. The leaky ReLU function with the slope of 0.1 for
the negative numbers and the ELU function with non-linearity
parameter 1 for negative numbers are employed. The dropout
layer before the leaky ReLU layer sets input elements to zero
randomly with a probability of 0.01. The output layer is a
regression layer. The CNN generates the equalized waveform
y for tracks 1, 2, and 3. These equalized waveforms are passed
to the 2-D BCJR to detect the bits.

V. BCJR-LDPC-CNN TURBO-DETECTION SYSTEM

A. Turbo-Detector

In Fig. 9, the block diagram for the TDMR turbo-detection
system is shown. We use a trellis detector (a BCJR detector
in this work) for TDMR to estimate the LLRs by using the
2-D equalized waveforms. A similar system was employed
in [16] and [21], but in those works, there was no TMR in the
read-head input waveforms r.
In this system, we separate trellis-based ISI/ITI detection

and CNN-based media noise prediction. For dataset #2 (with
reader positions separated by 2 nm), the simulated HDD
read-head output vector r contains two samples per coded bit,
denoted r(1) and r(2). These samples are on the same track and
are collected by the same read head, but are located at different
downtrack locations within a given bit; the odd samples r(1)

(the “first samples” per bit) are located near the center of each
bit, and the even samples r(2) are located at the boundary
between bits. The odd samples r(1) are first filtered by a
2-D linear equalizer designed to minimize the MSE between
the filter output y and the convolution of the coded bits u
with the PR mask h. For the dataset #1 model, we only
have one sample per coded bit denoted as r. The samples r

are equalized with either linear or CNN-based equalizer. The
equalized waveforms y are input to the 2-D BCJR detector.
The 2-D BCJR is a joint ISI/ITI equalizer; the state-input

block has three rows because the ITI typically extends over
one adjacent track on either side. In 2-D BCJR, the processing
of three tracks is done simultaneously to handle the ITI from
a 3× 3 PR target mask since the central track is affected by
the ITI from its two neighboring tracks. Sayyafan et al. [21,
Fig. 5] represented the state-input block for 2-D BCJR over
three tracks. The 2-D BCJR trellis detector performs ISI/ITI
equalization on filtered input y and generates LLR outputs.
The PR target h is of size 3 × 3; hence, the system has two
state bits per track, the 2-D BCJR state-input window is 3×3,
and the trellis has 23×2 = 64 states.
The boundary tracks can be read using two passes of

the reader with three read heads ganged together. The first
boundary track ab,L plus center tracks a1 and a2 can be
read in one pass, and the center tracks a2 and a3 plus the
boundary track ab,R can be read in a second pass. Then,
the boundary track reading sequences can be individually
processed with a simple 1-D BCJR in order to efficiently
estimate the boundary bits. The boundary bits can tolerate a
BER of 5–10%, and thus, a simple 1-D BCJR without channel
decoding is sufficient [23]. Also, in a typical serial readback
scenario (e.g., streaming movie), the system will typically
already have one of the boundary tracks available from the
last TDMR reader pass, so the system could do one pass
to pick up center tracks 1–3 and one additional pass to pick
up the additional boundary track. Two passes instead of one
would drop system throughput gain relative to 1-D PDNP from
3× to 1.5× but still give a throughput gain.
The outer tracks 0 and 4 provide boundary information for

the turbo-detector’s 2-D BCJR detector. Under the assumption
that these two tracks are processed by a simple 1-D BCJR
detector and based on measured BERs from such a detector,
we inject errors at a BER of 5.42% into the input bits for
the outer tracks a2,L and a2,R before they are passed to the
2-D BCJR detector.
In Fig. 9, the CNN MNP takes as its inputs the three-

track-wide block of LLRs LLRb0 from the 2-D BCJR and the
three-track-wide equalized sample vector y from the equalizer.
Processing proceeds block-wise, where each block contains
readings (or LLRs) corresponding to 4 kbytes (respectively,
41.2 kbits) per track of coded bits for dataset #1 (respectively,
dataset #2). The CNN MNP sends its three-track-wide media
noise estimate n̂m back to the 2-D BCJR detector for a second
pass in order to obtain a lower detector BER. The BCJR output
LLRs LLRb from this second pass are scaled (attenuated) and
magnitude limited and then proceed through a de-interleaver
(denoted as “π−1” in Fig. 9) in order to decorrelate them; then,
they are input to the channel decoder. Scaling and magnitude
limiting is done because, due to estimation errors in the PR
target and the media noise, the LLRs in the vector LLRb are
typically “overconfident” (larger in magnitude) relative to their
true underlying probabilities.
The channel codes used in this article are irregular repeat

accumulate (IRA) codes, which are a type of LDPC code
with low encoding complexity [24]. As the GSP bits are
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Fig. 10. 3-D CNN architecture of MNP for dataset #1.

Fig. 11. 3-D input image for the CNN MNP for dataset #1.

randomly distributed, the IRA decoder employs coset decod-
ing. We assume independent per-track encoding and decoding
so that different tracks may have different code rates. The
decoder output LLRs LLRl are scaled and magnitude limited,
and then, they are interleaved before being thresholded at zero
for the final bit decisions. Instead of making a final decision,
the interleaved LLRls may be passed to the 2-D BCJR detec-
tor for use as extrinsic information in a second turbo iteration;
in this case, they are also passed to the CNN MNP to form
a second-iteration media noise estimate, which is also passed
to the 2-D BCJR detector [21]. The LLRl data paths for this
optional second iteration are shown as dotted lines in Fig. 9,
since in this article, only one iteration of LDPC decoding is
done. Additional turbo iterations will be investigated in future
work.

B. CNN MNP Architecture

We investigate the architecture of the CNN MNP in the
TDMR system. A 3-D CNN for the TDMR system is con-
sidered as the architecture. A similar architecture is described
in [16]; here, we focus only on the differences in the present
article’s architecture. Fig. 10 shows the 3-D CNN noise
predictor architecture for datasets #1. The 3-D CNN has
21 layers, including one input image layer, six convolutional
units, an FC layer, and one output layer. Different from the
convolutional units in the CNN equalizer which have five
layers, the convolutional units in the CNN noise predictor have
three layers, including convolutional layer, batch normalization
layer, and activation function. The leaky ReLU is used with
the slope of 0.1 as the activation function for the CNN noise
predictor. In Fig. 11, stacking of the 2-D input images (with
three tracks each) into a 3-D input image is shown for datasets
#1. In the designed 3-D CNNs for TDMR, the convolutional
layers have filters with the size of [3× 3× 2].
For dataset #2, in addition to y and the LLRb, the even

samples r(2) are passed to the CNN MNP because experiments
have shown that this leads to better media noise prediction.
The r(2) are added as a third input to the image input layer in

Fig. 10 and as a third layer to the 3-D input image shown in
Fig. 11. For the 3-D CNN architecture of dataset #2, we use
five (instead of six) convolutional units and the ReLU (instead
of leaky ReLU) as the activation function in Fig. 10.

VI. 1-D PDNP WITH LLR EXCHANGE

The 1-D PR target equalizer is used to equalize the per-
track ISI, not the cross-track ITI. Because the central track
experiences ITI from its two adjacent tracks, we subtract the
ITI from both these tracks by passing their estimated soft
bits to the central track. Fig. 12 shows the block diagram of
the 1-D PDNP system with LLR exchange. The three 1-D
BCJR/PDNPs operate on tracks a1, a2, and a3 in parallel.
We hypothesize that exchanging the LLRs between the 1-D
BCJR/PDNPs of the outer and inner tracks can reduce ITI
and improve the quality of the output LLRs for the central
track. In this system, the BER and AD are assessed on a2.
The arrows from outer 1-D BCJR/PDNPs to the inner one in
Fig. 12 show the LLR exchange from the outer tracks to the
central track. Each 1-D BCJR/PDNP could reduce the ITI by
assuming some weights for mapping the expected value of
coded bits (u1, u3) to the central track. For each outer tracks’
1-D BCJR/PDNP, the mapping weights α1 and α3 are obtained
by solving the following least-squared error (LSE) problem:

min
α1,α3

∥∥y2 − (h2 ∗ u2 + α1 ∗ s1 + α3 ∗ s3)
∥∥2 (4)

where si , i ∈ {1, 3} are the soft bits for the block bi of 4 kbytes
in track i and y2 are the equalized waveforms for central
track 2 from (1). We pass soft bits, by passing the expected
value of each bit to the inner track. The expected value for
bits bi can be computed from LLRi by first converting the
LLRs to the probabilities pi that bi = 1

pi = exp(LLRi)/(exp(LLRi ) + 1), i ∈ {1, 3}. (5)

Hence, we compute the soft bits si as follows:
si = E[bi ] = pi × (+1) + (

1− pi

) × (−1)
= (exp(LLRi) − 1)/(exp(LLRi) + 1), i ∈ {1, 3}. (6)

Since for the central track, the PR target includes three taps,
we consider three samples in this track and six associated
samples in the outer tracks. For each outer track, we map
three samples to the inner track. Hence, by solving (4), the
corresponding weights α1 and α3 with size of [1× 3] for the
two outer tracks are obtained. For dataset #1b model with
joint write- and read-TMR, the computed values of α1 and α3
for TP 24 nm dataset are[

α1
α3

]
=

[
0.0478 0.1624 0.0274
0.0705 0.2017 0.0522

]
(7)

and for TP 18 nm dataset equal to[
α1
α3

]
=

[−0.0049 0.1488 −0.0245
0.0366 0.2153 0.0042

]
. (8)

By using these weights to map the outer tracks’ signals to
the central track, for dataset #1b model in the presence of
joint write- and read-TMR, the inner track’s MSE [computed
via (4)] decreases by 8.85% and 18.60% for TP 24 and
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Fig. 12. Block diagram for 1-D PDNP with LLR exchange.

18 nm datasets, respectively. This MSE reduction leads to the
AD improvement for the central track. This LLR exchange is
more beneficial at lower TP (i.e., TP 18 nm).
After passing the outer tracks’ LLRs to the 1-D

PDNP/BCJR of the inner track, we use the iterative
row-column soft decision feedback algorithm (IRCSDFA) for
the bit detection in the inner track’s 1-D BCJR/PDNP as
follows [25]. Given input vector u2,k = [u2,k, u2,k−1, u2,k−2],
the current state Sk = (u2,k−1, u2,k−2). We denote the
current equalized sample as y2k and branch bits i =
[i0, . . . , inb−1], im ∈ {−1,+1}, where nb is the number of
input per trellis stage; nb is one in our work. The modified
conditional channel probability density function (pdf) p′(·)
sums over α1∗s1+α3∗s3 associated with the six corresponding
outer track bits, for the state transition s′ → s

p′(y2k |uk = i0, Sk = s, Sk−1 = s′)
= P

(
y2k |u2,k, s, s ′, μk + μ([s1, s3])

)
(9)

where

μk = h2 ∗ u2,k = h2,0u2,k + h2,1u2,k−1 + h2,2u2,k−2 (10)

μ([s1, s3]) =
∑
[s1,s3]

P([s1, s3]) × (α1 ∗ s1 + α3 ∗ s3) (11)

α1 and α3 are obtained in (4), [s1, s3] is the vector of six outer
track bits that correspond to the inner track bits uk , and the
row probabilities

P
(
[s1, s3] = [

s1,0, s1,1, s1,2, s3,0, s3,1, s3,2
]) =

∏
i∈{1,3}

2∏
j=0

P
(
li, j

)

(12)

such that P(li, j ) are the bit probabilities derived from the
LLRs passed from the outer tracks to the inner track. In this
case, the 1-D BCJR/PDNP in the central track can utilize the
LLRs from outer tracks to reduce ITI and detect the coded
bits with a lower BER.

VII. SIMULATION RESULTS

This section presents the simulation results for the BCJR-
LDPC-CNN turbo-detector on a TDMR channel in the pres-
ence of write- and read-TMR. The simulations for no TMR
and read-TMR alone systems are performed on dataset #2
with TP 15 nm and for datasets #1a with TPs 18 and 24 nm.

For the only write-TMR and joint write- and read-TMR cases,
the simulation is conducted on datasets #1b with TPs 18 and
24 nm. We provide the results for both linear and CNN-based
PR equalization before the turbo-detector.
The BCJRs initially assume that the media noise is zero

and compute an initial set of output LLRs LLRb0 . The CNN
MNPs are provided with the LLR values for the dataset
#1 model. The LLR probabilities, the estimated bit, and the
estimation’s reliability can be determined by the LLR values.
For the dataset #2 model, the LLR probabilities are passed to
the CNN MNP. For this model, in [26], it is experimentally
shown that CNN provided with LLR probabilities performs
better compared to when it uses the signed LLR values. This
might be due to the non-linear scale inherent in the LLRs.

A. Datasets

For the dataset #1 model with 10 nm BL and 18 or
24 nm TP, each block contained 6 × Nu input bits, where
Nu = 32 768. For the simulations on datasets #1a with no
TMR and read-TMR alone, we used 59, 1, and 40 blocks as
the training, validation, and test datasets, respectively, for both
the CNN equalizer and the BCJR-LDPC-CNN detector in the
CNN-based system. For 1-D PDNP, we used 1 and 40 blocks
for the training and testing processes, respectively. For the
simulations on datasets #1b with write-TMR alone and with
write- and read-TMR, 400, 100, and 200 blocks were used
as the training, validation, and test datasets, respectively, for
both the CNN equalizer and BCJR-LDPC-CNN detector. For
1-D PDNP, 400 and 100 blocks were used for the training and
testing processes, respectively.
For the dataset #2 model with 11 nm BL and 15 nm TP,

we used 80 and 20 blocks as the training and test datasets for
the CNN-based system and 1-D PDNP.

B. Simulation Parameters

For the 1-D PDNP comparison baseline, the BCJR output
LLR multiplicative weight is set to 0.5, and the magnitude
limit is set to 100. For the TDMR system of Fig. 9, the corre-
sponding numbers are 0.7 and 10. The IRA decoder performs
a minimum of 200 and a maximum of 400 iterations of the
LDPC sum-product decoding algorithm. The IRA decoder’s
output LLRs are weighted by 0.65 and magnitude limited to
100. Achieved AD is computed from the highest code rate
that gives a final decoded BER ≤ 10−5. Different IRA code
rates are obtained by puncturing a “base rate” (lowest rate)
“base code” in order to realize higher rates, per the realistic
puncturing scheme in [23]. AD is computed as

Areal density = achieved-code-rate /(BL× TP). (13)

Tables I and II summarize the results for the TDMR
detectors. The raw channel BER for the dataset #2 is reported
for the detected bits on the input readings of the three central
tracks. For datasets #1, the raw channel BER is the average
detected errors on the three central tracks a1, a2, and a3.
In addition to the BER, a 95% confidence upper bound on
the BER [27] is provided in parentheses in the sixth columns
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TABLE I

NO TMR AND READ-TMR SIMULATION RESULTS. NP MEANS NOISE PREDICTION

of Tables I and II. In the case of non-zero errors, the BER
upper bound p is computed as

Ip(x + 1, Ntcb − x) = γ (14)

where Ip indicates the beta distribution with parameters x + 1
and Ntcb − x for γ -quantile, x is the number of errors, Ntcb is
the total number of transmitted coded bits, and γ is the
confidence threshold, which we set to 0.95. In the case of
zero error count, the BER upper bound in (14) simplifies to
approximately 3/Ntcb [27].

C. Discussion of Simulation Results

Table I summarizes the results for datasets #1a and dataset
#2 for the TDMR system with no TMR and read-TMR alone.
Table I compares the AD performance of the proposed BCJR-
LDPC-CNN detectors with 1-D PDNP. The “1-D PDNP, Lin.-
Eq.” utilizes the equalized waveforms from a linear minimum
MSE equalizer using a 1-D PR target. The 1-D PDNP has
128 trellis states, corresponding to I = 2, L = 4, and � = 1,
where I is the ISI channel length, L is the predictor memory,
and � is the predictor look ahead. The pattern vector length
of I + 1 + L + � = 8 bits of 1-D PDNP is comparable to
the channel inputs y length of nine sample bits for the CNN.

The “CNN NP, Lin.-Eq.” employs a linear equalizer and a
CNN noise predictor in the turbo-detection system. Also,
“CNN NP, CNN-Eq.” represents utilizing the CNN-based
equalizer and noise predictor. The read-TMR, write-TMR, and
joint write- and read-TMR are shown as “R TMR,” “W TMR,”
and “W-R TMR,” respectively.
As the reference, we modify the standard 1-D PDNP by

soft ITI subtraction, referred to as “1-D PDNP with LLR
exchange” (see Section VI). As seen in Table I, passing the
LLRs from outer tracks to the inner track increases the code
rate for 1-D PDNP on track a2. For the dataset #2 model
with TP 15 nm, the code rate improves by 2.32% and 1.28%
with no TMR and only read-TMR compared to the standard
1-D PDNP, respectively. Also, for the dataset #1a model,
the soft ITI subtraction increases the code rate by 6.18% and
1.91% for the TP 18 and 24 nm datasets, respectively, without
considering any TMR.
In Tables I and II, “cb.” stands for comparison baseline

used for comparing the AD of other methods. The columns
“AD Gain/Reduction” in Tables I and II represent the AD gain
or reduction of each method compared to the corresponding
reference method. The entities in this column represent the AD
gain if their values are positive and represent the AD reduction
if their values are negative.
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TABLE II

WRITE-TMR AND JOINT WRITE- AND READ-TMR SIMULATION RESULTS

In most cases in Table I, the CNN-based systems achieve
some gain over the PDNP systems. For dataset #1a with TP
18 nm, the CNN-based method gains 2.97% and 3.64% AD
over the baseline with no TMR and only read-TMR cases,
respectively. For dataset #1a with TP 24 nm, the CNN-based
system achieves 0.34% AD gain over the baseline for the
cases with read-TMR alone. For dataset #2, the proposed
CNN-based method gains 120.52% and 124.03% AD over the
baseline with no TMR and only read-TMR. As shown by the
column “AD Gain/Reduction,” in all cases, the CNN-based
system is more robust to read-TMR compared to the PDNP-
based systems.
Table II presents the results for datasets #1b for TDMR in

the presence of only write-TMR and joint write- and read-
TMR. For all cases, the CNN-based system improved the
density and robustness to write-TMR and joint write- and
read-TMR compared to the PDNP systems. Also, the CNN
system with the CNN equalizer improves AD and robustness
compared to PDNP. For dataset #1b with TP 18 nm, the
CNN-based system achieves 8.24% and 8.34% AD gain over
the baseline with only write-TMR and joint write- and read-
TMR, respectively. For dataset #1b with TP 24 nm, the
CNN-based system gains 1.57% and 0.70% AD over the
baseline with only write-TMR and joint write- and read-TMR,
respectively.
The base code rate is 0.6030 for all the simulations in

Tables I and II. By puncturing the base code, we could achieve
the highest code rate for every detector and layer. The ADs
for each detector are computed using (13).
In Tables I and II, for each dataset, we consider “1-D

PDNP, Lin-Eq., LLR Exch.” and “CNN NP, Lin-Eq.” with
no TMR as the two references. The simulation results show
that by using the CNN-based method, the system is more
robust to TMR compared to the baseline. Also, by using the

CNN-based equalizer, the system achieves higher AD and
robustness compared to the linear equalizer. Thus, employing
more CNN-based techniques in the turbo-detection leads to
higher AD and more robustness to write- and read-TMR.
Both datasets #1 and #2 contain no read-head electronic

AWGN, i.e., ne(k) = 0 in (1). The rows without label “SNR
20 dB” report results for this case. The row that includes the
label “SNR 20 dB” reports the result when non-zero AWGN
ne at an SNR of 20 dB is added to both readings r(1)

i and
r(2)

i , i = 1, 2, 3, for dataset #2. The SNR for dataset #2 is
computed as

SNR = 10 log10

⎛
⎜⎜⎝

E

[∑3
i=1

(∥∥∥r(1)
i

∥∥∥2 +
∥∥∥r(2)

i

∥∥∥2
)]

σ 2e

⎞
⎟⎟⎠ (15)

where σ 2e indicates the AWGN variance. This SNR is com-
puted based on all the coded bits of each track. The simulation
result for the added AWGN at 20 dB SNR for dataset #2 with
read-TMR is shown in Table I; it shows that for dataset #2
with read-TMR, the CNN-based system with zero electronic
noise has an AD gain of a reasonably small amount (0.09%)
over the same method with 20 dB SNR for AWGN.
These architectures rely on the CNN noise predictors and

equalizers trained with the read- and write-TMR to adapt to
the spatially varying TMR. However, these CNNs are static;
they are trained once and remain in the system. Future work
might consider adapting the network weights of either noise
predictor or equalizer to adjust to the read- and write-TMR.

D. Computational Complexity Comparison

The computational complexity (per bit) figures for the
TDMR detectors are represented in Table III. The reported
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TABLE III

DETECTOR COMPLEXITY PER BIT FOR TDMR

numbers are computed without considering the equalizer. The
1-D PDNP has the lowest complexity among the evaluated
detectors. The 1-D PDNP with LLR exchange detector is more
than 3× complex than 1-D PDNP due to the passing soft coded
bits from the outer tracks into the central track, which requires
1-D-PDNP detectors on all three tracks. The reported numbers
for “1-D PDNP” are for both datasets #1 and #2. The numbers
for “1-D PDNP, LLR Exch.” and “CNN NP” are reported for
dataset #1. The “CNN NP” is the most complex method since
it has six convolutional units to process the data and estimate
the media noise.

VIII. CONCLUSION

This article presents the BCJR-CNN-LDPC architecture
combined in a TDMR turbo-detection system in the pres-
ence of write- and read-TMR. In this work, we develop
the spatially varying write- and read-TMR models. For the
baseline, we modify the standard 1-D PDNP by ITI subtraction
from adjacent tracks, called 1-D PDNP with LLR exchange,
to improve its performance in the TDMR system. The simu-
lation results show that the proposed turbo-detection system
is more robust to TMR compared with 1-D PDNP with LLR
exchange and achieves 8.34% and 0.70% AD gain over the
baseline in the presence of joint write- and read-TMR for TP
18 and 24 nm datasets #1b, respectively. As future work,
we will investigate adapting the network weights for the CNN
noise predictor and equalizer to adjust to the read- and write-
TMR. Also, the second iteration of LDPC decoding will be
investigated to achieve higher AD gain.
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