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This paper presents a turbo-detection system consisting of a convolutional neural network (CNN) based equalizer, a Bahl-Cocke—
Jelinek—Raviv (BCJR) trellis detector, a CNN-based media noise predictor (MNP), and a low-density parity-check (LDPC) channel
decoder for two-dimensional magnetic recording (TDMR). The BCJR detector, CNN MNP, and LDPC decoder iteratively exchange soft
information to maximize the areal density (AD) subject to a bit error rate (BER) constraint. Simulation results employing a realistic
grain switching probabilistic (GSP) media model show that the proposed system is quite robust to track-misregistration (TMR).
Compared to a 1-D pattern-dependent noise prediction (PDNP) baseline with soft intertrack interference (ITI) subtraction, the system
achieves 0.34% AD gain with read-TMR alone and 0.69% with write- and read-TMR together.

Index Terms—Turbo-detection, two-dimensional magnetic recording, convolutional neural network, CNN media noise prediction,

CNN Equalizer.

[. INTRODUCTION

HE DETECTION of two-dimensional magnetic recording

(TDMR) is considered in the presence of disturbances to the
positions of the writer and reader. The disturbances, referred to
as track-misregistration (TMR), are modeled as relatively
slowly-varying random processes. These are taken as
independent track-to-track during writing and independent
during reading but with the three readers ganged together. Due
to these disturbances, the detector must deal with time-varying
intertrack interference (ITI). In the present work, since TDMR
signals are viewed as 2-D images, a convolutional neural
network (CNN) based media noise prediction and equalizer are
utilized in a turbo-detection system to mitigate the effect of
TMR. Performance is compared with pattern-dependent noise
prediction (PDNP), commonly employed in hard disc drives
(HDD) [1].

II. SYSTEM MODEL

Shingled magnetic recording (SMR) waveforms are
generated using the grain switching probabilistic (GSP) model
[2], [3]. Fig. 1 shows the cross track geometry. Signals are
available for tracks a;, a,, and a3 at read offsets from —3 nm to
+3 nm in 1 nm steps. The positions of the four center written
tracks can also be varied. The nominal track pitch (TP) and bit
length (BL) are 24 and 10 nm respectively (approximately 2.7
terabits per square inch (Tb/in?) uncoded areal density (AD)).
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Fig. 1. Cross-track view of the GSP data geometry. Signals from the five
readers are available simultaneously.
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III. READ- AND WRITE-TMR MODEL

For the read-TMR, we consider only write-to-read
misregistration. The written tracks are assumed to be placed
perfectly (i.e., no write-to-write TMR); all three read-heads
move simultaneously. We use multi-track GSP based simulated
read-head data at various reader offsets from the track center,
with resolution of 1 nm.

We synthesize position errors by driving a first order LPF,

H(z) =
down—track coherence length of the TMR is controlled by the
value of a which is set such that the impulse response falls to
0.5 after about 66000 bits corresponding to about two 4 KByte
sectors. Fig. 2(a) is an example of the position error disturbance,
and Fig. 2(b) shows the read-head model in which the readers
are moving as a group (ganged together).
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Fig. 2. (a) Example of position error used in the simulations. The actual
disturbance is quantized to the 7 integer nanometer values from —3 nm to +3
nm. (b) read-head model.

For the write-TMR, the positions of tracks a,, a,, az, and
a,p are varied independently while a,; and a, g, are fixed.
Since the individual disturbances are truncated at +3 nm, the
extreme variation in TP is +6 nm. The write-TMR GSP model
first creates the sets of 6 adjacent 4 KByte blocks in all of the
possible 7% = 2401 written track positions. Readback
waveforms are then created for each with 7 possible reader
positions. The three readers are ganged together nominally
covering tracks a4, a,, and a5 for a total of 16807 possible sets
of waveforms to sample from. Then the addition, independently,
of the additive white Gaussian noise adds a further degree of
randomization. In Fig. 3, track centers 1, 2, 3, and 4 are shifted
by +3, -3, -3, +3 nm respectively. By providing all possible

- with an i.i.d. Gaussian random process. The
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combinations of write-head position we can construct a
correlated write-head position TMR random process.
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Fig. 3. Position error due to the write-TMR.

IV. BCJR-LDPC-CNN TURBO-DETECTOR

Fig. 4 illustrates the BCJR-LDPC-CNN turbo-detection
system. The intersymbol interference (ISI) detection and media
noise prediction functions are separated into two detectors
using turbo equalization. The read samples r are passed to a 2-
D MMSE partial response (PR) equalizer with target h. The 2-
D BCIJR trellis detector performs ISI/ITI equalization on input
y, generates log-likelihood ratios (LLRs) LLR, and passes
them to the CNN. The CNN estimates the media noise i,,, and
feeds it back to the 2-D BCJR to obtain a lower bit error rate
(BER). Next, the 2-D BCJR passes LLRs LLR; to alow-
density parity check (LDPC) decoder. The decoder generates
the final LLRs LLR; after each turbo-iteration [3], [4].
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Fig. 4. Block diagram of the turbo-detection system.

A. Linear and CNN Equalizer Designs

The linear PR equalizers minimize the mean-squared error
(MSE) between ideal PR signals and the equalizer output. The
CNN equalizer takes five reading sequences Iy, ..., Iy to
generate the equalized waveforms y = [y;, y,, y3] for the three
central tracks. Readings within a 5 X 17 sliding window are
used for equalizing the reading samples. The equalizer uses a
3 x 3 PR target. For the fixed CNN equalizer, the constrained
MSE solver optimizes the PR target mask. For a fixed PR target,
using stochastic gradient descent, the CNN equalizer weights
are adjusted to minimize the average MSE between its output
and the ideal PR waveforms. This iterative method jointly
optimizes the CNN equalizer weights and the PR target [3].

V.1-D PDNP wiTH LLR EXCHANGE

In this case, there are three parallel 1-D BCJR/PDNP
detectors operating on tracks a,, a,, and a;. LLRs are passed
from the two outer tracks to the inner track. The central 1-D
BCJR/PDNP uses weights o; and a3 for mapping the expected
value of coded bits (u;, uz) from the other tracks’ 1-D
BCJR/PDNP LLRs:

min|ly, — (hy *u, + oy *s; + @z * 53)”2,
aq,03

s; = (exp(LLR;) —1)/(exp(LLR;) + 1), i =13, (1)
where h, is the 1 X 3 PR target and u, are the coded bits on
the central track. The s; is the expected value of each bit in the
outer tracks, and * indicates convolution. In this system, the
BER and AD are assessed on a,. By introducing this exchange
of suitably weighted LLRs, the central track's MSE decreases
by 8.85% in presence of write- and read-TMR.

VI. RESULTS AND DISCUSSION

Table I presents the simulation results for the read-TMR
alone (written tracks fixed at nominal, each track with 7
possible read offsets from —3 nm to +3 nm). Rows 1, 3 serve as
comparison baseline (cb). In most cases, the CNN-based system
gives some density gain over the PDNP systems. The CNN-
based system gives 0.34% density gain over PDNP with LLR
exchange and is more robust with read-TMR alone.

TABLE I
READ-TMR SIMULATION RESULTS, TP =24 NM
Detector AD Code AD Reduction
(Tb/in?)  Rate (%)

1-D PDNP, LLR Exch. (cb. 1) 2.3922  0.8899 0
1-D PDNP, LLR Exch., R TMR 2.2937  0.8533 4.11 (vscb. 1)

CNN NP (cb. 2) 2.3880  0.8883 0

CNN NP, R TMR 23016 0.8562 3.61 (vscb.2)

For the write-TMR dataset selection, we generate four
independent waveforms with maximum TMR of +3 nm. The
training and validation datasets comprise 400 and 100 four
KByte blocks respectively; 200 additional independently
generated blocks are used as test data. Table II shows the
simulation results for the write-TMR alone and for write- and
read-TMR together. The LLR exchange improves density and
robustness to TMR for the PDNP system. The system with the
CNN Equalizer gains 0.69% density over PDNP with LLR
exchange in the presence of write- and read-TMR. The CNN
system with the CNN Equalizer improves density and
robustness compared to PDNP.

TABLE II
WRITE- AND READ-TMR SIMULATION RESULTS, TP =24 NM
Detector AD Code AD Reduction
(Th/in?)  Rate (%)
1-D PDNP, LLR Exch., W TMR 2.2440  0.8347 6.20 (vscb. 1)
1-D PDNP, LLR Exch.,
W-R TMR 2.1795 0.8108 8.89 (vscb. 1)
CNN NP, W TMR 22695 0.8443 495 (vscb.2)
CNN NP, CNN Eq., W TMR 2.2793  0.8479 4.55(vscb.2)
CNN NP, CNN Eq., W-R TMR 2.1947 0.8164  8.09 (vscb. 2)
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