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Scientific Significance Statement

Seagrass meadows are considered “blue carbon” ecosystems and are highly effective at sequestering and storing carbon. Accu-
rate metabolic estimates for seagrass meadows are important for evaluating this role in climate change mitigation. Daily gross
primary production for aquatic ecosystems is typically calculated assuming that daytime and nighttime respiration are identi-
cal, and respiration does not change over a 24-h period. In this study we examine these assumptions using in situ oxygen
fluxes measured by aquatic eddy covariance in a temperate seagrass meadow. Binning 2115 h of hourly oxygen fluxes, we
found that respiration varies over a 24-h period and can be described by piecewise linear relationships, demonstrating that the
common assumptions in metabolic estimates are not fulfilled. Based on our findings we provide new guidelines for future
estimates.

Abstract

Accurate daily metabolic estimates of respiration, gross primary production, and net ecosystem metabolism are
necessary to assess ecosystem health and blue carbon contributions of vegetated coastal ecosystems. Using our
database of 2115 hourly benthic oxygen (O,) fluxes measured by aquatic eddy covariance, we examine how res-
piration for a Zostera marina seagrass meadow varies through night and day, and how this affects commonly
performed metabolic estimates. Respiration decreased linearly by 29% through the night and a corresponding
linear increase in daytime respiration coupled with production described by a standard photosynthesis—
irradiance curve accurately predicted measured daytime O, fluxes. Many studies have questioned the widely
used assumption in metabolic estimates that nighttime and daytime respiration are constant and equal. How-
ever, if respiration can be approximated as we found here by linear relationships, standard means for calculat-
ing daily metabolic numbers remain valid if estimates are based on full 24-h records of flux data.

Seagrass meadows are highly productive coastal ecosys- Duarte 2000). They accumulate organic carbon in their sedi-
tems that provide many important ecological services, includ- ments through in situ production as well as by accretion of
ing sequestration and storage of carbon (Hemminga and carbon particulates from the water column. Thus, they act as
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a significant sink of and provide long-term storage for “blue
carbon,” carbon captured by coastal ecosystems (Nellemann
et al. 2009; Mcleod et al. 2011; Greiner et al. 2013). This
important ecological service of seagrass meadows has led to
substantial restoration efforts as a strategy for climate change
mitigation.

To better inform mitigation strategies through carbon accu-
mulation and storage, it is important to understand the
dynamic metabolism of seagrass meadows (Berger et al. 2020).
To do this, we need accurate assessments of daily values for
gross primary production (GPP), respiration (R), and net eco-
system metabolism, which can be estimated from oxygen (O;)
fluxes (Staehr et al. 2012). O, fluxes are a good proxy for both
photosynthesis and respiration because of the close associa-
tion between carbon transformation and coupled O, produc-
tion, and between carbon oxidation and O, consumption.
The ratio between O, exchange and CO, exchange has been
estimated to be approximately 1 (Kirk 1983; Duarte
et al. 2010), and is widely used in metabolic studies
(Glud 2008; Rheuban et al. 2014b; Berger et al. 2020).

Daytime O, fluxes for seagrass meadows can show devia-
tions from what is expected based on available light, which is
the main control on O, fluxes during the day (Ralph
et al. 2007). Several studies found that O, fluxes in seagrass
meadows show a higher net release of O, in the morning than
in the afternoon at the same light levels (Hanelt 1992;
Rheuban et al. 2014b; Berg et al. 2017, 2019; Koopmans
et al. 2020). Multiple explanations for this have been proposed,
including afternoon depletion in water column CO, limiting
photosynthetic production (Berg et al. 2019), increased after-
noon water temperature (Masini and Manning 1997; Rheuban
et al. 2014a), photoinhibition (Hanelt 1992), and enhanced
consumption of highly labile organic compounds produced
during photosynthesis causing respiration to vary over the
course of a day (Glud 2008; Howarth et al. 2014; Rheuban
et al. 2014b; Attard and Glud 2020). It is commonly assumed
that respiration stays constant throughout the day and night
in calculations of daily GPP and R (Hume et al. 2011;
Koopmans et al. 2020; Rheuban et al. 2014a). Several studies
have suggested this assumption may result in incorrect calcula-
tions of metabolic numbers (Pace and Prairie 2005; Pringault
et al. 2009; Howarth et al. 2014).

Respiration trends have been examined in other systems,
with indirect approaches such as inferring respiration from
water column O, concentration measurements combined
with full water column mass balance (Sadro et al. 2014; Man-
tikci et al. 2020), or isotope ratio measurements through time
(Bender and Grande 1987; Tobias et al. 2007; Venkiteswaran
et al. 2008). However, these indirect approaches are subject to
uncertainties, especially in a dynamic system, caused by air-
water gas exchange and vertical and horizontal mixing. In
this study we used a more direct approach, the noninvasive
aquatic eddy covariance technique (Berg et al. 2003), to exam-
ine trends in respiration. Previous aquatic eddy covariance
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measurements in coral ecosystems have found respiration to
decrease throughout the night (Long et al. 2013). Here, we
use our extensive database of 2115 hourly benthic O, fluxes
measured in a dense seagrass meadow at a single site within
the Virginia Coast Reserve Long Term Ecological Research site
(VCR LTER). This site has been subject to a series of metabolic
seagrass studies (Hume et al. 2011; Rheuban et al. 2014a4,b;
Berg et al. 2019; Berger et al. 2020). To our knowledge, this is
the first study of variation in respiration in a coastal ecosys-
tem using a long-term dataset of metabolic measurements per-
formed under naturally varying environmental conditions.

Methods

The data used in this study (Juska et al. 2022) span 5 years
(2014-2019) and compile 161 d of seagrass (Zostera marina)
metabolism measurements collected at the VCR LTER (Berg
et al. 2019; Berger et al. 2020). The VCR LTER is the site of the
largest and, to date, most successful seagrass restoration effort
in the world. The largest meadow (20 km? as of 2018) is
located in South Bay (Orth et al. 2020) where the data were
collected. South Bay is connected to the Atlantic Ocean by
inlets and constrained by barrier islands to the east and the
Delmarva Peninsula to the west (Fig. 1). Our site has a mean
water depth of 1.2 m, with a tidal range of approximately
1 m. The water in South Bay typically stays significantly
warmer than the surrounding oceanic inlets (Berger 2021).
Z. marina is perennial and seagrass shoot density varies sea-
sonally, growing rapidly from the early spring and through
the middle of summer, and undergoing senescence in late
summer and continuing through the fall (Duarte 1989;
Clausen et al. 2014). In South Bay in June, mean aboveground
biomass has been reported to be 50.7 g m~? and mean below-
ground biomass has been reported to be 55.1 gm * (Berg
et al. 2019). June seagrass shoot density at the center of the
meadow in 2018 was 364 + 13 (mean =+ SE) shoots m™2
(Berger et al. 2020).

The measured variables included in this study are O, flux,
photosynthetically active radiation (PAR) at the top of the
seagrass canopy, current velocity, water column O, concentra-
tion, and temperature. The O, flux was measured above the
seagrass canopy (at 30 cm above the sediment) using the
aquatic eddy covariance technique (Berg et al. 2003), a nonin-
vasive approach for direct O, flux measurements under natu-
rally varying in situ conditions. The technique gives fluxes at
a high temporal resolution (down to ~ 15 min) for a relatively
large area of the benthic surface (typically 10-100 m?), and
thus, integrates well over typical meadow patchiness (Berg
et al. 2007; Rheuban and Berg 2013). Older techniques for O,
flux measurements, such as deployment of benthic in situ
chambers, do not fully represent the natural environment as
they exclude water movements and exchange processes, and
may alter light conditions. Altering these drivers of O, flux
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Virginia Coast
Reserve LTER
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: VﬁAquatic Eddy Covariance
technique over seagrass

Fig. 1. The data used here were collected at the Virginia Coast Reserve Long term Ecological Research site in the South Bay eelgrass (Zostera marina)

meadow, using noninvasive aquatic eddy covariance measurements.

can significantly affect metabolic estimates
et al. 2005; Long et al. 2015; Olivé et al. 2016).

In our analysis, we included measurements from late
March through late October. Data outside this period were
excluded due to the large differences in the periods with day-
light. The data were binned into mean hourly values for a full
24-h period, and analyses were performed on the mean data
rather than individual days. The site is located in a tidal-
driven, shallow bay where current flow and light attenuation
change on an hourly basis. Due to the dynamic nature of the
system and the strong effect these changing environmental
drivers can have on O, fluxes (Berger et al. 2020; Berg
et al. 2022), hourly data from individual days were highly var-
iable and did not show clear trends in respiration. This led to
the use of binned values for trend analysis. Hours were consid-
ered to be nighttime hours if PAR values were less than 1% of
the maximum daytime PAR, a threshold that has been used in
previous metabolic seagrass studies (Hume et al. 2011). This
definition gave a well-defined separation between day and
night at 20:00 h in the evening and 06:00 h in the morning.

Temperature stress has been shown to occur in temperate
Z. marina at temperatures above 28°C, where photosynthetic
processes are inhibited (Staehr and Borum 2011; Rasmusson
et al. 2020). The 28°C threshold was determined in a

(Martin
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laboratory study (Staehr and Borum 2011). Research con-
ducted in situ at the VCR LTER has found the threshold for
Z. marina to be 28.6°C, close to the 28°C value (Berger 2021).
To avoid bias in our analyses caused by such effects, O, flux
data associated with daytime temperatures above 28°C were
excluded. This left 2115 h of data for analysis, distributed as
1029 daytime hours and 1086 nighttime hours.

While daytime O, fluxes reflect the net result of photosyn-
thetic processes and respiration, nighttime fluxes represent
exclusively respiratory processes in the seagrass meadow. To
identify trends in respiration, hourly O, flux measurements
during the night were examined using a least-squares linear
regression analysis of the binned values of fluxes with “time
after dusk” as the independent variable. A two-sample t-test
assuming unequal variances (alpha = 0.05, df = 197) was per-
formed comparing O, flux measurements during the first hour
of night and during the last hour of night. Nighttime hourly
means for three other variables that could potentially impact
O, flux variability were also examined: current velocity, O,
concentration, and water temperature.

For current velocity, which has been shown to stimulate
O, fluxes in seagrass meadows (Hume et al. 2011; Long
et al. 2015), a two-sample t-test assuming unequal variances
(alpha = 0.05, df = 210) was performed comparing velocity
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measurements during the first hour of night and during the
last hour of night. Mean hourly O, concentration values for
the first and last hours of night were examined, and the
change in O, concentration over the night was evaluated. The
O, concentrations were assessed for their likelihood to impact
respiration. To evaluate the role of temperature, which has
been shown to impact respiration (Staehr and Borum 2011), a
first-order Q10 model calculation was performed. This classic
model (Berry and Raison 1979), which expresses how much
respiration will increase if the temperature increases by 10°C,
was used to calculate the expected change in respiration
through the night using a Q10 value for respiration in
Z. marina meadows of 2.4 (Marsh et al. 1986).

The linear decrease in nighttime respiration and an
assumed linear increase in daytime respiration constituted a
24-h respiration model. Daytime production values were cal-
culated as the difference between measured hourly daytime
fluxes and assumed daytime respiration. A widely used stan-
dard photosynthesis—-irradiance (P-I) curve (Webb et al. 1974)
was then fitted to the production values. The respiration
model combined with the P-I curve produced a 24-h O, flux

Variation in seagrass respiration

model based on hour of day and PAR. Residuals were calcu-
lated for the modeled hourly O, fluxes and used to evaluate
the model. R? values for the P-I curve and the 24-h O, flux
model represent the results of a linear regression between
expected and measured values for each fitting.

Results

The mean O, flux for the first hour of night was signifi-
cantly different than the mean O, flux for the last hour of
night (f = —4.249; p = 0.0000332). A linear fitting to the
mean nighttime hourly O, fluxes showed a clear trend
(slope = S5.11lmmolm 2 d' h™'; R* = 0.946,
p = 2.37 x 10~°) throughout the night (Fig. 2A). A very simi-
lar trend (slope = 5.09 mmolm % d~! h™'; R* = 0.027,
p = 4.09 x 10°%) was obtained when fitting the individual
hourly O fluxes (not shown) that comprised the binned data.
These fits revealed that respiration in the meadow decreased
by 29% through the night. The mean hourly velocity shows
some variation after dusk, slightly increasing during the mid-
dle of the night (Fig. 2B). However, during the first hour after
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Fig. 2. Average nighttime measurements of key variables from 1086 h of nighttime data plotted against time after dusk (n ranges from 102 to 113 for
each hour and is the same across all variables). The first hour after dusk represents measurements between 20:00 h and 21:00 h and the last hour before
dawn represents measurements between 05:00 h and 06:00 h. (A) The trend in the mean O, flux (n = 10, R? = 0.95, p =237 x 107%) and the mean
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tion for each hour after dusk + SE. (D) Mean measurements of water temperature for each hour after dusk + SE.
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Fig. 3. Respiration trend throughout the full 24-h period, including the
linear trend for respiration during the nighttime hours (20:00-06:00;
same as in Fig. 2A) and the theoretical daytime respiration.

dusk and the last hour before dawn the current velocities were
not statistically different (t = 1.089; p = 0.14), and thus, were
evaluated not to impact respiration significantly. Water col-
umn O, concentration decreased after dusk (Fig. 2C) as ben-
thic and water column respiration consumed O,, amounting
to a 28% decline over the night. However, the O, level never
fell below 200 ymol L™! (see Discussion). Water column tem-
perature (Fig. 2D) declined throughout the night by 11%. The
observed temperature change of 1.5°C, based on a Q10 value
of 2.4, would only decrease metabolism by 2.0%, far from the
identified 29% decline through the night.

A piecewise linear description of nighttime and daytime
respiration (Fig. 3) combined with a widely used standard P-I
curve (Fig. 4) for production (R? = 0.991) generated a model for
hourly O, fluxes through the full 24-h period (Fig. 5). This
model approximation of the measured O, fluxes had an R* of
0.993 for a full 24-h period and an R? of 0.989 for just daytime
values. The hourly residuals had small discrepancies during the
early morning and the late evening, but beyond that showed
no general trend in variation over the course of the day. In the
measured values for O, flux and PAR there is a slight decline
during the middle of the day (Fig. 5), likely due to pop-up storm
formation that often occurs in the early afternoon at the site.

Discussion

Past studies have questioned key assumptions behind the
conventional way metabolic numbers for aquatic ecosystems
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Fig. 4. Photosynthesis-irradiance (Pl) curve with production values
(n = 14) found from 1029 of hourly O, flux measurements. Production
values are found by subtracting the theoretical daytime respiration
(Fig. 3) from the mean O, flux. Comparing the measured and predicted
Pl curve production values using linear regression gives a slope of 1.04
and an R? of 0.991.

are calculated; that nighttime and daytime respiration are
constant and equal (Pringault et al. 2009; Howarth et al. 2014;
Sadro et al. 2014; Mantikci et al. 2020). If these assumptions
do not hold, errors will arise when using only a few hours of
nighttime respiration measurements to represent respiration
for a 24-h period. The linear decrease in respiration by 29%
through the night identified here for a temperate seagrass
meadow (Fig. 2A) showed that this concern is warranted.
Water column temperature and current velocity in our
study did not show variation that could explain this signifi-
cant decline in nighttime respiration. Although there is a
small increase in velocity during the middle of the night, it
likely only stimulates respiration slightly based on a previous
study that investigated this dependency in the same meadow
(Hume et al. 2011). Water column O, concentrations
decreased throughout the night by 28%. It is possible that aer-
obic respiration in the sediment would decrease as bottom
water O, concentration declined (Thamdrup et al. 1998; Leh-
mann et al. 2009). However, the sedimentary O, uptake at
this site was determined to be a small component (~ 10%) of
total O, fluxes in the meadow (Rheuban et al. 2014q). In addi-
tion, metabolic activity in other seagrass ecosystems has been
shown to be dominated by the plants themselves
(Sondergaard 1979; Colmer and Pedersen 2008; Duarte
et al. 2014). The mean hourly O, concentration stayed well
above what has been suggested to be respiration-limiting in
seagrass meadows (Borum et al. 2005; Rasmusson et al. 2020).
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Fig. 5. A model for O2 flux over the full 24-h period based on PAR (Fig. 4) and the piecewise linear variation in respiration (Fig. 3). Comparing the mea-
sured and modeled O, flux values using linear regression gives a slope of 1.01 and an R? of 0.993 for the full 24-h period, and a slope of 1.06 and an R?

of 0.989 for just daytime values.

For the small component of respiration associated with the
sediment, studies have suggested that at high O, concentra-
tion levels the uptake largely follows zero-order kinetics (Glud
et al. 2003; Glud 2008). A decline in O, concentration would
reduce the direct aerobic respiration, but would largely be
compensated for by an increase in oxidation of reduced prod-
ucts of anaerobic decay present beneath the oxic zone. As a
result, we conclude that the observed decrease in O, concen-
tration only explains a small fraction of the 29% decline in
seagrass meadow respiration throughout the night (Fig. 2).
Consequently, we find it most likely that variation in respi-
ration over the 24-h period (Fig. 3) is primarily caused by
highly labile compounds produced by photosynthetic pro-
cesses that accumulate as the day progresses and are con-
sumed during the night; an explanation that is supported by
several studies. These compounds can be found on the sur-
faces of seagrass tissues in the form of dissolved organic car-
bon (DOC) exudates, which have been shown in laboratory
experiments to stimulate respiration (Moriarty et al. 1986)
and to decrease in concentration on seagrass leaves after the
onset of darkness (Penhale and Smith 1977). They have also
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been shown to stimulate microbial activity in the root zone of
seagrasses (Gribsholt and Kristensen 2002; Aoki and
McGlathery 2018) and are quickly consumed by epiphytic
bacteria when exuded from seagrass leaf tissue (Kirchman
et al. 1984). This explanation is further supported by the fact
that the piecewise linear description of nighttime and daytime
respiration (Fig. 3) combined with a widely used P-I curve for
daytime production generated a 24-h O, flux model that accu-
rately described the measured hourly fluxes (R? = 0.993). The
model has a comparable predictive power for the daytime
fluxes alone (R = 0.989) (Fig. 5). The modeled flux was able
to better predict the smaller measured fluxes in the afternoon
at the same light levels compared to the observed morning
measurements. Our findings provide the first evidence, based
on extensive metabolic aquatic eddy covariance measure-
ments under naturally varying conditions, for substantial vari-
ation in seagrass respiration which is likely due to the
production and consumption of highly labile compounds
over the diel cycle; a dynamic mechanism that has been
hypothesized in previous studies (Howarth et al. 2014;
Rheuban et al. 2014b; Attard and Glud 2020).
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The documented variation in respiration confirms that the
widely used assumption in conventional calculations of daily
GPP and R, that respiration stays constant during day and
night, is not fulfilled (Figs. 2A and 3). However, if respiration
varies linearly through night and day, as found to be a good
approximation here and likely applicable to other photo-
trophic aquatic ecosystems, the separately integrated night-
time and daytime respiration are equal, which implies that
the conventional means for calculating daily R and GPP still
hold. However, it is important to have sets of measurements
that include data throughout the night to get an accurate
mean of nighttime respiration. Using, for example, sampling
periods that only include a few evening night hours would
result in a significant overestimation of daily R.

As a concluding remark, our study exemplifies the value of
long-term research. Our metabolic findings would not have
been possible without the long-term dataset consisting of over
2100 h of aquatic eddy covariance data. The highly dynamic
nature of seagrass metabolism makes it difficult to see trends
in parameters such as respiration. Future studies to further
refine our understanding of respiration for seagrass meadows
should preferably include quantifications of above- and
below-ground DOC exudates in tandem with O, flux measure-
ments. A more complete picture of seagrass metabolism and
its drivers are critically important to correctly assess the role
these threatened ecosystems play in climate change mitiga-
tion through coastal blue carbon sequestration and storage.
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