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Abstract
We consider a model with gauged baryon number that may be rendered asymptotically safe when
gravitational effects above the Planck scale are taken into account. We study the ultraviolet fixed
points in this theory and determine the restrictions on the parameter space of the model at the
TeV scale following from the requirement that the asymptotic fixed points are reached. Assuming
that the new gauge symmetry is broken at the TeV scale, we comment on the phenomenological

implications of these restrictions.
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I. INTRODUCTION

Extensions of the standard model typically involve a set of new couplings that are only
partially constrained by low-energy experimental observables. A well-motivated restriction
on the ultraviolet (UV) limit of such a theory is useful when it can remove some of this
arbitrariness, leading to a more predictive low-energy theory. In this paper, we consider a
7' model whose phenomenology is affected in a meaningful way by the requirement that
the theory remain asymptotically safe when extrapolated to infinitely high energy scales.
We determine the UV restrictions on the model’s parameter space at the TeV scale and
comment briefly on the phenomenological consequences.

Asymptotic safety was originally proposed by Weinberg in the context of quantum grav-
ity [1]; for other related work, see Refs. [2, 3]. If Einstein gravity is treated as a quantum field
theory, it is well known that the theory is nonrenormalizable, requiring an infinite number
of couplings. In the asymptotic safety paradigm, one considers a theory to be unphysical
if it includes couplings that flow to a Landau pole at some finite energy scale. Physically
acceptable theories correspond to a subspace of the original space of parameters called the
ultraviolet critical surface. If this surface is finite-dimensional, then the theory may be ren-
dered predictive even though it is nonrenormalizable. Under the renormalization group (RG)
flow, couplings on the UV critical surface may run to nontrivial, interacting ultraviolet fixed
points, or vanishing, “Gaussian” fixed points. We will refer to the theory as asymptotically
free if all couplings run to Gaussian fixed points, and asymptotically safe if one or more
couplings approach an interacting UV fixed point while the rest flow to zero. For a review
of asymptotic safety and a comprehensive list of references see, for example, Ref. [4].

Just as asymptotic safety can reduce the otherwise infinite parameter space of a nonrenor-
malizable theory, it can reduce the finite-dimensional parameter space of a renormalizable
one. This fact has been used to constrain standard model extensions in several examples dis-
cussed in the recent literature [5-10, 12, 13], focusing on issues including dark matter [5, 7],
the current discrepancy between the standard model prediction and the measured value of
the muon anomalous magnetic moment [6, 7], various aspects of neutrino and Higgs sector
physics [8-10], flavor physics [11] and collider phenomenology [12, 13]. The present work
considers another application, adding to this body of literature. The possibility that baryon

number could be gauged has been discussed extensively in the past [14-20], both as a pos-



sible way of assuring proton stability and for its interesting TeV-scale phenomenology; the
latter motivation is relevant for the present work. The phenomenology of the new U(1)
gauge boson is largely determined by the gauge coupling gg, the gauge boson mass mpg,
and a parameter € (defined later) that specifies the kinetic mixing between the U(1)p and
hypercharge gauge groups. Notably, the U(1)p gauge boson would be entirely leptopho-
bic if not for the kinetic mixing. Hence, decay channels that may be easier to discern in
light of large QCD backgrounds (i.e., decays to charged dileptons rather than dijets) are
entirely controlled by the undetermined kinetic mixing parameter. The same parameter also
controls mixing of the U(1)p and electroweak gauge bosons that is crucial in determining
the constraints from precise electroweak measurements at the Z-boson scale. One way of
fixing the kinetic mixing parameter, discussed in Ref. [15], is to require that it vanishes at
some scale by embedding the two Abelian gauge group factors into a non-Abelian one. Here
we explore a more economical alternative—and one motivated by the eventual inclusion of
gravity—that asymptotic safety allows us to predict the kinetic mixing in terms of other
model parameters based on the requirement that appropriate fixed points are reached in the
UV. This reduces the space of possibilities for the properties of the Z’ boson, and provides
a guide for discerning the model at collider experiments.*

Our paper is organized as follows. In Sec. II we define the model. In Sec. I1I, we study
the UV behavior of the theory, identifying a number of scenarios where the model can be
extrapolated to infinite energy with some couplings reaching nontrivial fixed points, and
where vacuum stability is maintained. We determine what these UV boundary conditions
imply about the allowed parameter values at the TeV scale. In Sec. IV, we comment on
the phenomenological implications of these results, presenting one example in which the
branching fraction of the Z’ boson into standard model particles is predicted. We summarize
our conclusions in Sec. V. Appendix A contains the complete list of one-loop renormalization

group [-functions used in our analysis.

1 'We note that Ref. [13] also considers asymptotic safety in a leptophobic model, but one in which only
third-generation quarks are charged under a new U(1). This implies a different fixed point structure than
the one predicted by the model proposed here. More significantly, the model in Ref. [13] has a serious
problem: the stated charge assignments for the fermions that are vector-like under the standard model
gauge group forbid the only possible Yukawa couplings that could generate their masses. This leads to

massless, electrically charged fermions, ruling out the model.



II. MODEL

We consider an extension of the standard model in which baryon number, U(1)p, is
gauged. We normalize that gauge coupling so that that baryon number charge is +1 for a
proton or neutron; the baryon number is 0 for any standard model lepton. A right-handed
neutrino is included so that Dirac neutrino masses are possible. We do not address the
problem of the flavor structure of the standard model, nor the smallness of neutrino masses,
but remain content with the fact that the allowed couplings of the model are sufficient to
accommodate all observed fermion masses and mixing angles. The charges for the particle

content described thus far are shown in Table I.

SUB)e  SU@w  Ul)y U)p

qr 3 2 1/6 1/3
uR 3 1 2/3 1/3
dr 3 1 ~1/3 1/3
0 1 2 ~1/2 0
eR 1 1 -1 0
VR 1 1 0 0

TABLE I: Charge assignments for a single generation of standard model fields, including a right-

handed neutrino.

Additional fermions must be added to assure the cancellation of gauge and gravitational
anomalies. We assume three generations of Dirac fermions v¢, 1¢ and ¢ that are vector-like
under the standard model gauge group, with quantum numbers identical to those of the lep-
ton fields /1, er and vg, respectively; the new fields are chiral under U(1)g. We temporarily
denote the U(1)p charges of ng, Vi p and Y7 p as xp R, YL r, and zp, g, respectively. For
simplicity, we seek the cancellation of anomalies within each generation separately. The
anomaly cancellation constraints are then summarized as follows:

e U(1) SU(3)2: This anomaly is proportional to 2- + — 1 — 1 = 0, and vanishes without

help from the vector-like sector.
e U(1)p SU(2)% This anomaly is proportional to 3 - 5 + 21, — xg, which implies
J,’L—.IR:—l . (21)
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e U(1)p U(1)}: This anomaly is proportional to —3 + 3(x, — 2r) + (yr — yr). With the

constraint of Eq. (2.1), this implies
yr —yr = +1 (2.2)

e U(1)4 U(1)y: The standard model particles do not contribute to this anomaly, but

the new particles do, so that
— (27 —2%) — (2 —yr) =0 . (2.3)

e U(1)3: Again, there is no contribution in total from the standard model particles, but

the new particles contribute:
2 (7 —ag) + (v —yR) + (2 —25) =0 . (2.4)

e gg U(1)y: Here, g refers to a graviton. The hypercharge gravitational anomaly cancels
in the standard model, and this is not affected by the new particles which are vector-

like in their standard model charges.

e gg U(1)p: In this case, the anomaly is proportional to 2 (z; —zr)+(yr —yr)+ (2L —2R).
With the constraints of Egs. (2.1) and (2.2), this implies

2, — 2R — —|—1 . (25)

SUB)e  SU@2w  Ul)y  Ul)s

Y 1 2 -1/2 =z =

Vv 1 2 -1/2  zp=1
(5 1 1 -1 yr, =1
V5, 1 1 ~1 yr =0
WY 1 1 0 =1
A 1 1 0 2p =0

TABLE II: Charge assignments for the vector-like fields, for a single generation. The last column

shows the anomaly-free solution discussed in the text.



All the constraints are satisfied with the choice g =y = zp = +1 and xp = ygp = zr = 0,
as indicated in Table II.

We assume that the U(1)p symmetry is spontaneously broken by a complex scalar field ¢
which has baryon number +1 and is a singlet under the standard model gauge group. The
charge assignment of ¢ is fixed by the requirement that it allows Yukawa couplings which
generate masses for the ¢ fields when ¢ develops a vacuum expectation value (vev). One

finds that the desired Yukawa couplings are given by

L, =08y ¢ + U5 g2 U ¢ + U ys ¢+ He. (2.6)

where the y; are three-by-three matrices.? Since there are pairs of fields that have identical
quantum numbers, namely (¥, £1), (V%, er) and (¥%, vg), we may choose a field basis in
which there are no Yukawa couplings involving ¢ that mix a heavy and light field, such as
(Y% ¢*. However, heavy-light couplings are possible involving the standard model Higgs
field H:

L, =t Hryeg+ 0p H ko b + 0 H kgt + Hee. (2.7)

where the k; are also three-by-three matrices. This set of Yukawa couplings serves a useful
purpose phenomenologically, as it assures that the heavy fields can decay to light fields,
thereby avoiding unwanted stable charged particles. (For the stringent bounds on heavy,
stable charged particles, see Other Particle Searches in Ref. [21]).

It is worth noting that the spontaneous breaking of baryon number through the ¢ vev
does not lead to any problems with proton decay. The Lagrangian has an anomalous global
U(1) baryon number symmetry acting exclusively on the quark fields ¢, u and d, even in
the presence of a ¢ vev. This implies that any gauge-invariant, dimension-six operator that
contributes to proton decay, and violates this global symmetry, cannot be generated at any
order in perturbation theory, where it might only be suppressed by a mass scales appearing in
the Lagrangian. On the other hand, Planck-suppressed dimension-six operators, if present,
would be sufficiently suppressed as the lower bound on the scale of dimension-six operators
from proton decay is typically O(10') GeV [21]. Interestingly, there is some evidence
that asymptotically safe gravity may preserve global symmetries, in which case even these

operators would not arise [22]; for additional discussion, see Ref. [7].

2 For simplicity, we omit possible Majorana masses for v and Y.



The rest of the theory consists of the scalar sector
A A
V(¢ H) = —miyH'H + J(H'H)? = mi¢™é + 2(6°0)° + And"oH'H . (28)

which involves the new couplings A, and Ay, and the gauge kinetic mixing between U(1)p

and hypercharge
1
4

which involves the kinetic mixing parameter e. Thus, in addition to the parameters of the

1
£5-B"B,, — ), + pmpy (2.9)

2 w

standard model, the theory we have just defined has one new gauge coupling ¢gg, a gauge-
kinetic mixing parameter €, two new Higgs sector couplings Ay and \,,, and the new Yukawa
couplings in Eqs. (2.6) and (2.7). If one temporarily rescales the gauge fields so that the
gauge couplings appear in the kinetic terms, Eq. (2.9) takes the form

1
L= —Z(G‘Q)ABF;‘VFBW , (2.10)

where the indices run over the two-dimensional space of Abelian gauge fields. In studying
the renormalization group equations (RGEs) for models of this type, it is conventional [23]
to redefine the gauge field basis so that the matrix G has the upper-triangular form

€

gy —F/——=9y
V1—e? a
G= |7 (2.11)

1 0
" e "

Here gp, is the baryon number gauge coupling in the original basis. The RGEs are then

conveniently expressed in terms of g, gy and gg. In the basis where the kinetic terms are

canonical in form, the covariant derivative on a generic field y may be expressed as
Dyx =10, —igB.Qs — i (9vA), + § B)Qy] X, (2.12)

where Qg and )y are the baryon number and hypercharges of x, respectively. This is a
convenient form for studying some of the phenomenological consequences of the RGE output.

Finally, following the conventional approach [5, 7-10, 12, 13], we adopt a simplified flavor
structure of the theory for use in our numerical RGE analysis: we ignore standard model
lepton Yukawa couplings and assume that the matrices y; and k;, ¢ = 1...3, are each pro-
portional to the identity matrix; in other words, these couplings will be taken to represent

six parameters rather than six arbitrary matrices. These assumptions are consistent with
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the renormalization group running of the couplings for the following reason: In the absence
of standard model lepton Yukawa couplings, the Lagrangian has a U(3),xU(3). chiral sym-
metry. Writing the charge assignments via the representation pair (rg,r.), this symmetry

can be extended to the heavy leptons,

er ~ Y ~ Yk~ (1,3)
€L ~ ¢z ~ 1/}?% ~ l/Jl[// ~ ?/JE ~ (37 1) ) (213)

provided that the y; and k; are proportional to three-by-three identity matrices. This global
symmetry is not broken by any perturbative interaction, allowing us to conclude that the

simple flavor structure ansatz we have assumed will not be altered by RGE running.

III. FIXED POINT ANALYSIS

With the model now fully developed, let us consider the structure of its renormalization
group flow in detail. In particular, we will search for fixed points at one loop in perturbation
theory, with gravitational effects parametrized, and consider in which parts of parameter
space this model exhibits asymptotic safety. We extract the S-functions using PyRQTE
3 [23]; see also appendix A.

A. Generalities

Let us briefly recall some terminology. Consider some couplings g; with their associated
B-function denoted as ;. To study the behavior of the RG flow around a fixed point g;,,

consider the expansion
Bi = M7 6; + P7" 6,6, + O (6°) (3.1)

where 0; = g; — ¢;» and we defined the coefficients

_ 96 gk — L &b,
Oy "7 2 0g;0gy

M (3.2)

9 .
* *

The matrix M;’ has eigenvectors Ujk, where k labels the vectors such that M, Ujk = Vpv*

(no summation over k). At linear order in §;, Eq. (3.1) is solved by

9i(1) = gix + Z i (%)ﬁk ; (3.3)



where A is an arbitrary reference energy scale defining the origin of “renormalization time”
t = In(u/A). The ¢ are subject to the constraint g;(g — 00) = gix, which requires that

¢ = 0 for all £ with ¥, > 0. The eigendirections v;*

in coupling space are classified according
to the sign of their respective eigenvalues: ¥, < 0 (“relevant”), ¥, = 0 (“marginal”), and
U > 0 (“irrelevant”). Consequently, the UV critical surface is spanned by all the relevant
eigendirections, as well as any marginal ones that lead to flow towards the fixed point.
The latter behavior in the case of marginal directions, however, cannot be established by
considering only the linear terms in Eq. (3.1), but requires study of the S-functions at higher
order.

It is generally assumed that the influence of gravity can be safely neglected when consid-
ering particle physics well below the Planck scale. However, since the renormalization group
flow extends to infinite energies in the scenarios of interest to us, gravitational corrections to
the S-functions at and above the Planck scale need to be taken into account. (For a different
approach towards realizing asymptotic safety see, for example, Ref. [24].) The precise form
of these corrections depends on the exact matter content and gravitational theory under
consideration, and they have been computed in several scenarios in the so-called Einstein—
Hilbert truncation [25]; see also Refs. [26-29]. In a generic but simplified picture adopted
in phenomenological literature [5, 7, 13], the gravitational corrections to the S-functions are

modeled by (Mp; = 1.2 x 106 TeV)

B(g) = @ﬁm(gi) 0 - Me) fy 1, (3.4)
A1) = a0 =0 = M) fy (35
B(\i) = @5(1)0\1) —0(n— Mp1) fr)i, (3.6)

where 6 denotes the Heaviside step function. Here, for compactness, g;, y; and \; represent
the sets of couplings {g1, 92, 93, 95 G}, {Ye: Ub, Y1, Y2, Y3, K1, Ko, k3 } and {\, Ay, A}, respec-
tively. Note that the universal coupling of gravity to matter implies that these corrections
fg, fy, and f are universal in the gauge, Yukawa, and quartic sectors of the model, respec-
tively.®> The form of the gravitational correction in Eq. (3.4) for the gauge couplings was

shown first in Ref. [31] where it was found that f, is renormalization scheme dependent and

3 Perhaps a more transparent way to understand the universality of the gravity correction term in the gauge

coupling sector, when kinetic mixing is present, is to write the renormalization group equation in terms of



either positive or zero; the assumption that f; > 0 that we adopt here is standard in the
phenomenological literature, and corresponds to schemes that break certain classical gauge-
gravity symmetries that would otherwise lead to a vanishing result [31]. For other discussion
of f, see Refs. [26-29]. On the other hand, the signs and magnitudes of the Yukawa and
quartic gravitational corrections are typically less constrained. In what follows, we shall
treat the triplet (f,, f,, fn) as an input parameter to our model, and explore the fixed point

structure for a given triplet.

B. Fixed points and critical surfaces

It is instructive to first consider the U(1)pxU(1)y sector of our theory, including the
kinetic mixing. Henceforth, we use the SU(5) normalization of hypercharge, g1 = 1/5/3 gy;

then the gravity-corrected g-functions are given by

77 R
5(1)(91) = +E9§ —0(p — Mp) fg 91, (3.7)
(1) 3 1T 5 16 5. ¢
B (gB) = +11gp + 989 — 5989 ~ O(n — Mp1) gB fy, (3.8)
) 16 16 ., 77 .. 7T .
B(g) = ~ 2 9t9n — 5980+ 5910+ 11ghg + 50" — O(n— M) 3 . (3.9)

where we use the notation f4 = (47)? fa with A = g, 5, \.

For energy scales 1 < Mpy, Eq. (3.7) follows the usual logarithmic running

_ _ 177 g3
ar(p)™t = aipo) ™t — 7710 ™ (%) ,a(p) = 14(:) 7 (3.10)
or equivalently,

gl(,u) = 2 o) )
77297 (1
1w ()

the coupling matrix G2 5, defined in Eq. (2.10). Working in this basis, G% 53 encodes all the dependence
on the gauge couplings in any diagrammatic calculation. A universal gravitational correction term would

be introduced through a term proportional to this coupling matrix,
dG% 5 11

dt 2 1672

where the form of the non-gravitational part of the RGE can be found in Eq. (5.1) of Ref. [30]. This

reduces to Eq. (3.4) when expressed in terms of the component couplings, and yields the desired form for

[Gicﬂ&)ﬁ%s + (A< B)| -2G45 f,

the gravitational corrections in the case where kinetic mixing is vanishing.
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and, if not for the gravity correction fg taking over at p > Mp, the hypercharge gauge
coupling would hit a Landau pole eventually. Note that the ¢; fixed point structure is
independent of the couplings gg and g at one loop. In the trans-Planckian regime, the fixed

point criterion for ¢g; reads as follows:

(I—ggi - fg) g1 = 0. (3.12)
This equation has a trivial solution, corresponding to a Gaussian fixed point, as well as a
nontrivial solution, corresponding to an interacting fixed point. It is clear that these are
the only two fixed point scenarios: if fg is too small, then the cubic term in 31 (g;) will
dominate and drive g; to infinite values. If fg is at a critical value fgcrit, however, g; will
attain a fixed point exactly at the Planck scale. And if fg is larger than this critical value,

the linear term in 3™ (g;) dominates and drives the coupling to zero at infinite energies:

fy < f;rit no g; fixed point ,
fg = f;rit interacting ¢; fixed point, (3.13)
fg > fgcrit Gaussian ¢; fixed point .

In what follows, we shall discuss the two fixed-point scenarios in more detail. We present
numerical values to five significant figures since in some instances this is relevant for hitting
unstable fixed point values when running up from the TeV scale. It is interesting to note that
there is evidence that fixed points in the gauge sector do not destroy a nontrivial fixed point
for the gravitational coupling [32], which makes the phenomenological approach described
here sensible when considered in a broader context. For a review of the effects of matter

couplings on asymptotic safety in the gravity sector, see Ref. [33].

1. Gaussian g1 fixed point

The Gaussian fixed point, g1, = 0, is attainable if the gravity correction dominates at

the Planck scale, amounting to the condition

. . 7 91 (1o)
cit — 2 02N o) = 1 ~ 7.961 14
7 (4m)2 Ho

where the numerical value follows from o~ (pg) = 57.527 at pigp = 1 TeV [12]. Assuming that

the above bound is satisfied, the gravity correction will then drive g; to zero asymptotically
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such that g1, = 0. Then, Egs. (3.8) and (3.9) take the form

5(1)(.93)‘91*:0 =JB E(gB7§7 fg) 3 (315)

V@), o =T E(98,3 fo), (3.16)
I e 16 _ A

E(9B. 3, fg) :€92+119123—§939—fg~ (3.17)

The fixed points are given by the Gaussian fixed point (g, g«) = (0,0), as well as an ellipse
E(9Bx, Gx, fg) = 0. This ellipse is rotated by an angle € in ggg-plane,

32
11+ /1145

The new gauge coupling gg and the mixing ¢ are bounded by
/231§, ~ [6fy . /198F
9B € [07 241];] A {_ %7 241];9] : (3.19)

Note that ¢ can be negative, given its relation to the Lagrangian parameter € in Eq. (2.11).

tanf = 0 ~ 36°. (3.18)

It is obvious from these expressions that in the limiting case of fg — 0, that is, for vanishing
gravity corrections, the ellipse shrinks to zero size and only the Gaussian fixed point survives.
In other words, this non-trivial structure is generated by the gravitational corrections.

In order to understand the behavior in the ggg-sector better, consider a graphical vi-
sualization of the two [S-functions in Fig. 1. As it turns out, the ellipse corresponds to
an unstable collection of fixed points, also referred to as “UV repulsive” in the asymptotic
safety terminology, where all values inside the ellipse flow towards the Gaussian fixed point
(9Bx,0x) = (0,0). All values outside the ellipse flow to infinite values. In other words,
the ellipse corresponds to a projection of the UV critical surface into the subspace g; = 0.
This implies that the values of gg and g are not independent if they are required to reach
nontrivial fixed point values in the UV.

Given the UV critical surface, it is now pertinent to determine what range of coupling
values at pp = 1TeV flow to those fixed points, where we have selected a value for p that
is representative of high-energy collider physics experiments. Since the UV ellipse of fixed
points is unstable, it must be hit exactly when running up from lower energies, leading to
greater predictivity than one would obtain in the case of fixed points that are attractive.
There arises a technical complication: Since the Gaussian g, fixed point is an asymptotic

one, attained at infinite energy, it is not possible to fully model this numerically. In order
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to keep the treatment tractable, we define a large energy scale

Hmax
In — 100 3.20
( i ) (3.20)

or equivalently, fyax = In(fimax/to) ~ 137. The scale finax is approximately 43 orders
of magnitude higher than the Planck energy, high enough so that ¢i(pmax) < 1 when
fg > fgcrit. The choice f, = 0.1, for example, gives g (fmax) = 6.5 x 107°. A linearized
analysis of the RG flow near the ¢, fixed point suggests that we may assume that the values
of gp and g at the same scale are given approximately by their fixed point values on the
ellipse E(gp«, Gx, fg) = 0, completing our set of boundary conditions at the high energy scale
lmax- Lhis provides us with a method of mapping the UV critical surface to a corresponding
surface renormalized at pp = 1 TeV. Once this surface is obtained, we may verify by running
up from g, to scales even higher than pi,.., that the couplings approach the desired fixed
point, providing a numerical sanity check of our computations. In Fig. 2, we show (i) the
exact UV critical surface, (ii) the resulting values at the Planck scale, and, finally, (iii) the
resulting values at py = 1TeV.

We conclude that asymptotically safe solutions with a Gaussian ¢; fixed point and non-
trivial fixed points in the ggg-plane lead to a correlation between the parameters gg and g

at low energy scales.

2. Interacting g1 fized point

The remaining ¢g; fixed point is non-trivial. In our one-loop approximation, the value
g1 obtained at infinite energy is also the value at the Planck scale, since the g; S-function

vanishes for 1 > Mp; due to the choice of f,

gix = g1(Mp1) = 4/ %fg- (3.21)

Since the value of g; at the Planck scale is fixed by the experimental value at py, fg is then

determined

7 7

A 7 Feri
fg = 1_09%* = Tog%’lanck = fg ‘ ~ 7.9610. (322)

This corresponds to f, = 0.05, consistent in magnitude with typical estimates of f, appearing

in the literature [5]. Inserting this critical value f;m, one finds the two UV fixed points

- - 231 ferit 768 /St
(gBag) = <07 O) ) (gBag) = (\/ 2413 \/ 185801 ) . (323)
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We again plot the S-functions in the ggg-sector, albeit now for finite g4, in Fig. 1. In this
case, we see that the non-trivial ggg fixed point is connected to the Gaussian fixed point by
a line. All values that fall onto this critical line (aside from the unstable fixed point at the
right end) flow towards that Gaussian fixed point, whereas all values outside this interval
are driven to infinite values. It is interesting to observe that the range of gg coincides with
the predicted range in the Gaussian ¢, fixed point scenario, whereas the maximum value of
g is much smaller. Similar to the previous case, the line represents the projection of the UV
critical surface into the subspace g; = g1, and again implies that the values of gg and g are
not independent.

Since the fixed point values of the couplings in Eqgs. (3.21)-(3.23) are reached at u = Mp,,
it is straightforward to flow these back to our reference scale of iy = 1TeV; see Fig. 2 for
the fixed point coupling values renormalized at 1 = oo, Mp; and 1TeV. Again, we find a

correlation between the parameters gg and g at low energy scales.

15— , % > . 15F
g1 =00, = 01> [

/ ﬂ g1« = 1.0168, f, = ;:rit
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FIG. 1: UV critical surfaces in the gpg-plane. The interiors of the ellipse and the line are driven to
Gaussian fixed points (gg, g) = (0,0), whereas the ellipse’s boundary and the line’s right endpoint
are non-trivial fixed points. Couplings outside the ellipse and outside the line interval are driven

to infinite values.
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FIG. 2: Left: UV critical surfaces (dashed line) mapped back to p = Mp; (dotted line) and to
o = 1 TeV (solid line). The Gaussian g; fixed point is described by the ellipses and the interacting
g1 fixed point by the line. The requirement that either the boundary of the ellipse or the line is
reached leads to a unique relation between gp and g, thereby reducing the degrees of freedom in

parameter space of the model. Right: Infrared values in detail.
C. Running couplings and stability of the Higgs sector

As is well known, the Higgs vacuum of the standard model is metastable. The model
under consideration here has extended Higgs, gauge and fermion sectors, which affect the
stability analysis and alter this conclusion. The Higgs potential in our model is given by

Eq. (2.8), repeated here for convenience,

)\ * )\ * *

V= -—m%HH+ §(HTH)2 —m2¢ ¢ + 7% 0)? + And*oH H | (3.24)
where )\, couples the two scalars H and ¢, and leads to mass mixing after these fields
develop vevs. In unitary gauge,

1 0 Vy + @

H:ﬁ o) ¢ = 75 (3.25)
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where we have denoted the vevs v and v,. Substituting into Eq. (3.24), one finds the

following mass-squared matrix:

Av? \,vv
M? = “1. (3.26)

AmU Vg )\¢v§)

The two eigenvalues are

1
2

2
my

A? 4 A2 & \//\%4 + 220t — 20202 (AN — 202, | . (3.27)

As can be seen from the square root, if § = Ay — A2, < 0 the eigenvalue m? will become
negative, indicating that we are no longer at a local minimum. This can also be verified via

the determinant of the mass-squared matrix,
det M? = mim? = v*05(AMy — A2) = v’0s. (3.28)

Therefore, we require that s > 0 henceforth. This condition is also sufficient to guarantee

stability of the potential at large field amplitudes, since Eq. (3.24) can be written as

A A > s
2 2 % m 112
V=-—m}yHH—m2¢"¢+ 5 [HTH + ¢ 4 + 55 [0l (3.29)
The last two terms are positive definite when

§>0 and X>0. (3.30)

These inequalities reduce to A\, > 0 and A > 0 in the case where \,, = 0, the expected
constraints on the quartic terms in two decoupled scalar sectors; for a similar analysis, see
Ref. [34]. In studying the RG evolution of the model, we may now track the sign of s and A
to confirm that stability of the scalar potential is maintained. We will see in our subsequent
examples that this is the case, and is also consistent with the existence of fixed points in the
(A, Ap, Am) parameter space that we will explicitly identify.

In the numerical examples that we present in the next two subsections, we adopt the
following measured values of the standard model couplings, renormalized at g = 1 TeV,

also used by Hiller et al. [12]:
g1(s0) = 046738,  galj0) = 0.63829, g5 (110) = 1.05737,
ve(1i0) = 0.85322,  yu(j10) = 0.01388. (3.31)
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case JB g mp fq

gie=0: 03 014988 3TeV 0.1 (> forit)

g1« #0: 0.40128 0.08338 4.01TeV 0.05041 (= fgcrit)

TABLE III: Remaining model parameters and Z’ masses for the two scenarios described in the
text, renormalized at the reference scale g = 1TeV. The specific values of gp and g in these two
examples were selected since they run to fixed point values gp, and g, that are both nonvanishing.
The value of f; in the g1, # 0 case is set by the requirement that the low-energy value of the

hypercharge gauge coupling is reproduced.

We take the scale of U(1)p breaking to be vs = 10 TeV, and require that the lightest scalar
mass eigenstate correspond to the Higgs boson, with m; = 125 GeV. To limit the scope of

our following considerations somewhat, we choose

Ao(tto) = 0.2, A (pto) = —0.004. (3.32)

We note that the small negative value of A, (o) seemed to lead more readily to solutions
with the desired vacuum stability. With the Higgs doublet vev set at v = 246 GeV, the
requirement that we obtain the correct Higgs boson mass then fixes A(uo) = 0.25828. The
heavier scalar mass eigenstate will then have a mass of 4.472 TeV, heavy enough to not be

of immediate phenomenological concern.* Finally we set the Yukawa couplings

and the gravitational correction parameters

a=1=01. (3.34)

The value of the gravitational parameter f, depends on whether we study the Gaussian g,
fixed point (f, > f5™), or the interacting one (f, = f&**). The values of the remaining
couplings and f, in these two cases are summarized in Table III. Note that the values of f
and f, in Eq. (3.34), as well as the value of f, assumed in the case of the Gaussian ¢; fixed

point, are roughly comparable in magnitude to that of f; in the interacting g, fixed point

4 For example, given these choices, the mixing angle that diagonalizes Eq. (3.26) is O(10~%), compared to

the experimental bound from Higgs signal strength measurements that is O(10~1) [11].
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scenario where the gravitational parameter is determined by the measured value of g; at low

energies.
1.2
[ 0.3
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FIG. 3: Renormalization group flow of the Abelian gauge couplings and the quartic couplings.
Top: Gaussian ¢; fixed point, bottom: interacting g; fixed point. In the right plots, the shaded
areas highlight the value of /s = \/m, where s, A and Ay remain positive throughout the
entire energy range considered here. The quartic couplings attain their numerically expected fixed
point values within our numerical resolution, strongly suggesting stability of the Higgs sector up to
arbitrarily high energies. The small deviations of the couplings away from their fixed point values
visible at the right sides of the plots is an artifact caused by the finite resolution of our numerical
approximation and the fact that the fixed points are unstable. By increasing the resolution of the
initial conditions at 1TeV, these deviations can be pushed out to arbitrarily high energies. At

infinite initial resolution, the couplings would hit their fixed point values exactly.
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1. Gaussian g1 fized point

In this example, we take f, = 0.1 > f;rit so that we attain a Gaussian fixed point in gy,
and choose gp (o) = 0.3 and g(uo) = 0.14988, which assures that these couplings flow to a
point on the UV ellipse of fixed points discussed earlier and displayed in Fig. 2. We plot the
RG flow in the upper two panels of Fig. 3. The Higgs sector remains stable throughout, and
by making use of the 1-loop S-functions we find the following fixed points for the quartic

couplings:
A = 0.065871, Mg = 0.014456, A, = 0.030760 . (3.35)

These values satisfy the stability conditions Eq. (3.30), and we have confirmed that they are

approached in the numerical results presented in Fig. 3.

2. Interacting g1 fized point

Let us now consider f, = f;rit such that we obtain an interacting ¢; fixed point, g1, =
g1(Mp)) = 1.0168. We further take gp(po) = 0.40128 and G(uo) = 0.08338 (the right
endpoint of the solid, TeV line in the second panel of Fig. 2) to generate a non-zero fixed
point for gg and g as well.

We plot the corresponding RG flow in the lower two panels of Fig. 3. The Higgs sector

again remains stable, and we extract the following fixed points:
A = 0.018256, A = 0.32076, Ay = 0.0037738. (3.36)

These again are consistent with our stability criteria and agree with our numerical RG flow.
In Fig. 4, we show the running of couplings in the present scenario compared to that of
the standard model, up to the Planck scale. The curve for the quartic coupling in the
standard model was computed at two loops and assumes the value of gy extracted from
the one-loop effective potential, Agy (o) = 0.19234 [12]; this allows easy comparison with
what is typically displayed in the literature. The dashed line shows what we would find for
the coupling A in our model if we were to assume a boundary value identical to that of the
standard model curve and also work at two loops. This illustrates that our model’s ability
to avoid the metastability of the standard model is a consequence of the new contributions

to the p-functions rather than a different boundary condition at the TeV scale caused by
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the nonvanishing portal coupling \,,. Analogous plots can be generated for the g, = 0
scenario, but they are qualitatively indistinguishable from those shown in Fig. 4, and are

not displayed.

— A

2-1oo
AgppoP
1073 SM
see text

0o 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
In(p/1TeV) In(p/1TeV)

FIG. 4: Comparison to the standard model. See the text for discussion.

Finally, we note that solutions like those presented in this section can be obtained for
other values of the parameters in Eqs. (3.33) and (3.34). This is illustrated in Fig. 5, where
we allow these parameters to vary and determine whether viable solutions are obtained.
The solid circles represent solutions where all couplings reach perturbative ultraviolet fixed
points and our conditions for vacuum stability are satisfied. Due to the large number of
model parameters, there are many possible two-dimensional plots of this type that one
could construct; however, Fig. 5 is sufficient to demonstrate that Eqgs. (3.33) and (3.34) do

not represent special choices.

IV. BRANCHING FRACTIONS

While it is not the purpose of the present work to engage in an exhaustive phenomenolog-
ical study of this model (studies of gauged baryon number in a more general context exist in
the literature [14-16, 36]), we would like to illustrate in this section how the UV restrictions
placed on the parameter space at the TeV scale can lead to meaningful predictions of the Z’
boson properties. To do so, we focus on the case of the interacting g, fixed point, discussion
in Secs [1IB2 and I[I1C2. In the previous section, we found that the ultraviolet critical

surface corresponded to a line segment in the ggg-plane which, when run down to the TeV
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(4.1)
(4.2)

This is sufficient to

Y

Numerically, we find that |Cy|

B

2

0<gp <0.4013
+ C%) may

v

2

(C

for

Ne

487

L(ff) =
where the Cy and Cy can be derived from the form of the covariant derivative, Eq. (2.12),

ﬁgB

16
4.1) to eliminate any dependence on §.

(

Let us consider the implications of this result for branching fractions of the Z’ boson. For a
Z' in the multi-TeV mass range, it is a reasonable approximation to neglect the masses of
is given by 0.8008, 0.6398, 0.2414, and 0.0805 for the up-type quarks, down-type quarks,

all the standard model particles (we comment on the effect of including them later). In this
case, the partial decay widths take relatively simple form. For decays to fermions with N,

charged leptons, and neutrinos, respectively; the |C4| are each 0.0805.

scale, is given by
colors one has
and we use Eq.
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FIG. 5: The effects of varying input parameter values. The first row corresponds to the Gaussian
viable solutions with perturbative fixed points that satisfy Eq. (3.30) everywhere, while the crosses
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g1 fixed point, while the second corresponds to the interacting one.



determine the partial width to dijets (including all quarks except the top), and to charged
dileptons. We also take into account that there are decays to WTIWW~: this is easiest to
compute in the original basis where the coupling € is present in the gauge boson kinetic
terms and is treated here as a perturbative interaction. In this case, at lowest order in €, we

find (with help from Feyn Calc [35])

. acosfié y* / 1 A 5 3

where x = QTnﬁv, y =my/mp and 0, is the weak mixing angle. Using my = my cos 6, and

assuming mpg > my, one may show that this result approaches

L(WTW™) ~ mpgy . (4.4)

296457

provided the kinetic mixing is small. The consequence of Eq. (4.1) is that Eqgs. (4.2) and (4.4)
are proportional to mpg%, which implies that the Z’ branching fractions are approximately
fixed provided that the Z’ boson is sufficiently heavy and that we live within the range
0 <gp < 0.4013. We find that

BF(Z' — jets) = 77.8%

(

BF(Z' — tf) = 19.8%
(4.5)

BF(Z' — (7)) =2.0%

BF(Z — WtW™) =0.1%

with the remainder going to invisible decays (i.e., neutrinos). For example, mp = 3 TeV and
gg = 0.3 is a choice that satisfies our assumptions and is consistent with current experimental
bounds. For this point in model parameter space, we have checked that the effect of including
final state particle masses, including that of the top quark, affects the branching fractions
shown above only at the next decimal place. LHC searches for new resonances decaying to
dijets allow the Z’ of the present model for mp = 3 TeV and gg = 0.3 (see Fig. 3 in Ref. [36],
where the value of the coupling to quarks would be 0.6 in their conventions, well within their
allowed region.). Moreover, Eq. (4.1) implies the value g = 0.0623, corresponding to the
kinetic mixing parameter ¢ = 0.1321, consistent with the kinetic mixing bounds in Ref. [37]
for a 3 TeV Z’. One might expect the model to provide similar predictivity for heavier Z’

bosons which will be less constrained by current experimental bounds.

22



V. CONCLUSIONS

We have considered a model with gauged baryon number that is asymptotically safe due
to gravitational corrections introduced above the Planck scale. Three generations of vector-
like fermions, which are chiral under the baryon gauge symmetry, cancel the gauge and
gravitational anomalies in the theory. The baryon number gauge symmetry is spontaneously
broken after a new complex scalar field obtains a non-zero vacuum expectation value. By
requiring that the couplings flow to asymptotic fixed points, we restrict the parameter space
of the model, in some cases relating the kinetic mixing to the baryon gauge coupling. This
allows us to predict measurable quantities, such as branching fractions, of the Z’ boson at
future collider experiments.

The ultraviolet behavior of the model depends on the size of the gravitational corrections.
For sufficiently large gravitational correction terms in the RGEs, there exists either a Gaus-
sian fixed point or an interacting fixed point for the GUT-normalized hypercharge coupling,
g1. For each of these cases, we examined the parameter space of the baryon gauge coupling
and the kinetic mixing, (gg, g), to find the subspace that flows to ultraviolet fixed points,
thereby defining the UV critical surface. In the Gaussian case, there is a stable trivial fixed
point for (gp., gx) = (0,0) and an unstable ellipse of fixed points whose size is determined
by the magnitude of the gravitational correction terms in the RGEs. In the interacting case,
one finds a trivial fixed point as well as an unstable non-trivial fixed point. Any value on
the line connecting these fixed points flows to the trivial fixed point. Any values off of this
line or outside of the ellipse flow to infinite values and correspond to unphysical theories.

In the Higgs sector of our model, we stated the conditions on the quartic couplings for
vacuum stability and confirmed that they are satisfied under the RG flow. After fixing
values for the couplings at the TeV scale and running them up to fixed points, we included
gravitational effects on the trans-Planckian RG flow. Within our stated approximations, we
obtained numerical evidence suggesting that the Higgs sector retains its vacuum stability to
arbitrarily high energies, with all of its couplings approaching nontrivial fixed points.

We briefly examine the phenomenology of the model by determining the restrictions
on the parameter space at the TeV scale imposed by asymptotic safety. Considering the
case where the g; fixed point is nonzero, we were able to predict values for the branching

fractions of the Z’ boson into jets, tt, charged dileptons, and W, from the relationship

23



between the kinetic mixing and baryon gauge coupling. To good approximation, the partial
decay widths are proportional to mpg%, when mp > my, which implies that the branching
fractions are all fixed if the Z’ boson is sufficiently massive.

In future work, we look forward to exploring other aspects of the phenomenology of
this asymptotically safe gauged baryon number model, including how the heavy vector-like

leptons affect the muon g — 2 and how a viable dark matter candidate may be included.
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Appendix A: Renormalization group equations at one loop

Definition:

80) = 3 7m0 (A1)

Gauge couplings:

B (gr) = +I—ggi” : (A2)
50 (gs) = +11g} + g5 — 5 G0 (A3)

50() = ~ 5 gos — = osP + <020+ 11gha + L (A1)
50(g2) =~k (A3)
B0 (gs) = ~Tg5 (A6)
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