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Abstract

We consider the inclusion of TeV-scale, fermionic dark matter in an asymptotically safe model of

gauged baryon number that has been recently proposed [Phys. Rev. D 106, no. 3, 035015 (2022)].

The new gauge boson serves as a portal between the dark and the visible sectors. The range of the

baryon number gauge coupling and the kinetic mixing between baryon number and hypercharge

are constrained by the requirement that nontrivial ultraviolet fixed points are reached. We show

that this asymptotically safe dark matter model can achieve the correct dark matter relic density

while remaining consistent with direct detection bounds.
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I. INTRODUCTION

Quantum field theories that are free of Landau poles are interesting since they allow

perturbative extrapolation to arbitrarily high energy scales. Couplings in such theories can

flow either to vanishing or non-vanishing ultraviolet (UV) fixed points. If at least some of

the fixed points are non-vanishing, the theory is said to be asymptotically safe. Asymptotic

safety was proposed by Weinberg [1] to explain how a quantum field theory of gravity

could be predictive, even if it is perturbatively nonrenormalizable; see also Refs. [2, 3].

Nonrenormalizable theories have an infinite-dimensional parameter space, with a coupling for

every divergent amplitude in the theory. The requirement of asymptotic safety, however, can

reduce this to a finite-dimensional subspace, called the ultraviolet critical surface. Within

the paradigm of asymptotic safety, it is postulated that physically sensible theories can only

be defined in this subspace. Asymptotically safe nonrenormalizable theories can therefore be

predictive and serve as viable alternatives to renormalizable ones. For a review, see Ref. [4].

The requirement of asymptotic safety can also reduce the dimensionality of the parame-

ter space of a renormalizable theory. This can be of value in formulating extensions of the

standard model, which typically involve a plethora of new particles and otherwise undercon-

strained couplings. Asymptotic safety has been used as a principle to restrict the parameter

space of a number of beyond-the-standard-model scenarios [5–22], including models of dark

matter [6–8], of new contributions to the muon anomalous magnetic moment [7, 9], of mod-

ified Higgs, neutrino [10–12] and gauge sectors [13, 14], of B-meson anomalies [15–17] and

of new TeV-scale physics with collider physics implications [18, 19].

In the present work, we follow up on a model of asymptotically safe gauged baryon number

proposed in Ref. [5]. There is an extensive literature on the possibility of gauged baryon

number; for discussion of the motivations and phenomenology, see, for example, Refs. [23–

29]. The most important parameters for determining the properties of the new U(1) gauge

boson are the gauge coupling gB, the gauge boson mass mB, and a coupling g̃ that determines

the kinetic mixing between hypercharge and the U(1)B gauge group. In the absence of this

mixing, the tree-level couplings of the new gauge boson to standard model matter fields are

entirely leptophobic; the degree to which the model deviates from leptophobia is determined

by the kinetic mixing parameter, making its value of critical importance in determining the

phenomenology of the model. One of the benefits of an asymptotically safe version of the
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gauged baryon number scenario is that the kinetic mixing is fixed in terms of gB at the

TeV scale due to the constraints on the couplings in the deep UV. This leads to greater

predictivity. Reference [5] mapped out the ultraviolet fixed points in a simple model of

gauged baryon number and discussed the phenomenological consequences, assuming that

the scale of new physics (including new fermions to cancel anomalies) was around 1 TeV.

The model of Ref. [5] did not include a dark matter candidate, an omission that we will

remedy here. In addition to the TeV-scale particle content included to cancel anomalies,

we add a fermion, χ, that is vector-like under U(1)B and carries no other gauge quantum

numbers:

χL ∼ χR ∼ (1, 1, 0, 1/6) . (1)

Here, the first two numbers shown are the dimensionalities of the SU(3)C and SU(2)W

representations, while the last two are the U(1)1 and U(1)B charges. We work with the

grand unified theory (GUT) normalization of hypercharge, i.e., gY =
√

3/5 g1 where gY

is the hypercharge coupling of the standard model; gB is normalized so that the baryon

number of a nucleon is +1. The baryon number charge assignment in Eq. (1) renders the

χ field stable, as we explain in the next section, and allows the U(1)B gauge field to serve

as a portal between the dark and the visible sectors. Other work on such “baryonic” dark

matter candidates appears in Refs. [27–29]. Aside from differences in the particle content and

charge assignments that we assume, our approach differs in that we work in the framework

of asymptotic safety where both the allowed range of gB and the value of the kinetic mixing

parameter g̃ are constrained by the ultraviolet boundary conditions on the theory. With

g̃ predicted in terms of gB, we include leptonic channels in the new gauge boson decay

width and the dark matter annihilation cross section, without introducing dependence on

an additional free parameter. In addition, our calculation of the relic density incorporates a

relativistic treatment of the thermally averaged dark matter annihilation cross section times

relative velocity, which is expected to be more accurate for the near-resonant annihilation [34]

that we encounter in the present study.

The purpose of the present work is to establish three important conceptual results that

may motivate more detailed phenomenological studies in future work, namely: (1) that

our model provides a natural symmetry mechanism for establishing dark matter stability,

(2) that the introduction of dark matter does not qualitatively alter the asymptotic fixed

point structure found in our earlier model of gauged baryon number, and (3) that viable
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dark matter solutions exist for a number of qualitatively different fixed point scenarios.

Discussion of these points is organized as follows. In Sec. II we consider the choice in

Eq. (1), how dark matter stability is assured, and how the fixed-point structure of the

model of Ref. [5] is affected by the additional particle content. In Sec. III, we study the

dark matter relic density, and in Sec. IV we consider the direct detection bounds for points

in model parameter space where the correct relic density is obtained. We summarize our

conclusions in Sec. V.

II. GAUGED BARYON NUMBER MODEL

The model of Ref. [5] includes the U(1)B gauge boson Bµ, a scalar field φ with baryon

number +1, and a number of new fermions that are introduced to cancel gauge and grav-

itational anomalies. The new gauge boson and fermions become massive when φ acquires

a vacuum expectation value (vev); we assume their mass spectrum lies at or above 1 TeV.

The charge assignments of the fields can be found in Ref. [5]; what is important here is that

the magnitudes of the baryon number charges |QB| are either 0, 1/3 or 1. Under a U(1)B

phase rotation exp(i QB α), all of these fields are left invariant in the case where α = 6π.

On the other hand, the field χ in Eq. (1) changes sign under that action of the same group

element. This establishes that there is a Z2 symmetry which is a subgroup of U(1)B and

that remains unbroken after spontaneous symmetry breaking. Since the χ field is the only

field that is odd under this symmetry, its stability is guaranteed, making it a potential dark

matter candidate. The fact that the stabilizing symmetry is a subgroup of a gauge symmetry

renders it safe from violation by any possible quantum gravitational effects.

The hypercharge and U(1)B gauge fields can mix through their kinetic terms,

L ⊃ −1

4
F µν
Y F Y

µν −
1

4
BµνBµν +

ε

2
BµνF Y

µν . (2)

We follow a standard approach of working in a basis where the kinetic terms are diagonal

and canonically normalized, but where the gauge-covariant derivative for a generic field Ψ

takes the form [5, 6, 13]

DµΨ = [∂µ − i gBBµQB − i (g1A
Y
µ + g̃ Bµ)Q1] Ψ . (3)

Here, QB andQ1 =
√

3/5QY denote the baryon number and hypercharges of Ψ, respectively,

and g̃ = ε g1/
√

1− ε2.
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The one-loop β functions for g1, gB and g̃ (computed using PyR@TE 3 [30]) are

β(1)(g1) =
77

10
g31 − f̂gg1 θ(µ−MPl) ,

β(1)(gB) =
298

27
g3B −

16

3
g2B g̃ +

77

6
gB g̃

2 − f̂ggB θ(µ−MPl) ,

β(1)(g̃) =
77

6
g̃3 − 16

3
g̃2gB +

298

27
g̃g2B +

77

5
g̃g21 −

16

5
g21gB − f̂gg̃ θ(µ−MPl) .

(4)

We use the notation β(g) = β(1)(g)/(4π)2 and f̂g ≡ (4π)2fg, for convenience. The

inclusion of gravitational correction terms to the gauge coupling β functions, with a universal

parameter f̂g, is motivated by functional renormalization group (RG) calculations [6, 7,

13]. (For an alternative approach towards realizing asymptotic safety, see Ref. [31]; for

work that casts doubt on this approach, see Ref. [32].) The general one-loop gravitational

contributions to the gauge β functions were first computed in Ref. [33] and found to be

independent of gauge coupling, but renormalization scheme dependent, with fg ≥ 0. We

make an assumption that is standard in the phenomenological literature that fg > 0, which

is obtained in schemes that break specific gauge-gravity symmetries, defined by Eq. (26) in

Ref. [33]. Since the RG running of g1 decouples from that of gB and g̃, we will distinguish

between two different fixed point scenarios, corresponding to the solution of(
77

10
g21? − f̂g

)
g1? = 0 . (5)

A non-trivial, interacting fixed point is obtained provided that f̂g has a critical value f̂ crit
g =

77
10
g21?; in this case, g1 remains constant and nonvanishing above the Planck scale, with

f̂ crit
g ≈ 7.9610 to match the experimental value of g1 at the electroweak scale [5]. For f̂g

larger than the critical value, the gravitational term drives g1 to a trivial, Gaussian fixed

point. In either case, the requirement that g1 reaches a fixed point constrains the evolution

of the remaining couplings gB and g̃. Their flow as one evolves to higher renormalization

scales is shown graphically in Fig. 1.

When g1 flows to its Gaussian fixed point, the locus of fixed points in the gB g̃-plane is

constrained to the ellipse E(gB?, g̃?, f̂g) = 0, where

E(gB, g̃, f̂g) =
77

6
g̃2 +

298

27
g2B −

16

3
gB g̃ − f̂g . (6)

Points inside this ellipse flow toward (gB?, g̃?) = (0, 0), while points outside flow to infinite

radius. Loosely speaking, the gravitational correction factor fg sets the size of this ellipse.
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FIG. 1. Visualization of the RG flow in the gB g̃-plane. The inside of the ellipse and the interior of

the line segment are driven to the Gaussian fixed point (gB, g̃) = (0, 0); the ellipse’s boundary and

the line’s right endpoint are non-trivial fixed points. In the conventions adopted here, the arrows

on the flow lines point towards the UV.

On the other hand, when g1 flows to its interacting fixed point, there are two gB g̃ fixed

points connected by a line segment in the gB g̃-plane,

g̃ =
16

77
gB . (7)

The end point (gB?, g̃?) = (0.87145, 0.18108) is an unstable fixed point, while points on the

interior of the line segment flow to a trivial fixed point at (gB?, g̃?) = (0, 0). While the

largest fixed point coupling values shown in Fig. 1 are of order unity, the relevant expansion

parameter is αi/(4π) ≡ g2i /(16π2), where gi represents either gB or g̃. Hence, we expect the

higher-loop contributions to the β functions to be small compared to the one-loop results

included here.

The inclusion of the dark matter particle χ changes the β functions from those given in

Ref. [5]. However, the numerical effects are small and the pattern of fixed points and flow

lines remains qualitatively unchanged. Given the multitude of choices for ultraviolet fixed

points, we will limit our consideration to what are plausibly three representative cases:

(ia) Interacting g1 fixed point: One end of the line segment shown in Fig. 1 is an unsta-

ble fixed point with (g1?, gB?, g̃?) = (1.0168, 0.87145, 0.18108) and f̂ crit
g ≈ 7.9610. The

requirement of reaching an unstable fixed point leads to the greatest predictivity in the
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low-energy theory. At 1 TeV, the couplings are (g1, gB, g̃) = (0.46738, 0.40049, 0.083219).

Note that g̃ = 16/77 gB is preserved by the RG flow.

(ib) Interacting g1 fixed point: Choosing a point on the interior of the line segment with

g̃ = 16/77 gB at 1 TeV and f̂ crit
g ≈ 7.9610 again yields an interacting fixed point for g1,

but gB and g̃ now flow to Gaussian fixed points. For this example, we take gB = 0.2,

i.e., (g1, gB, g̃) = (0.46738, 0.20000, 0.041558) at 1 TeV; this flows to (g1?, gB?, g̃?) =

(1.0168, 0, 0).

(ii) Gaussian g1 fixed point: We choose fg = 0.1, below the critical value, so that g1 flows

to a Gaussian fixed point. Choosing a point on the ellipse provides nontrivial fixed

points for gB and g̃. For easy comparison to case (ib), we choose a solution for which

gB = 0.2 at 1 TeV: we assume (g1?, gB?, g̃?) = (0, 0.209651, 1.13654) which leads to the

1 TeV values (g1, gB, g̃) = (0.46738, 0.20000, 0.15067).

In each of these cases, at least one coupling flows to a non-trivial fixed point, corresponding

to an asymptotically safe scenario. It is worth stressing that fg is treated as a phenomenolog-

ical parameter, which allows us to reproduce the desired value of g1 at the electroweak scale

in cases (ia) and (ib), and to freely choose a representative value of fg in case (ii). In this

sense, we follow a bottom-up approach, like that of Ref. [7]. Alternatively, in specific quan-

tum gravitational scenarios and specific truncations, one may relate fg to the gravitational

constant and the cosmological constant (for discussion, see Ref. [6]); while motivated by

functional renormalization group studies, the effective phenomenological approach remains

somewhat agnostic to the details of the gravitational physics.

In what follows, we will evaluate the constraints on the model parameter space from the

dark matter relic density and direct detection bounds.

III. RELIC DENSITY

To good approximation, the dark matter χ remains in thermal equilibrium as long as

the annihilation rate to standard model particles exceeds the expansion rate of the universe.

Dark matter annihilation to standard model fermions via exchange of the U(1)B gauge boson

provides the dominant contribution to the annihilation cross section. We will see later that

the kinetic mixing produces roughly a 15% correction to the annihilation cross section, by
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allowing dark matter annihilation to dileptons. The nonvanishing kinetic mixing also allows

gauge-gauge and gauge-Higgs final states, but we find that they contribute less than ∼ 0.3%

to the total annihilation cross section. Effects due to mixing in the φ-Higgs sector, which

were studied in Ref. [5], are much smaller, at least for parameter choices where asymptotic

safety has been demonstrated in the model. In particular, the mixing angle between the φ

and Higgs boson was found in Ref. [5] to be O(10−4), so that annihilation to φ-Higgs and

Higgs-Higgs final states are negligible compared to the leading contributions.

Given our assumption that the new fermions in the model have TeV-scale masses, we

neglect the mass of standard model fermions, aside from that of the top quark. The cross

section for annihilation into a standard model fermion f is given by

σ
(
χχ̄→ ff̄

)
=

Nc g
4
B

1728π

1

s

√
s− 4m2

f

s− 4m2
χ

(
s+ 2m2

χ

) [C2
V (s+ 2m2

f ) + C2
A(s− 4m2

f )

(s−m2
B)2 + Γ2m2

B

]
. (8)

Here, Nc is the number of colors, mf , mχ, and mB are the masses of the standard model

fermion, the dark matter particle, and the U(1)B gauge boson, respectively, and Γ is the

gauge boson decay width. The partial decay width to an ff final state is given by

∆Γ
(
B → ff̄

)
=
Nc g

2
BmB

48 π

√
1−

4m2
f

m2
B

[
C2
V

(
1 +

2m2
f

m2
B

)
+ C2

A

(
1−

4m2
f

m2
B

)]
. (9)

The coefficients CV and CA are vector and axial-vector couplings in units of gB. One finds

numerically that |CV | is given by 0.8008, 0.6398, 0.2414, and 0.0805 for up-type quarks,

down-type quarks, charged leptons, and neutrinos, respectively, whereas the |CA| are all

0.0805.

Dark matter falls out of thermal equilibrium at the freeze-out temperature Tf , which we

determine by the condition

Γ

H(Tf )
≡
nEQχ 〈σv〉
H(Tf )

≈ 1. (10)

Here, nEQ
χ is the equilibrium number density and H(T ) = 1.66

√
g∗ T

2/MPl is the Hubble

parameter for a radiation dominated universe written in terms of the number of relativistic

degrees of freedom, g∗, and the Planck mass MPl = 1.22 × 1019 GeV. For a radiation

dominated universe, it is appropriate to assume the non-relativistic equilibrium number

density

nEQ
χ = 2

(
mχT

2π

)3/2

e−mχ/T . (11)
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A relativistic treatment of the thermally averaged annihilation cross section times relative

velocity is given by [34]

〈σv〉 =
1

8m4
χTK

2
2

(mχ
T

) ∫ ∞
4m2

χ

ds σtot × (s− 4m2
χ)
√
sK1

(√
s

T

)
, (12)

where the Ki are modified Bessel functions of order i. For the sufficiently large freeze-out

temperatures considered in this analysis, the ratio of the equilibrium number density to the

entropy density at freeze-out, Yf , is given by

Yf = 0.145
g

g∗
x
3/2
f e−xf , (13)

where xf ≡ mχ/Tf and g = 4 is the number of internal degrees of freedom of the dark

matter particles plus antiparticles. This ratio at freeze-out can then be propagated to the

ratio Y0 at the present temperature of the universe,

1

Y0
=

1

Yf
+

√
π

45
MPlmχ

∫ x0

xf

dx

√
g∗

x2
〈σv〉

2
, (14)

where the factor of 1/2 takes into account that annihilation only occurs between a dark

matter particle and its antiparticle, while the Yi in this expression include both [34].

The dark matter relic density is then given by

ΩDh
2 ≈ 2.8× 108

GeV
Y0mχ . (15)

We now compute the relic density in each of the previously described cases (ia), (ib), and

(ii). This analysis relies on numerical integration which can be performed to high accuracy.

Since the couplings are fixed by the asymptotic safety criterion, the only free parameters

entering this analysis are the dark matter mass mχ as well as the U(1)B gauge boson mass

mB. The latter is assumed to be in the TeV-range, comparable to the masses of the other

heavy fermions; see Ref. [5] for details.

To analyze how the choice of these mass parameters affects the predicted relic density,

we scan over the gauge boson mass mB and determine the relic density as a function of mχ;

Fig. 2 shows results for three choices of mB. A resonance effect is apparent when mB ≈ 2mχ.

At this resonance, the total cross section assumes a maximum value related to the gauge

boson decay width, resulting in a minimum relic density. The value of the minimum relic

density increases as the mass of the the U(1)B gauge boson increases, because the gauge

boson width scales with mB. The observed dark matter relic density is [35]

ΩDh
2 = 0.1193± 0.0009 . (16)
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FIG. 2. Relic density curves for several choices of mB. The horizontal band represents the observed

value ΩDh
2 = 0.1193± 0.0009 [35].

In Fig. 2 we superpose this band; for a given mB, there are two disconnected mass ranges

for mχ in which a relic density consistent with observation is obtained. The allowed ranges

of mχ can be extracted as a function of mB for each asymptotically safe scenario defined in

Sec. II; these will be used in the study of the dark matter-nucleon elastic scattering cross

section in the next section.

IV. DIRECT DETECTION

For each point in model parameter space that leads to the correct relic density, we must

check that the experimental bounds from the direct detection of dark matter-nucleon elas-

tic scattering are satisfied. We consider only the most stringent bounds that follow from

the spin-independent scattering cross section. For TeV-scale dark matter, the momentum

transfer in the relevant t-channel Feynman diagrams can be neglected, q2 ≈ 0. The effective

dimension-six operators, which are suppressed by 1/m2
B, have vector-vector, vector-axial

vector, and axial vector-axial vector parts. Only the vector-vector part, i.e. the χ̄γµχq̄γµq

operator, contributes to the spin-independent cross section [36–38]. Nucleon matrix ele-

ments of a quark vector current have form factors that simply count the number of quarks,

so there is no hadronic uncertainty in going from quark to nucleon matrix elements. For
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example, elastic scattering off a nucleon N = p or n in our model is given by

σN =
g4B

36 π

µ2
χN

m4
B

(
1 +

√
3

5
cN

g̃

gB

)2

, (17)

where cN = 1/4 or 3/4 for a neutron or proton, respectively, and µχN = mχmN/(mχ +mN)

is the dark matter-nucleon reduced mass. To compare to experimental bounds, we take into

account that the dark matter scatters coherently off of the entire nucleus so we must sum

over protons and neutrons in the amplitude. To obtain an effective dark matter-nucleon

cross section we then divide the cross section by the square of the atomic mass number. For

a Xenon target, with atomic number 54 and atomic mass 131.293, we find

σSI =
g4B

36π

µ2
χN

m4
B

(
1 + 0.35

g̃

gB

)2

, (18)

where numerically we use an average mass for the nucleon, mN ≈ 939 MeV. We note that in

the limit g̃ = 0, our result agrees with the cross section given in Ref. [27]; for sample points

(ia) and (ib), g̃ = 16
77
gB and the kinetic mixing term represents a 15% correction. In Fig. 3,

for each of the asymptotically safe scenarios defined in Sec. II, we display σSI for parameter

choices corresponding to relic densities within two standard deviations of the central value as

per Eq. (16). We compare to the bounds from the PandaX–II experiment [39], which uses a

Xenon detector and constrains TeV-scale dark matter masses. All three scenarios considered

here are allowed by current experimental bounds for dark matter masses mχ & 1.5 TeV.

Finally, we note that the DARWIN experiment [40] may probe the mass range shown in

Fig. 3. For example, for a dark matter mass of 1 TeV, the projected cross section reach

of DARWIN, assuming 200 ton-years of exposure, is ∼ 2 × 10−48 cm2 [40], compared to

the current Xenon1T bound of ∼ 9 × 10−46 cm2 [41]. However, we know of no published

projections of DARWIN’s sensitivity to dark matter in the 1 to 5 TeV mass range considered

here. The model might also be probed at the LHC though a variety of final states with

observable particles and large missing transverse momentum, or through indirect studies of

the contribution of dark matter annihilation to the hadronic component of the cosmic ray

spectrum, but establishing specific bounds would require separate dedicated analyses.
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FIG. 3. Spin-independent dark matter-nucleon elastic scattering cross sections σSI, for parameter

choices (mχ,mB) that yield the correct dark matter relic density.

V. CONCLUSIONS

In this work, we have modified the gauged baryon number model proposed in Ref. [5] to

include a TeV-scale, fermionic dark matter candidate. The stability of the dark matter is

guaranteed by a discrete subgroup of the additional gauge symmetry, and the new gauge

boson serves as the portal between the dark and visible sectors. The new ingredient in

our study is the assumption of asymptotic safety, which reduces the space of free model

parameters due to the constraint that (at least some) couplings reach nontrivial ultraviolet

fixed points. The effect of this organizing principle is that the range of the baryon number

gauge coupling at the TeV scale is constrained, and the kinetic mixing parameter at the

same scale becomes a function of the baryon number gauge coupling. This fixes the degree

of gauge boson leptophobia once the gauge coupling of the theory is specified. Taking into

account these constraints, and including the leptonic dark matter annihilation channels that

are induced by the kinetic mixing, the correct dark matter relic density can be obtained in

a number of asymptotically safe scenarios with different patterns of ultraviolet fixed points.

For these solutions, the predicted dark matter-nucleon elastic scattering cross section is

consistent with the bounds from the PandaX–II experiment [39] which probes the dark

matter masses above 1 TeV. Measurements of new gauge boson properties at colliders and

of the dark matter-nucleon elastic scattering cross section at direct-detection experiments
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may someday provide nontrivial tests of the relationships between couplings expected in this

and other asymptotically safe gauge extensions of the standard model.
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