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Abstract
We consider the inclusion of TeV-scale, fermionic dark matter in an asymptotically safe model of
gauged baryon number that has been recently proposed [Phys. Rev. D 106, no. 3, 035015 (2022)].
The new gauge boson serves as a portal between the dark and the visible sectors. The range of the
baryon number gauge coupling and the kinetic mixing between baryon number and hypercharge
are constrained by the requirement that nontrivial ultraviolet fixed points are reached. We show
that this asymptotically safe dark matter model can achieve the correct dark matter relic density

while remaining consistent with direct detection bounds.
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I. INTRODUCTION

Quantum field theories that are free of Landau poles are interesting since they allow
perturbative extrapolation to arbitrarily high energy scales. Couplings in such theories can
flow either to vanishing or non-vanishing ultraviolet (UV) fixed points. If at least some of
the fixed points are non-vanishing, the theory is said to be asymptotically safe. Asymptotic
safety was proposed by Weinberg [1] to explain how a quantum field theory of gravity
could be predictive, even if it is perturbatively nonrenormalizable; see also Refs. [2, 3].
Nonrenormalizable theories have an infinite-dimensional parameter space, with a coupling for
every divergent amplitude in the theory. The requirement of asymptotic safety, however, can
reduce this to a finite-dimensional subspace, called the ultraviolet critical surface. Within
the paradigm of asymptotic safety, it is postulated that physically sensible theories can only
be defined in this subspace. Asymptotically safe nonrenormalizable theories can therefore be

predictive and serve as viable alternatives to renormalizable ones. For a review, see Ref. [4].

The requirement of asymptotic safety can also reduce the dimensionality of the parame-
ter space of a renormalizable theory. This can be of value in formulating extensions of the
standard model, which typically involve a plethora of new particles and otherwise undercon-
strained couplings. Asymptotic safety has been used as a principle to restrict the parameter
space of a number of beyond-the-standard-model scenarios [5-22], including models of dark
matter [6-8], of new contributions to the muon anomalous magnetic moment [7, 9], of mod-
ified Higgs, neutrino [10-12] and gauge sectors [13, 14], of B-meson anomalies [15-17] and
of new TeV-scale physics with collider physics implications [18, 19].

In the present work, we follow up on a model of asymptotically safe gauged baryon number
proposed in Ref. [5]. There is an extensive literature on the possibility of gauged baryon
number; for discussion of the motivations and phenomenology, see, for example, Refs. [23—
29]. The most important parameters for determining the properties of the new U(1) gauge
boson are the gauge coupling gz, the gauge boson mass mg, and a coupling g that determines
the kinetic mixing between hypercharge and the U(1)p gauge group. In the absence of this
mixing, the tree-level couplings of the new gauge boson to standard model matter fields are
entirely leptophobic; the degree to which the model deviates from leptophobia is determined
by the kinetic mixing parameter, making its value of critical importance in determining the

phenomenology of the model. One of the benefits of an asymptotically safe version of the



gauged baryon number scenario is that the kinetic mixing is fixed in terms of gg at the
TeV scale due to the constraints on the couplings in the deep UV. This leads to greater
predictivity. Reference [5] mapped out the ultraviolet fixed points in a simple model of
gauged baryon number and discussed the phenomenological consequences, assuming that
the scale of new physics (including new fermions to cancel anomalies) was around 1 TeV.

The model of Ref. [5] did not include a dark matter candidate, an omission that we will
remedy here. In addition to the TeV-scale particle content included to cancel anomalies,
we add a fermion, y, that is vector-like under U(1)p and carries no other gauge quantum
numbers:

Xt~ xr~(1,1,0,1/6) . (1)
Here, the first two numbers shown are the dimensionalities of the SU(3)¢s and SU(2)w
representations, while the last two are the U(1); and U(1)p charges. We work with the
grand unified theory (GUT) normalization of hypercharge, i.e., gy = \/% g1 where gy
is the hypercharge coupling of the standard model; gg is normalized so that the baryon
number of a nucleon is +1. The baryon number charge assignment in Eq. (1) renders the
x field stable, as we explain in the next section, and allows the U(1)p gauge field to serve
as a portal between the dark and the visible sectors. Other work on such “baryonic” dark
matter candidates appears in Refs. [27-29]. Aside from differences in the particle content and
charge assignments that we assume, our approach differs in that we work in the framework
of asymptotic safety where both the allowed range of gg and the value of the kinetic mixing
parameter g are constrained by the ultraviolet boundary conditions on the theory. With
g predicted in terms of gg, we include leptonic channels in the new gauge boson decay
width and the dark matter annihilation cross section, without introducing dependence on
an additional free parameter. In addition, our calculation of the relic density incorporates a
relativistic treatment of the thermally averaged dark matter annihilation cross section times
relative velocity, which is expected to be more accurate for the near-resonant annihilation [34]
that we encounter in the present study.

The purpose of the present work is to establish three important conceptual results that
may motivate more detailed phenomenological studies in future work, namely: (1) that
our model provides a natural symmetry mechanism for establishing dark matter stability,
(2) that the introduction of dark matter does not qualitatively alter the asymptotic fixed

point structure found in our earlier model of gauged baryon number, and (3) that viable
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dark matter solutions exist for a number of qualitatively different fixed point scenarios.
Discussion of these points is organized as follows. In Sec. II we consider the choice in
Eq. (1), how dark matter stability is assured, and how the fixed-point structure of the
model of Ref. [5] is affected by the additional particle content. In Sec. III, we study the
dark matter relic density, and in Sec. [V we consider the direct detection bounds for points
in model parameter space where the correct relic density is obtained. We summarize our

conclusions in Sec. V.

II. GAUGED BARYON NUMBER MODEL

The model of Ref. [5] includes the U(1)p gauge boson B, a scalar field ¢ with baryon
number +1, and a number of new fermions that are introduced to cancel gauge and grav-
itational anomalies. The new gauge boson and fermions become massive when ¢ acquires
a vacuum expectation value (vev); we assume their mass spectrum lies at or above 1 TeV.
The charge assignments of the fields can be found in Ref. [5]; what is important here is that
the magnitudes of the baryon number charges |Qp| are either 0, 1/3 or 1. Under a U(1)p
phase rotation exp(i @p ), all of these fields are left invariant in the case where @ = 6.
On the other hand, the field y in Eq. (1) changes sign under that action of the same group
element. This establishes that there is a Z; symmetry which is a subgroup of U(1)p and
that remains unbroken after spontaneous symmetry breaking. Since the x field is the only
field that is odd under this symmetry, its stability is guaranteed, making it a potential dark
matter candidate. The fact that the stabilizing symmetry is a subgroup of a gauge symmetry
renders it safe from violation by any possible quantum gravitational effects.

The hypercharge and U(1)p gauge fields can mix through their kinetic terms,

1 . 1., € v
LD = B F,, = 7B" By + 5B F,, . (2)

We follow a standard approach of working in a basis where the kinetic terms are diagonal
and canonically normalized, but where the gauge-covariant derivative for a generic field W

takes the form [5, 6, 13]
Dqu = [a,u - igBBuQB —1 (glAZ + g B,u)Ql] v, (3)

Here, Qp and Q1 = 1/3/5 Qy denote the baryon number and hypercharges of ¥, respectively,

and g =e€g1/V1 — €.



The one-loop § functions for g1, gp and § (computed using PyRQTE 3 [30]) are

77 A
B (g1) = —g8 — fo910( — Mpy)

10
298 16 ., 77 .
B (gp) = 2—79?9 — 391299 + Eng — fe9B0(1 — Mpy), (4)
7T 16 298 . 77 . 16 .
B (g) = 50 = 5098 + o995 + 091 — 9198 — F49 0 — M)

We use the notation 5(g) = M (g)/(47)? and f, = (47)%f,, for convenience. The
inclusion of gravitational correction terms to the gauge coupling § functions, with a universal
parameter fg, is motivated by functional renormalization group (RG) calculations [6, 7,
13]. (For an alternative approach towards realizing asymptotic safety, see Ref. [31]; for
work that casts doubt on this approach, see Ref. [32].) The general one-loop gravitational
contributions to the gauge § functions were first computed in Ref. [33] and found to be
independent of gauge coupling, but renormalization scheme dependent, with f, > 0. We
make an assumption that is standard in the phenomenological literature that f, > 0, which
is obtained in schemes that break specific gauge-gravity symmetries, defined by Eq. (26) in
Ref. [33]. Since the RG running of g; decouples from that of gg and g, we will distinguish
between two different fixed point scenarios, corresponding to the solution of

7 A
(1_09%* - fg) gix = 0. (5)

A non-trivial, interacting fixed point is obtained provided that fg has a critical value fg“it =
% gi.; in this case, g; remains constant and nonvanishing above the Planck scale, with
f;m ~ 7.9610 to match the experimental value of g; at the electroweak scale [5]. For fg
larger than the critical value, the gravitational term drives ¢g; to a trivial, Gaussian fixed
point. In either case, the requirement that g; reaches a fixed point constrains the evolution
of the remaining couplings gg and g. Their flow as one evolves to higher renormalization
scales is shown graphically in Fig. 1.

When ¢; flows to its Gaussian fixed point, the locus of fixed points in the ggg-plane is

constrained to the ellipse F(gpx, Gx, fg) = 0, where

L TT., 298 , 16

E(95,7, fy) = 59 +2—793—§93§—fg- (6)

Points inside this ellipse flow toward (gg., gx) = (0,0), while points outside flow to infinite

radius. Loosely speaking, the gravitational correction factor f, sets the size of this ellipse.
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FIG. 1. Visualization of the RG flow in the ggg-plane. The inside of the ellipse and the interior of
the line segment are driven to the Gaussian fixed point (gp,g) = (0,0); the ellipse’s boundary and
the line’s right endpoint are non-trivial fixed points. In the conventions adopted here, the arrows

on the flow lines point towards the UV.

On the other hand, when ¢; flows to its interacting fixed point, there are two ggg fixed

points connected by a line segment in the ggg-plane,

16

g:ﬁgB' (7)

The end point (gpy, §x) = (0.87145,0.18108) is an unstable fixed point, while points on the
interior of the line segment flow to a trivial fixed point at (gp., gx) = (0,0). While the
largest fixed point coupling values shown in Fig. 1 are of order unity, the relevant expansion
parameter is a;/(47) = g?/(167%), where g; represents either gp or g. Hence, we expect the
higher-loop contributions to the § functions to be small compared to the one-loop results
included here.

The inclusion of the dark matter particle x changes the g functions from those given in
Ref. [5]. However, the numerical effects are small and the pattern of fixed points and flow
lines remains qualitatively unchanged. Given the multitude of choices for ultraviolet fixed

points, we will limit our consideration to what are plausibly three representative cases:

(ia) Interacting g; fixed point: One end of the line segment shown in Fig. 1 is an unsta-
ble fixed point with (gix, gps, g+) = (1.0168,0.87145,0.18108) and f** ~ 7.9610. The

requirement of reaching an unstable fixed point leads to the greatest predictivity in the



low-energy theory. At 1 TeV, the couplings are (g1, gp, g) = (0.46738,0.40049, 0.083219).
Note that g = 16/77 gp is preserved by the RG flow.

(ib) Interacting g; fixed point: Choosing a point on the interior of the line segment with
g=16/77gp at 1 TeV and f;rit ~ 7.9610 again yields an interacting fixed point for g,
but gg and g now flow to Gaussian fixed points. For this example, we take gg = 0.2,
i.e., (91,98,9) = (0.46738,0.20000,0.041558) at 1 TeV; this flows to (g1, B, Gx) =
(1.0168,0,0).

(ii) Gaussian g; fixed point: We choose f, = 0.1, below the critical value, so that g; flows
to a Gaussian fixed point. Choosing a point on the ellipse provides nontrivial fixed
points for g and §. For easy comparison to case (ib), we choose a solution for which
gp = 0.2 at 1 TeV: we assume (g1, 9B«, Gx) = (0,0.209651, 1.13654) which leads to the
1 TeV values (g1, 95,9) = (0.46738,0.20000, 0.15067).

In each of these cases, at least one coupling flows to a non-trivial fixed point, corresponding
to an asymptotically safe scenario. It is worth stressing that f,, is treated as a phenomenolog-
ical parameter, which allows us to reproduce the desired value of g; at the electroweak scale
in cases (ia) and (ib), and to freely choose a representative value of f, in case (ii). In this
sense, we follow a bottom-up approach, like that of Ref. [7]. Alternatively, in specific quan-
tum gravitational scenarios and specific truncations, one may relate f, to the gravitational
constant and the cosmological constant (for discussion, see Ref. [6]); while motivated by
functional renormalization group studies, the effective phenomenological approach remains
somewhat agnostic to the details of the gravitational physics.

In what follows, we will evaluate the constraints on the model parameter space from the

dark matter relic density and direct detection bounds.

III. RELIC DENSITY

To good approximation, the dark matter xy remains in thermal equilibrium as long as
the annihilation rate to standard model particles exceeds the expansion rate of the universe.
Dark matter annihilation to standard model fermions via exchange of the U(1) 5 gauge boson
provides the dominant contribution to the annihilation cross section. We will see later that

the kinetic mixing produces roughly a 15% correction to the annihilation cross section, by
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allowing dark matter annihilation to dileptons. The nonvanishing kinetic mixing also allows
gauge-gauge and gauge-Higgs final states, but we find that they contribute less than ~ 0.3%
to the total annihilation cross section. Effects due to mixing in the ¢-Higgs sector, which
were studied in Ref. [5], are much smaller, at least for parameter choices where asymptotic
safety has been demonstrated in the model. In particular, the mixing angle between the ¢
and Higgs boson was found in Ref. [5] to be O(107%), so that annihilation to ¢-Higgs and
Higgs-Higgs final states are negligible compared to the leading contributions.

Given our assumption that the new fermions in the model have TeV-scale masses, we
neglect the mass of standard model fermions, aside from that of the top quark. The cross

section for annihilation into a standard model fermion f is given by

) N.gh 1 [s—4m} o [Ci(s +2m3) + Ch(s — 4m7)
= Z 2 . 8
4 (XX - fﬂ 17287 s\ s —4m? (8+ mX) (s —m%)?2 +T2m3 (®)

Here, N, is the number of colors, mys, m,, and mp are the masses of the standard model

fermion, the dark matter particle, and the U(1)p gauge boson, respectively, and I" is the

gauge boson decay width. The partial decay width to an ff final state is given by

N. g% m 4m? 2m> 4Am?
AF(B%ff)z%,/l—m—g[C‘%(l—i—m—g)—i—(ﬁ( —m—gﬂ 9)

The coefficients C'y and C4 are vector and axial-vector couplings in units of gg. One finds
numerically that |Cy| is given by 0.8008, 0.6398, 0.2414, and 0.0805 for up-type quarks,
down-type quarks, charged leptons, and neutrinos, respectively, whereas the |C4| are all
0.0805.
Dark matter falls out of thermal equilibrium at the freeze-out temperature 7T, which we
determine by the condition
L = ny o) ~ 1. (10)
H(Ty)  H(Ty)

Here, nP? is the equilibrium number density and H(T') = 1.66,/g, T?/Mp, is the Hubble

parameter for a radiation dominated universe written in terms of the number of relativistic
degrees of freedom, g,, and the Planck mass Mp = 1.22 x 10! GeV. For a radiation

dominated universe, it is appropriate to assume the non-relativistic equilibrium number

3/2
EQ _ myT' —my /T
ny = ( 27r) e X/t (11)

density




A relativistic treatment of the thermally averaged annihilation cross section times relative

velocity is given by [34]

1 o NG
- ds oy, —Am2)VsK | |, 12
70 = gz [, Ao < o=V () (12)

where the K; are modified Bessel functions of order ¢. For the sufficiently large freeze-out
temperatures considered in this analysis, the ratio of the equilibrium number density to the
entropy density at freeze-out, Y}, is given by

Yy = 0.145 L2201 (13)
s

where z; = m, /Ty and g = 4 is the number of internal degrees of freedom of the dark
matter particles plus antiparticles. This ratio at freeze-out can then be propagated to the
ratio Yy at the present temperature of the universe,
1 1 [ /g (ov)
— = +/ =Mpm dor—-—-, (14)
Yo Y 45 X/, ; x? 2
where the factor of 1/2 takes into account that annihilation only occurs between a dark

matter particle and its antiparticle, while the Y; in this expression include both [34].

The dark matter relic density is then given by

2.8 x 108
GeV

We now compute the relic density in each of the previously described cases (ia), (ib), and

Qph? ~ Yom, . (15)

(ii). This analysis relies on numerical integration which can be performed to high accuracy.
Since the couplings are fixed by the asymptotic safety criterion, the only free parameters
entering this analysis are the dark matter mass m, as well as the U(1)p gauge boson mass
mp. The latter is assumed to be in the TeV-range, comparable to the masses of the other
heavy fermions; see Ref. [5] for details.

To analyze how the choice of these mass parameters affects the predicted relic density,
we scan over the gauge boson mass mp and determine the relic density as a function of m,;
Fig. 2 shows results for three choices of mp. A resonance effect is apparent when mp ~ 2m,.
At this resonance, the total cross section assumes a maximum value related to the gauge
boson decay width, resulting in a minimum relic density. The value of the minimum relic
density increases as the mass of the the U(1)p gauge boson increases, because the gauge

boson width scales with mp. The observed dark matter relic density is [35]

Qph? = 0.1193 4 0.0009 . (16)
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FIG. 2. Relic density curves for several choices of mp. The horizontal band represents the observed

value Qph? = 0.1193 & 0.0009 [35].

In Fig. 2 we superpose this band; for a given mpg, there are two disconnected mass ranges
for m, in which a relic density consistent with observation is obtained. The allowed ranges
of m, can be extracted as a function of mp for each asymptotically safe scenario defined in
Sec. II; these will be used in the study of the dark matter-nucleon elastic scattering cross

section in the next section.

IV. DIRECT DETECTION

For each point in model parameter space that leads to the correct relic density, we must
check that the experimental bounds from the direct detection of dark matter-nucleon elas-
tic scattering are satisfied. We consider only the most stringent bounds that follow from
the spin-independent scattering cross section. For TeV-scale dark matter, the momentum
transfer in the relevant t-channel Feynman diagrams can be neglected, ¢ ~ 0. The effective
dimension-six operators, which are suppressed by 1/m%, have vector-vector, vector-axial
vector, and axial vector-axial vector parts. Only the vector-vector part, i.e. the xv*xqv.q
operator, contributes to the spin-independent cross section [36-38]. Nucleon matrix ele-
ments of a quark vector current have form factors that simply count the number of quarks,

so there is no hadronic uncertainty in going from quark to nucleon matrix elements. For

10



example, elastic scattering off a nucleon N = p or n in our model is given by

2
4 2 ~
gh My \/§ g
_ 1 Zen-2 17
N T 367 mi ( + 5CNgB ’ (17)

where ¢y = 1/4 or 3/4 for a neutron or proton, respectively, and i,y = my,my/(m, +mny)
is the dark matter-nucleon reduced mass. To compare to experimental bounds, we take into
account that the dark matter scatters coherently off of the entire nucleus so we must sum
over protons and neutrons in the amplitude. To obtain an effective dark matter-nucleon
cross section we then divide the cross section by the square of the atomic mass number. For

a Xenon target, with atomic number 54 and atomic mass 131.293, we find

gt MQN g 2
B My
=— =" 114+035= 18
sl 367rm‘}9< gB) ’ ( )

where numerically we use an average mass for the nucleon, my =~ 939 MeV. We note that in
the limit § = 0, our result agrees with the cross section given in Ref. [27]; for sample points
(ia) and (ib), g = £2gp and the kinetic mixing term represents a 15% correction. In Fig. 3,
for each of the asymptotically safe scenarios defined in Sec. 11, we display og; for parameter
choices corresponding to relic densities within two standard deviations of the central value as
per Eq. (16). We compare to the bounds from the PandaX-II experiment [39], which uses a
Xenon detector and constrains TeV-scale dark matter masses. All three scenarios considered

here are allowed by current experimental bounds for dark matter masses m, 2 1.5 TeV.

Finally, we note that the DARWIN experiment [40] may probe the mass range shown in
Fig. 3. For example, for a dark matter mass of 1 TeV, the projected cross section reach
of DARWIN, assuming 200 ton-years of exposure, is ~ 2 x 107 cm? [40], compared to
the current XenonlT bound of ~ 9 x 1074 ¢cm? [41]. However, we know of no published
projections of DARWIN’s sensitivity to dark matter in the 1 to 5 TeV mass range considered
here. The model might also be probed at the LHC though a variety of final states with
observable particles and large missing transverse momentum, or through indirect studies of
the contribution of dark matter annihilation to the hadronic component of the cosmic ray

spectrum, but establishing specific bounds would require separate dedicated analyses.
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FIG. 3. Spin-independent dark matter-nucleon elastic scattering cross sections ogy, for parameter

choices (m,, mp) that yield the correct dark matter relic density.

V. CONCLUSIONS

In this work, we have modified the gauged baryon number model proposed in Ref. [5] to
include a TeV-scale, fermionic dark matter candidate. The stability of the dark matter is
guaranteed by a discrete subgroup of the additional gauge symmetry, and the new gauge
boson serves as the portal between the dark and visible sectors. The new ingredient in
our study is the assumption of asymptotic safety, which reduces the space of free model
parameters due to the constraint that (at least some) couplings reach nontrivial ultraviolet
fixed points. The effect of this organizing principle is that the range of the baryon number
gauge coupling at the TeV scale is constrained, and the kinetic mixing parameter at the
same scale becomes a function of the baryon number gauge coupling. This fixes the degree
of gauge boson leptophobia once the gauge coupling of the theory is specified. Taking into
account these constraints, and including the leptonic dark matter annihilation channels that
are induced by the kinetic mixing, the correct dark matter relic density can be obtained in
a number of asymptotically safe scenarios with different patterns of ultraviolet fixed points.
For these solutions, the predicted dark matter-nucleon elastic scattering cross section is
consistent with the bounds from the PandaX-II experiment [39] which probes the dark
matter masses above 1 TeV. Measurements of new gauge boson properties at colliders and

of the dark matter-nucleon elastic scattering cross section at direct-detection experiments
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may someday provide nontrivial tests of the relationships between couplings expected in this

and other asymptotically safe gauge extensions of the standard model.
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