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optimization �ags (-Ox) are shown to perform poorly on binaries
compiled with non-standard optimization �ags [53].

We wish to automatically generate well-formed binaries so that
binary analysis and ML tools can use the generated datasets to
improve their robustness. The generated binaries should have as-
sociated high-level structures, speci�cally source code, to enable
the creation of ground-truth information (i.e., through debug sym-
bols) needed by machine learning tools. Existing binary-level tech-
niques [11, 24, 62, 65, 70] use semantics-preserving transforma-
tions (e.g., Register Swapping) to generate several semantically-
equivalent binaries from a single binary. These techniques are pri-
marily designed for program obfuscation and are based on �xed
patterns. Consequently, the number of variants generated for a
given binary is limited. Second, these techniques depend on the
ability to perform static binary rewriting and reassemblable dis-
assembly, which is known to be a hard problem [69]. Third, as
mentioned before, we need to have source code or ground truth
information corresponding to the generated binaries. However, gen-
erating source code for a given arbitrary binary (i.e., decompilation)
is known to be a hard problem [63]. Finally, generating semantics
preserving transformations requires a precise model of the underly-
ing ISA, which requires a considerable amount of e�ort [8, 20]. For
instance, even a simple register swapping/renaming transformation,
such as renaming register RCX to RDX in a function, requires knowl-
edge of the ABI. Speci�cally, we need to know that the function
does not use RCX or RDX for its arguments. To determine this, we need
to know the number and type (scalar or not) of parameters [14] for
the function and the calling convention used by the function. Both
are known to be challenging [26].

Another class of techniques performs semantics-preserving
transformations, but at the source level (e.g., ������� [18]) or IR level
(e.g., ������� [33]). These techniques focus on ISA-agnostic control
�ow and data �ow related aspects of the program without consid-
ering the ISA-dependent instruction sequence or patterns used in
the resulting binary. Consequently, these techniques are shown to
have less or no impact on the generated binary [44]. Table 1 shows
a summary of the existing techniques along with their drawbacks.

In this paper, we focus on the problem of generating large num-

bers of binaries for a given program. We aim to develop a tool that
binary analysis framework developers can easily use to test their
framework e�ectively. Furthermore, We want to have ground truth
information (i.e., source code and debug information) for all the gen-
erated binaries. We observe that compilers have these precise mod-
els of ISA as part of their target code generation component [60].
Most compilers provide various options and target-(in)dependent
optimization �ags that allow �ne-grained control over choices in
code generation [54]. Our basic idea is to use these �ne-grained
optimization �ags to generate di�erent binaries. However, for a
given program, not all optimization �ags a�ect the program’s bi-
nary. For instance, the �ag --x86-use-base-pointer available in clang

does not a�ect programs with small local variables. Although indi-
vidual �ags may be ine�ective for certain programs, combinations

of the �ags could generate di�erent binaries [12]. For a given pro-
gram, identifying which �ag combinations a�ect the target binary
is a combinatorial problem—intractable, especially when there are
a large and growing number of �ags (⇠ 892 usable �ags for x86
in clang-12.0).

In fact, we tried the brute-force approach of enumerating all the
combinations of compiler to compile programs of di�erent sizes. In
12 hours, on average, the brute-force approach was able to generate
197 unique binaries, whereas our approach was able to generate
6,512 (33⇥) in just 6 hours (half the time).

We present C���������, an automated, architecture-
independent framework for generating a plethora of binaries
for a given program. Given a source package (e.g., a2ps.tar.gz),
compiler, and set of all available optimization �ags, C���������
iteratively learns to produce unique binaries for a given source
package by feedback-guided mutation of compiler �ags, thus
avoiding enumerating all combinations of optimization �ags. A
recent work, B��T���� [53], also explores the use of compiler �ags
to generate di�erent variations of binaries for a given program.
Although it uses a search-based iterative compilation, B��T����’s
goal is not to generate diverse binaries but to generate a binary
very di�erent from those generated by general Ox optimization
levels. Furthermore, it requires explicit speci�cation of con�icting
compilation options in the form of �rst-order formulas, which must
be speci�ed for every ISA and compiler combination. This requires
an in-depth understanding of various compiler options, which
involves considerable e�ort and con�icts with our requirement for
an easy-to-use tool. Finally, as shown in Section 4.3, B��T����’s
�tness function is inferior to C��������� for generating a
plethora of diverse binaries. The latter generated 8X more binaries
than B��T���� in a given time.

Our evaluation shows that C���������, in 6 hours, can generate,
on average, 403 binaries per program across all architectures. In
addition, standard tools for evaluating binary di�erences show
that these binary variants are highly varied (refer our extended
report [59]) .

Generating a large number of binary variants is only useful
if those variants expose interesting behaviors in the software
toolchain. The binaries generated by C��������� revealed various
issues in current static analysis and ML tools, showing the inad-
equacy of the current methods to make these tools robust. This
shows that C��������� generates binaries that can be used to
improve the robustness of binary analysis tools. Additionally, we
observed that C��������� can also be used to test the optimiza-
tion scheduler in compilers to �nd issues related to optimization
dependencies [61]. We found issues with the LLVM optimization
scheduler which resulted in compiler crashes ⇠300. In summary,
the following are our contributions:

• We present C���������, a feedback-guided mutation tech-
nique to e�ciently �nd sets of compiler optimization �ags
that produce di�erent binaries for a given application and
show that it outperforms B��T���� (Section 4.3), a recent
approach that tries to �nd optimization �ags resulting in a
large binary code di�erence.

• Our evaluation shows that C��������� generates a large
number of unique binaries for a given program, and these
binaries di�er signi�cantly from those generated using stan-
dard optimization levels (Section 4.3.2).

• Our evaluation of existing binary analysis tools and machine
learning tools with C��������� generated binaries revealed
various robustness issues (i.e., 263 crashes in ���� and one
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a program to be compiled (e.g., LLVM plus objdump). The input is
the compiler �ags. Section 3.1 describes how an input is mapped
to compiler �ags, and thence to generating an output. Section 3.2
describes how we design our �tness function.

3.1 Binary Generator

The binary generator maps input bytes to compilation �ags and
uses these �ags to compile a given source package to get a set of
binaries.

Mapping bytes to compiler�ags: Formost of the �ags, wemap
each input byte to a compiler �ag. The corresponding byte value
indicates whether the option is selected or not. However, directly us-
ing the byte value will result in unnecessary bias. For instance, con-
sider that we enable an option by just checking whether the value
of the byte is greater than 0. There is a 99% (or 255/256) chance that
the option is enabled, whereas there is only a 1% (or 1/256) chance
that the option will be disabled. To avoid this bias, we use a modulus
operation. Speci�cally, we compute byte_value mod 2 and enable the
�ag if the resulting value is 1. Similarly, for �ags that expect a value
from a �xed list, we use modulus to select a value uniformly from
that list. For instance, for --frame-pointer=<value>, the <value> can
be either all, non-leaf, or none. We use byte_value mod 4 and enable
the �ag if the resulting value is greater than 0 and the <value> can
be either all, non-leaf, or none depending on whether the modulus
result is 1 2 or 3 respectively.

For �ags that take raw integers, we use 2 bytes, where the �rst
byte (mod 2) indicates whether the option is enabled, and if enabled,
the second byte is the value for the �ag. For instance, we map
2 bytes to the �ag --stack-alignment=<uint>. The �ag is selected
when the first_byte_value mod 2 is 1 and the second byte is passed
for <uint>, i.e., --stack-alignment=<second_byte_value>.

We will ignore additional bytes if the input has more bytes than
all the compiler �ags. Similarly, we will not select the corresponding
�ags if the input has fewer bytes.

Compiling using the selected �ags: We use a dynamic ap-
proach by hooking into the build process and dynamically modi-
fying every compiler invocation to include only the selected �ags.
For instance, consider that our target compiler is clang and selected
options are --addrsig and --tailcallopt. Our dynamic hook will
replace every compiler invocation, say gcc -O2 <source file(s)>,
with clang --addrsig --tailcallopt <source file(s)>. We also inclu-
de all the preprocessor directives (e.g., -D..) and linker �ags that
were part of the original compiler invocation.

Handling con�icting �ags: The compiler �ags can have con-
straints, including adverse interactions and dependency relation-
ships. Few �ags can negatively in�uence each other, and turn-
ing them on together leads to a compilation error. Some other
�ags may only work when another �ag is speci�ed. For exam-
ple, -ftree-slp-vectorize may not have an e�ect when loop un-
rolling is disabled because SLP vectorizer may not have opportuni-
ties to vectorize the loop body if the loop is not unrolled.

Automatically identifying con�icting compiler �ags is a com-
binatorial problem i.e., requires enumerating all the possible �ag
combinations, which is intractable when there are a large number of
growing �ags (⇠ 892 for x86 in clang-12.0). On the other hand, man-
ually specifying con�icting �ags for each compiler, as in B��T����,
requires considerable e�ort. We use a feedback-driven approach to

handle this. Speci�cally, if the compilation fails with selected �ags,
we compile using a default set of prede�ned �ags (e.g., -O0) and
generate corresponding binaries. Since the selection of any con�ict-
ing �ags results in the same binary (i.e., the one built with default
�ags), the �tness function (Section 3.2) will return a score of zero for
these binaries. The zero score will cause the corresponding input to
be discarded by our collector, thereby steering C��������� away
from generating inputs that result in con�icting compiler �ags.

3.2 Fitness Checker

The goal of the �tness checker is to compute how di�erent the
provided binaries are from all the previously generated binaries
from the same source package. We call this result Di�erence Score
(DScore).

The score computation mechanism should be e�cient. Other-
wise, it will become a performance bottleneck, and then the overall
cost will increase drastically. Existing binary di�ng techniques,
such as BinDi� [22], require disassembling the binary and per-
forming lightweight analysis, increasing their execution time. For
instance, BinDi� takes ⇠5 min for a medium-sized binary.

There are well-known techniques in malware signature research
that use heuristic methods to compute the similarity between two
binaries. We explore two such techniques and propose a custom
di�erence score based on the percentage of unique functions. In
all of these techniques, the computed DScore is a �oating-point
number ranging from 0.0 to 1.0, where a larger value indicates a
bigger di�erence. As an optimization, before computing DScore,
we check if the binary is not unique i.e., if we have already seen
the exact binary, then we immediately return 0. If the provided
binaries are unique i.e., DScore is greater than 0, the �tness checker
also stores these binaries in a database. We explore the following
techniques to compute the DScore of a given binary.

Piecewise Hashing: Piecewise hashing or fuzzy hashing [36]
is a well-known technique to compare binaries. The comparison
of fuzzy hashes results in a value ranging from 0.0 to 1.0 (the
higher, the more di�erent). We explore two approaches to com-
pute the DScore based on the piecewise hashing.

Piecewise average (%0): Here, we compute the di�erence in
the piecewise hash of the given binary with all the previously seen
binaries. The �nal DScore is the average of all the hash di�erence
scores. The intuition behind the average is to compute a score that
captures how di�erent the current binary is when compared to all

the previously seen binaries.
Piecewise minimum (%<): This technique is similar to the av-

erage one above. However, we select the minimum hash di�erence
value instead of the average as the �nal DScore. The intuition be-
hind the minimum is to prioritize the generation of binaries that
di�er largely from all the previously seen binaries. If we consider
the binary generation as a graph traversal, the average strategy
can be considered as a Breadth-First traversal, whereas the min-
imum strategy is a Depth-First traversal. We do not consider the
maximum value because it unnecessarily prioritizes generating the
same kind of binaries. But, the goal of C��������� is to maximize
the generation of di�erent binaries. For instance, consider a new
binary 1 with piecewise hash similarity of 0.9, 0.1, and 0.4 against
binaries G , ~ and, I, respectively. Using the maximum value would
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return 0.9 as the DScore, thus maximizing the generation of bina-
ries similar to 1. However, the hash di�erence value 0.1 indicates
that binary 1 is very similar to ~. Hence, using the maximum value
may unnecessarily prioritize the generation of similar binaries and
decrease the overall variety of binaries.

Normalized Compression Distance: Normalized Compres-
sion Distance (NCD) is another well-known technique to compute
di�erence based on an information-theoretic measure [3]. Speci�-
cally, NCD infers the degree of similarity between arbitrary byte
sequences by the amount of space saved after compression. Pre-
vious works [53] which use NCD have shown to be e�ective at
capturing the di�erence between two arbitrary byte sequences.
NCD score ranges from 0.0 to 1.0 (the higher, the more di�erent).
Similar to Piecewise hashing (Section 3.2), we de�ne NCD average

(#0) and NCD minimum (#<).
Percentage of Unique Functions (�⌘): Here, we compute

the di�erence score as the percentage of unique functions in the
provided binary. We determine unique functions as follows: For
each function, we compute function hash, which is the hash of the
binary code of the function. We use this function hash to see if any
previously seen binaries have a function with the same hash. If not,
the function is considered unique. Finally, the DScore is computed
as the percentage of unique functions over the total number of
functions in the binary. The intuition here is to use function level
similarity rather than byte-sequences based similarity techniques
as used in the previous two approaches.

3.3 Collector and Mutator

The collector receives the feedback (i.e., DScore) for each input and
stores the input in a weighted list according to the value of the
score. The collector discards inputs with a feedback score of 0. The
weighted list is organized such that the probability of selecting an
element from the list is proportional to its feedback score.

The mutator selects one or more inputs from the weighted list
and performs various mutations on the bytes of the inputs. We use
mutation strategies, such as bit �ips, byte �ips, and splicing, that
are shown to be e�ective in fuzz testing [40].

Refer our extended report [59] for implementation details.

4 EVALUATION

We evaluate C��������� to demonstrate its e�ectiveness in gen-
erating binaries and their ability to test the robustness of various
binary analysis tools. We pose the following research questions to
guide our evaluation:
RQ1: E�ectiveness: How e�ective is C��������� in generating
binaries, and how do di�erent �tness metrics a�ect the quality and
quantity of the generated binaries?
RQ2: C��������� vs. B��T����: How e�ective is C���������
compared to B��T����, a recent approach that also uses compiler
�ags to generate binaries?
RQ3: Applicability to test static analysis tools: How e�ective
is the dataset generated by C��������� in testing binary static
analysis tools?
RQ4: Applicability to test ML tools: How e�ective is the dataset
generated by C��������� in tesing ML tools?

4.1 Setup

4.1.1 Dataset and Compiler. We choose clang (or LLVM) version
12 as our target compiler, which is the latest and most stable ver-
sion available during our experimentation. Our binary generator
for clang uses pre-generated LLVMBitcode �les as an optimization
to avoid rerunning frontend for the same sources.

We collected source packages by scrapping o�cial Debian pack-
age repositories, compiled them, and randomly selected 191 bitcode
�les for each of the four popular architectures,i.e., �86, �64, ARM,
and MIPS. We will refer to individual binaries or bitcode �les as
programs. Table 2 shows the number of programs selected and
available optimization �ags in clang for each architecture. Note
that the number of programs is limited by resource constraints;
speci�cally, the availability of machines at our disposal.

4.1.2 Machine Setup and Runtime. We used a server with Intel
Xeon 5215 CPU and ran C��������� on each program for 6 hours.
We ensured that each program ran on a processor core and avoided
overloading the server.

4.2 E�ectiveness

As explained in Section 3.2, there are various lightweight ap-
proaches to compute the di�erence score that can guide our mu-
tations. There is also another approach, as suggested by a recent
work [53] where they take the NCD score of the binary with the
binary compiled with -O0 as the di�erence score, which we de-
note as #> . First, we will evaluate the relative e�ectiveness of our
approaches %0 , %< , #0 , #< , and, �⌘ along with #> .

4.2.1 E�ectiveness of di�erent computation approaches. We choose
three programs of di�erent sizes eot2ttf (5.5K, small), lscpu
(270K, medium), and, nab_r (1.1M, large) for this experiment. For
each of these programs, we ran C��������� with di�erent ap-
proaches for six hours each. In summary, we had 18 (6 approaches *
3 programs) variations, with each running for six hours. To normal-
ize the e�ects of randomness, we repeated the whole experiment
eight times. We found that our function hash mechanism (�⌘) re-
sulted in the largest number of unique binaries generated for all
three programs for most of the iterations. The second best technique
is Fuzzy Hashing (PIECEWISE) minimum (%<).

To compare the quality of the generated binaries, we computed
the NCD score of each binary against the non-optimized i.e., -O0

compiled) binary. We found that, on average, the binaries generated
by �⌘ have the highest di�erence score (i.e., more di�erent variants)
of 0.79 compared to all the other �tness functions.

This shows that our �⌘ technique to compute di�erence score is

both quantitatively (i.e., more unique binaries in a �xed interval of

time) and qualitatively (i.e., more di�erent binaries) more e�ective at

generating unique binaries when used with C���������.

There are two main reasons for the improved e�ectiveness of �⌘ :
(i) Most of the optimizations in compilers are intraprocedural and
work independently on each function. (ii) Functions within a pro-
gram share similar characteristics [46, 48]. For instance, most of the
functions in a string processing library work on strings i.e., char *

type variables. Hence optimization �ags that a�ect a function in a
programmost likely also a�ect other functions in the same program
as these functions share similar characteristics. Our �⌘ approach
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exploits this by assigning a higher score to the �ag combinations
that a�ect more functions in the program.

We also ran the experiment by avoiding the precise di�erence
score but rather using a 1/0 binary feedback, i.e., whether the gen-
erated binary is di�erent (1) or not (0). We observed that all ap-
proaches su�ered and generated fewer binaries compared to the
precise di�erence score versions. This indicates that using a precise
di�erence score is important for generating large number of unique
binaries. The potential reason is that using a precise score helps
in guiding the search towards more productive �ag combinations
while 1/0 will do a random search.

4.2.2 Binary Generation E�ectiveness. We use the most e�ective
di�erence score approach,i.e., function hash (�⌘), to evaluate the
overall e�ectiveness of C���������. As mentioned in Section 4.1.2,
we ran C��������� for 6 hours for each program-architecture
combination. The summary of the results is shown in Table 2. In
total C��������� generated 308,269 unique variants across four
architectures for 191 programs, with an average of 403 and median
of 413 variants per program across all the architectures (The �ne-
grained split is discussed in our extended report [59] ).
Variants across each architecture: Interestingly, as shown in Ta-
ble 2 the number of generated binaries di�ers across architec-
tures. Speci�cally, there are ⇠15% more binaries in ARM and MIPS,
which have a Reduced Instruction Set Computer (RISC) ISA, com-
pared to x86 and x64, having a Complex Instruction Set Com-
puter (CISC) ISA.

The main reason for this is the di�erence in the underlying ISA
and corresponding optimization opportunities. There are more
general-purpose registers in ARM and MIPS than x86 and x64,
which increases the compiler’s choices for register allocation. An
example illustration is in one of our binaries as shown in Figure 2,
here compiler choose r12 and r3 in the left version v/s r3 and r4

in the right version, this further caused register spill (line 7 and
17) to occur in the right version. Furthermore, the �xed-length
instructions in ARM and MIPS results in relatively dense basic
blocks, i.e., the average number of instructions in a basic block are
more than in x86 and x64 [13]. This further increases optimization
opportunities.

We evaluated C��������� on other aspects and presented the
results in our extended report [59]. Our results show that C�����
����� is e�ective at generating a large number of di�erent binaries
and can explore the variants that are not covered by the standard
optimization levels i.e., O0, O1, O2, and O3.

4.2.3 Compiler Crashes. Although unintended, C��������� could
be used to test optimization schedulers in compilers. As explained
in Section 3.1, our binary generator repeatedly invokes the com-
piler with di�erent combinations of optimization �ags on various
programs. Consequently, while generating binaries for di�erent pro-
grams, C��������� is essentially testing optimization schedulers,
although in a blackboxmanner. Nonetheless, in our experiments,we
found approx. 300 crashes (i.e., segfaults) in the optimization sched-

uler of clang. An example of one such crash is shown in our
extended report [59] . We analyzed one of these crashes and iden-
ti�ed that the --pre-RA-sched=vliw-td optimization �ag is the root
cause. This is not a trivial issue to �nd because triggering the crash
requires speci�c program structure. We reported all our crashes

combinations

�erence

the gen-

that all ap-

d to the

precise

Arch (Available Flags) Binaries Avg. Binaries Per Program

�86 (892) 63,197 330.87

�64 (892) 74,169 388.32

ARM (876) 83,701 438.23

MIPS (866) 87,192 456.50

Grand Total 308,269 N/A

Table 2: Performance of C���������: The number of bina-Table 2: Performance of C���������: The number of bina-

ries generated for each architecture for 191 programs. Each

program-architecture combination is run for 6 hours. The

number in the parenthesis show the total number of avail-

able optimization �ags for that architecture.

1.     .type
2. emit_ancillary_info,%function
3.     .code 32                           
4. emit_ancillary_info:                      
5.     ...
6.     @ %bb.0:                              
7.     push    {r11, lr}                    
8.     ...                        
9.     bl    printf                           

10.     ...               
11.     cmp    r1, r12                          
12.     moveq    r2, r3                       
13.     ...       
14.     bl    printf
15.     ...                                         
16.     mov    sp, r11                          
17.     pop    {r11, lr}
18.     mov    pc, lr

1.      .type
2. emit_ancillary_info,%function
3.      .code    32                            
4.  emit_ancillary_info:
5.     ...
6.     @ %bb.0:             
7.     push    {r4, r10, r11, lr}
8.     ...       
9.     bl    printf

10.     ...                 
11.     cmp    r1, r3
12.     moveq    r2, r4
13.     ...           
14.     bl    printf
15.     ...           
16.     sub    sp, r11, #8           
17.     pop    {r4, r10, r11, lr}        
18.     mov    pc, lr

Variant A Variant B

Figure 2: Figure showing ARM assembly for 2 di�erent vari-

ants generated from source program cat. Variant A uses reg-

isters (r12, r3) in place of (r3, r4) (Variant B) for the same

function.

and have been acknowledged by the LLVM team as real bugs. They
are currently working on �xing these bugs.

We also extendedC���������with gcc and presented its results
in our extended report [59].

4.3 C��������� vs. B��T����

As mentioned in Section 1, B��T���� uses a search-based itera-
tive compilation (based on OpenTuner [7]) to �nd optimization
sequences that can maximize the amount of binary code di�er-
ences. B��T���� requires an explicit speci�cation of con�icting
compiler �ags in the form of �rst-order logic formulas, which re-
quires an in-depth understanding of the �ags. This process can be
tedious, especially when we need to do this for every architecture
supported by the compiler (i.e., �86, �64, ARM,MIPS, etc) and for
all desired compiler versions. This imposes considerable overhead
for binary analysis tool developers to use B��T����. Furthermore, the
implementation of B��T���� does not support parallelism, and as
such,B��T���� cannot be used in amulti-processor/multi-threaded
manner to improve its throughput.

However, C��������� only requires specifying the compiler
and a corresponding list of supported optimization �ags. It does not
require specifying con�icting �ags. Our feedback-driven mechanism
(Section 3.1) enables C��������� to automatically steer away from
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using con�icting �ags. The modular design of C��������� enables
it to be trivially parallelizable by using multiple mutators, all shar-
ing the same interesting inputs source. As shown in Section 4.2,
running C��������� in parallel mode with six instances resulted
in an average of 21X more binaries.

To have an analytical comparison, we perform the following two
experiments on the programs on which B��T���� was evaluated.
Speci�cally, we use SPECint 2006, Coreutils, and OpenSSL.

4.3.1 C��������� with B��T����’s fitness function (⇠1 ). In this
�rst experiment, we evaluate the binary generation e�ectiveness
of B��T����’s �tness function when used in C���������. Speci�-
cally, as in B��T����, we use NCD score of the generated binary
with its -O0 version as the feedback (i.e., DScore) for the collector
in C���������, denoted as ⇠1 .

On average ⇠1 generated 52 binaries vs 450 generated by C���

������� with the function hash score (�⌘). The Figure 7 shows the
results across all the programs (Note that the y-axis is in logarithmic
(base 10) scale). Except for 447.dealII and 483.xalancbmk, C���
������� generated a large number of binaries, speci�cally, ⇠7X
more than ⇠1 . The low yield in 447.dealII and 483.xalancbmk
is because of their large size and the randomness in mutation tech-
niques having less time to explore other e�ective optimization �ag
combinations. The reason for the increased e�ectivenss of C���
������� is because B��T����’s �tness function (NCD with -O0)
maximizes the generation of a highly di�erent binary rather than
generating a large number of diverse binaries. For instance,⇠1 likely
will not generate highly di�erent binaries that have the same NCD
score with -O0.

4.3.2 Binary Generation E�ectiveness. For this experiment, we
ran C��������� for 6 hours and B��T���� until it converges or 6
hours (whichever is the latest). On average B��T���� generated 48
binaries vs 450 generated by C��������� with the function hash
score (�⌘), with Figure 7 showing the results across all the programs.
Except for �ve programs, C��������� was able to generate more
binaries (⇠8X on average) than B��T����. The low yield for a few
programs is because of their large size and C��������� getting less
number of iterations in identifying the optimization �ags that are
e�ective for these binaries. However, B��T����, based on Open-
Tuner [7], uses more systematic exploratory techniques and can
quickly identify the potent optimization �ags. For instance, the
bitcode �le for 483.xalancbmk is 13MB in size, and compilation
of it takes ⇠ 6 minutes. Consequently, C��������� gets less time
to explore di�erent �ag combinations and learn which �ags are
e�ective. We con�rmed this by running C��������� in parallel
mode with six cores and observed that we got considerably more
binaries than B��T����.

4.3.3 �ality of the Generated Binaries. We used BinDi� scores to
evaluate the quality of binaries generated by di�erent techniques
(B��T����, ⇠1 , and C���������) and Figure 6 shows the cumula-
tive distributive function (CDF) of the scores across all binaries
generated for all programs by each of the corresponding tech-
niques. 1 The score ranges from 0 to 1, and it indicates the amount
of di�erence (i.e., larger the score higher the di�erence). First, as

1A point (x, y) on a line indicates y% of the binaries have their BinDi� score less than
or equal to x.

expected, B��T���� was able to generate binaries with the largest
di�erence (⇠0.95) against its -O0 and -O3 versions. However, its
steeper curve shows little variance, i.e., most of the B��T���� gen-
erated binaries are similar and have high di�ence against its -O0 and
-O3 versions. The less steep curves of C��������� and ⇠1 show
that they were able to generate more varied binaries, albeit with a
lower di�erence (⇠0.45) against its -O0 and -O3 versions.

We also compared the best binary (i.e., with the highest Bin-
Di� score) generated by B��T���� with the binaries generated
by C���������. The Figure 5 shows the CDF of the corresponding
score. The steeper curve towards the right indicates that most of

the C��������� generated binaries are quite di�erent from those

of B��T����’s. Speci�cally, 50% of the binaries have their BinDi�
scores between 0.75-0.95. This shows that C��������� is exploring
the binary generation space di�erent from that of B��T����. In
summary, B��T���� is e�ective at generating binaries highly dif-
ferent from its -O0/-O3 version, but the generated binaries have less
variance. However, C��������� is a complementary approach and
can e�ciently generate a large number of binaries with relatively
high variance by exploring di�erent binary generation spaces.

4.4 Applicability to Test Static Analysis Tools

We used four popular binary static analysis tools, i.e., Free and open
source: ����, G�����, and ������; Commercial: ��� to evaluate
the e�ectiveness of C��������� generated binaries in testing these
tools. We choose analyses that are supported by all these tools.
Speci�cally, we choose the following:
Function BoundaryDetection (FBD) [9]: This analysis generates
a set of function boundaries, where each boundary is a pair of
addresses indicating the address of the �rst and last instruction of a
function. We got the ground truth information for FBD from debug
information [23] of binaries, speci�cally, the symbol table [75].
Calling Convention Recovery (CCR): This analysis aims to �nd
the signature [42] of all functions in the binary. For our experiment,
we only consider the number of parameters. Like FBD, we got the
CCR ground truth for each binary using the debug information
embedded in it.

To test these two analyses, we compare the ground truth of each
binary with the results produced by each tool. For each analysis, we
assigned a �xed time of 24 hours for each architecture, randomly
picked binaries, and tested them with each tool with a timeout of
10 minutes - most of the tools were able to complete within the
timeout except for ����, which timed out for a relatively few large
binaries.

Table 3 shows the result across the selected tools. Here, �B indi-
cate the number of binaries with single tool failures, i.e., only the
corresponding tool failed. �< indicate multi-tool failures, i.e., two
or more tools failed. Finally (0 indicates binaries where all tools
succeeded, i.e., all tools correctly identi�ed function boundaries for
these binaries.

For FBD (Top part of Table 3), on average, all tools correctly iden-
ti�ed boundaries for only 19.97% of the binaries across all architec-
tures. Unfortunately, none of the tools correctly identi�ed function
boundaries for 42.15% of the binaries as indicated by the last row
of �< column. For instance, for a binary of fallocate compiled for
MIPS, with 172 functions, all the tools except G����� failed to
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Arch.

Randomly

Sampled

Binaries

Function Boundary Detection

�B
�< (0

���� G����� ��� ������

x86 4,600 271 (5.89%) 492 (10.7%) 1,019 (22.15%) 4,588 (99.74%) 1,160 (25.22%) 12 (0.26%)

x64 3,516 213 (6.06%) 302 (8.59%) 255 (7.25%) 2,349 (66.81%) 563 (16.01%) 1,092 (31.06%)

ARM 5,382 2,388 (44.37%) 2,891 (53.72%) 2,872 (53.36%) 3,324 (61.76%) 3,020 (56.11%) 1,485 (27.59%)

MIPS 4,818 2,744 (56.95%) 2,149 (44.6%) 679 (14.09%) 3,750 (77.83%) 2,977 (61.79%) 1,068 (22.17%)

Total 18,316 5,616 (30.66%) 5,834 (31.85%) 4,825 (26.34%) 14,011 (76.50%) 7,720 (42.15%) 3,657 (19.97%)

Arch.

Total

No. of

Functions*

Calling Convention Recovery

�B
�< (0

���� G����� ��� ������

x86 49,546 85 (0.17%) 299 (0.60%) 740 (1.49%) 9,162 (18.49%) 18,295 (36.92%) 20,965 (42.31%)

x64 80,174 1,732 (2.16%) 470 (0.58%) 4,521 (5.64%) 16,018 (19.98%) 17,695 (22.07%) 39,738 (49.56%)

ARM 228,107 13,906 (6.10%) 816 (0.36%) 5,012 (2.20%) 34,892 (15.30%) 141,680 (62.11%) 31,801 (13.94%)

MIPS 132,461 390 (0.29%) 129 (0.10%) 356 (0.27%) 57,729 (43.58%) 66,028 (49.85%) 7,829 (5.91%)

Total 490,288 16,113 (3.29 %) 1,714 (0.35%) 10,629 (2.17%) 117,801 (24.03%) 243,698 (49.70%) 100,333 (20.46%)

Arch.

Total

No. of

Functions*

Control Flow Graph Recovery

�B
�< (0

���� G����� ��� ������

x86 121,108 10,622 (8.77%) 75 (0.06%) 375 (0.31%) 26,209 (21.64%) 48,146 (39.75%) 35,681 (29.46%)

x64 109,791 5,025 (4.58%) 153 (0.14%) 3,108 (2.83%) 36,303 (33.07%) 27,629 (25.17%) 37,573 (34.22%)

ARM 105,674 8,182 (7.74%) 91 (0.09%) 79 (0.07%) 16,414 (15.53%) 60,534 (57.28%) 20,374 (19.28%)

MIPS 126,179 18,244 (14.46%) 53 (0.04%) 64 (0.05%) 17,115 (13.56%) 71,988 (57.05%) 18,712 (14.83%)

Total 462,752 42,073 (9.09%) 372 (0.08%) 3,626 (0.78%) 96,041 (20.75%) 208,297 (45.01%) 112,340 (24.28%)

Table 3: Results of di�erential testing of various analysis. For function boundary detection and calling convention recovery,Table 3: Results of di�erential testing of various analysis. For function boundary detection and calling convention recovery, �B
and �< indicate the number of binaries with single tool divergence (i.e., only one tool produces a di�erent result) and multi-tool

divergence (i.e., Multiple tools produce di�erent results), respectively. (0 shows the number of times all the tools perfectly

agreed with each other. For control �ow graph recovery, �B , �< indicate the divergence for number of functions (0 indicates the

number of times all tools agree on functions. (*) Functions in the randomly sampled binaries whose boundaries are correctly

identi�ed by all the tools.

Arch.
���� G����� ��� ������

N A S E P T N A S E P T N A S E P T N A S E P T

x86 10,389 0 3 10 220 0 18 0 0 0 57 0 304 0 10 28 0 33 5,091 24 0 0 21,094 0

x64 3,863 0 12 16 1,134 0 94 0 7 0 52 0 2,844 4 87 173 0 0 6,246 84 0 0 29,973 0

ARM 7,678 0 0 0 233 271 6 0 0 0 85 0 23 0 11 23 22 0 8,920 30 45 0 7,419 0

MIPS 18,244 0 0 0 0 0 0 0 18 0 35 0 46 0 7 11 0 0 1,989 0 0 1 15,125 0

Total 40,174 0 15 26 1,587 271 118 0 25 0 229 0 3,217 4 115 235 22 33 22,246 138 45 1 73,611 0

Table 4: Detailed breakdown of the CFG results with single tool divergence. ’N’ indicates a mismatch in the number of basicTable 4: Detailed breakdown of the CFG results with single tool divergence. ’N’ indicates a mismatch in the number of basic

blocks. ’A’ shows cases where the number of basic blocks match, but the starting addresses di�er. ’S’ indicates cases where the

size(s) of the basic blocks do not match, ’E’ indicates cases where the edges do not match, and ’P’ indicates cases when the tools

gave incomplete output. ’T’ indicates cases for which the tool timed out.

to improve existing datasets, consequently helping in creating better
models.

5 LIMITATIONS AND FUTUREWORK

Although, C��������� is e�ective at generating a plethora of bi-
naries. It has the following limitations.
Compiler bugs: We assume that the provided compiler preserves
the semantics of the program in the generated binary. However, this

may not be the case. The compiler may have bugs [61, 74] resulting
in binaries that may not be semantically equivalent, especially those
concerning unde�ned behavior.
Compiler frontend overhead: Although we mainly use the back-
end or code generation component of a compiler, in the general
case, we unnecessarily run all components of the compiler, includ-
ing its frontend. This adds a lot of overhead [41] as demonstrated
by the relatively low yield by gcc (Section 4.3.2).
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Arch
Prec Rec F1

R O R O R O

�86 Name 62.6 7.4 62.5 15.6 62.5 10.0
Type 63.7 11.1 63.7 33.9 63.7 15.6
Overall 63.1 9.3 63.1 24.0 63.1 12.9

�64 Name 63.5 3.2 63.1 5.2 63.3 3.9
Type 74.1 24.7 73.4 47.8 73.8 31.9
Overall 68.8 14.2 68.3 26.7 68.6 18.2

ARM Name 61.6 7.0 61.3 12.5 61.5 8.7
Type 66.8 14.6 68.0 24.8 67.4 17.9
Overall 64.2 10.7 64.7 20.3 64.5 13.6

Table 5: Figure showing Precision (Prec), Recall (ReTable 5: Figure showing Precision (Prec), Recall (Rec),

and, F1 scores for D���� across 3 di�erent architectures: The

columns Reported (R) and Observed (O) show reported and

observed scores on C��������� generated binaries.

Completeness of the Generated Dataset: C��������� uses ex-
isting programs to generate diverse binaries, and the completeness
(e.g., instructions covered in the underlying ISA) of the generated
dataset depends on the features present in the corresponding pro-
grams. For instance, a program that does not use any �oating point
variables is unlikely to produce binaries with �oating point in-
structions e.g., fcmovb. This can be handled by using programs from
diverse sources, such as Debian Repositories [25], GitHub, etc. We
can also use systematic approaches such as Csmith [74] to generate
C programs with the desired features and then use them in C�����

����� to generate a complete binary dataset.
Minimizing compiler crashes: Although, as discussed in Sec-
tion 4.2.3, C��������� could �nd compiler crashes, it does not try
to triage (e.g., minimizing options and the target binary) them. We
plan to integrate techniques like Delta Debugging [76] in our future
work to minimize the set of crash-causing compiler �ags.

6 RELATED WORK

Program obfuscation [47] is a well-known technique to change a
program’s structure without a�ecting the underlying functional-
ity. One possible approach to the problem of this paper is to use
various obfuscation techniques [37, 68] to generate semantically
equivalent but structurally di�erent binaries. Many initial tech-
niques [17, 64] are aimed towards source or IR level obfuscation.
������� [18] is a source-to-source transformer that has various con-
�gurable transformations, such as control-�ow �attening [39] and
opaque-predicates [19]. Similarly, ������� [33] enables applying a
limited set of transformations at the LLVM IR level. Closure [43]
uses stochastic optimization to select a sequence of transformations
to produce the optimal obfuscation potency. Although these tech-
niques are e�ective at modifying the program at IR or source code
level, they have less impact on the generated binary [44].

A few binary-level techniques obfuscate control-�ow using error
handling semantics such as signals [51] and exception handling [71].
Other virtual machine–based techniques [24, 34] transform the
given binary into a custom virtual machine. These binary-level
techniques are known to introduce performance overhead [4]. The
binary-level techniques are based on a �xed set of carefully designed
patterns [47], which do not capture the entire range of behaviors
of the underlying ISA. Finally, the primary goal of obfuscation
techniques is to generate a hard-to-understand version of a given
program [10]. In contrast, C��������� does not care about the

understandability of the generated binary as long as it is di�erent
from all previously seen variations. The use of a compiler to gen-
erate binaries have been explored before, especially in the area of
software diversity [30, 31, 38, 56]. These techniques only consider
limited, non-performance-impacting transformations. C���������
has no such restrictions and explores all possible variations of the
binary using compiler �ags.

Although the e�ects of non-standard compiler optimizations on
the generated binary have been explored before [12], the recent
work B��T���� [53] is the most closely related to C���������.
However, as explained in Section 1, B��T���� requires consider-
able e�ort to use as it requires specifying con�icting compiler �ags
manually as �rst-order constraints.C��������� is completely auto-
mated and uses a feedback-guided approach to identify con�icting
options automatically. Furthermore, as shown in Section 4.3, C���
������� is more e�ective than B��T���� in e�ciently generating
diverse binaries. The use of fuzzing, especially AFL++, to gener-
ate a sequence of tokens has been explored before to fuzz inter-
preters [55]. Our approach allows the fuzzer to use its input genera-
tion ability fully, and enables C��������� to be easily con�gurable
to use other fuzzers.

7 CONCLUSIONS

We present C���������, an architecture, compiler agnostic and
automated framework that generates a plethora of diverse binaries
from program source code by using feedback-guided fuzzing. Our
evaluation shows that C��������� is generally more e�ective at
generating diverse binaries for a given program than B��T����, a
closely related work. It can be scaled on multiple threads for faster
binary generation and better resource utilization. We showed that
many binary analysis frameworks perform poorly on C���������

generated binaries opening up opportunities for more research
in this area. We envision that C��������� becomes part of a bi-
nary analysis testing framework and helps in creating more robust
analysis tools.
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