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Abstract—Video calling applications such as Zoom and Skype
have become the preferred medium for both personal and
professional communications. One feature in these applications
that has gained prominence is the virtual background feature,
which enables users to conceal their background by blending
in a virtual image or video in place of the real background,
thus providing users with background and contextual privacy.
However, this feature is not robust enough, and depending on the
target user’s activities, movement and accessories worn during
the call, portions of the user’s background could leak which
can then be reconstructed to reveal significant portions of the
user’s real background, and other contextual information related
to the real background. This paper conducts an investigative
analysis of the background privacy provided by the virtual
background feature in video calling applications by designing
a novel background reconstruction framework, and using it to
reveal users’ real background. By means a large dataset of call
videos, collected from human subject participants and in the
wild, a comprehensive evaluation of the proposed framework and
related privacy attacks under a variety of different experimental
parameters is then carried out. Results from these evaluations
show that significant leakage of background information is
feasible under certain conditions, rendering the feature ineffective
in protecting privacy and giving users a false sense of security.

Index Terms—Virtual background, video call, privacy.

I. INTRODUCTION

The use of video conferencing applications (e.g., Zoom [13],
Skype [8], and Microsoft Teams [5]) brings many benefits in
this era of remote communication and work, however it also
raises significant privacy concerns. A recent Ipsos survey [3]
found that more than 60 % of the respondents were concerned
about the privacy of their video calls. This should not be
surprising, as video calls often contain potentially sensitive
spoken or displayed (visual) information by, or related to, the
participants. Video calling platforms typically employ end-
to-end encryption to protect call data from trivial network-
level eavesdropping. Despite this, several popular platforms
have suffered from security breaches in the past resulting in
leakage of private information such as stolen account pass-
words [1] and meeting identifiers resulting in the phenomenon
of “zoombombing” [14]. These vulnerabilities, which are
primarily system- or platform-specific and can be attributed
to shortcomings in software design and implementation, have
since been fixed but new vulnerabilities continue to emerge.

However, there is a much bigger privacy threat that impacts
all types of video calls, irrespective of the platform or service
provider, and which has been largely ignored by users, service
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providers and the scientific community so far. What if the
adversary is a valid/authorized user present at the other end of
the video or conference call? In other words, can an adversary,
who is at one end of a video call, infer some potentially
sensitive information about the target user (at the other end)
that is not trivially visible/audible in the call? Akin to “insider”
attacks in traditional computer and information systems, such
insider privacy threats in video calls are not only application-
or platform-agnostic, but also difficult to detect and hard to
protect against without significantly impacting call quality.
Recently, there have been several investigative studies in this
direction where acoustic information and image frames from
video calls have been exploited to infer keystrokes [23], [30]
and call locations [27] of target users (on the other end of
the call). In order to keep pace with the constantly advancing
and evolving video calling technology, a continuous effort
to identify and overcome novel security and privacy threats
is needed - this includes not only platform-specific threats,
but also platform-agnostic and insider threats which are much
more difficult to perceive and protect against!

This paper advances the state-of-the-art in the later di-
rection, by studying the effectiveness of a popular privacy-
preservation technique in online video calls - virtual back-
grounds. A virtual background (also sometimes referred to
as a background filter) is an image overlay which can be
used by online video call participants to hide their real or
actual backgrounds. In other words, the virtual background
feature, which is available in most online video conference
applications, allows video call participants to cover their actual
backgrounds with an image of their own choice such that
the overlay image hides or obscures most, if not the entire,
actual background. Video calling applications accomplish this
by separating the foreground (containing the user) and the
background using image processing techniques such as image
matting [34]. A virtual background can be used to obscure
personal or intimate objects in the users’ background or
to anonymize sensitive context such as location [9], [10].
However, the effectiveness of this privacy feature has not
been thoroughly investigated. Specifically, it is currently not
known how effective is the virtual background (or background
filter) feature in protecting users’ actual backgrounds, and the
sensitive information therein, in online video calls? We address
this issue by undertaking an investigative analysis of the virtual
background feature in popular video calling applications to
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study how they perform against our novel real background
reconstruction strategy and related privacy attacks.

We first propose a novel background reconstruction frame-
work (Section V) which attempts to reconstruct the real back-
ground in a video call that has a virtual background blended
in to obscure the real background. Followed by that, we
employ the real background (partially) reconstructed by this
framework to design and evaluate four different privacy attacks
(Section VI), namely, location inference, specific object track-
ing, generic object inference, and text inference attack. Then,
by means of video call data collected from real human subject
participants (in a variety of different settings and parameters)
and pre-recorded videos collected in the wild (Section VII),
we comprehensively evaluate the performance of the proposed
real background reconstruction framework, and the efficacy of
the privacy attacks that employ it (Section VIII).

II. RELATED WORK

Next, we briefly summarize some recent privacy threats
targeting online video calls, followed by a discussion of more
general threats which employ other visual (side)channels.
Privacy Attacks using Online Video Call Data. As out-
lined earlier, privacy attacks in online video calls are either
platform-specific and can be attributed to shortcomings in the
target platform’s software design and/or implementation, or
platform-agnostic and employ audio/video call data as side-
channels for inferring sensitive information. For the former
case, we have seen instances of software vulnerabilities and
configuration issues in the popular platform Zoom that have
resulted in leakage of private information such as stolen
account passwords [1] and meeting identifiers [14] resulting in
unauthorized individuals joining (‘“Zoombombing”) meetings
with the aim of harassment and causing disruption. Similarly,
another popular platform Webex has suffered from several
vulnerabilities [2] which would allow attackers to covertly join
meetings and access private information (e.g., name, email,
IP address, device info) on meeting attendees without being
admitted to the meeting. These platform-specific vulnerabil-
ities have since been fixed, but new ones have continued to
emerge. In the direction of platform-agnostic attacks, there
have also been several investigative studies exploiting acoustic
data and image frames from video calls as side-channels to
infer sensitive information about the meeting/call participants.
For instance, Sabra et al. [30] studied the feasibility of
inferring a call participant’s typed keystrokes by observing
the target’s fine-grained shoulder movements. Compagno et
al. [23] conducted a similar investigation by employing key-
press acoustics or audio data, instead of the call’s video data.
Recently, Nagaraja et al. [27] investigated the feasibility of
inferring call locations from echo-reflection characteristics.
Privacy Attacks using other Visual Channels. Beyond the
context of online video calls, private data inference attacks that
employ other forms of visual channels is a well-researched
domain. For instance, visual attack vectors such as a touch-
screen’s reflection on sunglasses [28], eyeball movements of
a hunt-and-peck typer [22], visual tracking of fingers [17],
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and observation of motion of a tablet’s backside [33] have
all been utilized to infer typed text, passwords, PINs, and
other sensitive information. Similarly, Backes et al. [15],
[16] has proposed Tempest attack techniques which employ
visual reflections to infer sensitive information, for example,
reading the contents of a monitor from the reflections off
a user’s eyes or other seemingly benign objects such as
teapots. Some other attacks in this broad direction also include
inferring sensitive information from publicly-available images.
For example, Shoshitaishvili et al. [31] devised a novel attack
framework that, given a large corpus of pictures shared on a
social network, automatically determines dating relationships,
with reasonable accuracy.

The privacy attack proposed in this paper lies in the former
category, i.e., privacy attacks in online video calls. However,
in contrast to earlier efforts, in this work we target a novel
application feature (i.e., virtual background or background
filter) and the sensitive information leaked by it (i.e., users’
obfuscated backgrounds). As backgrounds in online video calls
could reveal potentially sensitive information, including user-
context, location and preferences, it has resulted in wide-
spread adoption of background hiding/obfuscation features,
such as, virtual backgrounds, by users. As a result, it has
become all the more important to comprehensively evaluate
the efficacy of such popular privacy-preserving features in one
of the most widely used web applications (i.e., online video
calling). This is what we aim to accomplish in this work.

III. TECHNICAL BACKGROUND

Before describing our real background reconstruction

framework and the related privacy attacks, we first outline the
relevant technical concepts that are needed in its understand-
ing.
Representation of Video Data. Any video stream data V' is
a time-ordered sequence {f', f2, f3,..., f'} of image frames
f%, where [ is the number of frames in the video. [ typically
depends on the length of the recorded video and the sampling
rate of the recording device (hardware and software). Each
frame f° in a video stream V can be represented as an array
of (m rows and n columns) of pixels, denoted as follows:

%
pl,n

7
p2,n

Pi,1 Pi.g Pi,g

. Doy Do Dag3
VfteV = . . .
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The size of the array (characterized by m and n) is indicative
of the resolution of the image frames within the video, and is
generally fixed for all the frames of the video. Each pixel p;, ,,
of a frame f* stores the color information at location (u,w),
and the size of the pixel (in terms of number of bits) depends
on the bit-depth used to store color information in the image.
For example, for an image with a 24-bit depth (also referred
as Truecolor), Duw is a 24-bit value, wherein each of the three
8-bit blocks represent the intensity of the red, green, and blue
primary colors, respectively.
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Virtual Background Feature. Although the exact technique
for applying virtual backgrounds to an ongoing video call in
commercial video calling/conferencing applications is propri-
etary and unknown, we have determined the general underly-
ing principles to be as follows. The virtual background feature
in video calling applications attempts to replace/overlay the
background pixels of each image frame f? in the video call V/
with the corresponding pixels of a virtual image, denoted by
V1. In this process, the first step is to generate a background
mask for each frame, denoted as BM?, which identifies the
regions of the frame where the virtual background should be
applied. More formally, a mask BM? is a bitmap with the
same resolution as the target image frame f?, where non-zero
pixel values represent the foreground (such as a human face
or body), while zero pixel values represents the background in
the video call. Often a binary mask is used for this purpose,
which for a frame f? of size m x n is a m X n bitmap,
where each pixel (u,w) of the mask having a value of either
(255,255, 255) (indicating that the corresponding pixel p?, ,,
of f is part of the foreground) or (0,0,0) (indicating that
the corresponding pixel pf, ,, of f* is part of the background).
Similarly, a trimap mask has three states where an intermediate
value of (128,128,128) implies that a pixel p, ,, can either
be part of the foreground or background. Mask generation is
usually done by means of custom supervised machine learning
models, which are capable of detecting and separating fore-
ground objects (in image frames) from background objects.
Moreover, mask generation could either be done independently
across frames or based on previously observed frame(s) in
order to reduce (classification) errors and abnormalities. Mask
generation (to separate the foreground from background) is not
a perfect process, and depending on factors such as presence
of certain objects in the frame or movement of users/objects
across frames, parts of the background could be classified as
foreground by the mask and “leaked” in the masked frame.
This part of the real background for a frame f* that is “leaked”
or not obscured by the mask is also denoted by LB?.

After the background mask is generated, a blending function
is used to combine appropriate portions of virtual image
VI, called the virtual background image and denoted as
V B!, with the image frame f* using the background mask
(BM?) generated in the previous step. Typically, blending is
used to increase the quality of the video frames by reducing
sharp contrasts between the detected foreground objects in
the original frame and the virtual background image. Some
state-of-the-art blending techniques that could be employed
for this purposed include alpha blending, Gaussian blending,
and Laplacian pyramid blending [19], [20], [18]. However, the
blending function used by popular video calling applications
is unknown (to us), and the type of blending function used
could also depend on the generated mask. One side-effect of
the blending operation is that it creates small regions in the
output frames (near the foreground-virtual background edges)
such that pixel values in these regions are mixture of both f?
and V B?, as depicted in Figure 1.

Four Conceptual Components of Virtual Frames. Consider
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(a) (b) (©)

Fig. 1: (a) A zoomed region of the real background, (b) the
zoomed region after applying virtual background with blend-
ing, (c) the zoomed region after applying virtual background
without blending.

a video call V' with a virtual image (V' I) blended into the
frames of V, as described earlier and shown in Figure 2. Each
(blended) frame f? of V is composed of four non-overlapping
components (represented as bitmaps): the video caller V C?,
the leaked background L B, the blended pixels BB® due to the
blending function, and the virtual background V B?. As such,
every pixel in a frame can be defined as a combination of
these four bitmaps, as shown in Figure 3. Later in this paper,
we will attempt to infer the leaked background (LB?) in a
blended frame by reconstructing the other three components.
Specifically, reconstructed VBt, BBY, and VC" are removed
from the original blended frame f?, and any residue pixels not
removed from f? are assumed to be the leaked part (LB?) of
the real background.

Sensor Capture Background Matting Display
-0ttt I S
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Fig. 2: An example of virtual background used in a video call.

| oo
(a) (© (d) (e)

Fig. 3: The color green represents the leaked background,
brown represents the virtual background, and blue is the video
caller. (a) f%, (b) BB?, (c) VB, (d) VC, (e) LB".

(®)

IV. ADVERSARY MODEL

The goal of an adversary in our setup is to infer as much
information about the real background as possible from the
virtual image blended video call frames, produced by the
virtual background feature as discussion in Section III. The
leaked (real) background information in this fashion can be
used to infer sensitive information such as: (i) location of
the target user during the call (for example, if the target
user is at home, office, or another location), and (ii) objects
present in the background (for example, books or signs/posters
indicating political/religious affiliations). This could result in
a significant privacy loss for the target user, despite using a
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virtual background feature to hide such information from being
revealed to others on a video call, thus rendering it ineffective
and giving the user a false sense of privacy protection.

Specific to our experimental setup, we assume that the
webcam employed by the target user is stationary during the
video call, and that the adversary is able to save the video
stream data (V') for post-processing. Additionally, we assume
that there is at most only one person in the recorded video
stream. The adversary can execute this privacy threat by either
participating in a video call as an authorized participant and
directly recording the video data corresponding to the target
user, or by gaining access to a recording of the call from a
private or publicly-available archive [7], [12], [11] after the
call. We will discuss additional setting- or scenario-dependent
adversarial assumptions as we describe our inference frame-
work in the following sections.

V. REAL BACKGROUND RECONSTRUCTION FRAMEWORK

‘We now present the design of our reconstruction framework,
which takes as input a sequence of virtual image blended video
frames V', and outputs a reconstruction of the real background
by combining all leaked background parts LB,

A. Overview

Given V, our framework applies the following process on
each frame f* € V: (i) determine the virtual background re-
gion (or bitmap) V B?, (ii) determine the blended region BB",
and (iii) determine the video caller VC?. Once these three
components are identified, any leaked background regions LB’
in the frame f? are calculated subtracting all the regions from
fiby VC', BB, and VB® . After all frames in f* € V are
processed in this fashion, our framework combines all LB’s
(Vi) to reconstruct (parts of) the real background obfuscated
by the virtual background feature. The overall design of our
proposed reconstruction framework is shown in Figure 4.

B. Virtual Background Masking

The first step in our framework is to identify the virtual
background region V B! using virtual background masking.
We consider two different scenarios. First, where the adversary
has the virtual image VI employed by the target user, and
can use it as a direct mask. This is an effective approach
when a built-in and/or popular image is used as a virtual
image. The second scenario is where the adversary does not
have the virtual image employed by the target user, and must
reconstruct it before applying it as a mask. Similar scenarios
should also be considered if the virtual background feature
employs virtual videos, instead of static virtual images, for
concealing the real background.

Identifying Known Virtual Image. This is the relatively
straightforward scenario for virtual background masking,
where the adversary can simply compare pixel-level similarity
with a dataset (D;y,y = {imgs,imgs, . ..}) of default/popular
virtual background images that are potential candidates for the
target user’s employed virtual background. For this we employ
an highest-likelihood estimator that, for each blended video
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frame f?, does pixel-level matching with each image in the
above dataset, and is defined as follows:

Z Z H(imgu,w @D f;,w)

u=1w=1

max

imga,ctual == .
Vimg€Dimg

where p is a matching function,

p(z) = {

Identifying Known Virtual Video Frame. In this case, we
assume a dataset of known videos, D,;q = {vidy,vida,...}.
Please note that as a video is a sequence of frames, the above
set is nothing but a set of frames. Now, when processing a
blended frame f* in V/, it simply needs to be determined which
frame (of which video) in the above dataset is employed as
the virtual background. In order to accomplish this, we extend
the previous highest likelihood estimator as shown below by
considering all frames in all default/popular videos in the
dataset:

1
0

ifx =20
ifz #0

m

Z Z /,L(f?"ameu,ur 5% fzi,w)

u=1w=1

max

frameactual =
Vframe€D,;q

Using Unknown Virtual Image. In this case, the adversary
does not have the raw virtual image used by the video caller.
For this we design the framework to recreate the potential
image used as the virtual background, from the video V itself.
For this we utilize the observation that only pixels belonging
to the virtual background would stay the same (static) across
all the frames of V, whereas the pixels representing the user
(caller) and blended regions around the user would be more
dynamic. We employ a threshold-based approach, wherein any
pixel with a consistent value across a large number of frames
in the video V would be considered as part of the virtual
background image. Empirically, we found that for a standard
30 fps video stream, a pixel consistent across 10 or more
frames has very high probability of belonging to the virtual
background. We employ this threshold in our evaluation. This
virtual image derivation approach may work similarly well in
case the user is fairly stationary during the call, which will
not reveal the regions of the virtual image where the user is
positioned. This problem can be mitigated by the adversary by
searching for the unknown virtual image in other call videos
(used by the same user or other users), and then used them
during the virtual image derivation process (Figure 4).

Using Unknown Virtual Video Frame. Similar to the previ-
ous scenario, in this case the adversary does not have the raw
virtual video (frames) used by the video caller as the virtual
background. As the unknown video has multiple frames,
this makes it even more challenging to identify the exact
background video frame that should be used (to compare) with
a corresponding frame in the target video call. We utilize the
fact that the virtual video loops repeatedly, and use it to derive
all the frames of the virtual video using information from every
periodic occurrence of each frame (pixels stay the same across
every occurrence of a frame). Once the virtual video has been
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Fig. 4: Proposed real background recovery framework. Green arrows show the flow.

derived, we again employ a pixel-level similarity matching to
identify a frame in the video call (V) containing the exact
frame from the virtual video. This virtual video derivation
may also not be completely accurate, especially if the user
is fairly stationary during the call. Similar to the unknown
virtual image, we can employ the virtual video used by another
user (or in another video call by the same user) for better
reconstruction (Figure 4).

Generating Virtual Background Mask. After either a known
virtual image/frame or a reconstructed image/frame (denoted
as M) is identified, a binary virtual background mask (V BM)
is generated at the pixel-level using the following function:

i 1 lfH(Ml@fuw):
VBM, , = :
’ {0 if p(M' & fi.0) =
We can now use VBthw to obtain VB! (from f?) as
follows:
i )i, fVBM., =1
VBuw = {0 if VBM;, ., =0

Later in the paper, we visually show V B? being removed
from f* by depicting the corresponding pixels as black (an
example is shown in Figure 3).

C. Blending Blur Masking

The next step in our framework is to approximately identify
the blending blur (BBY region Vi, i.e., for all the blended
frames f° € V. The BB’ region resides between virtual
background region (V B?) and foreground pixels (VC? plus
LB?%). And, leaked background pixels (LB?) are usually found
between BB? and VC' as the video calling software mistakes
parts of the background as being a part of the video caller
(user). The separation between the video caller (user) and any
leaked real background is not accounted here, and will be
recovered in the next phase as part of the foreground.

To recover BB/, . we check all pixels within a radius ¢ for

u,w

every pixel in the VBM?® = 1. In other words, Yu,w where

VBM} ,, =1, we calculate BBM; , = 1&V BM,. ,, wherein
we maintain heuristically derived constraints such as:
Vip—uw?+@—-u? <o,

1<p<m, 1<q¢<n
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We can now use BBthw to obtain BB’ (from f%) as

follows:
BB, = {

D. Video Caller Masking

We observed a few key characteristics in the video calls
pertaining to the video caller (or user), which we take in to
account for calculating the video caller mask (VCM?):

Inaccurate Human Boundaries. It is repeatedly observed
that regions under the head, near the hair, between fingers,
and other places around the video caller (or user) contains a
leakage portion of the real background. This type of leakage
contributes significantly towards our real background inference
process.

Initial Leakage. We also observed that when a video call
starts, the accuracy of a video calling software in concealing
the real background is often poor. The accuracy improves after
a few frames, when the video calling software is better able
to track movements of the video caller, as shown in Figure 5.
This type of leakage also contributes significantly towards our
real background inference process.

Color Analysis. Whenever a pixel from the real background
is leaked, it would fairly maintain the same color across
different frames when it was leaked. In contrast, the pixels
depicting the boundaries of the video caller would have
slight variation is color as they relatively move throughout
progressing frames. This can also be amplified by factors such
as patterns on their cloths. We utilize this observation to refine
our video caller mask (VCM?).

In order to accurately generate VCM* we apply a state-of-
the-art segmentation technique using DeepLabv3 [21], which
employs the Atrous Convolution with upsampled filters to
extract dense feature maps and to capture long range context.

if BBM ,, =1
if BBM{ ,, =0

i
fu,w
0

-r

Fig. 5: Example of leaked background components in the
initial frames of a video call.
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While this technique cannot be applied in real-time video calls
due to computational challenges, an attacker can certainly use
it for post-processing of a recorded video call. The output of
this process is a video caller mask (VCM?), which can be
used to obtain VC? from f?.

Color-based Refinement of VCM?*. Although very accurate,
DeepLabv3 is not perfect, and as a result, the VOM? it
outputs may still contain parts of the leaked background. To
address this issue, we further refine the accuracy of the VC M i
obtained as the output of DeepLabv3 by applying a statistical
color-based correction on the VOM?® . Specifically, for every
pixel in VCMi,w = 1, if a color was observed in fiw with a
very low frequency (presumably from the real background), we
modify VC’M};M = 0. Ultimately, the color-based refinement
would identify some of the leaked background pixels where
their color statistically contrasts with the video caller.

E. Real Background Reconstruction

After the generation of the virtual background mask
(VBM?), blending blur mask (BBM?*) and the video caller
mask (VCM?) for every frame f¢ € V, our attack framework
attempts to infer the leaked background (L B?) in each frame
f* € V by removing the corresponding components (i.e.,
VB!, BB?, and V"', respectively) from the original frame
f%. Any residue pixels not removed from f are assumed to
be the leaked part of the real background. More specifically,
VB!, BB and VC? are removed from the original frame
f? by applying the corresponding masks V BM?, BBM?, and
VO M?, respectively, to f*. The residual (leaked background)
pixels in all frames are then combined to form a (partially)
reconstructed real background.

VI. INFERENCE ATTACKS

Location Inference. Our first attack, referred as Location
Inference attack, is aimed at inferring the location of a victim
caller, given that the adversary has auxiliary information about
the caller’s background at different locations. We had to
address two technical challenges in implementing an auto-
mated location inference based on matching reconstructed real
background with a set of known backgrounds (and therefore
their corresponding locations). We also extend our matching to
location across different calls, without knowledge of the full
real background (auxiliary information). The first challenge
is that the real background may have slightly changed (from
the background known to the adversary at a prior time) due
to changes in ambient lighting, for example, the effect of
difference in daytime and nighttime lighting. The second
challenge is that the camera view may have slightly rotated
and/or shifted from the background known to the adversary,
which is likely if the webcam was re-adjusted or if it a laptop
webcam which is angled differently based on how the laptop
is opened. We address the first challenge by reducing our
matching problem to hue matching at individual pixel level,
while ignoring their saturation which is significantly affected
by ambient light conditions. The second challenge is addressed
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by incrementally rotating and shifting the reconstructed back-
ground, while trying to find the best match with a known
background. Due to space constraints, we do not provide full
technical details of the above two matching techniques (to
overcome both the above challenges).

Specific Object Tracking. Instead of inferring the (whole)
background or associated context (e.g., location), the focus of
the Specific Object Tracking attack is to look for the presence
(or absence) of a specific object (or objects) in the recon-
structed (real) background. For this attack, we assume that the
adversary has a template of the object he/she is searching for
in the reconstructed background. A template is nothing but an
array of pixels describing the desired object. To search for the
object in the reconstructed background, the object template is
incrementally rotated, shifted, and scaled while moving across
the pixel map of the reconstructed background frame looking
for areas (in the reconstructed background frame) that closely
represent (or match) the object. For determining a match, both
the color (hue) and the relative distance between the pixels
being compared are considered, together with the percentage
of the template that is matched. Again, we skip some of the
specific technical details due to space constraints.

Generic Object Inference. The goal of the Generic Object
Inference attack, which we investigate next, is to generically
detect (the presence or absence of) objects in the reconstructed
background, without using any template (as before). For this,
we employ state-of-the-art object detection frameworks such
as RetinaNet [24] and YOLOvVS [29], which are trained with
the household object data set [26], common objects (COCO
dataset) [25], and ImageNet database [4]. For our experimental
evaluations, we employ publicly-available implementations of
both RetinaNet and YOLO.

Text Inference. The goal of the Text Inference attack is
to infer any textual data present in the reconstructed (real)
background. For this attack, we employ the TextFuseNet
framework [35], which uses a fusion of Mask R-CNN and
Mask TextSpooter models to detect bounding boxes around
the text in the image frames. Followed by that, the framework
employs a fusion of Residual Neural Networks (RESNet) and
Region Proposal Networks (RPN) models to infer the text
within the detected bounding boxes.

VII. EXPERIMENTAL SETUP AND DATA COLLECTION

Next, we present details of the different experimental set-
tings and scenarios under which video call data from hu-
man subject participants is collected, and eventually used
for evaluating the proposed attack framework. In order to
collect video call data that captures a wide-range of target user
movements, backgrounds and interactions, we designed three
different experimental setups or data collection strategies. The
first setup, referred by us as E1 and described in Section VII-A,
is designed to comprehensively evaluate the vulnerability
of the virtual background feature under a variety of target
user related parameters (such as actions, backgrounds and
clothing/apparel), by carefully controlling these parameters. In
this setup, the collected videos are short in nature and there
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is no active interaction (by the author collecting the data)
with the participant while recording the videos. The second
setup, referred by us as E2 and described in Section VII-B,
is designed to mainly evaluate the vulnerability of the virtual
background feature in two contrasting settings with no control
on the participants’ action or movements. The first setting is
where the participant is passively watching/listening to some
online content, while the second setting is where the partic-
ipant is actively interacting with another user (for example,
presenting some content). In this setup, the collected videos
are slightly longer in nature and there is active interaction
(by the author collecting the data) with the participant while
recording the videos. While the first two setups collected video
call data from actual human subject participants, in the third
setup (referred by us as E3 and described in Section VII-C)
videos are captured from the wild (say, from YouTube). Videos
from this third setup is used to simulate a setting where the
adversary is not an active participant in the call and attempts to
compromise the background privacy of arbitrary pre-recorded
videos with the virtual background feature. We would like
to highlight that all data from human subject participants
in our experiments were collected in an ethical fashion and
after obtaining the necessary approvals from our university’s
Institutional Review Board (IRB).

A. Experimental Setup EI

For this setup, we recruited 5 human subject participants
(from on-campus) and asked them to record short two-minute
videos performing ten unique actions/movements under vary-
ing background and other conditions. Participants used their
own personal laptop or desktop computers (with a webcam)
to complete all the recording sessions in a remote fashion at a
location of their choice. The participants recorded the videos
without the researchers present or interacting with them. They
were given a fixed time-frame to complete all the video
recordings remotely at their own convenience, and then send it
back to the researchers (all together) once completed. The ten
unique actions/movements included: leaning forward, leaning
backward, arm waving, rotating, clapping, stretching, typing,
drinking and exiting/entering room. In addition, participants
were asked to repeat the above actions under different back-
grounds, different lighting conditions (lights on/off), different
apparels (similar/contrasting to the background), and with
different accessories (e.g., headphones, hats, etc.). Participants
were only given high level experimental parameters, with the
specifics (exact background, apparels, accessories, etc.) left at
the participants’ discretion. For each two-minute video, par-
ticipants received $1, with a maximum of $20 per participant
for this phase. At the end of this experimental data collection
phase, we ended up collecting a total of 163 videos, which we
use in our evaluations.

B. Experimental Setup E2

For this setup, we recruited 5 participants as well, out of
which four were from the E1 data collection phase while the
remaining were newly recruited participants. Here, we first
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asked each participant to initiate a video call with one of the
authors (who was collecting the data) and record 4 ten-minute
videos where they are passively watching some online content
(e.g., YouTube video). Then, they record an additional ten-
minute video where they are actively engaging (by means of
a presentation) with the author. For each recording, we asked
the participants to pick a different background. For each ten-
minute video, participants received $4, with a maximum of $20
per participant for this phase. At the end of this experimental
data collection phase, we ended up collecting a total of 25
videos, which we use in our evaluations.

C. Experimental Setup E3

For this setup, instead of recruiting human subject partic-
ipants, we searched for pre-recorded videos in the wild, for
example, videos uploaded on classical video sharing services
such as YouTube. Our goal here is to find videos of users
participating in real video conference calls, or as close to a
conference call setting as possible. To accomplish this, we
searched on YouTube using a variety of keywords, including
terms like “vlog”, “podcast”, “talk”, “review”, etc. At the end
of this data collection phase, we collected a total of 50 videos
with varying lengths, which we use in our evaluations. During
our search for videos in the wild, we observed that some of the
videos had post-recording edits, overlays, and other elements
which were were not very desirable. In those cases, we either
completely discarded the video (from our dataset), or only
used a segment of the video without the post-recording edits.

D. Post-processing

All the videos in the three different setups above are
collected without a blended virtual background (or background
filter). This is done to preserve the true background, which
will be later used as ground truth in our evaluation. In order
to blend virtual backgrounds post-recording, we replay the
collected videos on a video calling software, such as Zoom,
via the Open Broadcaster Software (OBS) VirtualCam plugin
[6]. OBS VirtualCam simulates a webcam and allows us to
pass the pre-recorded videos to the video calling software as
if it was directly coming from the webcam. From there, we
applied a virtual background to each of the pre-recorded videos
using Zoom’s virtual background feature. We then use Zoom’s
record feature to produce recorded versions of our videos
(collected from E1-E3) with the virtual background applied.
After creating a video dataset using Zoom, as described above,
we repeat the same process using the Skype video calling
software instead of Zoom, in order to comparatively evaluate
the performance of our attack framework on both these popular
video calling applications.

VIII. EVALUATION

We now present evaluation results of our proposed frame-
work by means of the video call data collected in various
settings, as described above. The following results are for
videos with virtual background rendered by Zoom, except in
Section VIII-E where we contrast the results using Skype.
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A. Performance Metrics.

As we propose a framework to exploit a new type of
vulnerability, we first define a custom set of metrics that can
appropriately capture its performance and effectiveness. We
specifically employ only these metrics in our evaluation.
Virtual Background Masking Rate. We define Virtual Back-
ground Masking Rate (VBMR) for a given frame as the
percentage of the virtual background that was masked after
applying blending blur to that frame (Section V-C). A 100%
VBMR indicates that the virtual background is completely
masked from the frame, preventing any virtual background
pixels to be mistakenly labeled as a component of the leaked
background. Similarly, a 0% VBMR means that all pixels
in the virtual background could be classified as part of the
leaked background. VBMR is the difference between the
pixels from the ground truth data (video before applying
virtual background) and the corresponding pixels after the
blending blur is applied.

Reconstructed Background Recovery Rate. We define Re-
constructed Background Recovery Rate (RBRR) as the per-
centage of the original video frame that is recovered by
the proposed real background reconstruction framework (Sec-
tion V). To compute RBRR for a target video (with the virtual
background applied), we count all the pixels of the original
video without the virtual background applied that are leaked
in one or more frames of the target video, divided by the
frame/video resolution.

Action Speed. We define Action Speed of a particular action
event (conducted by the user or participant in the call) as the
number of frames from the start of the action event until the
end of the event, divided by the frame rate.

Displacement. For a particular action event, Displacement is
defined as the percentage of unique pixel changes across all
the frames from the start of the action event until the end of
the action event.

B. Virtual Background Masking Rates

We measure VBMR of our framework using three different
virtual images and two virtual videos. When the ground-truth
virtual backgrounds are included as possible virtual back-
grounds, we observed an average VBMR of approximately
98.7%. Alternatively, when the ground-truth backgrounds are
not included, we observed a slightly worse average VBMR
of approximately 92.6% (when 10 minute video call footages
were used).

C. Background Recovery Rates

We now discuss the reconstructed background recovery rate
(RBRR) results for the proposed framework, evaluated under a
variety of experimental parameters as outlined in Section VIIL.
Impact of Different Framework Parameters. One of the
parameters we introduced in our framework is the radius (¢)
that determines which portion of a frame is part of the blur.
If ¢ = 0, then naturally our obtained RBRR will increase,
but at the cost of precision as some of those pixels would be
blurred. However on the other extreme, increasing ¢ to a very

Reference Frame

Reconstructed Background

Fig. 6: Two examples of reconstructed background images
using two separate videos from E1.

high value is also not advisable as there will be nothing to
recover then. In order to determine a suitable value for ¢, an
adversary could apply a virtual background on a set of static
images using the target software, after which the adversary
can calculate the average depth of the blur (¢) by comparing
the virtual image, real backgrounds, and the output images.
Following this process, we obtained ¢ = 20 as the average
depth of blur, and use it for the rest of our evaluation.
Effect of Different Actions. An interesting pattern that we
observed in our experiments is that action events which result
in higher displacements cause more of the real background
to be leaked, compared to events with lower displacements.
For instance, we can see from Figure 7 that on average,
entering and exiting (a room) events resulted in a RBRR of
about 38.6%, while typing resulted in 4.4% RBRR. Intuitively,
this is because entering and exiting events cause significant
movement across the real environment, which eventually leads
to significant leakage of the real background.

Participants m1 m2 m3 w4 m5

& Actions

Fig. 7: Background recovery under various actions.

Effect of Movement. We next analyze how action speed
and displacement impacts the background recovery. In our
first experiment (E1), we asked the participants to vary the
arm waving and clapping action speeds as “slow”, “average”,
and “fast”. The interpretation of these subjective scales were
left to individual participants. The average [action speed,
displacement] for the “slow”, “average”, and “fast” clapping
speeds were [0.9s, 7.2%], [0.26s, 5.1%], and [0.11s, 4.4%],
respectively. While for arm-waving they were [2.3s, 28.2%],
[0.9s, 24.1%], and [0.7s, 23.4%], respectively. We observed
that both for clapping and arm waving, slower action speeds by
participants typically resulted in greater displacements. Con-
versely, faster action speeds resulted in the lesser displacement.
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From our background recovery results Figure 8 in this setup,
we observe that action events with the slowest speed returned
the highest RBRR (35.9% in “slow”, 30.3% in “average”, and
33.7% in “fast” arm waving). A faster arm waving, on average,
was leaking more background pixels than an “average” arm
waving, most likely because of the motion blur produced by
the waving action, which made the foreground blend with
the background. However, we also saw that too much motion
blur could be less revealing if the hand is masked as part of
the background. This was observed in case of the “fast” arm
clapping event which resulted in a RBRR of 20.8%, while
“average” clapping event resulted in a RBRR of only 22.6%.

100
80
60
40
20

ﬂ

Clapping

Slow

RBRR

- e
Arm waving

Fig. 8: Effect of action speed on background recovery.
Effect of Different Accessories. In the next set of experi-
ments, we analyzed the effect of participant accessories like
headphones and hats on the real background recovery process.
Overall, we did not find any significant difference between
the participants’ choice of different accessories worn during
the call. For instance, Figure 9 exemplifies the indifference in
background recovery for one particular participant with four
different combinations of accessories.

mHat ® Headphone Hat + headphone None
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Fig. 9: RBRR for a participant in E1.

Effect of Different Background Lighting. During this set of
experiments, we asked participants to repeat the same video
call setup under two different lighting conditions, once with
background light OFF and then with the background lights
ON. Based on the data collected from these experiments, we
observed that, in general, there was more background leakage
in low lighting conditions than under high lighting conditions
(41.6% RBRR light OFF vs. 39.6% RBRR light ON), as
shown in Figures 10 and 11. While the 2% difference in
RBRR is not significant, interestingly, we observed that the
regions of the background reconstructed under the different
lighting conditions varied significantly. This suggests that the
difference in the RBRR is not merely due to noise.

Being Passive vs. Active in Video Calls. Next, we present
our background recovery results for the experimental setups
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Fig. 10: Background recovery with background lights off.
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Fig. 11: Background recovery with background lights off.

E2 and E3 (outlined in Section VII). From the data collected
in the setup E2, we observed that passive video callers, i.e.,
video callers who are not talking during the call, are less likely
to leak significant portions of their real background compared
to those who are active, i.e., speaking or presenting, during
the call. As outlined in Figure 12a, for passive callers in E2
the obtained RBRR is 9.8%, while for active callers in E2 the
RBRR obtained is 30%. For the data collected in the wild from
YouTube (setup E3), we were able to obtain a RBRR of 23.9%
as shown in Figure 12a. This is significantly higher than the
9.8% RBRR obtained for passive callers in E2 because users in
E3 were actively speaking and presenting (similar to the active
users/callers in E2). Another interesting observation is that the
RBRR obtained for data collected in E3 is slightly worse than
the RBRR obtained for active video callers in E2 (23.9% for
E3 versus 30% for active callers in E2). This is most likely
because of the high-quality lighting and cameras employed
for producing YouTube videos, resulting in the video calling
software being able to better differentiate the background from
the foreground.

D. Privacy Attacks

Location Inference. As outlined earlier, in this attack exper-
iment our objective is to infer a target video caller’s location
by matching his/her partially reconstructed (real) background
to a pre-populated dictionary of background images (with
known locations and where the target caller may have been in
earlier videos). For this experiment, we populated our image
dictionary with 200 unique (real) backgrounds from the video
calls in E1, E2, and E3. Now, for a particular target video, we
rank all background images in the dictionary by computing
their similarity to the partially reconstructed (real) background
in the target video, with the top rank (rank 1) for image
which is most similar and the last rank (rank 200) for the
image in the dictionary that is the least similar. This similarity
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Fig. 12: (a) Background recovery in E2 and E3 experiments.
(b) Location inference in E2 and E3. Shows the percentage of
videos where the background (location) is correctly classified
within top-k images from the dictionary.

Passive  Ac

is calculated by comparing the hue changes and distances
between all pixels in the reconstructed real background (of the
target video call) and background images in the dictionary,
and finding the best possible match. We evaluate all videos
in datasets E2 and E3 separately by employing the metric
top-k (¢ = {1,5,10,25}), where k determines how close
to the best matching image in the ranked dictionary the real
background in the target video call is. So for a top-1 match,
the best matching image in the ranked dictionary (i.e., image
with rank 1) is the actual real background, while for a top-
10 match the actual real background is any image in the
dictionary with rank < 10. In addition to the above, we also
consider a baseline metric (for evaluation of videos in E3),
where k£ images are randomly chosen from the dictionary. If
the real background is present within those k& randomly chosen
images, then the attack is successful, otherwise it is not. Our
experimental results show that higher the RBRR for a target
video, better is the location inference given an appropriately
created dictionary. For instance, our results (Figure 12b) show
that 20% of passive video calls in E2, 60% of active video
calls in E2, and 46% of videos in E3 where recovered as top-
1 images (from the ranked dictionary). Moreover, regardless
of whether the video caller is passive or active, we observed
that our proposed scheme is generally effective compared to
random guessing.

Specific Object Tracking. Given that we have a template
image of an object in a video caller’s background, we attempt
to track if the object exists in the reconstructed background.
We do so by applying the same matching technique in our
location matching. If the resulting matching score is high, we
consider that the object is present in the background. In our
experiment, we were able to accurately infer multiple objects
(Figure 13) such as shirt, poster, painting, toy, bookshelf, and
book. However, a limitation of our object tracking method-
ology is that it produces a number of false positives when
matching our template image with very small areas of the re-
constructed background. It produces more false positives when
being matched to an area of the reconstructed background with
fewer pixels successfully recovered. Therefore, we enforced a
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minimum matching window size of 5% of the total pixels
in the frame and the window must have at least 50% of the
pixels successfully recovered. Overall, we were able to track
90 individual objects across different participants’ background
with 96.7% accuracy.

(@) (b)

Fig. 13: Examples of items detected using specific object
tracking: (a) a poster (b) a Pokemon figure.

Generic Object and Text Detection. As our experiments did
not regulate the background, we had no control on the objects
that may exist in the background. Using our RetinaNet and
YOLO object detction models (Section VI), pre-trained with
COCO and ImageNet datasets, we were able to detect books in
four different reconstructed backgrounds (Figure 14a), a Tele-
vision in two reconstructed backgrounds, shirts in one recon-
structed background, display monitors in three reconstructed
backgrounds, and a clock in one reconstructed background. A
significant number of videos had a blank wall, bricked wall,
window, or door in the background. Text was recovered (using
TextFuseNet) from only one video, which was written on a
sticky note present in the background (Figure 14b).

(a)

(b)

Fig. 14: Examples of items detected under generic object and
text detection: (a) a book detected using COCO and RetinaNet,
(b) text on a sticky note was detected using TextFuseNet.

E. Different Video Calling Software

In addition to Zoom, we also tested our attack on Skype. We
observed multiple visual differences between Skype and Zoom
virtual background rendering, confirming that they likely use
different virtual background masking techniques. Skype was
more accurate in its virtual background rendering, resulting in
an average RBRR of 19.4% for the E3 dataset, compared to
an average RBRR of 23.9% for Zoom on the same dataset.
As expected, some privacy attacks in Skype are less effective
due to the lower RBRR. For instance, the sticky note shown in
Figure 14b was leaked from a Zoom call but was not leaked
during a Skype call. Likewise, the location inference attack
also suffered slightly as for Skype the location of only 76% of
passive video calls where ranked within the top-10, compared
to Zoom’s 80% (as shown in Figure 12b).
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Fig. 15: (a) RBRR after applying dynamic virtual background.
(b) Location inference results with dynamic virtual back-
ground.
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IX. MITIGATION

Next, we briefly outline (and evaluate) a few mitigation
techniques against the proposed background reconstruction
and privacy attacks.

A. Dynamic Virtual Background

The main intuition behind the first mitigation technique is
to reduce the difference between the virtual background and
leaked background pixels as much as possible, by dynamically
adapting the pixel properties of the virtual background based
on the properties of the real background pixels. To accomplish
this, we employ a Gaussian kernel to modify the brightness
and saturation of the virtual background pixels for each frame
depending on the brightness and saturation of the correspond-
ing real background frame pixels. Further, the hue value of
each modified virtual background pixel is forced to randomly
fluctuate over multiple hue values (closer to the modified
hue value) across different frames, making it further difficult
(for the adversary) to differentiate the leaked real background
pixels from the virtual background pixels in each frame.
Results. When the dynamic virtual background is applied, our
obtained average RBRR increased to 65.8%, 74%, and 86.2%,
respectively, for the passive video caller in E2, active video
caller in E2, and the E3 datasets (Figure 15a). While normally
a higher RBRR would generally imply a higher leakage of the
real background, in this case the recovered real background not
only contain pixels of the real background, but it also detects
pixels of the virtual background as real background. We re-
analyze the location inference attack in Figure 15b using the
proposed dynamic virtual background mitigation techniques
and observe that the overall top-k inference accuracy of the
location inference attack reduced considerably. With dynamic
virtual backgrounds, a successful location inference within the
top-25 was possible for only 40% of the active video call data
in E2 and 22% of the video data in E3.

B. Other Heuristics

We discuss a few other heuristics which could also be
employed to mitigate the proposed attack. One heuristic that
could be employed is to generate and use a new random virtual
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background image for every call. The intuition behind this
heuristic is that an adversary may not have a prior copy of
this newly generated (never-seen-before) virtual background
image, which would make the virtual background masking
process (Section V-B), and thus the real background recon-
struction, a bit more challenging. Another heuristic could be
to reduce the number of video call frames shared with the
adversary, which will significantly reduce the extent of real
background reconstruction, but at the expense of reducing the
quality of the video call. Lastly, a more extreme measure could
be to not send the actual video call frames (to the adversary)
at all. Other than the first frame, all other (following) frames
can be replaced with fake video call frames. This can be
accomplished by applying a real-time deepfake technique such
as the First Order Motion model [32], which will take as input
the initial frame of the user’s video call (with the blended
virtual background) and continue to automatically animate
the user for the remaining frames. These animation frames
(generated by the First Order Motion model) will be the ones
sent in the video call, rather than the actual video call frames.
As the real frames are never sent, the real background is
never leaked, while the animated frames continue to provide
an illusion of the call being live.

X. DISCUSSION

The attacks and mitigations we propose and evaluate are
based on specific practicality assumptions. For instance, a
critical requirement for the location inference attack is the
availability of ground-truth background images. Without the
ground-truth background images, the adversary will not be
able to form a tractable dictionary for efficient location infer-
ence. Also, if the (reconstructed) background does not contain
any sensitive information, users may not be motivated to apply
the proposed mitigations. It is also challenging to assess the
overall impact of the proposed attacks and mitigations, as it is
difficult to accurately discern users who primarily use virtual
backgrounds for preserving their background privacy. Lastly,
it is possible that our attacks and mitigations may perform
differently if tested on a larger set of more diverse participants.
Nevertheless, we validated that at present virtual backgrounds
are not a perfect solution for attaining background privacy.

XI. CONCLUSION

We proposed and evaluated a real background inference
framework leveraging on the imperfections of a virtual back-
ground feature in modern video calling software. Based on the
reconstructed background, we also proposed a set of different
privacy attacks. By means of a comprehensive evaluation
using pre-recorded videos in the wild and video call data
from human subject participants in a variety of scenarios, we
validated the feasibility and implications of such an attack
framework.
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