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Abstract

Linguists disagree on whether morphological
representations should be strings or trees. We
argue that tree-based views of morphology can
provide new insights into morphological com-
plexity even in cases where the posited tree
structure closely matches the surface string.
Our argument is based on a subregular case
study of morphologically conditioned allomor-
phy, where the phonological form of some
morpheme (the target) is conditioned by the
presence of some other morpheme (the trigger)
somewhere within the morphosyntactic context.
The trigger and target can either be linearly
adjacent or non-adjacent, and either the trig-
ger precedes the target (inwardly sensitive) or
the target precedes the trigger (outwardly sensi-
tive). When formalized as string transductions,
the only complexity difference is between lo-
cal and non-local allomorphy. Over trees, on
the other hand, we also see a complexity differ-
ence between inwardly sensitive and outwardly
sensitive allomorphy. Just as unboundedness
assumptions can sometimes tease apart patterns
that are equally complex in the finitely bounded
case, tree-based representations can reveal dif-
ferences that disappear over strings.

1 Introduction

Morphology can be taken to operate over either
strings or trees. Consider the simple case of En-
glish undoable, which is ambiguous between not
doable with un- scoping over doable, and can be
undone with -able scoping over undo. If one’s
primary concern is morphotactics, i.e. how mor-
phemes can be arranged to obtain a well-formed
word, then it is sufficient to represent undoable as a
string un+do+able, consisting of three morphemes
in a particular order. But this representation does
not encode the scopal relations between the affixes
un- and -able. Linguists instead use trees to encode
the scopal relations between the affixes un- and
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-able, giving us [un[do able]] and [[un do]able]
for each respective interpretation of undoable. But
strings and trees are vastly different data structures
that greatly affect computational complexity. For
instance, every dependency that is context-free over
strings is only regular over trees. This paper ex-
plores the typology of allomorphy to probe how
the choice between strings and trees can affect mor-
phological complexity. Our key insight is that even
in cases where trees seem to add little over strings,
trees can reveal complexity differences between
empirical phenomena that are opaque at the string
level.

Tree-based models are still rare in computa-
tional morphology, where morphological phenom-
ena are usually modeled with finite-state machinery
(Koskenniemi, 1983; Beesley and Karttunen, 2003;
Roark and Sproat, 2007). From this perspective,
morphological dependencies form regular string
languages, and morphological processes can be
computed by 1-way finite-state transducers.! In
fact, many aspects of morphology are subregular
over strings and fall within remarkably simple sub-
classes of regular string languages and finite-state
transductions (Chandlee, 2014, 2017; Aksénova
et al., 2016; Dolatian et al., 2021).

There is little formal work on evaluating the ex-
pressivity of morphological dependencies and pro-
cesses over tree-based representations. In particu-
lar, the fine-grained notions of subregular complex-
ity have not been applied to tree-based views of
morphology even though many subregular classes
can easily be generalized from strings to trees. Pre-
vious analyses of morphology that implicitly posit
tree structure (Selkirk, 1982, Trost, 1991, a.o.), do
not explore the implications of tree structure for
complexity, either. This paper seeks to demonstrate

'The only major exception is total reduplication (Culy,
1985), which we set aside throughout this paper; see Dolatian
and Heinz (2020) for detailed discussion.
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that this focus on string representations to the exclu-
sion of tree structure means that subtle complexity
differences between phenomena may be missed. It
is not just cases like undoable where trees are use-
ful, but even phenomena where the tree structure
provides seemingly no additional information over
the string representation.

To this end, we contrast string-based and tree-
based views of morphologically conditioned allo-
morphy in terms of their subregular complexity.
Morphologically conditioned allomorphy covers
phenomena where some morpheme (the target)
has multiple possible realizations, the choice of
which is conditioned by the presence of another
morpheme (the trigger) within the word. Cross-
linguistically, morphologically-conditioned allo-
morphy can be parameterized in terms of direction-
ality and the degree of locality between the target
and trigger morpheme (Carstairs, 1987; Bobaljik,
2000, 2012; Bonet and Harbour, 2012; Embick,
2015).2

Table 1: Parameters for morphologically-conditioned
allomorphy between trigger x and target y

. Direction Inward Outward
Adjacency
Local z <y y<zx
Non-adjacent r<...<y|ly<...<zw

If the trigger z is structurally lower than the tar-
get y, then allomorphy is inwardly-sensitive. If
the trigger x is structurally higher than the target
vy, then allomorphy is outwardly-sensitive. If the
target and trigger are structurally adjacent, then
allomorphy is locally computed. If the target and
trigger are non-adjacent, and if there can be one
or more intervening morphemes, then the process
is long-distance or non-local. Typologically, local
allomorphy is the most common in both directions.
Non-adjacent allomorphy is significantly less com-
mon, but attested (Bozic, 2019).

We find that these four types do not pattern the
same way depending on whether one models them
over strings or trees (see Table 6). When mod-
eled over strings, there is no complexity difference

?Bobaljik (2000) suggest that the directionality difference
correlates with the distinction between phonologically con-
ditioned and morphologically conditioned allomorphy. Fol-
lowing Paster (2006), we take these two splits to form two
separate axes of variation and consider only directionality. The
phonological nature of the trigger should be examined inde-
pendently from the formal characteristics of the computation
involved.
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between inwardly and outwardly sensitive allomor-
phy. The only relevant split is whether the trigger
and target are in a local configuration, which corre-
sponds to a difference between input strictly local
(ISL) transductions and sequential transductions.
Over trees, we find the same split. But in addi-
tion we also see a difference between non-local
inwardly sensitive allomorphy and non-local out-
wardly sensitive allomorphy, with the former but
not the latter constituting a sequential tree transduc-
tion.

The paper is organized as follows. Section 2
defines relevant families of string and tree transduc-
ers, including the (to the best of our knowledge)
novel classes of bottom-up and top-down sequen-
tial tree transductions. In §3 and §4, we illustrate
the typological parameters of allomorphy with at-
tested examples from natural languages. In each
section we formalize the respective type of allomor-
phy over strings as well as trees and contrast their
complexity. We then synthesize the main insights
in §5. We conclude in §6.

2 Mathematical preliminaries

We cover several classes of subregular string and
tree transductions in this paper. Due to space con-
straints, we cannot give full definitions of each
class, but the discussion in the subsequent sections
is sufficiently straightforward on a formal level that
the reduced rigor should not impact clarity.

2.1 Subregular string transductions

Subregular string transductions are computed by
finite-state transducers (FSTs) that obey additional
restrictions. One well-known class is the class of
subsequential transductions, but for our purposes
the even more restrictive class of sequential trans-
ductions will do.?

Definition 1 (Sequential) An FST T is left-to-
right sequential iff T is deterministic and all states
are final. We use T(T) to denote the transduction
computed by T. An FST T is right-to-left sequen-
tial iff there is a left-to-right sequential FST T’
such that 7(T) = {{i,o) | (i"1,07Y) € 7(T")},
where s~V is the mirror image of string s. We say
that T (or 7(T)) is sequential iff it is left-to-right
sequential or right-to-left sequential.

*0ur definition of sequential is derived from the non-
standard definition of subsequential transducers in Chandlee
(2014), which requires all states to be final.



If one further limits the state space of a sequen-
tial transducer so that it consists of all and only
those states that record the previous k£ symbols
in the input string, one obtains an input strictly
k-local (ISL-k) transducer. As pointed out in Chan-
dlee et al. (2018), a transduction is guaranteed to
be ISL-% if it can be described by a finite set of
rewrite rules of the form a — b | u_v such that
a,b e, u,v € ¥*, and the combined length of u
and v is at most k — 1. Crucially, the output of one
rewrite rule cannot serve as the input for another
rewrite rule. All the rules apply in parallel. We say
that a transduction is ISL iff it is ISL-k for some
k> 1.

2.2 Subregular tree transductions

Since the tree transductions encountered in this pa-
per are exceedingly simple, we introduce bottom-
up and top-down tree transductions via examples.
Our generalizations of sequential transductions
from strings to trees then are easily defined as spe-
cial cases of these two well-known types of tree
transducers, full definitions of which can be found
in Comon et al. (2008) and Gécseg and Steinby
(1984), among others.

Suppose our input trees are strictly binary
branching and all nodes are either labeled a, b, or
c. Now consider a transduction that leaves almost
all nodes the same, except that something special
happens to the root of each subtree that contains an
even number of as (not counting the root itself). If
the label of the subtree’s root is b, then it should be
relabeled d. If the label is a, then the left subtree
will be deleted. In addition, every leaf node c in
the input tree is rewritten as v(w, w). Hence the
input tree on the left would become the output tree
on the right.

b b
/\ T
a b a d
/\/\\/\
b ¢ a a v a a
A~ PN
a a W W

This transduction can be computed by a bottom-
up tree automaton. We use two states, g, and ¢,
which keep track of whether a subtree contains an
odd or an even number of as. Next, we define
transition rules for the leafs: a() — go(a), b() —
qe(b), and ¢() — ge(v(w,w)). Let us also add a
rewrite rule for interior node b: b(q, (), ¢o(y)) —
ge(d(x,y)) expresses that when we encounter a
node labeled b such that the left subtree and the
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right subtree both contain an odd number of as (and
thus the whole subtree contains an even number of
as), b should be replaced with a d while keeping
the left subtree x and the right subtree y in the same
position. With these rules, we can already begin to
rewrite the input tree.

b b
a b a Ge
b Qe do 4o e e d
9o 4o v a a d \'% a a
| | o~ PN PN
a a W W a a w w

We also need rewrite rules for a as an interior node.
For the concrete case at hand, the relevant tran-
sition rule is a(ge(), ge(y)) — go(a(y)), which
removes the left subtree x. We then add a few more
rules to handle the remaining cases. For example,
b(qo(),qe(y)) — qo(b(z,y)) ensures that noth-
ing is changed when a subtree rooted in b does not
contain an even number of as.

b %o
/\ ‘
) ge b
\ \ N
a d a d
\ A~ \ o~
A\ a a \Y a a
PN PN
w w w w

If q, is a final state, then the subtree beneath it is
chosen as the output of the transformation, other-
wise it is rejected.

Now consider instead the case of a top-down
transducer, which rewrites the input tree from the
root towards the leafs. Assume the same input tree
as before, but this time something special happens
when the root of a subtree is dominated by an odd
number of bs (not counting the root itself). In this
case, b is rewritten as d, and c is replaced with
v(w, w). In addition, a with two daughters has the
left one deleted. This will produce the very same
output tree as before, but it does so in a different
manner. First, we always start with an initial state

e, and we set ¢e (b(z,y)) — b(qo(2), ¢o(y))-

e b
‘ /\
b 4o )
N \ \
a b a b
PN P PN P
b c a a b c a a
P P
a a a a



Next we add one rule for a and one for b:
Gla(z,y)) — algo(y)) and go(b(z,y)) —
d(ge(x),qe(y)). This leaves us will only leaf
nodes to rewrite, which is handled by the rules
do(c()) = v(w,w) and g, (a()) — a.

b b
P /\
a b a b
‘ PN \ P
o 90 Yo v a a
| | | P
c a a W W

The tree is a valid output for the input because we
were able to process the whole tree from the root
to all its leaves.

Of course we would have to add more rules to
both transducers to also cover the configurations
that do not arise in our toy examples. But even
then the transducers would still be deterministic:
given two transitions rules of the form ¢ — v and
b — v, u # v implies a # b (and in addition, the
top-down tree automaton has exactly one initial
state). In fact, our two example transductions sat-
isfy additional properties that make them natural
analogs of sequential string transductions.

Definition 2 (Tree sequential) A  deterministic
bottom-up tree transducer is bottom-up sequential
iff all its states are final. A deterministic top-down
tree transducer is top-down sequential iff it holds
for every state q and every leaf symbol o that the
transducer has a transition rule q(o()) — t, where
t is some tree not containing any states.

Finally, we also need a tree analogue of ISL
string transductions. We adopt the definition in
Graf (2020), but since it spans multiple pages, we
only convey the intuition here. An ISL tree trans-
duction is state-free in the sense that what a given
node should be rewritten as is fully determined by
its label and the local context. For the purposes
of this paper, we can limit this even further to just
the class of ISL tree transductions that only relabel
nodes but do not change the structure of the input
tree. As a concrete example, consider this rewrite
rule:

b
PN

¢ [a]

d e
This says that a node that is labeled a is relabeled
as f if the node has b as its mother, c as its left sister,
d as its left daughter, e as its right daughter, and
the node has no other sisters or daughters.

—f
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3 Inwardly-sensitive allomorphy

We now turn to local (§3.1) and non-local
(§3.2) inwardly-sensitive allomorphy, followed
by outwardly-sensitive allomorphy in §4. Lo-
cal inwardly-sensitive allomorphy can be modeled
with ISL FSTs and by ISL tree-transducers, sug-
gesting that the choice between strings and trees
is innocuous here. Non-local inwardly-sensitive
allomorphy only falls within those classes if one
assumes a finite upper bound. Otherwise, if no
finite bound is assumed, then ISL is insufficient,
but the allomorphy phenomena can still be cap-
tured by left-to-right sequential string transducers
or bottom-up sequential tree transducers.

3.1 Local and inwardly-sensitive

As previously indicated in Table 1, an allomorphic
pattern is local and inwardly-sensitive iff the con-
ditioning morpheme (the trigger z) is structurally
below the alternating morpheme (the target y) and
x is structurally adjacent to y. Table 2 illustrates
this with the past suffix alternation in Latin.

Table 2: Local inwardly-sensitive allomorphy from
Latin (Embick, 2015, ch4.6)

imperfect
laud-a-ba-m
praise-v-PSTy-1SG
T[+past]—-ba

pluperfect

laud-a-ve-ra-m
praise-v-ASPx-PSTy-1SG
T[+past]—-ra / ASP[perf]_

Following Embick (2015), the Latin past suffix
is by default -ba. After the aspect suffix -ve, it is
instead realized as -ra. In terms of rewrite rules,
we have the following:

1. (a) PST= -ra | ASP _

(b) PST = -ba | W _

Here, and throughout the rest of the paper, we
use W to denote any morpheme that is irrelevant
to the alternation, e.g. any morphemes that are not
ASP or PST in this example. Since the alternation
can be described by finitely many rewrite rules with
a context of size 1, it is an ISL-2 string transduc-
tion.

The allomorphy is also ISL over trees, but the
size of the window increases slightly to ISL-3. Sup-
pose that the two forms in Table 2 have the under-
lying tree structures below.



2. (@) (b)

1SG

PST
ASP

laud v

laud v

In order to derive the pattern in Table 2 given this
tree structure, an ISL tree transducer has to include
the rewrite rules below. They are ISL-3 rewrite
rules because the depth of the tree on the left-hand
side is 3.

3. ISL-3 rewrite rules for Latin Past

(a) — ra

ASP

bi b
® < By ™

3.2 Non-adjacent and inwardly-sensitive

We now turn to non-adjacent inwardly-sensitive
allomorphy. Recall that in these cases, the trigger
x and target y are not adjacent, and x is structurally
above y. We illustrate this with an example from
Kiowa.

Table 3: Non-adjacent inwardly-sensitive allomorphy
from Kiowa (Bonet and Harbour, 2012, 231)

héib-e-guy-moo-tad
enter-TRx-DISTR-NEG-MODy

héib-é-guy-moo-t!oo
enter-INTRy-DISTR-NEG-MODy

MOD—-t00 /TR ... _ MOD—-t/00 / INTR ... _

The modality suffix (target y) surfaces as -t20
(-too) if the verb is transitive (intransitive). Transi-
tivity is marked on the post-root suffix (trigger x).
The trigger and target are not adjacent.

Over strings, the alternation for the attested
Kiowa examples would be ISL-4. The context must
span at least four 4 morphemes because the target
and trigger are separated by at most 2 interveners.
Similarly, over a tree, this function can be captured
by an ISL-5 transduction. The crucial rewrite rules
are shown below. These rules indicate that MOD
is rewritten as too if there is a TR with (i) no inter-
vener, or (ii) one intervener or (iii) two interveners.
In all other cases, MOD is rewritten as t29.

4. (a) /A —  -to0
-

®

—  -too
MOD
_ TR -
(c) — -2
MOD
TR -
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—  -tloo

(d)
MOD

w

wow W

This treatment works for the observed cases as
there is necessarily an upper bound on how far the
trigger and the target can be apart. But it fails to
capture the fact that the interveners do not affect
the allomorphy at all. Instead, we may assume that
there is no upper bound on the number of interven-
ing morphemes. In that case, Kiowa allomorphy is
no longer ISL, neither over strings nor over trees.

That said, over strings the Kiowa allomorphy
pattern still falls within the class of left-to-right
sequential transductions. The corresponding trans-
ducer is shown in Figure 1.

Figure 1: Sequential FST (left-to-right) for Kiowa

W:w
W:W TR:TR
MOD:t!20 MOD:t39

Over trees, it is also a fairly simple transduc-
tion and is, in fact, bottom-up sequential. In order
to capture the allomorphy conditioned by TR, the
transducer has to distinguish between a state gTr
where it has already processed TR and a state gy
where it has not. If the transducer sees MOD in
state gTr, MOD is rewritten as t00. Whereas if it
sees MOD in state gy, MOD is transformed into
t120.

Note, however, that the crucial morphemes, MOD
and TR, do not stand in a dominance relation if
one assumes a phrase structure tree as depicted in
Figure 2.

Figure 2: The phrase structure tree for the Kiowa modal-
ity suffixes

MOD
N)
J o ©

Thus, even if a bottom-up sequential transducer
processes TR and moves to the state gTg, the trans-
ducer reads MOD separately from that state transi-
tion. The transducer thus needs to delay its output
when it reads MOD: instead of immediately choos-
ing an output for MOD, it switches to a state qpop



without outputting anything. Then, at the next node,
if the state from the left branch is qTR, the trans-
ducer outputs a tree such that its right branch is
t20. If the state from the left branch is not gtr, on
the other hand, then the transducer outputs a tree
with the right branch #/00. The relevant transition
rules are shown below, with - as the label of interior
nodes.

5. (a) MoD() = gmon()

(b) TR() = ¢TR(TR)

©) W() = qw(W)

(d) -(¢rr (%), gmoD(¥))
— qrr(-(7, -109))

(e) -(qw(z), gmop(¥))
— qw (+(z,-t19))

In sum, the move from a local to a non-local
phenomenon continues the parallelism already ob-
served in the local case. Local inwardly-sensitive
allomorphy is ISL over strings as well as trees, and
its non-local counterpart is left-to-right sequential
over strings or bottom-up sequential over trees. The
only noteworthy difference is that the bottom-up
sequential transducer has to make use of a delayed
output strategy. While this may seem innocuous,
this will be the decisive reason in §4.2 why non-
local outwardly-sensitive allomorphy over trees is
more complex.

4 Outwardly-sensitive allomorphy

Mirroring inwardly-sensitive allomorphy,
outwardly-sensitive allomorphy is either local
(§4.1) or non-local (§4.2). As we will see, local
patterns are once again ISL over strings as well as
trees. If we model non-local patterns as involving
potentially unbounded distances between the target
and trigger, then these patterns are sequential over
strings, but not necessarily over trees.

4.1 Local and outwardly-sensitive

An allomorphic pattern is local and outwardly-
sensitive iff the conditioning morpheme (the trigger
x) is structurally above the alternating morpheme
(the target y), and z is structurally adjacent to y.
Table 4 gives an example from Hungarian: the plu-
ral suffix surfaces as -k by default but must be -ai
before the 1SG possessive suffix -m.
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Table 4: Local outwardly-sensitive allomorphy from
Hungarian (Carstairs 1987, 165; Embick 2010, 62)

ruha-k
dress-PLy

ruha-ai-m
dress-PLy-POSSy

ruha-m
dress-POSSy

Over strings, the above phenomenon is ISL-2 as
it can be described by the following rewrite rules:

6. (a) PL — ai | _POSS1SG

(b) PL — k | - W (where W may also de-
note the end of the string).

Over trees, the Hungarian plural suffix alterna-
tion is ISL-3. Assume once again a right-linear
structure where each affix is the right sibling of a
subtree containing all the material to its left. The
possessive affix is the right sibling of the interior
node that immediately dominates the plural suffix.
Hence an ISL tree transduction for the pattern in
Table 4 must include the plural alternation rules
shown in 7 (x indicates that the node is the root).
The depth of the context specified in the left-hand
side of these rules is at most 3, and hence the plural
alternation is ISL-3.

7. (a) — ai
POSS
(b) /AW — k
-
© =~ — k
PN
-

4.2 Non-adjacent and outwardly-sensitive

We now consider the case of outwardly-sensitive
allomorphy where the trigger x is still above the
target y, but no longer string-adjacent to it. We
illustrate with Slovenian.

Table 5: Non-adjacent outwardly-sensitive allomorphy
from Slovenian (Bozic, 2016, 2019, 501)

Zanj-e-(-m Z-e-l-a
reapy-ASP-PRES-2P.SG | reapy-ASP-PTCx-F.SG
\/reap —Zanj Jreap —Z/_...PTC

The root ‘reap’ surfaces as Zanj by default. It
surfaces as Z when the participle suffix -/ is present.
The root and suffix are not adjacent but are sepa-
rated by an aspect suffix.

As with Kiowa’s inwardly-conditioned non-
adjacent allomorphy in §3.2, the above case can be
analyzed as ISL-k with a larger value for k. Over



strings, it would be ISL-3, with the central rewrite
rule being /reap — _WPTC. Over trees, the alter-
nation is also ISL-3, as is evidenced by the relevant
rewrite rules below.

8. (a) —  Z
POSS
Jreap| _
b ..
(b) W —  Zanj
Jreap| _

If, for the sake of argument, we treat this allomor-
phy as truly long-distance, then ISL is no longer
sufficient. But as in the case of inwardly-sensitive
non-local allomorphy, the parallel between strings
and trees remains as we are dealing with a se-
quential transduction in both cases. The sequen-
tial string transducer is shown in Figure 3. Note
that this transducer operates right-to-left, whereas
inwardly-sensitive non-local allomorphy is left-to-
right sequential.

Figure 3: Sequential transducer (right-to-left) for Slove-
nian root allomorphy

W:W

POSS:POSS
W:wW \J/Teap:z
\/Teap:zanj

When operating with trees, we observe a curi-
ous split: sequentiality hinges on whether interior
nodes are labeled with projections of affixes. Sup-
pose that trees are labeled in the manner shown
in Figure 4, where the the tree’s root has the label
PTCP and the suffix has PTC.

Figure 4: A phrase structure tree for Slovenian root
allomorphy

PTCP
,/(\PTC
Zanj (ASP)

In this case, it is easy to provide a top-down
sequential tree transducer for the Slovenian root
allomorphy. By default, the transducer is in state
qw - When encountering the node PTCP, the trans-
ducer changes to a new state gprc, which then
gets passed down into the subtrees along both
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branches. We then have two distinct rewrite rules
such that gy (/reap) is rewritten as Zanj, whereas
qprc(y/reap) results in Z. If PTCP is present in
the tree, then the transducer, by virtue of moving
from the tree root towards the leaves, must have en-
countered it before reaching the morphological root
y/reap. The transducer will thus correctly rewrite
it as 7 in these cases, and only these cases. The key
transition rules are explicitly listed in 9a-9c.

9. (a) qw(PTCP(z,y))

— PTCP|[gprc (), gp1C(v)]
(b) gw (y/reap) — Zanj
(¢) gprc(y/Teap) — Z

But on the other hand, without labels like PTCP,
the alternation is not top-down sequential. In fact,
it is not even top-down deterministic. The prob-
lem is that top-down transition rules are of the
form g(o(z1,...,2n)) = w(q (1), ..., q2(x2)).
This means that the state assigned to a daughter
x; depends only on the label of its mother, and
the state assigned to the mother. Neither the la-
bel of x; itself, nor the labels of any of its sib-
lings are taken into consideration. But this is
exactly what is needed in the case of Slovenian.
Without interior labels like PTCP, the rewrite rules
would have to be gy (-(x, W) — -(qw(x), W) and
qw (-(z,PTC)) — -(gpTC(Z), PTC). The state that
controls the processing of the subtree z must be
contingent on the label of the right daughter (like
PTC), and this is not possible with deterministic
top-down transducers, which top-down sequential
transducers are a proper subclass of.

However, one could equip the transducer with
a finite look-ahead of depth 1, which would al-
low it to inspect the labels of daughters, too, before
assigning states. This would be a sensing tree trans-
ducer as defined in Graf and De Santo (2019). Note
that the need for look-ahead does not arise with
sequential string transductions because they can
emulate finite look-ahead by delaying their output;
and to a more limited extent, this is also an option
for the sequential bottom-up transducer. Inwardly-
sensitive and outwardly-sensitive allomorphy thus
seem to exhibit exactly the same complexity in the
string case, but diverge at least for non-local phe-
nomena if one switches from strings to trees. The
additional complexity of trees brings to light an
additional challenge that is not readily apparent in
the string case.



Table 6: Summary of formal results for directionality and locality of allomorphy types; patterns marked with * are

ISL if one does not assume unboundedness

Pattern

String-based computation

Tree-based computation

Inward & local ISL
Inward & non-local
Outward & local

Outward & non-local

ISL

Left-to-right sequential

Right-to-left sequential

ISL

bottom-up sequentialx
ISL

top-down sequential
or STFTTx (sensing)

5 Discussion

This paper surveyed the attested categories of local
and non-local allomorphy, with the key findings
summarized in Table 6. Our central insight is that
even though the choice between strings and trees
seems innocuous given how closely our right-linear
tree structures mirror the strings, it does reveal a dif-
ference in complexity between inwardly-sensitive
and outwardly-sensitive allomorphy. Hence the
use of trees can be motivated on the same grounds
as unboundedness assumptions, namely that it re-
veals complexity differences that would be missed
otherwise.

The relevant complexity difference may seem
minor compared to, say, the difference between reg-
ular and context-free dependencies, which greatly
matters for practical purposes such as parsing.
However, this is true for most subregular complex-
ity differences. Since all subregular dependencies
and transductions can be handled with finite-state
machinery, subregular distinctions do not impact
efficiency. That does not mean, though, that the
distinctions are irrelevant. They affect learnabil-
ity, and they make different typological predictions
about what kind of patterns we should expect to
find across languages. One way to construe our
finding, then, is that it urges us to look for em-
pirical differences between inward non-local and
outward non-local allomorphy that can be traced
back to the gap in computational complexity.

Of course this argument hinges on the assump-
tion that these phenomena are indeed unbounded
and operate over trees. Unboundedness is far from
a given because inflectional morphology in natural
language morphology usually exhibits limits on the
linear distance between the targets and triggers of
allomorphy. What is unclear is whether this is an
intrinsic limitation of allomorphy itself or an acci-
dental confluence of multiple independent factors.

Our findings provide a modus tollens argument
to address this: if we do find differences between
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inwardly-sensitive and outwardly-sensitive allo-
morphy that can be explained in terms of the sub-
regular complexity split, then that argues in favor
of underlying unboundedness and morphological
tree structures because that is the only case where
we find a difference in subregular complexity. If
there are no discernible differences, then either un-
boundedness or tree structure should be jettisoned
for inflectional morphology.

If there is evidence for both unboundedness and
tree structure, that would be an interesting paral-
lel to syntax. In fact, the split between inwardly-
sensitive and outwardly-sensitive allomorphy al-
ready has a connection to syntax. The sensing tree
transducers of Graf and De Santo (2019) were mo-
tivated by the desire to address shortcomings of de-
terministic top-down transducers for syntax, so it is
interesting that they are also needed for tree-based
morphology with the unboundedness assumption.

While the argument we present can be made
with the coarse split between ISL and sequential
transductions, it would be interesting to explore
a possible middle-ground between the two. Tier-
based strict locality has been explored in various
areas — including phonology, morphology, and
syntax — as an extension of the strict locality un-
derpinning ISL (Heinz et al., 2011; Aksénova et al.,
2016; Graf, 2018; Burness et al., 2021; Dolatian
and Guekguezian, 2021). The non-local case of
allomorphy discussed in this paper may be describ-
able along those lines. So far, no counterpart has
been defined for tree transductions, but once this
happens, the issues explored in this paper should
be revisited from the perspective of tier-based strict
locality.

6 Conclusion

We have investigated four types of allmorphy from
the perspective of strings and trees: local and non-
local inwardly-sensitive allomorphy, and local and
non-local outwardly-sensitive allomorphy. Even



though our tree structures closely track the sur-
face strings, our findings are not the same over
the two types of representations. While the split
between local and non-local allomorphy always
leads to a complexity difference if one assumes
unboundedness, inwardly- and outwardly-sensitive
allomorphy are equally complex over strings but
not over trees. If there are empirical differences
between these allomorphy types that can be derived
from the split in complexity, that would provide
evidence for both unboundedness and tree struc-
ture in inflectional morphology. Our study thus
highlights the importance of representations even
in cases where the difference of representations
seems innocuous at a first glance. An approach
firmly rooted in trees and unboundendess may re-
veal subtle computational differences that would
be missed otherwise.
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