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Abstract

Linguists disagree on whether morphological

representations should be strings or trees. We

argue that tree-based views of morphology can

provide new insights into morphological com-

plexity even in cases where the posited tree

structure closely matches the surface string.

Our argument is based on a subregular case

study of morphologically conditioned allomor-

phy, where the phonological form of some

morpheme (the target) is conditioned by the

presence of some other morpheme (the trigger)

somewhere within the morphosyntactic context.

The trigger and target can either be linearly

adjacent or non-adjacent, and either the trig-

ger precedes the target (inwardly sensitive) or

the target precedes the trigger (outwardly sensi-

tive). When formalized as string transductions,

the only complexity difference is between lo-

cal and non-local allomorphy. Over trees, on

the other hand, we also see a complexity differ-

ence between inwardly sensitive and outwardly

sensitive allomorphy. Just as unboundedness

assumptions can sometimes tease apart patterns

that are equally complex in the finitely bounded

case, tree-based representations can reveal dif-

ferences that disappear over strings.

1 Introduction

Morphology can be taken to operate over either

strings or trees. Consider the simple case of En-

glish undoable, which is ambiguous between not

doable with un- scoping over doable, and can be

undone with -able scoping over undo. If one’s

primary concern is morphotactics, i.e. how mor-

phemes can be arranged to obtain a well-formed

word, then it is sufficient to represent undoable as a

string un+do+able, consisting of three morphemes

in a particular order. But this representation does

not encode the scopal relations between the affixes

un- and -able. Linguists instead use trees to encode

the scopal relations between the affixes un- and

-able, giving us [un[do able]] and [[un do]able]

for each respective interpretation of undoable. But

strings and trees are vastly different data structures

that greatly affect computational complexity. For

instance, every dependency that is context-free over

strings is only regular over trees. This paper ex-

plores the typology of allomorphy to probe how

the choice between strings and trees can affect mor-

phological complexity. Our key insight is that even

in cases where trees seem to add little over strings,

trees can reveal complexity differences between

empirical phenomena that are opaque at the string

level.

Tree-based models are still rare in computa-

tional morphology, where morphological phenom-

ena are usually modeled with finite-state machinery

(Koskenniemi, 1983; Beesley and Karttunen, 2003;

Roark and Sproat, 2007). From this perspective,

morphological dependencies form regular string

languages, and morphological processes can be

computed by 1-way finite-state transducers.1 In

fact, many aspects of morphology are subregular

over strings and fall within remarkably simple sub-

classes of regular string languages and finite-state

transductions (Chandlee, 2014, 2017; Aksënova

et al., 2016; Dolatian et al., 2021).

There is little formal work on evaluating the ex-

pressivity of morphological dependencies and pro-

cesses over tree-based representations. In particu-

lar, the fine-grained notions of subregular complex-

ity have not been applied to tree-based views of

morphology even though many subregular classes

can easily be generalized from strings to trees. Pre-

vious analyses of morphology that implicitly posit

tree structure (Selkirk, 1982, Trost, 1991, a.o.), do

not explore the implications of tree structure for

complexity, either. This paper seeks to demonstrate

1The only major exception is total reduplication (Culy,
1985), which we set aside throughout this paper; see Dolatian
and Heinz (2020) for detailed discussion.
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that this focus on string representations to the exclu-

sion of tree structure means that subtle complexity

differences between phenomena may be missed. It

is not just cases like undoable where trees are use-

ful, but even phenomena where the tree structure

provides seemingly no additional information over

the string representation.

To this end, we contrast string-based and tree-

based views of morphologically conditioned allo-

morphy in terms of their subregular complexity.

Morphologically conditioned allomorphy covers

phenomena where some morpheme (the target)

has multiple possible realizations, the choice of

which is conditioned by the presence of another

morpheme (the trigger) within the word. Cross-

linguistically, morphologically-conditioned allo-

morphy can be parameterized in terms of direction-

ality and the degree of locality between the target

and trigger morpheme (Carstairs, 1987; Bobaljik,

2000, 2012; Bonet and Harbour, 2012; Embick,

2015).2

Table 1: Parameters for morphologically-conditioned

allomorphy between trigger x and target y

Adjacency

Direction
Inward Outward

Local x < y y < x

Non-adjacent x < . . . < y y < . . . < x

If the trigger x is structurally lower than the tar-

get y, then allomorphy is inwardly-sensitive. If

the trigger x is structurally higher than the target

y, then allomorphy is outwardly-sensitive. If the

target and trigger are structurally adjacent, then

allomorphy is locally computed. If the target and

trigger are non-adjacent, and if there can be one

or more intervening morphemes, then the process

is long-distance or non-local. Typologically, local

allomorphy is the most common in both directions.

Non-adjacent allomorphy is significantly less com-

mon, but attested (Božič, 2019).

We find that these four types do not pattern the

same way depending on whether one models them

over strings or trees (see Table 6). When mod-

eled over strings, there is no complexity difference

2Bobaljik (2000) suggest that the directionality difference
correlates with the distinction between phonologically con-
ditioned and morphologically conditioned allomorphy. Fol-
lowing Paster (2006), we take these two splits to form two
separate axes of variation and consider only directionality. The
phonological nature of the trigger should be examined inde-
pendently from the formal characteristics of the computation
involved.

between inwardly and outwardly sensitive allomor-

phy. The only relevant split is whether the trigger

and target are in a local configuration, which corre-

sponds to a difference between input strictly local

(ISL) transductions and sequential transductions.

Over trees, we find the same split. But in addi-

tion we also see a difference between non-local

inwardly sensitive allomorphy and non-local out-

wardly sensitive allomorphy, with the former but

not the latter constituting a sequential tree transduc-

tion.

The paper is organized as follows. Section 2

defines relevant families of string and tree transduc-

ers, including the (to the best of our knowledge)

novel classes of bottom-up and top-down sequen-

tial tree transductions. In §3 and §4, we illustrate

the typological parameters of allomorphy with at-

tested examples from natural languages. In each

section we formalize the respective type of allomor-

phy over strings as well as trees and contrast their

complexity. We then synthesize the main insights

in §5. We conclude in §6.

2 Mathematical preliminaries

We cover several classes of subregular string and

tree transductions in this paper. Due to space con-

straints, we cannot give full definitions of each

class, but the discussion in the subsequent sections

is sufficiently straightforward on a formal level that

the reduced rigor should not impact clarity.

2.1 Subregular string transductions

Subregular string transductions are computed by

finite-state transducers (FSTs) that obey additional

restrictions. One well-known class is the class of

subsequential transductions, but for our purposes

the even more restrictive class of sequential trans-

ductions will do.3

Definition 1 (Sequential) An FST T is left-to-

right sequential iff T is deterministic and all states

are final. We use τ(T ) to denote the transduction

computed by T . An FST T is right-to-left sequen-

tial iff there is a left-to-right sequential FST T ′

such that τ(T ) = {⟨i, o⟩ | ⟨i−1, o−1⟩ ∈ τ(T ′)},

where s−1 is the mirror image of string s. We say

that T (or τ(T )) is sequential iff it is left-to-right

sequential or right-to-left sequential.

3Our definition of sequential is derived from the non-
standard definition of subsequential transducers in Chandlee
(2014), which requires all states to be final.
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If one further limits the state space of a sequen-

tial transducer so that it consists of all and only

those states that record the previous k symbols

in the input string, one obtains an input strictly

k-local (ISL-k) transducer. As pointed out in Chan-

dlee et al. (2018), a transduction is guaranteed to

be ISL-k if it can be described by a finite set of

rewrite rules of the form a → b | u v such that

a, b ∈ Σ, u, v ∈ Σ∗, and the combined length of u

and v is at most k − 1. Crucially, the output of one

rewrite rule cannot serve as the input for another

rewrite rule. All the rules apply in parallel. We say

that a transduction is ISL iff it is ISL-k for some

k ≥ 1.

2.2 Subregular tree transductions

Since the tree transductions encountered in this pa-

per are exceedingly simple, we introduce bottom-

up and top-down tree transductions via examples.

Our generalizations of sequential transductions

from strings to trees then are easily defined as spe-

cial cases of these two well-known types of tree

transducers, full definitions of which can be found

in Comon et al. (2008) and Gécseg and Steinby

(1984), among others.

Suppose our input trees are strictly binary

branching and all nodes are either labeled a, b, or

c. Now consider a transduction that leaves almost

all nodes the same, except that something special

happens to the root of each subtree that contains an

even number of as (not counting the root itself). If

the label of the subtree’s root is b, then it should be

relabeled d. If the label is a, then the left subtree

will be deleted. In addition, every leaf node c in

the input tree is rewritten as v(w,w). Hence the

input tree on the left would become the output tree

on the right.

b

a

b

a a

c

b

a a

b

a

v

w w

d

a a

This transduction can be computed by a bottom-

up tree automaton. We use two states, qo and qe,

which keep track of whether a subtree contains an

odd or an even number of as. Next, we define

transition rules for the leafs: a() → qo(a), b() →
qe(b), and c() → qe(v(w,w)). Let us also add a

rewrite rule for interior node b: b(qo(x), qo(y)) →
qe(d(x, y)) expresses that when we encounter a

node labeled b such that the left subtree and the

right subtree both contain an odd number of as (and

thus the whole subtree contains an even number of

as), b should be replaced with a d while keeping

the left subtree x and the right subtree y in the same

position. With these rules, we can already begin to

rewrite the input tree.

b

a

b

qo

a

qo

a

qe

v

w w

b

qo

a

qo

a

b

a

qe

d

a a

qe

v

w w

qe

d

a a

We also need rewrite rules for a as an interior node.

For the concrete case at hand, the relevant tran-

sition rule is a(qe(x), qe(y)) → qo(a(y)), which

removes the left subtree x. We then add a few more

rules to handle the remaining cases. For example,

b(qo(x), qe(y)) → qo(b(x, y)) ensures that noth-

ing is changed when a subtree rooted in b does not

contain an even number of as.

b

qo

a

v

w w

qe

d

a a

qo

b

a

v

w w

d

a a

If qo is a final state, then the subtree beneath it is

chosen as the output of the transformation, other-

wise it is rejected.

Now consider instead the case of a top-down

transducer, which rewrites the input tree from the

root towards the leafs. Assume the same input tree

as before, but this time something special happens

when the root of a subtree is dominated by an odd

number of bs (not counting the root itself). In this

case, b is rewritten as d, and c is replaced with

v(w,w). In addition, a with two daughters has the

left one deleted. This will produce the very same

output tree as before, but it does so in a different

manner. First, we always start with an initial state

qe, and we set qe(b(x, y)) → b(qo(x), qo(y)).

qe

b

a

b

a a

c

b

a a

b

qo

a

b

a a

c

qo

b

a a
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Next we add one rule for a and one for b:

qo(a(x, y)) → a(qo(y)) and qo(b(x, y)) →
d(qe(x), qe(y)). This leaves us will only leaf

nodes to rewrite, which is handled by the rules

qo(c()) → v(w,w) and qo(a()) → a.

b

a

qo

c

b

qo

a

qo

a

b

a

v

w w

b

a a

The tree is a valid output for the input because we

were able to process the whole tree from the root

to all its leaves.

Of course we would have to add more rules to

both transducers to also cover the configurations

that do not arise in our toy examples. But even

then the transducers would still be deterministic:

given two transitions rules of the form a → u and

b → v, u ̸= v implies a ̸= b (and in addition, the

top-down tree automaton has exactly one initial

state). In fact, our two example transductions sat-

isfy additional properties that make them natural

analogs of sequential string transductions.

Definition 2 (Tree sequential) A deterministic

bottom-up tree transducer is bottom-up sequential

iff all its states are final. A deterministic top-down

tree transducer is top-down sequential iff it holds

for every state q and every leaf symbol σ that the

transducer has a transition rule q(σ()) → t, where

t is some tree not containing any states.

Finally, we also need a tree analogue of ISL

string transductions. We adopt the definition in

Graf (2020), but since it spans multiple pages, we

only convey the intuition here. An ISL tree trans-

duction is state-free in the sense that what a given

node should be rewritten as is fully determined by

its label and the local context. For the purposes

of this paper, we can limit this even further to just

the class of ISL tree transductions that only relabel

nodes but do not change the structure of the input

tree. As a concrete example, consider this rewrite

rule:

b

c a

d e

→ f

This says that a node that is labeled a is relabeled

as f if the node has b as its mother, c as its left sister,

d as its left daughter, e as its right daughter, and

the node has no other sisters or daughters.

3 Inwardly-sensitive allomorphy

We now turn to local (§3.1) and non-local

(§3.2) inwardly-sensitive allomorphy, followed

by outwardly-sensitive allomorphy in §4. Lo-

cal inwardly-sensitive allomorphy can be modeled

with ISL FSTs and by ISL tree-transducers, sug-

gesting that the choice between strings and trees

is innocuous here. Non-local inwardly-sensitive

allomorphy only falls within those classes if one

assumes a finite upper bound. Otherwise, if no

finite bound is assumed, then ISL is insufficient,

but the allomorphy phenomena can still be cap-

tured by left-to-right sequential string transducers

or bottom-up sequential tree transducers.

3.1 Local and inwardly-sensitive

As previously indicated in Table 1, an allomorphic

pattern is local and inwardly-sensitive iff the con-

ditioning morpheme (the trigger x) is structurally

below the alternating morpheme (the target y) and

x is structurally adjacent to y. Table 2 illustrates

this with the past suffix alternation in Latin.

Table 2: Local inwardly-sensitive allomorphy from

Latin (Embick, 2015, ch4.6)

imperfect pluperfect

laud-ā-ba-m laud-ā-ve-ra-m

praise-v-PSTy-1SG praise-v-ASPx-PSTy-1SG

T[+past]→-ba T[+past]→-ra / ASP[perf]

Following Embick (2015), the Latin past suffix

is by default -ba. After the aspect suffix -ve, it is

instead realized as -ra. In terms of rewrite rules,

we have the following:

1. (a) PST ⇒ -ra | ASP

(b) PST ⇒ -ba | W

Here, and throughout the rest of the paper, we

use W to denote any morpheme that is irrelevant

to the alternation, e.g. any morphemes that are not

ASP or PST in this example. Since the alternation

can be described by finitely many rewrite rules with

a context of size 1, it is an ISL-2 string transduc-

tion.

The allomorphy is also ISL over trees, but the

size of the window increases slightly to ISL-3. Sup-

pose that the two forms in Table 2 have the under-

lying tree structures below.
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2. (a) (b)

laud v
PST

1SG

laud v
ASP

PST

1SG

In order to derive the pattern in Table 2 given this

tree structure, an ISL tree transducer has to include

the rewrite rules below. They are ISL-3 rewrite

rules because the depth of the tree on the left-hand

side is 3.

3. ISL-3 rewrite rules for Latin Past

(a)

ASP
PST

7→ ra

(b)

W PST
7→ ba

3.2 Non-adjacent and inwardly-sensitive

We now turn to non-adjacent inwardly-sensitive

allomorphy. Recall that in these cases, the trigger

x and target y are not adjacent, and x is structurally

above y. We illustrate this with an example from

Kiowa.

Table 3: Non-adjacent inwardly-sensitive allomorphy

from Kiowa (Bonet and Harbour, 2012, 231)

hé́ib-e-gųų-mOO-tOO hé́ib-é-gųų-mOO-t!OO

enter-TRx-DISTR-NEG-MODy enter-INTRx-DISTR-NEG-MODy

MOD→-tOO / TR . . . MOD→-t!OO / INTR . . .

The modality suffix (target y) surfaces as -tOO

(-t!OO) if the verb is transitive (intransitive). Transi-

tivity is marked on the post-root suffix (trigger x).

The trigger and target are not adjacent.

Over strings, the alternation for the attested

Kiowa examples would be ISL-4. The context must

span at least four 4 morphemes because the target

and trigger are separated by at most 2 interveners.

Similarly, over a tree, this function can be captured

by an ISL-5 transduction. The crucial rewrite rules

are shown below. These rules indicate that MOD

is rewritten as tOO if there is a TR with (i) no inter-

vener, or (ii) one intervener or (iii) two interveners.

In all other cases, MOD is rewritten as tOO.

4. (a)

TR
MOD

7→ -tOO

(b)

TR

MOD

7→ -tOO

(c)

TR

MOD

7→ -tOO

(d)

W W
W

W
MOD

7→ -t!OO

This treatment works for the observed cases as

there is necessarily an upper bound on how far the

trigger and the target can be apart. But it fails to

capture the fact that the interveners do not affect

the allomorphy at all. Instead, we may assume that

there is no upper bound on the number of interven-

ing morphemes. In that case, Kiowa allomorphy is

no longer ISL, neither over strings nor over trees.

That said, over strings the Kiowa allomorphy

pattern still falls within the class of left-to-right

sequential transductions. The corresponding trans-

ducer is shown in Figure 1.

Figure 1: Sequential FST (left-to-right) for Kiowa

q0 qTR

W:W

MOD:t!OO

TR:TR

W:W

TR:TR

MOD:tOO

Over trees, it is also a fairly simple transduc-

tion and is, in fact, bottom-up sequential. In order

to capture the allomorphy conditioned by TR, the

transducer has to distinguish between a state qTR

where it has already processed TR and a state qW
where it has not. If the transducer sees MOD in

state qTR, MOD is rewritten as tOO. Whereas if it

sees MOD in state qW , MOD is transformed into

t!OO.

Note, however, that the crucial morphemes, MOD

and TR, do not stand in a dominance relation if

one assumes a phrase structure tree as depicted in

Figure 2.

Figure 2: The phrase structure tree for the Kiowa modal-

ity suffixes

√
TR

(D)
(N)

MOD

Thus, even if a bottom-up sequential transducer

processes TR and moves to the state qTR, the trans-

ducer reads MOD separately from that state transi-

tion. The transducer thus needs to delay its output

when it reads MOD: instead of immediately choos-

ing an output for MOD, it switches to a state qMOD
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without outputting anything. Then, at the next node,

if the state from the left branch is qTR, the trans-

ducer outputs a tree such that its right branch is

tOO. If the state from the left branch is not qTR, on

the other hand, then the transducer outputs a tree

with the right branch t!OO. The relevant transition

rules are shown below, with · as the label of interior

nodes.

5. (a) MOD() → qMOD()

(b) TR() → qTR(TR)

(c) W () → qW (W )

(d) ·(qTR(x), qMOD(y))
→ qTR(·(x, -tOO))

(e) ·(qW (x), qMOD(y))
→ qW (·(x,-t!OO))

In sum, the move from a local to a non-local

phenomenon continues the parallelism already ob-

served in the local case. Local inwardly-sensitive

allomorphy is ISL over strings as well as trees, and

its non-local counterpart is left-to-right sequential

over strings or bottom-up sequential over trees. The

only noteworthy difference is that the bottom-up

sequential transducer has to make use of a delayed

output strategy. While this may seem innocuous,

this will be the decisive reason in §4.2 why non-

local outwardly-sensitive allomorphy over trees is

more complex.

4 Outwardly-sensitive allomorphy

Mirroring inwardly-sensitive allomorphy,

outwardly-sensitive allomorphy is either local

(§4.1) or non-local (§4.2). As we will see, local

patterns are once again ISL over strings as well as

trees. If we model non-local patterns as involving

potentially unbounded distances between the target

and trigger, then these patterns are sequential over

strings, but not necessarily over trees.

4.1 Local and outwardly-sensitive

An allomorphic pattern is local and outwardly-

sensitive iff the conditioning morpheme (the trigger

x) is structurally above the alternating morpheme

(the target y), and x is structurally adjacent to y.

Table 4 gives an example from Hungarian: the plu-

ral suffix surfaces as -k by default but must be -ai

before the 1SG possessive suffix -m.

Table 4: Local outwardly-sensitive allomorphy from

Hungarian (Carstairs 1987, 165; Embick 2010, 62)

ruhá-m ruhá-k ruha-ái-m

dress-POSSx dress-PLy dress-PLy-POSSx

Over strings, the above phenomenon is ISL-2 as

it can be described by the following rewrite rules:

6. (a) PL → ai | POSS1SG

(b) PL → k | W (where W may also de-

note the end of the string).

Over trees, the Hungarian plural suffix alterna-

tion is ISL-3. Assume once again a right-linear

structure where each affix is the right sibling of a

subtree containing all the material to its left. The

possessive affix is the right sibling of the interior

node that immediately dominates the plural suffix.

Hence an ISL tree transduction for the pattern in

Table 4 must include the plural alternation rules

shown in 7 (⋊ indicates that the node is the root).

The depth of the context specified in the left-hand

side of these rules is at most 3, and hence the plural

alternation is ISL-3.

7. (a)

PL
POSS

7→ ai

(b)

PL
W

7→ k

(c) ⋊

PL

7→ k

4.2 Non-adjacent and outwardly-sensitive

We now consider the case of outwardly-sensitive

allomorphy where the trigger x is still above the

target y, but no longer string-adjacent to it. We

illustrate with Slovenian.

Table 5: Non-adjacent outwardly-sensitive allomorphy

from Slovenian (Božič, 2016, 2019, 501)

žanj-e-∅-m ž-e-l-a

reapy-ASP-PRES-2P.SG reapy-ASP-PTCx-F.SG√
reap →žanj

√
reap →ž / . . . PTC

The root ‘reap’ surfaces as žanj by default. It

surfaces as ž when the participle suffix -l is present.

The root and suffix are not adjacent but are sepa-

rated by an aspect suffix.

As with Kiowa’s inwardly-conditioned non-

adjacent allomorphy in §3.2, the above case can be

analyzed as ISL-k with a larger value for k. Over
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strings, it would be ISL-3, with the central rewrite

rule being
√
reap → W PTC. Over trees, the alter-

nation is also ISL-3, as is evidenced by the relevant

rewrite rules below.

8. (a)
√
reap

POSS

7→ ž

(b)
√
reap

W
7→ žanj

If, for the sake of argument, we treat this allomor-

phy as truly long-distance, then ISL is no longer

sufficient. But as in the case of inwardly-sensitive

non-local allomorphy, the parallel between strings

and trees remains as we are dealing with a se-

quential transduction in both cases. The sequen-

tial string transducer is shown in Figure 3. Note

that this transducer operates right-to-left, whereas

inwardly-sensitive non-local allomorphy is left-to-

right sequential.

Figure 3: Sequential transducer (right-to-left) for Slove-

nian root allomorphy

q0 qPOSS

W:W√
reap:žanj

POSS:POSS

W:W

POSS:POSS√
reap:ž

When operating with trees, we observe a curi-

ous split: sequentiality hinges on whether interior

nodes are labeled with projections of affixes. Sup-

pose that trees are labeled in the manner shown

in Figure 4, where the the tree’s root has the label

PTCP and the suffix has PTC.

Figure 4: A phrase structure tree for Slovenian root

allomorphy

PTCP

žanj (ASP)
PTC

In this case, it is easy to provide a top-down

sequential tree transducer for the Slovenian root

allomorphy. By default, the transducer is in state

qW . When encountering the node PTCP, the trans-

ducer changes to a new state qPTC, which then

gets passed down into the subtrees along both

branches. We then have two distinct rewrite rules

such that qW (
√
reap) is rewritten as žanj, whereas

qPTC(
√
reap) results in ž. If PTCP is present in

the tree, then the transducer, by virtue of moving

from the tree root towards the leaves, must have en-

countered it before reaching the morphological root√
reap. The transducer will thus correctly rewrite

it as ž in these cases, and only these cases. The key

transition rules are explicitly listed in 9a–9c.

9. (a) qW (PTCP (x, y))
→ PTCP [qPTC(x), qPTC(y)]

(b) qW (
√
reap) → žanj

(c) qPTC(
√
reap) → ž

But on the other hand, without labels like PTCP,

the alternation is not top-down sequential. In fact,

it is not even top-down deterministic. The prob-

lem is that top-down transition rules are of the

form q(σ(x1, . . . , xn)) → ω(q1(x1), . . . , q2(x2)).
This means that the state assigned to a daughter

xi depends only on the label of its mother, and

the state assigned to the mother. Neither the la-

bel of xi itself, nor the labels of any of its sib-

lings are taken into consideration. But this is

exactly what is needed in the case of Slovenian.

Without interior labels like PTCP, the rewrite rules

would have to be qW (·(x,W ) → ·(qW (x),W ) and

qW (·(x, PTC)) → ·(qPTC(x), PTC). The state that

controls the processing of the subtree x must be

contingent on the label of the right daughter (like

PTC), and this is not possible with deterministic

top-down transducers, which top-down sequential

transducers are a proper subclass of.

However, one could equip the transducer with

a finite look-ahead of depth 1, which would al-

low it to inspect the labels of daughters, too, before

assigning states. This would be a sensing tree trans-

ducer as defined in Graf and De Santo (2019). Note

that the need for look-ahead does not arise with

sequential string transductions because they can

emulate finite look-ahead by delaying their output;

and to a more limited extent, this is also an option

for the sequential bottom-up transducer. Inwardly-

sensitive and outwardly-sensitive allomorphy thus

seem to exhibit exactly the same complexity in the

string case, but diverge at least for non-local phe-

nomena if one switches from strings to trees. The

additional complexity of trees brings to light an

additional challenge that is not readily apparent in

the string case.

57



Table 6: Summary of formal results for directionality and locality of allomorphy types; patterns marked with ∗ are

ISL if one does not assume unboundedness

Pattern String-based computation Tree-based computation

Inward & local ISL ISL

Inward & non-local Left-to-right sequential∗ bottom-up sequential∗
Outward & local ISL ISL

Outward & non-local Right-to-left sequential∗ top-down sequential

or STFTT∗ (sensing)

5 Discussion

This paper surveyed the attested categories of local

and non-local allomorphy, with the key findings

summarized in Table 6. Our central insight is that

even though the choice between strings and trees

seems innocuous given how closely our right-linear

tree structures mirror the strings, it does reveal a dif-

ference in complexity between inwardly-sensitive

and outwardly-sensitive allomorphy. Hence the

use of trees can be motivated on the same grounds

as unboundedness assumptions, namely that it re-

veals complexity differences that would be missed

otherwise.

The relevant complexity difference may seem

minor compared to, say, the difference between reg-

ular and context-free dependencies, which greatly

matters for practical purposes such as parsing.

However, this is true for most subregular complex-

ity differences. Since all subregular dependencies

and transductions can be handled with finite-state

machinery, subregular distinctions do not impact

efficiency. That does not mean, though, that the

distinctions are irrelevant. They affect learnabil-

ity, and they make different typological predictions

about what kind of patterns we should expect to

find across languages. One way to construe our

finding, then, is that it urges us to look for em-

pirical differences between inward non-local and

outward non-local allomorphy that can be traced

back to the gap in computational complexity.

Of course this argument hinges on the assump-

tion that these phenomena are indeed unbounded

and operate over trees. Unboundedness is far from

a given because inflectional morphology in natural

language morphology usually exhibits limits on the

linear distance between the targets and triggers of

allomorphy. What is unclear is whether this is an

intrinsic limitation of allomorphy itself or an acci-

dental confluence of multiple independent factors.

Our findings provide a modus tollens argument

to address this: if we do find differences between

inwardly-sensitive and outwardly-sensitive allo-

morphy that can be explained in terms of the sub-

regular complexity split, then that argues in favor

of underlying unboundedness and morphological

tree structures because that is the only case where

we find a difference in subregular complexity. If

there are no discernible differences, then either un-

boundedness or tree structure should be jettisoned

for inflectional morphology.

If there is evidence for both unboundedness and

tree structure, that would be an interesting paral-

lel to syntax. In fact, the split between inwardly-

sensitive and outwardly-sensitive allomorphy al-

ready has a connection to syntax. The sensing tree

transducers of Graf and De Santo (2019) were mo-

tivated by the desire to address shortcomings of de-

terministic top-down transducers for syntax, so it is

interesting that they are also needed for tree-based

morphology with the unboundedness assumption.

While the argument we present can be made

with the coarse split between ISL and sequential

transductions, it would be interesting to explore

a possible middle-ground between the two. Tier-

based strict locality has been explored in various

areas — including phonology, morphology, and

syntax — as an extension of the strict locality un-

derpinning ISL (Heinz et al., 2011; Aksënova et al.,

2016; Graf, 2018; Burness et al., 2021; Dolatian

and Guekguezian, 2021). The non-local case of

allomorphy discussed in this paper may be describ-

able along those lines. So far, no counterpart has

been defined for tree transductions, but once this

happens, the issues explored in this paper should

be revisited from the perspective of tier-based strict

locality.

6 Conclusion

We have investigated four types of allmorphy from

the perspective of strings and trees: local and non-

local inwardly-sensitive allomorphy, and local and

non-local outwardly-sensitive allomorphy. Even

58



though our tree structures closely track the sur-

face strings, our findings are not the same over

the two types of representations. While the split

between local and non-local allomorphy always

leads to a complexity difference if one assumes

unboundedness, inwardly- and outwardly-sensitive

allomorphy are equally complex over strings but

not over trees. If there are empirical differences

between these allomorphy types that can be derived

from the split in complexity, that would provide

evidence for both unboundedness and tree struc-

ture in inflectional morphology. Our study thus

highlights the importance of representations even

in cases where the difference of representations

seems innocuous at a first glance. An approach

firmly rooted in trees and unboundendess may re-

veal subtle computational differences that would

be missed otherwise.
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Alëna Aksënova, Thomas Graf, and Sedigheh Moradi.
2016. Morphotactics as tier-based strictly local de-
pendencies. In Proceedings of the 14th sigmorphon
workshop on computational research in phonetics,
phonology, and morphology, pages 121–130.

Kenneth Beesley and Lauri Karttunen. 2003. Finite-
state morphology: Xerox tools and techniques. CSLI
Publications, Stanford, CA.

Jonathan David Bobaljik. 2000. The ins and outs of
contextual allomorphy. In Kleanthes K. Grohmann
and Caro Struijke, editors, University of Maryland
working papers in linguistics, volume 10, pages 35–
71. University of Maryland, College Park.

Jonathan David Bobaljik. 2012. Universals in compar-
ative morphology: Suppletion, superlatives, and the
structure of words. Number 50 in Current Studies in
Linguistics. MIT Press, Cambridge, MA.
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