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ABSTRACT

Cache-based website fingerprinting attacks can infer which website
a user visits by measuring CPU cache activities. Studies have shown
that an attacker can achieve high accuracy with a low sampling
rate by monitoring cache occupancy of the entire Last Level Cache.
Although a defense has been proposed, it was not effective when an
attacker adapts and retrains a classifier with defended data. In this
paper, we propose a new defense, referred to as cache shaping, to
preserve user privacy against cache-based website fingerprinting
attacks. Our proposed defense produces dummy cache activities by
introducing dummy I/O operations and implementing with multiple
processes, which hides fingerprints when a user visits websites. Our
experimental results over large-scale datasets collected from mul-
tiple web browsers and operating systems show that our defense
remains effective even if an attacker retrains a classifier with de-
fended cache traces. We demonstrate the efficacy of our defense in
the closed-world setting and the open-world setting by leveraging
deep neural networks as classifiers.
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1 INTRODUCTION

Website fingerprinting attacks can infer which website a user visits
by eavesdropping encrypted network traffic [12, 14, 15, 19, 27, 28, 31,
36, 40] or monitoring cache activities [6, 25, 35]. Revealing which
websites that a user visits harms user privacy and may lead to
other sensitive information leakage, such as identities, locations,
etc. While effective defenses [12, 13, 16, 36, 41] have been proposed
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against traffic-based website fingerprinting, how to design effective
defenses against cache-based website fingerprinting remains open.

Specifically, a recent study [35] by Shusterman et al. shows that
an attacker can achieve more than 87% accuracy in cache-based
website fingerprinting by monitoring cache occupancy of the Last
Level Cache on a user’s machine and leveraging a Convolutional
Neural Network as the classifier. Although a defense (named cache
masking) was proposed in [35], the defense is not effective when an
attacker adapts and retrains the classifier with defended data. For
instance, an attacker can still achieve 73% accuracy when it retrains
the classifier with defended data generated by cache masking. As
this cache-based website fingerprinting attack monitors the cache
occupancy of the entire Last-Level Cache rather than specific cache
sets, other countermeasures [11, 20, 21, 29, 42] against traditional
cache-based attacks are also ineffective.

In this paper, we proposed a new defense, referred to as cache
shaping, to effectively defend against cache-based website finger-
printing. Specifically, an attacker will derive low accuracy in cache-
based website fingerprinting even if it adapts to our defense and
retrains a classifier with defended data. The core idea of cache shap-
ing is to introduce dummy cache activities when a user loads a
website in a web browser, such that the cache patterns of different
websites are difficult to distinguish. The main contributions and
findings of this study are summarized as below:

e We build a new defense against cache-based website finger-
printing attacks. We first examine why the previous defense
is not effective, and then design dummy cache activities in
our defense to hide fingerprints by (1) simulating dummy
rendering process of a web browser with dummy I/O opera-
tions and (2) implementing with multiple processes.

e We collect real-world large-scale datasets (16 GBs with more
than 270,000 cache traces) on three common web browsers
(Chrome, Firefox, and Tor Browser) and two popular operat-
ing systems (Linux and Windows). We evaluate the efficacy
of our defense in the closed-world setting and the open-world
setting by leveraging deep neural networks (including Con-
volutional Neural Networks and Long Short-Term Memory)
as classifiers.

e As a necessary trade-off, our defense causes higher CPU
slowdowns than the previous defense [35]. Specifically, ac-
cording to our experiments, cache masking introduces only
20% CPU slowdowns on integer benchmarks and 24% CPU
slowdowns on floating point benchmarks while our defense
can introduce 57% CPU slowdowns on integer benchmarks
and 52% CPU slowdowns on floating point benchmarks.

o To mitigate the CPU slowdowns caused by our defense, we
also propose a method, named random switch, which can be
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integrated with our defense. Random switch can randomly
turn on and off perturbations (i.e., dummy operations) intro-
duced by our defense. For instance, it can reduce the CPU
slowdowns on integer benchmarks and floating point bench-
marks to 49% and 43% respectively.

e We examine how to proactively detect cache-based web-
site fingerprinting as an additional protection to minimize
overheads. Our results show that, by monitoring the cache
activities of a website for only 1 second, our detection can
identify malicious websites running cache-based website
fingerprinting with 98.5% precision and 83.2% recall.

Reproducibility. The source code and datasets of this study are
publicly available at [1].

2 SYSTEM AND ATTACK MODEL

System and Attack Model. Our system in Fig. 1 includes two par-
ties, a user and an attacker. This user visits a sensitive website using
a web browser on a computer with or without using anonymous
networks, such as VPN and Tor. The attacker is remote, i.e., the at-
tacker is not able to eavesdrop the user’s network traffic, but aims to
infer which website the user visits by collecting cache activities on
the user’s computer. The collection of cache activities can be done
through malicious JavaScript code written by the attacker. This
type of attacks is referred to as cache-based website fingerprinting.

As mentioned in [35], the malicious JavaScript code is hosted on
a malicious website (either directly controlled by the attacker or
injected by the attacker without being detected). In addition, the
attacker assumes that the user opens two tabs in a web browser.
Specifically, the user opens the first tab to visit the malicious website
(e.g., through links from phishing emails) and opens the second tab
to visit a sensitive website while the first session remains on.

A sequence of cache activities on the user’s computer visiting one
sensitive website is denoted as a cache trace. A cache trace, which is
a 1-dimensional time-series data, can be denoted as o = (v1, ..., ),
where v; is the measurement of the corresponding cache activity on
the user’s computer at sample point i. Each measurement/sample
can be measured in terms of access delay, which is proportional to
the amount of data processed by the Last-Level Cache of the user’s
computer [25, 35]. For instance, a longer access delay indicates
more data are processed. We assume that the sensitive website is
loaded on the user’s computer starting from sample point i = 1,
and n is the total number of samples in a cache trace.

A website fingerprinting can be formulated as a supervised learn-
ing problem. Specifically, we assume that an attacker can collect
training cache traces with known labels (i.e., websites) on his own
machine to train a classifier. Then, the attacker obtains unlabeled
test cache traces from the user and predicts the labels of these test
traces. By following the previous study in [35], we assume that the
training traces and test traces are collected from the same setting,
including the same operating system (OS), same web browser, and
same last-level-cache size.

Closed-World Setting and Open-World Setting. A website
fingerprinting attack can be evaluated in the closed-world setting
and the open-world setting. In the closed-world setting, an attacker
knows a set of monitored websites, and each cache trace from a user
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Figure 1: The system and attack model of cache-based website
fingerprinting.

corresponds to one of the monitored websites. Given a trace, an at-
tacker infers which monitored website it belongs to. In essence, the
closed-world evaluation is a multi-class classification. We leverage
accuracy to examine the performance of closed-world evaluation.

In the open-world setting, an attacker knows a set of monitored
websites, but a user can visit unmonitored websites in additional to
monitored websites. An attacker infers whether a trace is associated
with a monitored website or an unmonitored website. The open-
world evaluation is a binary classification, which can be evaluated
with precision, recall, and precision-recall curve.

In the open-world evaluation, we follow the standard model de-
fined in previous work [36, 37]. Specifically, all the traces from
unmonitored websites are considered as a single class. This single
class will be added to the classifier obtained from the closed-world
evaluation as one additional class. This classifier will be re-trained
with traces from monitored websites and unmonitored websites.
Given an unlabeled trace, if the highest confidence of this classifier
belongs to one of the monitored websites and this confidence is
greater than a threshold, this trace is considered as a trace associ-
ated with a monitored website. Otherwise, it is considered as an
unmonitored website. This threshold can be tuned in experiments
to seek trade-offs between precision and recall.

3 BACKGROUND

3.1 Cache Architecture

Due to the high access latency between a CPU and RAM (Random
Access Memory), cache memory (or cache in short) was introduced
to improve data access time on modern computers. For instance, a
cache can store data that were recently accessed by the CPU. If the
CPU needs to access data from the same memory address again,
fetching the data from the cache renders faster access than retriev-
ing the data from RAM. A typical cache hierarchy in a modern
CPU consists of 3 levels, including Level 1 (L1), Level 2 (L2) and
Level 3 (L3). Level 3 cache is often referred to as the Last-Level
Cache (LLC). Each CPU core has its own L1 cache and L2 cache.
The Last-Level-Cache is shared across all the CPU cores.

The LLC is typically organized in a set-associative structure.
Specifically, the LLC is divided into cache sets and each cache set
includes multiple cache lines. All the memory addresses in RAM are
divided into subgroups, where each subgroup of memory addresses
will map to one corresponding cache set. Within a cache set, each
cache line can store data from any of the memory addresses from
the corresponding subgroup. When the CPU needs to fetch data,
it first examines whether the address of the data is present in the
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LLC. A cache hit indicates the requested memory address is in the
cache and results in a shorter access time. A cache miss suggests
the requested memory address is not in the cache, and the CPU
needs to fetch the data from the RAM, which causes a longer access
time. In addition, if it is a cache miss, some data previously in the
cache need to be evicted to make space for the fetched data. How
data are evicted is out of the scope of this paper.

3.2 Cache-Based Website Fingerprinting

As the LLC is shared by multiple cores, it creates unintended side
channels between programs executed on the CPU. For example,
a program executed on one core can monitor the memory access
activities of a program on a different core through cache hits and
cache misses on the LLC. These side channels can lead to privacy
leakage, such as cryptographic keys [22, 26] and keystrokes [17], as
shown in previous studies. Attacks leveraging these side channels
are often referred to as cache-based attacks. Cache-based attacks
can be launched locally (e.g., running a malicious program on a
target computer) or remotely (e.g., measuring cache activities using
JavaScript code through web browsers) [25, 35].

Prime+Probe. Prime+Probe [26] is one of the primary tech-
niques to carry out cache-based attacks. It measures the cache activi-
ties with a sequence of iterations. Within each iteration, Prime+Probe
consists of 3 steps. In Step 1, the attacker primes the cache by filling
some cache sets with his own data. The content of his data does
not matter. In Step 2, the attacker waits some time to allow the
target program to execute. In Step 3, the attacker probes the cache
by measuring the access time to the cache sets it primed in Step 1.

If the victim program in Step 2 accessed memory addresses that
map to a cache set primed by the attacker in Step 1, the victim
program evicted the attacker’s data in the cache set. This leads to a
cache miss and a longer access time when the attacker probes data
in the cache set in Step 3. On the other hand, if the victim program
did not access memory addresses that map to a cache set primed in
Step 1, it results a cache hit when the attacker probes in Step 3.

The key for a cache-based attack is to be able to distinguish
cache hits and cache misses, and thus distinguish which data were
used by the victim program. As a result, a cache-based attack using
Prime-Probe often requires a high resolution timer. Previous study
[25] was able to perform website fingerprinting with Prime+Probe
at a small scale (e.g., 10 websites in the closed-world setting). To
prevent cache-based attacks from running remotely through web
browsers, major web browsers, such as Chrome and Firefox, have
disabled features with sub-microsecond resolution timers, which
prevents attackers from distinguishing cache hits and cache misses.

A Recent Attack Using Cache Occupancy Channel. As at-
tacks using Prime+Probe are no longer effective due to the lower
resolution timers in the latest version of web browsers, Shusterman
et. al. [34, 35] proposed a new cache-based website fingerprinting at-
tack by measuring the cache occupancy channel through JavaScript
code. Specifically, an attacker measures the cache activities of the
entire LLC rather than specific cache sets. In Step 1, the attack
allocates an LLC-size buffer and fetches this buffer to the LLC. In
Step 2, the attacker waits for some time to allow the victim program
to execute. In Step 3, the attacker examines the access time to the
LLC-size buffer by fetching the LLC-size buffer to LLC.
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As the buffer occupies the entire LLC in Step 1, if the victim
program accesses data in Step 2, it inevitably evicts some contents of
the buffer in order to store the data in cache. As a result, the evicted
content causes cache misses and therefore longer delays when the
attacker accesses the buffer again in Step 3. According to [35], the
time to access the LLC-size buffer is approximately proportional to
the number of cache lines that the victim program uses in Step 2.

In other words, this attack can measure the amount of data usage
of the victim program. The attacker can periodically repeat Step 2
and Step 3 to record the amount of data usage of the victim program
for a series of time. As this attack does not rely on distinguishing a
cache miss and a cache hit on a specific cache line, it does not need
a high resolution timer as previous cache-based attacks and can be
carried out with the latest version of web browsers. For instance,
with a sampling rate of 500Hz in Chrome, Shusterman et. al. [35]
shown that an attacker can achieve more than 87% accuracy in a
closed-world setting of 100 websites.

3.3 Limitations of the Existing Defense

Cache Masking. To mitigate the leakage in the cache-based web-
site fingerprinting attack, Shusterman et. al. [35] proposed a defense
named cache masking. The main idea is to perturb the web browser’s
original cache activities on the LLC by introducing dummy cache
activities. Specifically, the proposed defense method allocates a
LLC-size buffer and accesses every cache line in a loop, which re-
peatedly evicts the entire LLC to hide the original cache activities
of a web browser. The authors implemented a proof-of-concept of
this defense with Mastik side-channel toolkit [43].

Unfortunately, this defense is not able to effectively lower attack
accuracy when an attack adapts and retrains neural networks with
defended cache traces. For instance, the attack accuracy only drops
from 79% to 73% on Firefox over 100 websites in the closed-world
setting as reported in [35]. In other words, cache masking is not
effective against real-world attackers who can adapt to the defense.

Why Is Cache Masking Ineffective? To understand why cache
masking is ineffective, we first collect cache traces of two websites
(oracle.com and wikipedia.com) when there is no defense and
then collect cache traces of these two websites when cache masking
is on. We use the malicious JavaScript code and the source code
of cache masking from [34, 35] to capture the traces and carry out
the defense. The original cache traces and defended cache traces
(produced by cache masking) is illustrated in Fig. 2.

First, we observe that a defended cache trace is very different
from the original cache trace. This explains the low accuracy when
an attacker trains with non-defended cache traces and tests with
defended traces reported in [35]. On the other hand, peaks in cache
traces can still be observed in the defended ones of the same website.
This explains the high accuracy when an attacker trains and tests
with defended cache traces reported in [35].

4 CACHE SHAPING: AN EFFECTIVE DEFENSE

In this section, we introduce our defense, referred to as cache shap-
ing, which can effectively defend against cache-based website fin-
gerprinting. The main idea of our proposed defense is to introduce
dummy cache activities that are high enough to hide peaks in orig-
inal cache traces of different websites. In other words, cache traces
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Figure 2: Cache traces collected on a Linux machine with Chrome. Defended traces are generated by cache masking [35].

Algorithm 1: Cache Shaping in One Process

Input: n dummy files {fi, .., f»}, all the n memory pages
{mp1, ..., mpn} in LLC, and counter ¢ = T, where T > 0;
while ¢ > 0 do
for memory page mp; in LLC do
for each cache line in memory page mp; do
read cache-line-size data from file f;;
write evicted data to file f;;
end
end
c—=;
end
return;

of different websites are shaped into the same or similar pattern,
which makes it difficult for an attacker to distinguish. To generate
sufficient perturbations (i.e., dummy cache activities), our defense
mimics the cache behaviour of a web browser loading websites by

(1) Simulating dummy rendering process of a web browser with
dummy I/O operations;
(2) Implementing with multiple processes

4.1 Details of Cache Shaping

We simulate the dummy rendering process of a web browser by
creating dummy I/O operations on a user’s computer. These dummy
I/O operations can create high cache activities, which will be suffi-
cient to hide the real cache activities of a web browser. Specifically,
we use read() and write() functions over dummy files stored on
the disk as the vehicles to generate these dummy I/O operations.
Our defense method can be described as below:
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e Step 1: Cache shaping creates n dummy files on the local
disk of a user’s computer.

o Step 2: Cache shaping reads the dummy files from the local
disk to prime the LLC. As a result, it evicts data previously
cached in LLC. This step mimics the process when a web
browser renders a website from local cached files.

e Step 3: Cache shaping writes the evicted data from the LLC
in Step 2 to the dummy files on the local disk. This step
mimics the caching process of a web browser.

Our defense initiates before a user visits a website. It runs in
multiple processes, where each process runs independently. In each
process, our defense repeats Step 2 and Step 3 based on a pre-defined
counter c. Each process iterates all the memory pages in the entire
LLC to repeat the dummy operations. Each memory page includes
multiple cache sets and each cache set consists of multiple cache
lines. The pseudo code of our defense in one process is described in
Algo. 1. For the ease of description, we set the number of dummy
files as the same as the number of memory pages in Algo. 1. The
two parameters are not correlated and do not have to be the same
in the implementation. We implement cache shaping in C/C++ with
around 550 lines of code.

4.2 Defense Overhead Optimization

Our defense could generate relatively high CPU slowdowns due to
repeated dummy I/O operations. We also explore two approaches
that can reduce the potential high overheads in defense.
Random Switch. The main idea of random switch is to ran-
domly turn on or off the dummy operations while cache shaping
operates. Specifically, if we integrate cache shaping with random
switch, our defense will still run in multiple processes and each
process will still iterate the entire LLC independently. However,
when each process iterates each memory page, it flips a coin and
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performs dummy I/O operations created by Step 2 and Step 3 in
cache shaping with a probability of p. We denote this probability
p as perturbation-on probability. This is a pre-defined parameter,
which can be decided in advance. Randomly turning off the dummy
operations at some memory pages can reduce the overall CPU slow-
downs. The description of cache shaping in the previous subsection
can be considered as a special case of cache shaping with random
switch when perturbation-on probability is p = 1.

Attack Detection. As not every website in the real world is
injected by the malicious JavaScript code running cache-based
website fingerprinting, running our defense for every website that
a user opens can cause unnecessary performance slowdowns. One
proactive method is to detect the potential malicious website first
when a user opens a website. If the detection indicates malicious,
then the user can close the tab of the malicious website directly or
enable cache shaping to continue to browser the website if needed.
If the detection indicates benign, the user can keep cache shaping
off to avoid performance slowdowns.

Detecting cache-based website fingerprinting is feasible as the
malicious website interacts with the user’s computer to derive cache
activities, which leaves fingerprints on the user’s computer. More
specifically, the malicious website needs to measure cache activities
of the LLC on the user’s computer with a certain sampling rate.
This measurement by the attacker periodically triggers fetching
and evicting data on the LLC on the user’s computer with a fixed
interval. This creates a cache pattern that is distinguishable from
the cache patterns of other benign websites.

Obviously, the user can record the cache activities by himself
when he visits each website and formulates the detection as a binary
classification. To record cache activities, the user can leverage the
same method measuring the LLC used by the attacker to monitor
his own LLC for detection purpose.

Details of Attack Detection. To build a classifier, our detection
method will first collect some cache activities of websites (with and
without cache-based website fingerprinting) in a web browser to
train a binary classifier. When a user would like to visit a website
and open it with a web browser, the detection method will record
the cache activities of this website and pass the cache trace to the
trained classifier to obtain a prediction. If the trained classifier in-
dicates the website is malicious (i.e., positive) with a pre-defined
confidence, then our proposed defense (cache shaping) will be on.
Otherwise, cache shaping will remain off. The pre-defined confi-
dence can be tuned to explore trade-offs in precision and recall in
the detection. Running the detection does not need dummy I/O
operations, which results in lower overheads than constantly run-
ning the defense, which complements the defense and optimize the
overall performance slowdowns.

5 PERFORMANCE EVALUATION
5.1 Data Collection and Datasets

We collect large-scale datasets with multiple web browsers (Chrome,
Firefox and Tor browser) and different OSs (Linux and Windows)
for the evaluation of our study.

Specifically, we build a tool in Python to automatically collect
cache activities of a web browser. Our tool integrates the JavaScript
code published in [34] to measure cache activities with a certain
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sampling rate when a web browser loads a website. In addition, our
tool utilizes Selenium library [4] to automatically launch a web
browser and load the URL of each website one after another.

We build a blank webpage, which includes the malicious JavaScript
code, and use it as the malicious website in our experiment. To fa-
cilitate the data collection in a large scale, we host the malicious
website locally instead of hosting a malicious website remotely
on a server. Note that this does not change the cache traces we
collect, as either way, the malicious JavaScript code needs to be run
locally on the user’s machine to measure cache traces. During the
data collection, as in the previous study [35], we use the two-tab
scenario. One tab is the malicious website running the JavaScript
code and the other tab is a monitored (or unmonitored) website. In
our collection, we keep the response cache of a web browser on as
most of the users do in the real world.

We examine three web browsers, including Chrome 85, Firefox
81, and Tor Browser 64, in the data collection. For each web browser,
we use the same parameters from [35]. Specifically, if the web
browser is Chrome or Firefox, we collect a cache trace of one website
visit for 30 seconds. With a sampling rate of 500 Hz, it samples
15,000 measurements in a cache trace. For Tor Browser, as its timer
resolution is only 100ms, instead of measuring the cache access
latency, we count how many rounds the malicious code is able to
iterate over the entire LLC within each time interval (e.g., 100ms).
We use 10 Hz as the sampling rate and record cache activities for
50 seconds for each website visit in Tor browser. Thus, there are
500 measurements in each cache trace collected from Tor Browser.

We use a Linux machine (Ubuntu 20.04) with Intel Core i5-7500
processor, 16 GB RAM and 6 MB of Last Level Cache to collect
cache traces. In addition, we also collect some cache traces on a
Windows machine (Windows 10) with Intel Core i5-7500 processor,
16 GB RAM and 6 MB of Last Level Cache.

To perform the closed-world evaluation, we select 100 monitored
websites and collect a number of 100 cache traces per website in one
dataset. The 100 monitored websites are selected from Alexa! top
100. We first obtain four datasets for the closed-world evaluation
when there is no defense. We denote them as

e Chrome100 (Linux), Chrome100 (Windows), Firefox100 (Linux),
Tor100 (Linux).

Moreover, we choose another 5,000 unmonitored websites and
collect 1 cache trace per website for each dataset. The 5,000 unmon-
itored websites are selected from Alexa top 100 to Alexa top 5100.
We obtain four datasets when there is no defense.

e Chrome5000 (Linux), Chrome5000 (Windows), Firefox5000
(Linux), Tor5000 (Linux).

In addition to collecting datasets when there is no defense, we
also collect corresponding datasets in different scenarios, including
the defense is cache masking designed by [35], the defense is cache
shaping (i.e., our defense), and the defense is cache shaping with
different parameters, for different experiments in our evaluation.
The overall size of the cache traces we collected is 16 GBs with
more than 270,000 cache traces. The entire data collection lasted
for five months, from August 2020 to January 2021.

Uhttps://www.alexa.com/topsites
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Figure 3: The architecture of CNN in this study.
Max Dropout Max Dropout Dense
Input |—| Conv |—» . — | Conv |—» . —» | LSTM |—» | Dense |—» X
Pooling Pooling Softmax

Figure 4: The architecture of LSTM in this study

Table 1: Tuned Hyperparameters for CNN and LSTM on Chrome100 (Linux)

Hyperparameters Search Space CNN LSTM
Optimizer {Adam, SGD, Adamax, Adadelta} Adam SGD
Learning Rate {0.001, 0.003, ..., 0.01} 0.008 0.004
Decay {0.00, 0.01, 0.02, ..., 0.90} 0.412 0.639
Batch Size {16, 32, 64, 128, 256} 64 64
CNN Activation {softsign, tanh, elu, selu, relu} [tanh; relu; relu] [tanh; elu;]
LSTM Activation {softsign, tanh, elu, selu, relu} - [tanh; softsign;]
Dropout {0.1,02, .., 0.7} [0.5; 0.5; 0.2] [0.1;0.1]
Dense Layer Size {100, 110, ...,200} 180 160
Convolution Number {32, 64, 128, 256} [32; 32; 32] [16; 64]
Filter Size {4, 6, ..., 26} [14; 14;8] [8; 14]
Pool Size {1,2,3,4,5,6,7} [2; 4; 4] [7;7]
LSTM Units {4,8,16.,....256} - 128

5.2 Architectures of Neural Networks

We leverage Convolutional Neural Networks (CNN) and Long Short-
Term Memory (LSTM) networks as two classifiers to evaluate the
performance of attacks and defenses. The CNN consists of 3 convo-
lutional layers, 3 pooling layers and a fully-connected layer (with
softmax as the activation function). The LSTM includes 2 convolu-
tional layers, 2 pooling layers and a LSTM layer. The architectures
of CNN and LSTM are described in Fig. 3 and Fig. 4.

5.3 Evaluation Setting

Given a dataset, we randomly select 64% of data for training, 16% for
validation and 20% for testing. We perform 5-fold cross validation.
We implement the neural networks with Keras 2.2.4 as the front
end and TensorFlow 1.15 as the backend. We train and test neural
networks on a Linux machine (Ubuntu 18.04) with Intel Core 9-9900
processor, 64 GB RAM, and a Nvidia Titan RTX GPU.

We tune the hyperparameters of each neural network using NNI
(Neural Network Intelligence) [3]. NNI is a open-source toolkit
developed by Microsoft. During the hyperparameter tuning, we
run at most 50 epochs or abort the tuning if the accuracy does
not further improve after 10 consecutive epochs. After the tuning,
we record the hyperparameters reported by NNI and train the
classifiers locally with our machine. The tuned hyperparameters
we derive for Chrome on Linux are presented in Table 1.

If the web browser or OS changes, we re-tune the hyperparame-
ters. On the other hand, if the web browser and OS remain the same
but it is defended data, we reuse the tuned hyperparameters. For
instance, for defended datasets collected with Chrome and Linux,
we use the tuned hyperparameters in Table. 1 for CNN and LSTM.
In our evaluation, when we investigate performance over defended
data, we always assume that an attacker can adapt to the defense.
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Table 2: Closed-World Evaluation: Attack accuracy (mean +
standard deviation) on non-defended datasets

CNN
88.5% + 1.1%
73.1% + 0.9%
36.1% + 0.8%
83.5% + 0.8%

LSTM
88.3% + 1.0%
70.3% + 1.1%
35.1% + 1.2%
87.8% + 1.0%

Non-defended dataset
Chrome100 (Linux)
Firefox100 (Linux)

Tor100 (Linux)

Chrome100 (Windows)

In other words, we always retrain neural networks with defended
data and then test with defended data.

5.4 Closed-World Evaluation

Experiment A.1: Validating the results of cache-based web-
site fingerprinting. We validate the attack results of cache-based
website fingerprinting over our datasets. As we can observe from
Table 2, the attack can achieve very high accuracy when the web
browser is Chrome or Firefox. For instance, given CNN as the clas-
sifier, cache-based website fingerprinting can achieve more than
88% accuracy. The attack accuracy over cache traces collected from
Tor browser is only about 36% due to a much lower sampling rate
in Tor Browser. The two classifiers, CNN and LSTM, obtain simi-
larly results on the same dataset. The observations we obtain are
consistent with the results reported in the previous study [35].
Experiment A.2: Impact of the number of measurements
per trace. We also examine the impact of the number of mea-
surements/samples in a cache trace on attack accuracy over non-
defended datasets. This aspect, which was not examined in [35], can
help us understand the attack better. In Fig. 5, we can observe that
when we increase the number of measurements (i.e., the length of
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Figure 5: The impact of the number of measurements per
trace on attack accuracy over non-defended datasets.

Table 3: Closed-World Evaluation: Attack accuracy (mean +
standard deviation) on defended datasets generated by cache
masking.

LSTM
77.1% + 1.1%
51.6% + 1.2%
1.4% + 0.1%
83.7% + 1.1%

Defended dataset
Chrome100 (Linux)
Firefox100 (Linux)

Tor100 (Linux)
Chrome100 (Windows)

CNN
72.1% + 1.4%
55.0% + 1.2%
1.7% £ 0.2%
80.5% + 1.3%

Table 4: Closed-World Evaluation: Attack accuracy (mean +
standard deviation) on defended datasets generated by cache
shaping (with m = 4 processes and n = 128 dummy files)

LSTM
12.6% + 1.2%
18.1% + 1.0%
17.6% + 1.5%

Defended dataset
Chrome100 (Linux)
Firefox100 (Linux)

Chrome100 (Windows)

CNN
13.2% + 1.4%
25.5% + 1.3%
14.4% + 1.2%

a trace) in a cache trace, the attack accuracy increases, particularly
within the first 5 seconds.

Experiment A.3: Reproducing the results of cache mask-
ing. We leverage the implementation of cache masking in [35] and
collect defended data generated by it. We still use CNN and LSTM
as the classifiers and retrain the neural networks over defended
data. As we can observe from Table 3, although the attack accuracy
decreases compared to the results in Table 2, an attacker can still
achieve high accuracy over defended data collected from Chrome
and Firefox. This suggests that cache masking is not effective when
an attacker adapts the defense. On the other hand, the attack accu-
racy over defended data from Tor Browser is low and close to 1% of
random guess. The observations we have are consistent with the
ones reported in [35]. Our results in the Experiment A.1 and A.3
indicate that we successfully reproduced the results in [35].

Experiment A.4: Comparison between Our Defense and
Cache Masking. We evaluate the efficacy of our defense against
cache-based website fingerprinting and also compare it with cache
masking. As cache masking is able to reduce the attack accuracy to
the level of random guess for Tor Browser as shown in the previous
experiment, we focus on the comparisons over defended data from
Chrome and Firefox.

We first implement our defense with C/C++ and collect cache
traces generated by our defense with the same monitored websites
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Table 5: CPU slowdown (geometric mean) between cache
masking and cache shaping.

Cache Masking [35] | Cache Shaping
(m=4,n=128)
57.4%

52.1%

20.8%
24.3%

Integer
Floating

using Chrome and Firefox respectively. In this experiment, we
choose the number of processes as m = 4 and the number of dummy
files as n = 128 in our defense. We defer the discussions on the
impact of the number of processes and the number of dummy files
in later experiments. Each dummy file is initialized with a cache-
line size (64 bytes). We set the maximum size of each dummy file as
1 MB to hold evicted data. When the size of a dummy file reaches
1 MB, we reset it to the cache-line size to hold additional evicted
data. We retrain the two neural networks over defended data.

Defence Efficacy. As we can see from Table 4, our defense can
significantly reduce the attack accuracy even if an attacker adapts
the defense and retrains the classifiers. Specifically, if we use CNN
as the classifier, our defense can reduce the attack accuracy to
13% on Chrome100 (Linux) dataset and 25% on Firefox100 (Linux)
dataset. Compared to 72% and 55% derived by cache masking in
the last experiment, our defense obviously renders much better
protection against cache-based website fingerprinting attacks.

Performance Slowdown. In addition to the attack accuracy, we
also compare the CPU slowdowns between our defense and cache
masking. Specifically, we leverage SPEC CPU 2017 benchmarks
[5] to measure the performance slowdown to a user’s computer,
where the slowdown is caused by our defense or cache masking.
SPEC CPU 2017 is an industry-standardized tool for measuring
CPU performance with 43 benchmarks. Among the 43 benchmarks,
we measure the performance slowdowns primarily with 10 integer
rate benchmarks and 13 floating point rate benchmarks. The CPU
slowdowns are evaluated in geometric mean.

As illustrated in Table 5, cache masking introduces 20.8% slow-
down on integer benchmarks and 24.3% slowdown on floating point
benchmarks. On the other hand, our method introduces 57.4% slow-
down on integer benchmarks and 52.1% slowdown on floating point
benchmarks when the number of processes is m = 4 and the num-
ber of dummy files is n = 128. A more detailed comparison on each
specific benchmark is presented in Fig. 6. Our defense introduces a
higher slowdown than cache masking, which is expected. This is
because our defense needs to introduce more dummy operations to
improve the efficacy of the defense. This is a necessary trade-off.

Experiment A.5: The Impact of The Number of Processes
in Our Defense (Closed-World). We investigate the impact of
the number of processes in our defense. Specifically, we select the
number of processes as m = {1, 2,4, 8} respectively, and collect the
defended data produced by our defense based on each value of m.
For each value of m, we retrain the two neural networks and record
the corresponding accuracy. The number of dummy files remains
n = 128 in this experiment.

As we can see from Table 6, if we increase the number of pro-
cesses in our defense, it can further mitigate the attack accuracy.
For example, given CNN as the classifier, the attack accuracy can
be reduced to 10.9% over Chrome100 (Linux) if we increase the
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Figure 6: CPU slowdown comparison between cache masking and our method (m = 4 and n = 128) according to SPEC CPU 2017
benchmarks (the first 13 on the left are floating point rate benchmarks and the rest are integer rate benchmarks).

Table 6: Closed-World Evaluation: The impact of the number
of processes on attack accuracy (mean) on defended datasets
generated by cache shaping (n = 128).

Defended Classifier No. of Processes m
dataset 1 2 4 8
Chrome100 CNN 43.1% 38.7% 13.2% 10.9%
(Linux) LSTM 40.4% 36.3% 12.6% 6.0%
Firefox100 CNN 31.0% 28.2% 25.5% 11.2%
(Linux) LSTM 31.5% 21.1% 18.1% 7.0%

Table 7: CPU slowdown (geometric mean) in cache shaping
with SPEC CPU 2017 benchmarks. (m = {1, 2,4,8}, n = 128)

No. of Processes m
1 2 4 8
Integer | 51.4% 70.0% 57.4% 71.8%
Floating | 42.6% 63.6% 52.1% 66.9%

number of processes to 8. On the other hand, when the number of
processes increases, in general, the performance slowdown overall
increases as shown in Table 7. For example, when m = 8, the per-
formance slowdown will increases to 71.8% and 66.9%. Note that
when m = 2, the performance slowdown is higher than the one
with m = 4. We were not able to figure out what caused this outlier
in our experiment.

Experiment A.6: The Impact of The Number of Dummy
Files in Our Defense (Closed-World). We investigate the impact
of dummy files in our defense. Specifically, we choose the number
of dummy files as n = {2, 8,32, 128} and set the number of processes
as m = 4, and we collect the defended data produced by our defense.
For each value of n, we retrain the two neural networks and record
the corresponding accuracy. As shown in Table 8, increasing the
number of dummy files can improve the efficacy of our defense.
For instance, given CNN as the classifier and n = 2, the attack
accuracy is 23.5% over Chrome100 (Linux) defended dataset. When
n increases to 128, the attack accuracy is further reduces to 13.2%.

In Table 9, we can also observe that the CPU slowdown, overall,
remains at the same level when we change the number of dummy
files. This is expected as the dummy files are stored on disk, which
do not directly affect the performance of a CPU. On the other hand,
the disk storage that our defense needs linearly increases with the
number of dummy files, which is a necessary trade-off.
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Table 8: Closed-World Evaluation: The impact of the num-
ber of dummy files on attack accuracy (mean) on defended
datasets generated by cache shaping (m = 4).

Defended Classifier No. of dummy files n
dataset 2 8 32 128
Chrome100 CNN 23.5% 203% 193% 13.2%
(Linux) LSTM | 27.1% 11.0% 12.0% 12.6%

Table 9: CPU slowdown (geometric mean) in cache shaping
with SPEC CPU 2017 benchmarks. (n = {2,8,32,128}, m = 4)

No. of dummy files n
2 8 32 128
Integer 59.2%  63.1% 57.1% 57.4%
Floating | 53.4% 57.5% 53.1% 52.1%
Storage | 2MBs 8 MBs 32MBs 128 MBs

Table 10: Attack accuracy (mean) and CPU slowdown (geo-
metric mean) of cache shaping with random switch (m = 4,
n = 128). Attack accuracy is evaluated on Chrome100 (Linux)
defended dataset with CNN as the classifier.

Perturbation-on Prob. p
0.25 0.5 0.75 1.0
Accuracy | 39.1% 28.0% 17.1% 13.2%
Integer 49.1% 53.6% 57.1% 57.4%
Floating | 43.0% 46.3% 50.4% 52.1%

Experiment A.7: Cache Shaping with Random Switch. We
examine the performance of our defense by integrating it with ran-
dom switch. As described in Sec. 4, the main idea of random switch
is to randomly turn our defense on at each memory page while our
defense iterates all the memory pages. Specifically, random switch
turns our defense on at each memory page with obfuscation-on
probability p. We choose p = {0.25,0.5,0.75, 1} in this experiment.
We choose m = 4 and n = 128 for all the values of p. Note that,
when p = 1, it is our defense without random switch.

As we can see from Table 10, when the perturbation-on proba-
bility increases, our defense produces higher perturbations overall,
and therefore the attack accuracy decreases. On the other hand, a
lower perturbation-on probability produces lower perturbations,
which leads to lower CPU slowdowns.
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Table 11: Open-World Evaluation: precision and recall over non-defended datasets.

Monitored Unmonitored Classifier Tuned for Precision | Tuned for Recall
(Non-defended) (Non-defended) Precision [ Recall | Precision [ Recall
Chrome100 (Linux) | Chrome5000 (Linux) I‘CSI,\IFI:A Zzg: gifz gzg: Ziiz
Firefox100 (Linux) | Firefox5000 (Linux) IS:SI'\]F]:/I Zzg: E?ZZ zg;: :;iz

Table 12: Open-World Evaluation: precision and recall over defended datasets generated by cache shaping with m = 4 and

n = 128.
Monitored Unmonitored Classifier Tuned for Precision | Tuned for Recall
(Defended) (Defended) Precision [ Recall | Precision [ Recall
. . CNN 85.3% 1.5% 85.3% 1.5%
Chrome100 (Linux) | Chrome5000 (Linux) LSTM 99.8% L6% 971% 69.7%
. . - . CNN 98.9% 2.2% 99.7% 54.8%
Firefox100 (Linux) | Firefox5000 (Linux) LSTM 99 57 917 68.1% 68.0%
. . CNN 0% 0% 0% 0%
Tor100 (Linux) Tor5000 (Linux) LSTM 0% 0% 0% 0%
5.5 Open-World Evaluation ]
' P 1.0 et pe e (3RD) A
Experiment B.1: Attack Results over Non-Defended Data. We 0.81
first examine the performance of the attack over non-defended c
data. We report the detailed attack results of precision and recall 8 0.61
over non-defended data in Table 11. In general, the two classifiers 3 0.4
achieve high precision and recall over Chrome and Firefox in the o —A— Chrome100 (Linux)
open-world evaluation. For example, CNN obtains 99.0% precision 021 i ;’:sfg:(?_?nﬂ;';‘“x)
with 88.2% recall over Chrome datasets if we tune the threshold 0.01
for the best precision and 98.5% precision with 98.5% recall when 00 02 04 06 08 1.0
Recall

we tune the threshold for the best recall. Compared to Chrome
and Firefox, the open-world evaluation is less effective over Tor
datasets. This is expected as the sampling rate and the number of
measurements in a cache trace in Tor Browser are much lower than
the ones in the other two web browsers. The precision-recall curve
of attack results over non-defended data is shown in Fig. 7.

Experiment B.2: Attack Results on Defended Data Gener-
ated by Our Method. We examine the efficacy of cache shaping in
the open-world setting. Specifically, we collect the defended data
generated by cache shaping corresponding to the datasets we ex-
amined in the previous experiment. When we collect the defended
data, we set the number of processes as m = 4 and the number of
dummy files as n = 128 in cache shaping.

The precision-recall curve of attack results over defended data
generated by our method is shown in Fig. 8. As we can observe,
our method cache shaping is very effective against the attack in the
open-world setting, where our method can significantly reduce ei-
ther precision or recall, or both. More detailed results are presented
in Table 12.

Experiment B.3: Comparison between Our defense and
Cache Masking. We compare the defense efficacy of cache shaping
with cache masking in the open-world setting. Specifically, we
leverage the defended datasets produced by our defense from the
last experiment and collect the corresponding defended datasets
generated by cache masking. We use CNN as the classifier and
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Figure 7: Precision-recall curves over non-defended datasets

(classifier: CNN).
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Figure 8: Precision-recall curves over defended datasets gen-
erated by cache shaping with m = 4 and n = 128 (classifier:
CNN).

examine Chrome1l00 (Linux) and Chrome5000 (Linux) defended
datasets.

As shown in Fig. 9, the precision-recall curve of the cache-based
website fingerprinting attack over defended data generated by cache
masking is very close to the precision-recall curve of the attack
over non-defended data. This is suggests that cache masking is also
not effective in the open world evaluation when an attacker adapts
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Figure 9: Comparison of cache shaping and cache masking in

precision-recall curves (classifier: CNN; Chrome100 (Linux)
and Chrome5000 (Linux) defended datasets).

and retrains a classifier with defended cache traces. On the other
hand, our defense cache shaping is much effective compared to
cache masking according to the precision-recall curve.

5.6 Attack Detection

As mentioned in Sec. 4, a user could detect whether a website is
malicious by measuring the cache activities himself. This is because,
compared to benign websites, a malicious website leaves unique
cache patterns due to its attack behaviors. The detection can be
formulated as a binary classification. To demonstrate the efficacy
of our detection, we consider the following two scenarios for an
attacker:

Scenario 1 (Basic Content). A website contains the malicious
JavaScript code and some basic content (e.g., a small image or/and
a short text). This scenario carries less cache activities from the
website itself, which leads to less noise in the attack detection. The
attacker can opt to turn on or off the malicious JavaScript code. If
the code is on, the website is considered as malicious. If the code is
off, the website is considered as benign.

We add a small image (about 500 KB) or/and short text to our
blank webpage including the malicious JavaScript code, and use
it as the website in this scenario. We collect 1,000 cache traces
when the malicious JavaScript is on and 1,000 cache traces when
the malicious JavaScript code is off. We use a different image or
a different text on the webpage when we collect each cache trace
to mimic a (slightly) different website. We use Chrome as the web
browser, Linux as the OS, and each cache trace lasts for 30 seconds
with a sampling rate of 500Hz. We denote this dataset as Basic1000.

Scenario 2 (Comprehensive Content). We assume that a real-
world website is compromised by the attacker, where the malicious
JavaScript code is injected to the website. This scenario carries
more cache activities from the website itself, which makes the
attack detection more challenging. The attacker can opt to turn on
or off the malicious JavaScript code. If the code is on, the website is
considered as malicious. Otherwise, it is considered as benign.

However, since we do not have control of any of the these real-
world websites to inject the malicious JavaScript code in our lab
setting, we simulate this scenario with the following way. We open
two tabs in a web browser synchronously, where one tab opens a
website from Alexa top websites and the other tab opens our blank
webpage with the malicious JavaScript code. With this setup, we
simulate the cache activities when a real-world website running
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Table 13: Precision and recall of attack detection

Dataset Tuned for Precision | Tuned for Recall
Precision [ Recall | Precision [ Recall
Basic1000 98.5% 99.9% 98.5% 99.9%
Alexal1000 98.0% 99.9% 98.0% 99.9%
1.00
5 % @% ﬁ*$
50.951
0
@ A 1s
& 0.90 © 3s
% 5s
—+ 7s
0.8 ; . . , .
8.75 0.80 0.85 0.90 0.95 1.00

Recall

Figure 10: The impact of measurement time on attack detec-
tion over Alexa1000 dataset (classifier: CNN)

the malicious JavaScript code. We collect one cache trace when the
malicious JavaScript is on and one cache trace when the malicious
JavaScript code is off for each website from Alexa top 1000 websites.
We use Chrome as the web browser, Linux as the OS, and each
cache trace lasts for 30 seconds with a sampling rate of 500Hz. We
denote this dataset as Alexa1000.

Experiment C.1: Performance of the Attack Detection. We
evaluate the performance of our attack detection with Basic1000
and Alexal000 respectively. We use our CNN as the classifier in
the detection. Given a dataset, we select 64% of data for training,
16% for validation and 20% for testing. As the detection is a binary
classification, we use precision and recall as the metrics. As we
can see from Table 13, in each dataset, our detection can detect
malicious websites with high precision and high recall based on
cache activities.

Experiment C.2: Impact of the Measurement Time on At-
tack Detection. Although we obtain high precision and recall
in the last experiment, we assume that the detection can monitor
cache activities for 30 seconds. In the real world, a user may want to
detect a malicious website as soon as possible to minimize the nega-
tive impact on user experience. Therefore, we investigate when our
detection has a much shorter measurement time (i.e., has a much
smaller number of features in each trace), what impacts it may have
on the performance of detection.

Specifically, we examine Alexal000 dataset when each trace only
has measurements for 1, 3, 5, and 7 seconds respectively, and retrain
the classifier. The comparison of the corresponding precision-recall
curves is summarized in Fig. 10. The figure indicates that the de-
tection needs to run for about 5 seconds to achieve extremely high
precision and high recall. However, even with 1 second, the detec-
tion can still achieve 98.5% precision and 83.2% recall.

Experiment C.3: Performance of the Attack Detection over
Unseen Websites. We further examine the performance of our
detection over unseen websites to test how robust our detection is
against cache-based website fingerprinting attacks. Specifically, we
assume that the training data and test data for detection are not
from the same dataset.
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Figure 11: Precision and recall of attack detection over un-
seen websites (Case 1: training with Basic100 and test with
Alexa100; Case 2: training with Alexa100 and test with Ba-
sic100).

More specifically, we investigate two cases, where Case 1 takes
training data from Basic1000 but selects test data from Alexa1000
and Case 2 takes training data from Alexal000 but selects test
data from Basic1000. As we can see from Fig. 11, in this more
challenging setting, the detection remains effective to some degree
(i-e., =95% precision and >63% recall), but is not as effective as the
results presented in the previous experiment. For instance, when
the detection has a lower recall, malicious websites may not be
detected and still reveal user privacy.

The above detection performance drop is expected, as it is chal-
lenging for a machine learning model to achieve extremely good
performance when there is a significant discrepancy between train-
ing data and test data. Note that this is not a special limitation to
our detection but is a general challenge to machine-learning-based
methods. Increasing the size of the training data can mitigate this
problem. However, it will take longer time to collect data and train
our attack detection model, especially considering there are mil-
lions of websites in the real world. This suggests that we should
use the detection to complement our proposed defense rather than
completely relying on the detection alone.

6 DISCUSSIONS AND FUTURE WORK

Mitigating CPU slowdowns. As the original cache pattern of
each website is distinguishable due to the unique content of each
website in the real world, perturbing all the cache activities to the
same or similar pattern as in our defense inevitably introduces high
CPU slowdowns. This is a natural trade-off in privacy-preserving
techniques, where higher perturbations generally preserve more
privacy against attackers but cause high overheads.

Seeking new ways to further mitigate CPU slowdowns will be
important. For instance, similar as some of the existing defenses
(e.g., Walkie-Talkie [41]) against traffic-based website fingerprint-
ing, generating cache activities such that a pair of two websites are
indistinguishable might be able to reduce defense overheads rather
than making the cache patterns of all the websites the same/similar
in our current defense.

However, that requires knowing cache activities of websites in
advance in order to pair two websites with similar cache pattern
together. This is not scalable or easy to maintain as cache activities
can change frequently due to content change on websites in the
real world. On the other hand, our current design does not require
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the prior knowledge of cache activities of websites, which is easier
to deploy. Identifying more important features (i.e., measurements)
in traces and primarily perturb these features only might also be
helpful to reduce the overhead in defense [13, 18]. We will leave it
in future work.

Attacking across different settings. Similar as the majority
of studies in website fingerprinting, we assume that the attacker
has the same setting (i.e., same web browser, same OS, same LLC-
size) as a user when we evaluate the attack accuracy and defense
efficacy in this study. However, a real-world attacker may not have
the exact same setting as a user. In other words, there will be dis-
crepancy between the training data collected by the attacker and
the test data captured from a user. The discrepancy affects the at-
tack accuracy derived from a classifier. Techniques such as transfer
learning could be utilized to address the problem in future work.
For instance, recent studies [37, 39] have shown the advantages
of transfer learning in addressing the cross-setting problem in the
context of traffic-based website fingerprinting.

7 RELATED WORK

Traffic-based website fingerprinting. Many studies [12, 14, 15,
19, 24, 27, 28, 31, 36-38, 40] leverage encrypted network traffic to
infer which website a user visits. With deep neural networks as
classifiers, recent research [24, 31, 36] are able to achieve extreme
high accuracy. Wang et al. [39] achieved high attack accuracy over
only few samples by leveraging transfer learning based on triplet
networks. Dani and Wang [9] utilized semantic correlation of the
content of webpages to improve attack accuracy over multiple
traces. To defend against traffic-based website fingerprinting at-
tacks, many defenses [10, 12, 13, 16, 36, 41] have also been proposed
to perturb the pattern of encrypted traffic. Li et al. [18] proposed to
leverage feature importance to locate the most important features
(or packets) in order to reduce bandwidth overheads introduced
by defenses. Several recent studies [23, 30, 33] also explore how to
generate adversarial examples of encrypted traffic traces to fool
website fingerprinting attacks that rely on deep neural networks.

Cache-based website fingerprinting. Oren et al. [25] show
that Prime+Probe can be launched remotely by using malicious
JavaScript code through a web browser. They show that it is fea-
sible to carry out cache-based website fingerprinting with high
sampling rates. Shusterman et al. [34, 35] proposed to measure the
cache activities of the entire LLC to perform website fingerprinting
with relatively low sampling rates. Cronin et al. [8] optimized the
attacking technique from [34, 35] to fingerprint websites visited
via ARM devices. Their experimental results show that the cache
occupancy channel can also be utilize to compromise user privacy
on those newly released devices with ARM processors.

To mitigate the threat of Prime+Probe through JavaScript, ma-
jor web browsers reduced the resolution of the time function in
JavaScript which can be used by an attacker to distinguish a cache
hit and a cache miss [2, 32]. For example, the precision of Perfor-
mance.now() is decreased to 0.1 ms in Chrome and 1 ms in Firefox.

Chen et al. [7] proposed to defend against cache-based attacks
by using features provided by hardware transactional memory. As
these defenses focus on protecting specific cache lines rather than
cache activities of the entire LLC, they are not suitable for defending
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against cache-website fingerprinting attacks using cache occupancy
as indicated by [34, 35].

8 CONCLUSIONS

We propose a new defense which can perturb cache activities of
a web browser, and therefore, defend against cache-based website
fingerprinting. Compared to previous methods, our defense remains
effective even if an attacker is aware of the defense and retrains
classifiers. Extensive experiments over large-scale datasets collected
from major web browsers and operating systems are carried out in
order to validate the efficacy of our proposed defense. Moreover, we
also explore methods that can mitigate the CPU slowdowns caused
by our defense.
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