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Abstract—Website fingerprinting can reveal which sensitive
website a user visits over encrypted network traffic. Obfuscating
encrypted traffic, e.g., adding dummy packets, is considered as a
primary approach to defend against website fingerprinting. How-
ever, existing defenses relying on traffic obfuscation are either
ineffective or introduce significant overheads. As recent website
fingerprinting attacks heavily rely on deep neural networks to
achieve high accuracy, producing adversarial examples could be
utilized as a new way to obfuscate encrypted traffic. Unfortu-
nately, existing adversarial example algorithms are designed for
images and do not consider unique challenges for network traffic.

In this paper, we design a new method, named AdvTraffic,
which can customize perturbations produced by any existing
adversarial example algorithm on images and derive adversarial
examples over encrypted traffic. Our experimental results show
that the integration of AdvTraffic, particularly with Generative
Adversarial Networks, can effectively mitigate the accuracy of
website fingerprinting from 95.0% to 10.2%, even if an attacker
retrains a classifier with defended traffic. Compared to other
defenses, our method outperforms most of them in mitigating
attack accuracy and offers the lowest bandwidth overhead.

Index Terms—Website Fingerprinting, Encrypted Traffic, Ma-
chine Learning, Adversarial Examples

I. INTRODUCTION

With secure communication protocols (e.g., Tor), a user
can hide which website she visits against eavesdroppers as
destination IP addresses of network packets are encrypted.
However, by analyzing traffic pattern, such as the size and
direction of each packet, a website fingerprinting attack can
still reveal which sensitive website that a user visits [1]-[14].
For instance, by leveraging neural networks, an attacker can
achieve 98% accuracy in website fingerprinting [11].

Due to the potential privacy leakage, many defenses [4],
[15]-[19] have been proposed. In general, these defenses
obfuscate encrypted traffic by adding dummy packets, buffer-
ing packets, or merging traffic of two websites as a super
sequence. However, it is still challenging for a defense to
be effective against website fingerprinting while introducing
lower overheads. Specifically, if a defense introduces low
overheads, the attack accuracy remains high, especially when
neural networks are leveraged as classifiers. On the other hand,
if the attack accuracy is significantly reduced, a defense often
requires significant amounts of overheads in bandwidth and/or
network delay.

In this paper, we aim to produce adversarial examples
[20], [21] over encrypted traffic and leverage these adversarial
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examples to obfuscate encrypted traffic against website fin-
gerprinting. Adversarial examples are perturbed samples, e.g.
perturbed images, where the perturbation is small but sufficient
to force a well-trained neural network to predict incorrectly.
For example, a perturbed image of a panda remains a panda to
humans but it forces a well-trained neural network to predict
an incorrect label [20]. How to generate adversarial examples
have been well studied in the image domain [20]-[27].

However, due to the difference between images and network
traffic, we need to tackle several real-world constraints when
producing adversarial examples over encrypted traffic. For
instance, the sign of a perturbation should be the same as the
sign (i.e., direction) of a packet, otherwise original packets
need to be buffered, which will interrupt network protocols
and introduce unnecessary network delay.

To address the challenge, we propose a new method,
referred to as AdvTraffic, to customize perturbations gener-
ated by existing adversarial example algorithms and produce
adversarial examples specifically over encrypted traffic. Our
method is compatible and can be integrated with any existing
adversarial example algorithm. Our main contributions and
findings are summarized below:

e We design a new method, AdvTraffic, which can be
leveraged to produce adversarial examples over encrypted
traffic. We integrate AdvTraffic with four existing adver-
sarial example algorithms, including Fast Gradient Sign
Method [21], DeepFool [23], Projected Gradient Decent
[26], and AdvGAN [28] respectively.

e Our experimental results over a large-scale dataset show
that, the integration of our method AdvTraffic with
AdvGAN (denoted as AdvTraffic-AdvGAN), is able to
successfully reduce the attack accuracy of a Convolu-
tional Neural Network from 95.0% to 10.2%, even when
the attacker’s classifier is retrained with defended traffic.
Moreover, the obfuscated traffic generated by AdvTraffic-
AdvGAN are also transferable across different neural
network classifiers.

o Compared to recent defenses [16], [17], [29]-[31], our
method outperforms most of them in terms of mitigating
attack accuracy. In addition, our method derives the
lowest bandwidth overhead among all the defenses. The
comparison results in the closed-world setting is high-
lighted in Table VI in Sec.V. Moreover, our method also
outperforms other defenses in the open-world scenario.
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terms “trace” and “sample” interchangeably in the rest of this
paper. Note that we do not leverage timestamps of packets
in this paper. Some website fingerprinting attacks leveraging
timestamps can be found in [32].

Evaluation Metric. By following the previous studies in
website fingerprinting, we examine the attack performance of
website fingerprinting in two settings, including closed-world
setting and open-world setting. In the closed-world setting, we
assume that an attacker possesses a list of monitored websites
and a user only visits websites within this list. The evaluation
in closed-world setting is formulated as a classification prob-
lem over multiple classes, where each website is considered as
a class/label. The goal of the attacker is to infer which website
a user visits. Accuracy is utilized as the metric to measure the
attack performance.

In the open-world setting, we assume that an attacker
possesses a list of monitored websites but a user can also visits
unmonitored websites outside of this list. The evaluation in

ITor protocol uses fixed-length packets, named cells, to transmit data. How
to transform the size of a TCP packet to a corresponding number of cells can
be found in [9]
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Fig. 1. The system model of website fingerprinting

the open-world setting is formulated as a binary classification.
The goal of the attacker is to reveal whether a traffic trace
belongs to the list of monitored websites or not. Precision,
recall, precision-recall curves, and ROC (Receiver Operating
Characteristic) curves are utilized to measure the attack per-
formance in the open-world evaluation.

In this paper, we follow the standard model used in previous
studies [S]-[7], [10], to measure the performance in the open-
world setting. Specifically, given a classifier trained based on
monitored websites in the closed-world evaluation, all the
traffic traces from the unmonitored websites are considered
as samples of a new class, which is added to the classifier
as an additional class. The classifier is retrained with data
from monitored websites and data from unmonitored websites.
During the testing, given an unlabeled traffic trace, if the
highest confidence of the classifier belongs to one of the
monitored websites and this confidence is higher than a pre-
defined threshold, then this traffic trace will be labeled as
a monitored website (even through the highest confidence is
not from the correct monitored website). By tuning the pre-
defined threshold, an attacker in the open-world evaluation can
maximize precision or recall.

Our Goals in Defense. In this study, our primary goal is to
build a defense, which can obfuscate traffic pattern such that an
attacker will derive a lower attack performance in both closed-
world setting and open-world setting. In addition, we aim to
minimize the impacts and overheads of this traffic obfuscation
to the current network protocol. For instance, our defense will
only add dummy traffic such that there is no need to buffer
original packets.

Generative Adversarial Networks. Generative Adversarial
Network (GAN) [33], proposed by Goodfellow et al. in 2014,
is a generative model which can generate synthetic data that
are difficult to distinguish from real data. It can be utilized
to produce more data to facilitate the training of classifiers in
different applications or output adversarial examples to fool
well-trained classifiers. We introduce the background informa-
tion of GANs in this subsection to facilitate the discussions
on an algorithm described in later sections.

A GAN consists of Generator (G) and Discriminator (D).
Both the Generator and Discriminator, in essence, are neu-
ral networks. Generator takes random vectors from a low-
dimensional latent space as inputs and aims to produce gen-
erated data, whose distribution is close to the distribution of
real data in a high-dimensional space. These random vectors
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can often be generated by a uniform distribution or Gaussian
distribution. Discriminator takes generated data and real data
as inputs and aims to distinguish generated data from real data.
It can be considered as a binary classifier.

In the training, Generator and Discriminator update their
weights by leveraging backpropagation such that Discrimina-
tor maximizes the probability of assigning correct labels to
both generated data and real data. On the other hand, Generator
minimizes the distance between generated data and real data
and makes it more difficult for Discriminator to assign correct
labels. More specifically, Generator and Discriminator play a
two-player minimax game with a value function V' (D, G):

mén max V(D,G) = Expy(x)llog D(x)]+
Eysnp. (z)[log(1 — D(G(2)))]

where all the real data x follows the distribution of py(x) and
all the random inputs z of Generator follows the distribution of
p-(2z). This loss function was derived from the cross-entropy
between generated data and real data.

To avoid vanishing gradients [34], a GAN can utilize
Wasserstein distance (also referred to as Earth Mover’s dis-
tance) rather than cross-entropy to measure the loss in training,
which refer to WGAN [34], where the value function is defined
as

6]

ménm%x Vw (D, G) = Dax Expax) [D(x)]—
Bz @)[D(G(2))]

where the max value represents the constraint on the discrim-
inator. In this paper, unless specified, we utilize WGAN to
avoid vanishing gradients.

III. ADVERSARIAL EXAMPLE ALGORITHMS

An adversarial example [21] is a perturbed sample, where
the perturbation is often small but can force a well-trained
neural network to predict into an incorrect class. Many Adver-
sarial Example (AE) algorithms [20]-[27] have been proposed.
A comprehensive survey on adversarial examples can be found
in [35].

In this section, we introduce the details of several existing
white-box and semi-white-box AE algorithms. A white-box AE
algorithm suggests that an adversary knows the structure and
hyperparameters of a target model. As for the semi-white-box
AE algorithm, it indicates that an adversary can access to the
target model (structure and hyperparameters) during the feed-
forward network training process. A target model means the
model that an adversary aims to fool. There are also black-
box AE algorithms [24] that do not need to know the structure
and hyperparameters in advance. We focus on white-box/semi-
white-box AE algorithms in this paper.

Fast Gradient Sign Method. Fast Gradient Sign Method
(FGSM), which was proposed by Goodfellow et. al. [21], is a
white-box algorithm that can produce adversarial examples by
leveraging gradients of a neural network. Specifically, given
a sample z, the algorithm adds a perturbation to this sample
based on the sign of the gradient of cost function J(6,x,y),

where y is the true label of sample = and 6 are parameters
of a target neural network. The algorithm can be summarized
below:

Tady = 2 + €-8ign(V,J (0, 2,y)) 3)

where x,4, is an adversarial example of sample z, € is a
parameter to control the size of the perturbation, and V,J
is the gradient of the cost function with respect to sample x.

DeepFool. DeepFool [23] is a white-box algorithm that
iteratively computes a perturbation based on the linearization
of the target classifier to generate adversarial examples. A
perturbation generated by DeepFool is often lower than a
perturbation produced by FGSM, but takes a longer time to
obtain due to multiple iterations involved. Given a sample x
and a target classifier f(-), the algorithm of DeepFool can be
described below:

T T Xip1 < X+ 71
e ( AR

where x;4; represents the intermediate adversarial example
obtained after the ¢-th iteration. The iterations stop when
sign(f(x;)) is no longer the same as sign(f(xg)). Once
the iterations stop, the algorithm outputs the perturbation
7 = ), r;. The final adversarial example can be represented
as Tadgy =T+ Y, 75

Projected Gradient Descent (PGD). PGD [26], in essence,
is an iterative version of FGSM. It can produce lower perturba-
tions which are more difficult to notice. In each iteration, PGD
generates an intermediate adversarial sample using a small
step. The algorithm can be described as below:

“4)

To T Tipq < Clip, [x; + o - sign(V,J(0,2,y)] (5)

where x;4; represents the intermediate adversarial example
derived after the i-th iteration, € is a parameter to control
the size of the perturbation, element-wise clipping function
Clip.[-] keeps each element u; ; of an input u; within the
range of [u; j — €, u; j + €], and a is a parameter to control the
size of changes in each iteration. The algorithm stops when
the number of iterations reaches a predefined parameter and
outputs adversarial example z,q4, = x;+1, Where the total
number of iterations is <.

AdvGAN. AdvGAN [28] is a semi-white-box algorithm
that generates adversarial examples by leveraging a GAN. As
shown in Fig. 2, the framework of AdvGAN consists of a
Generator G, a Discriminator D, and a target classifier f.
Given a sample x as an input, Generator outputs a perturbation
G(zx). Next, perturbed sample = + G(x) and sample x are
used as inputs for Discriminator. In addition, perturbed sample
x+ G(z) is used as input to the target classifier f to obtain a
label .

During the training, Discriminator aims to distinguish real
samples and perturbed samples. Generator aims to produce
perturbed samples that are difficult for Discriminator to dis-
tinguish from samples. In addition, Generator aims to produce
perturbed samples that can be misclassified by f. The loss
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Fig. 2. Framework of AdvGAN

function of the entire AdvGAN is a linear combination of the
loss of Discriminator, the loss of classifier f and a soft hinge
loss. This soft hinge loss is included to bound the magnitude
of the perturbation [28].

After training with sufficient amounts of data, Generator
will be extracted and used to produce adversarial perturbations
for any input without requiring access to the target model.

IV. ADVERSARIAL EXAMPLES FOR ENCRYPTED TRAFFIC
A. Our Proposed Method: AdvTraffic

We aim to produce adversarial examples for encrypted
traffic traces such that an attacker who performing website
fingerprinting with a neural network will predict incorrect
labels. By obfuscating traffic with perturbations, it changes
the size of each burst, and therefore, preserves privacy leakage
against website fingerprinting.

Challenges for Obfuscating Encrypted Traffic. However,
producing adversarial examples on traffic traces is differ-
ent compared to generating adversarial examples on images,
where additional constraints must be considered [29], [36].
Specifically, due to the nature of network traffic, the sign of
a perturbation should be the same as the sign of a burst. Put
differently, if a burst is positive, then a perturbation should
also be positive. If a burst is negative, then its perturbation
should also be negative.

If the sign of a perturbation is opposite to the sign of
a burst, then it suggests that network packets need to be
buffered in order to be consistent with the perturbation. The
buffered data will have impacts on all the following packets,
which will significantly affect the network performance and
the correctness of network protocols. To make it even worse,
with different signs, if the absolute value of a perturbation
is greater than the size of a burst, the direction of network
packets needs to be changed (e.g., an outgoing packet becomes
an incoming packet), which is not feasible in the real world.

Our Method: AdvTraffic. By considering the constraints
we discussed above, we propose a new method, referred to
as AdvTraffic, which can be integrated with any existing
AE algorithm to produce adversarial examples on encrypted
traffic. The main idea is to adjust perturbations generated
by an AE algorithm before calculating adversarial examples
on encrypted traffic. Perturbations having the same signs as
bursts are kept while others are reset as Os in the adjusted
perturbations.

The details of AdvTraffic can be summarized as follows:
given a sample x and a perturbation r generated by an AE

algorithm, where z = (21,...,z,) and ©r = (r1,...,7n),
instead of directly computing a perturbed sample z,q, =
z + € - r, AdvTraffic first computes an adjusted perturbation
* ) as,

r = (rf, ..,k
[ — .
{ Y =7
o
r; =0

' n
for 1 < 57 < n. Next, AdvTraffic computes perturbed sample
Tadv = T + € - 7%, where parameter € is used to control the
magnitude of the perturbation.
For example, assume we have a sample = and a perturbation
T as

if ZTj-Ty Z 0
otherwise

(6)

xr = (l‘h 7$n) = (+2? _27+47 _17+67+8>
r=(ry,..rn) =(=1,—-1,42,42,+1,+1)

the adjusted perturbation r* based on our algorithm is

*

r = (TT’ ""r;‘;) = (07 _17+2)O7 +1’ +1)

where 7] and 7} are reset as Os as 1 -77 < 0 and x4-1; < 0.

Note that a floor function will be applied for each obfuscated
packet size to keep it as integer. Moreover, if an original AE
algorithm (e.g., DeepFool or PGD) runs multiple iterations to
obtain adversarial examples, AdvTraffic is applied within each
iteration accordingly.

Additional Assumptions. In order to leverage AdvTraffic
to obfuscate traffic, we have a few additional assumptions.
First, to successfully deploy our defense, the defense method
has control over both the incoming and outgoing packets. This
assumption is also used in WTF-PAD [16] and Mockingbird
[29] for enabling website fingerprinting defenses.

Second, a target classifier for generating adversarial exam-
ples is the classifier that an attacker uses to predict websites
in website fingerprinting. In other words, we assume a user,
a server or a proxy who produces defended traffic know the
structure and hyperparameters of a classifier that an attacker
builds for fingerprinting websites. For example, an attacker
may use a classifier from the current literature to pursue a
high attack accuracy, where the structure and hyperparameters
are public available.

In case of an even stronger attacker, who can utilize a differ-
ent classifier for website fingerprinting compared to the target
classifier used for generating adversarial examples, our defense
can still be effective as adversarial examples are transferable
(i.e., can still change the predictions) over different neural
network classifiers. In one of our experiments presented in
Sec. V, we will also show that even if the target classifier
utilized in the generation of adversarial examples is different
from the classifier that a website fingerprinting attacker runs,
the attack accuracy can still be significantly reduced when our
proposed defense applied.

B. AE Algorithms with AdvTraffic

We describe the details of the variation of each AE algo-
rithm (introduced in Sec. III) that we can generate by integrat-
ing our proposed method AdvTraffic. For each variation built
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upon AdvTraffic, we focus on the main difference compared
to the original AE algorithm.

AdvTraffic-FGSM. The variation of FGSM integrating
AdvTraffic can be highlighted as below:

« Compute perturbation r < sign(V,J(0,z,y))

e Given sample z = (21,...,2,) and © = (r1,...,7n),
output an adjusted perturbation r* = (r],...,r}), where
for 1 < j < n compute

o T;f:rj,if:rj~rj >0

o r;‘ = 0, otherwise

o Output an adversarial example x,4, = + € - 7",
AdvTraffic-AdvGAN. The variation of AdvGAN integrat-
ing with AdvTraffic can be presented as below.

» Given G(x) outputted by Generator, set r < G(z).

e Given sample z = (z1,...,2,) and 7 = (r1,...,7n),
output an adjusted perturbation r* = (ry,...,r"), where
for 1 < 7 < n compute

o T;:Tj, ifx;-r; >0
S r;f = 0, otherwise

o Output an adversarial example x,q4, = x + r*.

Note that we only present the variations of FGSM and Adv-
GAN due to the space limitation. The variations of DeepFool
and PGD follow the similar logic, where the perturbations
applied only when the direction of each perturbation packet is
consistent with the direction of original packet.

V. PERFORMANCE EVALUATION
A. Datasets

We leverage one existing large-scale dataset, named DF
dataset, to measure the defense performance with our method.

DF dataset. This dataset was collected in [10]. It includes
95 monitored websites with 1,000 traces per website for
the closed-world evaluation and 40,716 unmonitored websites
with 1 trace per website for the open-world evaluation. The
dataset for the closed-world setting is collected by visiting the
homepage of each top-100 Alexa site 1,250 times. In the open-
world setting, the dataset is collected by visiting Alexa’s top
50,000 sites (1 trace per site), excluding the first 100 sites used
in closed-world setting. More details can be found in [10].

Data Pre-Processing. Given the dataset, we further pre-
process data and remove invalid traces by following the same
pre-processing approach as [10]. Specifically, if a trace has
less than 50 packets or it starts with an incoming packet, we
consider it invalid and remove it.

After this pre-processing, each monitored website in DF
dataset has at least 463 traces. For the ease of analyses, we
take 460 traces per monitored website for all the 95 monitored
websites in our experiments. For the unmonitored websites,
26,296 traces (i.e., 1 trace per website from 26,296 website)
remain valid after the pre-processing. We use all the valid
26,296 traces in our evaluation.

In addition, same as previous studies [9]-[11], we also trim
or pad each trace to a fixed length. Given this DF dataset
(after pre-processing), we found that nearly 80% traces have

Stack 4 times
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Activation 4 Dense [——1 Output

Pooling ,

Input

Fig. 3. Architecture of DF model

a size of 512 or higher and over 98% traces have a size of
1024 or higher. We perform fingerprinting attacks with both
sizes running a Convolutional Neural Network, named DF
model (see in a later subsection), and derive 95% accuracy
with length 512 and 93% accuracy with length 1024. For the
ease of computation on adversarial examples, we select 512
as the trace length in our experiments.

B. Experimental Setting

We implement the variations of AE algorithms integrating
AdvTraffic and neural networks with Pytorch 1.3.0. We run all
the experiments on a Linux machine with Ubuntu 18.04 OS
2.8 GHz CPU, 16 GB Memory, and a Nvidia GeForce GTX
1070 GPU.

We leverage NNI (Neural Network Intelligence) [37] to
search the hyperparameters of a neural network. We use TPE
(Tree-structure Parzen Estimator), which is one of the search
algorithms rendered by NNI, as the search algorithm. We
perform hyperparameter search with 100 trials at most or stop
the search if it takes more than 100 hours.

C. Architectures of Neural Networks

DF model. We use Deep Fingerprinting (DF) model de-
signed by Sirinam et al. [10] as the attack classifier in website
fingerprinting. This DF model achieved 98% accuracy in the
closed-world setting and outperformed several other models in
[10]. Moreover, it can effectively defeat one existing defense
(e.g., WTF-PAD). DF model is presented in Fig. 3.

Note that, we implement DF model in Pytorch in our
experiment with the same architecture proposed in [10]. The
original DF model was implemented in Tensorflow. In our
implementation, we re-search the hyperparameters, such as
in-channels, out-channels, kernel size, learning rate, and opti-
mizer, etc. The tuned hyperparameters of DF model over DF
dataset can be found in Appendix.

The Architecture of AdvGAN. For the Generator, it con-
sists of an encoder, a transformer, and a decoder. This structure
is based on the one used in image-to-image translation [38].
For the Discriminator, it is a CNN. More information about the
structure of Generator and Discriminator can be found in Ap-
pendix. Note that, as the original implementation is designed
for images, we modify the code to make it compatible with
1-dimensional data. We also customize some hyperparameters
to gain a better performance in our experiments. In addition,
rather than using real samples, we use random vectors that are
produced by Gaussian distribution as the inputs to generate
perturbations at the Generator.

D. Closed-World Evaluation

Experiment 1: Attack Results on Non-Defended Data.
We first evaluate the attack performance of DF model
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TABLE I

CLOSED-WORLD: ATTACK RESULTS ON NON-DEFENDED DATA

DF model
95.0%

36 minutes

Accuracy
Training Time

on non-defended data, where we train/validate/test with
70%/10%/20% non-defended data respectively. As shown in
Table I, given DF dataset, DF model obtains 95.0% accuracy
after training 200 epochs and the training takes 36 minutes.

Experiment 2: Attack Results (Training with Non-
Defended Data and Testing with Defended Data.) Next,
we investigate the attack performance over defended data,
where the classifier is trained using non-defended data and
test with defended data. We leverage multiple algorithms, in-
cluding AdvTraffic-FGSM, AdvTraffic-DeepFool, AdvTraffic-
PGD, and AdvTraffic-AdvGAN, to produce defended data
(i.e., adversarial examples of encrypted traffic traces). Param-
eters of each AE algorithm can be found in Appendix. DF
model is leveraged accordingly as the target classifier when we
produce defended data. As we can see from Table II, website
fingerprinting performs poorly if a classifier is trained with
non-defended data but tested with defended data. Specifically,
except AdvTraffic-FGSM only mitigates the attack accuracy
from 95.0% to 62.7%, others significantly reduce the attack
accuracy to less than 8%.

TABLE II
CLOSED-WORLD: ATTACK ACCURACY (TRAINING WITH NON-DEFENDED
DATA AND TESTING WITH DEFENDED DATA)

AE Algorithm DF model
AdvTraffic-FGSM 62.7%
AdvTraffic-DeepFool 6.7%
AdvTraffic-PGD 7.9%
AdvTraffic-:AdvGAN 1.9%

TABLE III
CLOSED-WORLD: ATTACK ACCURACY (TRAINING AND TESTING WITH
DEFENDED DATA)

AE Algorithm DF model
AdvTraffic-FGSM 92.4%
AdvTratfic-DeepPool 90.4%
AdvTraffic-PGD 88.5%
AdvTraffic-AdvGAN 10.2%

Experiment 3: Attack Results (Training and Testing with
Defended Data). In this experiment, we examine the attack
performance over defended data, where the classifier is trained
and tested using defended data (i.e., adversarial training). This
experiment setting captures a more real-world scenario where
a (strong) website fingerprinting attacker learns which defense
has been applied and re-trains its classifier over defended data.
We still leverage the same AE algorithms from last experiment
and use DF model (trained based on non-defended data) as
the target classifier to produce defended data. Once we have
defended data from each AE algorithm, we retrain DF model
accordingly to examine the case of training and testing with
defended data.

As reported in Table III, if a website fingerprinting attacker
performs adversarial training, it can dramatically regain attack
accuracy for most of the AE algorithms. However, if defended

data is generated by AdvTraffic-AdvGAN, an attacker fails to
regain its attack accuracy, which is only 10.2%. In other words,
AdvTraffic-AdvGAN would be the best option for the defense
if we aim to utilize adversarial examples to obfuscate traffic.

Experiment 4: Defense Overheads. In this experiment,
we examine the overheads of our method when we integrate it
with different adversarial examples. We examine the overheads
in two aspects, the average generation time of an adversarial
example for a traffic trace and the average perturbation size
(i.e., the bandwidth overhead) that AE algorithms need to
obfuscate a traffic trace. As shown in Table IV, AdvTraffic-
AdvGAN is the fastest one in term of producing adversarial
examples. It only takes 0.003 seconds on average to produce
an adversarial example given a traffic trace. In addition, it
produces a relatively low bandwidth overhead. On the other
hand, AdvTraffic-AdvGAN needs a one-time pre-training time
(1.33 hours) to train a Generator while other algorithms do not.

TABLE IV
DEFENSE OVERHEADS
AE Pre-Training Generation Bandwidth
Algorithm Time Time Overhead
AdvTraffic-FGSM - 0.007 seconds 22.7%
AdvTraffic-DeepFool - 0.014 seconds 7.6%
AdvTraffic-PGD - 0.018 seconds 83.4%
AdvTraffic-AdvGAN 1.33 hours 0.003 seconds 23.0%

Experiment 5: The Impact of Cross-Classifiers (transfer-
ability). In this experiment, we examine the impact of cross-
classifiers. Specifically, we assume that an attacker can further
adapt and use a different classifier compared to the one used
for generating adversarial examples over encrypted traffic. For
instance, defended data are generated by DF model while an
attacker utilizes a LSTM (Long Short-Term Memory) as the
classifier during the attack. We are aiming to measure whether
the defense is transferable in this cross-classifier scenario. In
addition to DF model, we built a basic LSTM which includes 2
LSTM layers. With this LSTM, an attacker can achieve 80.5%
accuracy on non-defended data over DF dataset. The details
of its structure and parameters are listed in Appendix.

Given DF model and this LSTM, we use one of them
as the target classifier to generate adversarial examples and
use the other one as the attack classifier to perform website
fingerprinting. In addition, we retrain the attack classifier with
defended data. As we can see from Table V, even an attacker
uses a different classifier than the one used in generating
adversarial examples, our method AdvTraffic-AdvGAN can
still effectively mitigate the attack accuracy. For instance, if
the defended data are generated by DF model, it can still
mitigate the attack accuracy to 4.6% if an adversary uses
the LSTM as the attack classifier. Similarly, if the defended
data are generated by LSTM model, it can mitigate the attack
accuracy to 4.1% if an adversary uses DF model as the attack
classifier. Therefore, we conclude that adversarial examples
generated by AdvTraffic-:AdvGAN are transferable, where the
ones generated by one neural network can also affect other
neural networks.
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TABLE V
CLOSED-WORLD: ATTACK ACCURACY (TRAINING WITH DEFENDED DATA
AND TESTING WITH DEFENDED DATA, BUT TARGET CLASSIFIER IS
DIFFERENT FROM ATTACK CLASSIFIER)

AE Target: LSTM Target: DF
Algorithm Attack: DF Attack: LSTM
AdvTraffic-FGSM 94.0% 60.9%
AdvTraffic-DeepFool 92.6% 24.5%
AdvTraffic-PGD 75.4% 7.2%
AdvTraffic-:AdvGAN 4.1% 4.6%

Experiment 6: Comparison with Existing Defenses. In
this experiment, we also compare our method, AdvTraffic-
AdvGAN, with five state-of-the-art defenses, including
Walkie-Talkie [17], WTF-PAD [16], Mockingbird [29], DFD
[30] and Dolos [31]. We evaluate them against website fin-
gerprinting attack with DF model on DF dataset. For the
evaluation of accuracy, we focus on the results when ad-
versarial training is involved (i.e., DF model is trained and
tested with defended data). As we can see from Table. VI, an
attacker can derive only 10.2% accuracy over the defended
data generated by AdvTraffic-AdvGAN in our experiment,
which outperforms all the existing defenses except one. For
instance, both Walkie-Talkie and WTF-PAD fail to effectively
reduce the attack accuracy when an adversary retrains the
classifier with defended data. This observation is consistent
with previous studies. Mockingbird and DFD can offer 33.3%
and 12.3% accuracy respectively. Dolos mitigates the attack
accuracy to 4%, which is the best defense in the comparison.
However, Dolos requires higher bandwidth overhead (30%)
than our method (23%).

For Walkie-Talkie, WTF-PAD, and Mockingbird, we imple-
mented and evaluated based on the source code published from
previous studies [16], [17], [29]. For DFD and Dolos (marked
with *), as their source code are not publicly available, we
compare them with the results reported in their papers [30],
[31]. Both DFD and Dolos also use the same neural network
architecture (DF model) and the same dataset.

TABLE VI
COMPARISON WITH EXISTING DEFENSE.
Attack Accuracy Bandwidth
(on defended traffic) Overhead
Walkie-Talkie [17] 46.0% 149.6%
WTEF-PAD [16] 86.2% 61.1%
Mockingbird [29] 33.3% 57.2%
DFD* [30] 12.3% > 85.0%
Dolos* [31] 4.0% 30.0%
AdvTraffic-:AdvGAN (Ours) 10.2% 23.0%

E. Open-World Evaluation

Experiment 7: Attack Results on Non-Defended Data.
In this experiment, we evaluate the open-world setting, which
is more realistic in the real world. As mentioned, we use
the standard model [S]-[7], [10] to evaluate the open-world
setting. In this setting, the 26,296 traces from unmonitored
websites are added as traces from an additional class to the
classifier obtained from the closed-world setting. We retrain
the classifier with traces from monitored websites and traces

from unmonitored websites. For this additional class of un-
monitored websites, we use 20,000 traces for training and
6,296 for testing. For other classes of monitored websites,
we still use 80% per class for training and 20% per class
for testing. The classifier aims to decide whether a trace is
from monitored websites or unmonitored websites. DF model
is utilized as the classifier. We tuned the pre-defined threshold
for the confidence to obtain tuned precision or recall.

As we can observe from the results in Table VII, a website
fingerprinting attacker can achieve very high precision and
recall over non-defended data in the open-world evaluation.
Specifically, if we tune the threshold for precision, DF model
can achieve 100% precision and 83.9% recall. If we tune the
threshold to obtain the highest recall, then DF model can
achieve 88.6% recall with 96.9% precision. We also plot the
ROC curve for non-defended data in Fig. 4.

TABLE VII

OPEN-WORLD: PRECISION & RECALL (TRAINING AND TESTING WITH
NON-DEFENDED DATA)

Classifier | Tuned for Precision Tuned for Recall
Precision Recall Precision | Recall
DF model 100% 83.9% 96.9% 88.6%
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Fig. 4. ROC curve in the open-world setting. Defended data are generated
by AdvTraffic-AdvGAN.

Experiment 8: Attack Results (Training and Testing with
Defended Data). In this experiment, we examine the open-
world setting when data are obfuscated with AE algorithms. As
AdvTraffic-AdvGAN derives promising results in the closed-
world setting in Experiment 3 while others are not, we only
report the results of AdvTraffic-:AdvGAN in the open-world
evaluation and compare with other defenses in Table VIII.
Unfortunately, we were not able to compare with defenses
Dolos [31] and DFD [30] in the open-world setting as open-
world evaluation was not evaluated in their original papers.
The website fingerprinting classifier DF model is retrained
over defended data and tested with defended data.

As we can see from Table VIII, AdvTraffic-AdvGAN out-
performs the other three defenses in the open-world setting.
Moreover, it significantly mitigates a website fingerprinting
attacker’s performance in the open-world compared to the
results reported over non-defended data in Table VIII. For
example, an attacker can achieve 100% precision but only
derive 1.2% recall if it tunes the threshold for precision, while
the state-of-the-art defense Mockingbird [29] achieves 100%
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precision but with 30.8% recall. Similarly, if this attacker tunes
for recall, it only obtains 78.3% recall and 1.4% precision,
while Mockingbird [29] obtains 73.3% precision but with
45.3% recall. In other words, AdvTraffic-AdvGAN is effective
as a defense in the open-world setting even when classifier
retrains with defended data.

The corresponding ROC curves for DF model over the
defended data, which generated by AdvTraffic-AdvGAN, are
shown in Fig. 4. From the ROC curve, we can also seen
that an attacker’s capability is significantly mitigated in the
open world setting by our proposed method. We also plot
the precision-recall curves for different website fingerprinting
defenses in the open-world evaluation in Fig. 5, where the
classifier is retrained over defended data each time. It is
obvious that AdvTraffic-:AdvGAN can significantly alleviate
the attack and outperforms other defenses in the open-world
setting.

TABLE VIII

OPEN-WORLD: PRECISION & RECALL (TRAINING AND TESTING WITH
DEFENDED DATA)

Defense Tuned for Precision Tuned for Recall
Precision Recall Precision | Recall
Walkie-Talkie [17] 100% 1.3% 69.7% 2.6%
WTF-PAD [16] 100% 2.4% 84.5% 4.6%
Mockingbird [29] 100% 30.8% 73.3% 45.3%
AdvTraffic-AdvGAN(ours) 100% 1.2% 78.3% 1.4%
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Fig. 5. Precision-Recall curve in the open-world setting over defended data.

VI. RELATED WORK

Website Fingerprinting. Many studies [1]-[8] have exam-
ined website fingerprinting. For instance, by manually select-
ing features and using traditional machine learning algorithms
(e.g., kNN or SVM) as classifiers, studies in [5]-[7] can
achieve more than 90% in website fingerprinting. Several
studies [9]-[13] have proposed to utilize neural networks to
promote attack accuracy of website fingerprinting over large-
scale datasets. For example, Rimmer et al. [11] proposed
website fingerprinting attacks by leveraging Stacked Denoising
Autoencoders (SDAE), CNN and Long Short-Term Memory
(LSTM). Their CNN achieved 96% in the closed-world setting
with 900 websites and 2,500 traces per website while LSTM
and SDAE obtained 94% and 95% respectively. Sirinam et al.
[39] utilized triplet networks to perform website fingerprinting
with few traffic traces. Rahman et al. [32] examined how
to utilize timestamps of encrypted packets to infer websites.
Wang et al. [40] leveraged adversarial domain adaptation to

perform website fingerprinting when training and test traces
are collected from different setups. Dani et al. [41] investigated
the correlation of website content across traffic traces in
website fingerprinting.

Defenses against Website Fingerprinting. Many defenses
[4], [15]-[19] have also been proposed to preserve user
privacy against website fingerprinting. The main approach is
to obfuscate traffic traces such that it is more difficult for an
attacker to distinguish traffic pattern. For instance, Juarez et
al., [16] proposed a lightweight defense, named WTF-PAD,
to protect Tor traffic pattern against website fingerprinting.
WTF-PAD requires low overheads but it is not effective if an
attacker retrains classifiers with neural networks [10]. Wang
et al., [17] proposed a defense, named Walkie-Talkie, against
website fingerprinting. This defense merges traffic traces of 2
websites into a super sequence such that an attacker cannot
distinguish which website it is between the two. As a result,
an attacker can achieve at most 50% accuracy in theory. Li
et al. [42] examined an effective defense against cache-based
website fingerprinting.

Zhang et al. [43] examined producing adversarial examples
over encrypted traffic with FGSM. However, their method fails
to preserve privacy if an attacker retrains a classifier with
adversarial examples. Besides, they did not consider additional
constraints for encrypted traffic in their study. Imani et al.
[29] also proposed a method (named Mockingbird) to generate
adversarial examples for encrypted traffic. The main idea is to
obfuscate traces of monitored websites according to the traces
of decoy websites. However, Mockingbird introduces greater
bandwidth overhead than our method as its bandwidth relies on
decoy websites, which could have high overheads depending
on the manual selection. Nasr et al. [36] (referred as Blind)
proposed three methods to produce adversarial examples for
encrypted traffic depending on which data format is used (e.g.,
size-based, direction-based, time-based). The main idea of
their methods is similar to ours as they utilize a Generator and
a classifier to produce adversarial examples. Unfortunately,
we are unable to experimentally compare this defense with
others as it uses a different metric and its code and (defended)
datasets are not publicly available.

VII. LIMITATIONS AND FUTURE WORK

In this section, we discuss the limitations of this study
and future work. First, we do not consider perturbations on
timestamps. This is because the majority of existing studies
in website fingerprinting rely on size and direction rather
than timestamps. Our method, however, could be potentially
extended to the perturbations on timestamps, where a perturba-
tion on a timestamp has to be non-negative. As the perturbed
timestamps will be aggregated to all the later packets in the rest
of a traffic trace, optimizations on the network delay will need
to be considered. We will leave it as a future work. Second,
we focus on white-box and semi-white-box settings in this
study, and did not consider black-box setting for generating
adversarial examples.
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VIII. CONCLUSIONS

We propose a method, AdvTraffic, which can customize
perturbations in order to produce adversarial examples over
encrypted traffic. Our experimental results suggest that (1) it is
feasible to produce adversarial examples over encrypted traffic
to mitigate privacy leakage against website fingerprinting;
(2) Our method built on top of GANs is able to produce
obfuscated traffic to preserve privacy effectively and outper-
forms traditional defenses even when a website fingerprinting
attacker adapts and retrains classifiers with defended data; (3)
The obfuscated traffic generated by AdvTraffic-AdvGAN are
even transferable across different models and architectures.
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Tuned Hyperparameters of DF model. We present the
tuned hyperparameters of DF model in Table X.

Tuned Hyperparameters in AdvGAN. In AdvGAN, it
includes a Generator, a Discriminator and a classifier. For

the classifier, we use DF model, where its hyperparameters
have been shown in Table X. The structure of the Generator
is the same as the one in [28], [38]. The Generator includes an
Encoder, 4 ResNet blocks and a Decoder. The hyperparameters
of the Encoder and Decoder in the Generator are summarized
in Table XI. We use the default hyperparameters in each
ResNet block, and it can be found in [44]. For Discriminator,
the hyperparameters are presented in Table XII.

TABLE XI
HYPERPARAMETERS OF ENCODE AND DECODE IN THE GENERATOR
Hyperparameters Encoder Decoder
In-channels [1, 8, 16] [32, 16, 8]
Out-channels [8, 16, 32] [16, 8, 1]
Kernel size [3, 3, 3] [3, 3, 6]
Stride [1,2,2] [2,2,1]
Padding [0, 0, O] [0, 0, 0]
Activation function | [ReLU, ReLU, ReLU] | [ReLU, ReLU, Tanh]
Layer Type Convld ConvTransposeld
Learning rate 0.001
Optimizer Adam
TABLE XII
HYPERPARAMETERS OF DISCRIMINATOR
Hyperparameters Size
In-channels [1, 8, 16, 32]
Out-channels [8, 16, 32, 1]
Kernel size 14, 4, 4, 1]
Stride [2,2,2,1]
Padding [0, 0, 0, 0]
Activation function | [LeakyReLU, LeakyReLU, LeakyReLU, Sigmoid]
Learning rate 0.001
Optimizer Adam

Tuned Hyperparameters of CNN/LSTM in Experiment
5. The tuned hyperparameters of CNN (DF model) and LSTM
are presented in X and XIII respectively. The details of the
LSTM structure describe in Figure 11.

TABLE XIII
TUNED HYPERPARAMETERS OF LSTM
Hyperparameters Size
Input size 512
Num_lIstm_layer 2
Hidden size 256
Dropout 0.4
Learning rate 0.006
Optimizer Adam
Bidirectional False
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