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FORMATION AND OROGEN-PARALLEL TRANSPORT OF THE
DADEVILLE COMPLEX, ALABAMA, USA: IMPLICATIONS FOR THE
TACONIAN OROGENY IN THE SOUTHERN APPALACHIANS

CHONG MA*', DANE S. VanDERVOORT**, MARK G. STELTENPOHL,
and JOSHUA J. SCHWARTZ##

ABSTRACT. The Taconian orogeny in the southern Appalachians has not been fully
understood due to a lack of connections among the various Ordovician lithotectonic
units. Zircon U-Pb ages obtained by laser ablation-sector field-inductively coupled
plasma-mass spectrometry from arc-related meta-igneous rocks comprising the Dadev-
ille Complex in the Alabama Inner Piedmont (southeastern USA) indicate continuous
arc magmatism at ca. 465 to 454 Ma following an earlier phase at ca. 480 Ma. These
meta-igneous rocks, in conjunction with literature data, are interpreted to represent
remnants of the Taconian-aged Dadeville arc, which formed on a rifted Laurentian
crustal block. Metamorphic overgrowths on zircons from the meta-igneous rocks of the
Dadeville Complex and a schist of the uppermost Emuckfaw Group, along with zircons
from a felsic melt in the Agricola Schist (metasedimentary cover of the Dadeville arc),
reveal a regional metamorphic event at ca. 408 to 394 Ma. Dominant 1300 to 900 Ma
zircons in the Agricola Schist suggest that the Dadeville Complex sedimentary rocks
were primarily sourced from Laurentia.

The depocenters of the Taconian bentonites and clastic wedge and the location of
peak Taconian metamorphism, based on literature data, suggest that the locus of the
Taconian orogeny in the southern Appalachians was located at the Tennessee embay-
ment. Early Devonian metamorphism/magmatism, Taconian arc rocks, and detrital
zircon provenances are shared by the Dadeville Complex at the Alabama promontory
and Taconian assemblages at the Tennessee embayment, which, in conjunction with
the southwest-directed extrusion/shear structures found in the Inner Piedmont and
uppermost eastern Blue Ridge from North Carolina to Alabama, suggest that the
Dadeville arc and its companion back-arc basin originally formed in the Tennessee
embayment and were subsequently transported to the Alabama promontory along
orogen-parallel shear zones likely associated with the Acadian-Neoacadian transpres-
sional convergence. This study provides a palinspastic view of the original Taconian
orogeny in the southern Appalachians.

Key words: zircon U-Pb geochronology, southern Appalachian orogen, original
Taconic orogen

INTRODUCTION

Subduction of oceanic plates and amalgamation of crustal masses were likely
occurring along most parts of the eastern Laurentian and western Baltic margins
during the Middle Ordovician. The representative magmatic-metamorphic-
depositional events are described as the Taconian (or Taconic) orogeny in the North
American Appalachians (for example, van Staal and others, 2007; Hatcher, 2010;
Pollock and others, 2012) and (ultra) high-pressure metamorphism of the Seve Nappe
Complex in the Scandinavian Caledonides (for example, Brueckner and others, 2004;
Majka and others, 2014; Klonowska and others, 2017). Although this continental-scale
convergence of lithosphere is well-constrained in the Caledonides and in parts of the
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northern and central Appalachians, it is less so in the southern Appalachians of the
southeastern USA.

The Taconian orogeny (~470—445 Ma) is classically known as the first major
Paleozoic orogenic event prior to the Acadian-Neoacadian (~404—345 Ma) and
Alleghanian (~325—260 Ma) orogenies that collectively created the Appalachian
Mountain chain of eastern North America (Hatcher, 2010; Hatcher and others, 2017).
The Taconian orogen is best preserved in the northern Appalachians as a system of
allochthons containing remnant Cambrian—Middle Ordovician continental and oce-
anic arcs and sedimentary rocks that were accreted to eastern Laurentia during the late
Cambrian to Ordovician (for example, Karabinos and others, 1998; van Staal and
others, 2007), and in the central Appalachians as Cambrian—Ordovician continental
slope and deep-water sedimentary rocks that were polydeformed and accreted during
the Middle to Late Ordovician (for example, Wise and Ganis, 2009; Codegone and
others, 2012).

In the southern Appalachians, the Taconian event and its associated effects are
recorded by sedimentary sequences containing bentonites in the foreland (for ex-
ample, Thomas, 1977; Tucker, 1992), high-grade metamorphism in the western Blue
Ridge (for example, Corrie and Kohn, 2007; Dickson and others, 2019), granulite- and
eclogite-facies metamorphism (for example, Moecher and others, 2004; Miller
and others, 2010) and bimodal volcanism in the eastern Blue Ridge (for example, Tull
and others, 2007; Holm-Denoma and Das, 2010), and granitic plutonism in the Inner
Piedmont (fig. 1) (for example, Sagul, ms, 2016; Huebner and others, 2017; Tull and
others, 2018). The tectonic setting for the formation of these assemblages of Ordovi-
cian rocks in a regional context, however, remains elusive. Thus, addressing this
question will facilitate our understanding of the Taconian orogen in the southern
Appalachians, and help elucidate the geodynamics of the eastern Laurentian margin
during this period.

In the southernmost Appalachians, a medium- to high-grade Taconian arc fragment
composed of volcanic-arc related felsic gneisses, mafic-ultramafic meta-igneous bodies,
amphibolites, and schists has recently been recognized in the Inner Piedmont Dadev-
ille Complex of Alabama and western Georgia (fig. 1B) (for example, VanDervoort
and others, 2017; Tull and others, 2018). This Taconian arc has been interpreted to
have formed within the Alabama promontory along the attenuated Laurentia margin,
outboard of the Pine Mountain window (fig. 1B) (Farris and others, 2017; Tull and
others, 2018). Herein we report new zircon U-Pb data from meta-igneous and
metasedimentary rocks of the Dadeville Complex and adjacent eastern Blue Ridge,
which, in conjunction with literature data and contextual regional geology, indicates
that the Taconian arc of the Dadeville Complex originally formed at the Tennessee
embayment and was later transported southwestward to the Alabama promontory
possibly during the Acadian-Neoacadian orogeny. This interpretation integrates re-
gional magmatic, metamorphic, structural, and stratigraphic data from the Inner
Piedmont, Blue Ridge, and the foreland basin in order to advance our understanding
of the formation and evolution of the Taconian orogen in the southern Appalachians.

GEOLOGIC BACKGROUND

Regional Geology

Evidence of the Taconian event is recorded in the southern Appalachians by a
variety of rocks preserved across the orogen. In the foreland, the extensive easterly-
derived Blount clastic wedge in the Valley and Ridge of Tennessee, Georgia, and
Alabama (Thomas, 1977; Hatcher, 1989; Bayona and Thomas, 2006) contains multiple
bentonite layers, such as the ~455 to 448 Ma Deicke and Millbrig bentonites, that
document evidence of late Middle to early Late Ordovician volcanism (fig. 1A)
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Fig. 1. (A) Thickness contours of the Ordovician Millbrig (blue) and Deicke (green) bentonites (Huff
and others, 1996) along with distribution of the Blount clastic wedge (Ettensohn, 2004; Bayona and Thomas,
2006). (B) General geologic map of the southern Appalachian orogen (modified from Merschat and others,
2010; Hibbard and others, 2012; and Huebner and others, 2017). The locations of the Tennessee
embayment and Virginia and Alabama promontories (in brown) are from Thomas (2006). Ordovician
igneous rocks and ages (Ma): BC = Brooks Crossroads Granite, CH = Caesar’s Head Granite, DY =
Dysartsville Tonalite, FM = Farmville Metagranite, HG = Henderson Gneiss, HBG = Hillabee Greenstone,
KG = Kowaliga Gneiss, LG = Lithonia Gneiss, PC = Persimmon Creek Gneiss, PCF = Pumpkinvine Creek
Formation, TC = Toccoa Granite, WS = Whiteside Granite, ZG = Zana Gneiss (Miller and others, 2006; Tull
and others, 2007; Holm-Denoma and Das, 2010; Hawkins and others, 2013; Sagul, ms, 2016; Huebner and
others, 2017). EQD = Elkahatchee Quartz Diorite. Blocks of Grenville crust (star) are from Huebner and
others (2017).

(Tucker, 1992; Haynes, 1994; Huff and others, 1996; Min and others, 2001). Detrital
zircons from some units of the Blount clastic wedge contain significant ~460 Ma
populations indicative of a Taconian source (for example, the Colvin Mountain
Sandstone: Guerrero and others, 2016). In the hinterland, Taconian-aged peak
metamorphism is documented by garnets in the western Blue Ridge of eastern
Tennessee (Dickson and others, 2019); by overgrowths in monazite at Great Smoky in
the western Blue Ridge of eastern Tennessee and western North Carolina (Corrie and
Kohn, 2007); and by the Lick Ridge eclogite and Winding Stair Gap granulite in the
eastern Blue Ridge of western North Carolina (fig. 1B) (Moecher and others, 2004;
Miller and others, 2010).

Middle to Late Ordovician volcanism is documented by the bimodal meta-igneous
rocks in the eastern Blue Ridge of Alabama and Georgia, such as the Hillabee
Greenstone and Pumpkinvine Creek Formation, which yield back-arc basin geochemis-
try along with positive éNd ;, values for basaltic rocks and negative eNd;, and ¢Hf;,
values for some of the felsic rocks (for example, Tull and others, 2007; Holm-Denoma
and Das, 2010). These volcanic rocks are linked with metasedimentary sequences of
the eastern Blue Ridge in Alabama and Georgia (that is, the Wedowee-Emuckfaw-
Dahlonega basin) and are collectively interpreted to represent an Early to Middle
Ordovician back-arc basin (Tull and others, 2014, 2018).

Extensive Ordovician magmatism is documented by a variety of granitoid plutons
in the eastern Blue Ridge and Inner Piedmont, which are commonly characterized
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Fig. 2. Geologic map of the Dadeville Complex with sample locations (stars), modified after Bentley
and Neathery (1970) and Osborne and others (1988). See figure 1 for map location.

by enriched large-ion lithophile elements and depleted high field-strength elements
(fig. 1B) (for example, McDowell and others, 2002; Miller and others, 2006; Sagul, ms,
2016; Huebner and others, 2017; Tull and others, 2018). Of these plutons, those in the
Persimmon Creek Gneiss and Dadeville Complex contain mafic rocks and have been
interpreted to be remnants of a Taconian arc (for example, McDowell and others,
2002; Barineau and others, 2015; VanDervoort and others, 2015, 2017; Tull and others,
2018).

Dadeville Complex

Remnants of an Ordovician arc (for example, VanDervoort and others, 2015; Tull
and others, 2018) are recognized in the allochthonous Dadeville Complex in the
southernmost Appalachian Inner Piedmont of Alabama and western Georgia. The
Dadeville Complex is a klippe of amphibolite- to granulite-facies metamorphosed
volcanic, plutonic, and sedimentary rocks, which currently lies in the core of the
shallowly northeast-plunging Tallassee synform and is separated from the structurally
lower eastern Blue Ridge lithologies by the Brevard fault zone to the northwest and the
Stonewall Line fault to the southeast (fig. 2) (Bentley and Neathery, 1970; Sears and
others, 1981; Neilson and Stow, 1986; Higgins and others, 1988; Spell and Norrell,
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1990; Steltenpohl and others, 1990). The eastern Blue Ridge is composed of continen-
tal margin siliciclastics (the Ashland Group) and Early—Middle Ordovician back-arc
sequences (the Wedowee-Emuckfaw Groups and Opelika Complex in Alabama, fig. 1B)
that were metamorphosed at middle- to upper-amphibolite facies (Steltenpohl, 2005;
Tull and others, 2007; Holm-Denoma and Das, 2010; Tull and others, 2014; Barineau
and others, 2015). These lithologies are intruded by Middle Ordovician—Mississippian-
aged granitoids (for example, Steltenpohl and others, 2013; Sagul, ms, 2016).

The most prominent unit of the Dadeville Complex is the structurally lowest
Ropes Creek Amphibolite, which consists of layered to massive amphibolite, lesser
amounts of felsic and metasedimentary rocks, and minor ultramafic bodies (Bentley
and Neathery, 1970; Neilson and Stow, 1986). The Ropes Creek Amphibolite is
intruded by the Waverly Gneiss that consists of biotite-hornblende quartzofeldspathic
gneiss containing thin layers of amphibolite, calc-silicate rock, garnet-bearing quartz-
ite, and muscovite schist (fig. 2) (Osborne and others, 1988). Along the northwest
margin of the Dadeville Complex, the Waresville Formation is characterized by
fine-grained felsic schist, banded amphibolite, and metaquartzite that are interlayered
at the centimeter to meter scale (fig. 2) (Bentley and Neathery, 1970). Two granitic
gneiss batholiths, the Camp Hill Gneiss in the south and the Rock Mills Gneiss in the
north, are present in the Dadeville Complex, as are two suites of mafic-ultramafic
bodies, the Doss Mountain suite of olivine-bearing metanorite and metaorthopyroxen-
ite and the Slaughters suite of metagabbro (fig. 2) (Neilson and Stow, 1986). The
Camp Hill Gneiss is a well-foliated, low-potassium, biotite-rich trondhjemitic gneiss
containing local amphibolite blocks and lenses, and the Rock Mills Gneiss (also known
as the Chattasofka Creek Gneiss in Alabama and Franklin Gneiss in Georgia) is a
strongly peraluminous, high-potassium, weak- to well-foliated leucogranitic gneiss
containing local amphibolite bodies (Bentley and Neathery, 1970; Osborne and
others, 1988; Neilson and others, 1997; VanDervoort, ms, 2016; Harstad, ms, 2017; Tull
and others, 2018). The structurally highest unit, the Agricola Schist, is strongly
deformed and is composed of biotite = muscovite = garnet * sillimanite schist
interlayered with thin (from 10 cm to <1 m) amphibolite (Bentley and Neathery, 1970;
Osborne and others, 1988; Steltenpohl and others, 1990; Tull and others, 2014). The
Agricola Schist is locally migmatitic and the Ropes Creek Amphibolite locally contains
melts of tonalite and/or veins of plagiogranite (for example, Hall and Salpas, 1990;
Tull and others, 2018).

Major element compositions of the meta-igneous rocks comprising the Dadeville
Complex reveal that the mafic-ultramafic rocks are low-potassium tholeiites and the
felsic rocks are generally peraluminous in composition (Neilson and Stow, 1986;
Stevens and Tull, 2017; Tull and others, 2018). Trace element compositions show that
the felsic assemblages are enriched in Rb, Ba, and Pb and are relatively depleted in Nb
and Ta (Tull and others, 2018), and that the mafic-ultramafic assemblages, including
the Ropes Creek Amphibolite and Doss Mountain-Slaughters suites, have trace ele-
ment signatures characteristic of relatively enriched Rb, Ba, Th, U, Pb and depleted
Nb, Ta, Zr, Hf (Stow and others, 1984; Tull and others, 2018). In addition, whole-rock
Sm-Nd and zircon Lu-Hf isotopic data demonstrates that the Ropes Creek Amphibolite
and Camp Hill Gneiss have depleted isotopic ratios (€Hf ;) >0) whereas that the Rock
Mills Gneiss and the Doss Mountain-Slaughters suites have evolved isotopic ratios
(eHf ;) and eNd ;) <0) (Tull and others, 2018).

Recent zircon U-Pb data give crystallization ages of ~450 to 440 Ma for the Camp
Hill Gneiss and Ropes Creek Amphibolite and 456 * 9 Ma for the Chattasofka Creek
Gneiss (that is, Rock Mills Gneiss) (Tull and others, 2018). A Rb-Sr whole-rock
isochron age of 462 = 4 Ma (MSWD = 1.9) was previously reported for the Franklin
Gneiss (thatis, Rock Mills Gneiss) in western Georgia (Seal and Kish, 1990). The ~450
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to 440 Ma ages are interpreted as minimum estimates of the timing of magmatism due
to possible lead loss as indicated by ~400 Ma and younger dates from the Camp Hill
Gneiss and Ropes Creek Amphibolite (Tull and others, 2018). U-Pb dating of detrital
zircons has shown dominant age populations of ~1200 to 900 Ma and ~500 to 440 Ma
in the Agricola Schist and age populations clustered at ~1440 Ma, ~1130 Ma, ~940
Ma, and ~585 to 475 Ma in the metasedimentary rocks found near the base of the
Ropes Creek Amphibolite (Tull and others, 2018).

The Dadeville Complex was metamorphosed at upper amphibolite- to lower
granulite-facies conditions, as suggested by pressure-temperature estimates of up to
700 to 800 °C and 8 to 10 kbar reported for the Ropes Creek Amphibolite and Agricola
Schist (Drummond and others, 1997). The high-grade metamorphism is also indicated
by sillimanite-grade ductile shear zones within the Dadeville Complex (that is, the
Dadeville and Agricola shear zones) that exhibit subhorizontal, northeast-trending
stretching lineations postdating the peak metamorphism on the basis of overprinting
relationships of mineral assemblages (Bittner and Neilson, 1990). These metamorphic
conditions are distinctively higher than those documented in the underlying eastern
Blue Ridge (for example, Goldberg and Steltenpohl, 1990; Tull and others, 2018).

U-Pb GEOCHRONOLOGY

Analytical Methods

Zircons were extracted following standard methods including pulverizing hand
samples with a jaw crusher and disk mill, sieving, and separations by Frantz magnetic
barrier separator and heavy liquids. Zircons were handpicked under a binocular
microscope, mounted in epoxy, polished to half thickness, and imaged by a cathodolu-
minescence (CL) detector attached to a FEI Quanta 600 Scanning Electron Micro-
scope. U-Pb analyses were performed using laser ablation-sector field-inductively
coupled plasma-mass spectrometry at California State University, Northridge. New
Wave/Lambda Physik and Teledyne Analyte G2 193 nm excimer lasers with a beam
diameter of ~25 to 40 wm were utilized for zircon ablation. Sample aerosol was
transported with He carrier gas through Teflon-lined tubing, where it was mixed with
Ar gas before introduction to the plasma torch. Isotopes measured include ***Hg,
20"t(Pb—FHg), 206pp,, 207Pb, 208pp, 232, 235U, and 228U, Analyses were conducted in a
40-second time resolved analysis mode. Each zircon analysis consisted of a 10-second
integration on peaks with the laser on but not ablating (for backgrounds), 20 seconds
of integrations with the laser firing on sample, and a 5 to 10 second delay to purge the
previous sample and move to the next sample. Approximate depth of the ablation pit
was ~20 to 30 wm. The primary standard, 91500 (1065 = 5 Ma: Wiedenbeck and
others, 1995), was analyzed every 5 to 10 analyses to correct for in-run fractionation of
Pb/U and Pb isotopes. Secondary zircon standards, R33 (419.3 £ 0.4 Ma: Black and
others, 2004), Temora-2 (416.8 = 0.3 Ma: Black and others, 2004), and/or Plesovice
(337.2 = 0.4 Ma: Slama and others, 2008) were analyzed within run to assess
reproducibility of the data. Analyses of 91500, R33, Temora-2, and Plesovice during
collection of unknown data presented here give weighted average 206p, /238y ages of
1063 = 4 Ma, 4225 = 2.9 Ma, 421.5 * 3.1 Ma, and 339.2 * 2.3 Ma, respectively.
Corrections for minor amounts of common Pb in zircons were made using an
age-appropriate Pb isotopic composition of Stacey and Kramers (1975) and measured
297ph /2%6ph and 228U /%°°Pb ratios following the methods of Tera and Wasserburg
(1972). Analyses interpreted as having ~b5 percent or greater contribution from
common Pb were discarded from further consideration. )

All the U-Pb ages were calculated and/or plotted using **°Pb/***U ages for grains
younger than 1000 Ma (*°°Pb/?*U age) and using 2*’Pb/?°°Pb ages for grains older
than 1000 Ma (*°°Pb/?**U age). For detrital zircons, a 10 percent discordance filter
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was applied and those grains with Th/U<0.1 (Appendix table Al) are not included in
the age spectra. All the ages are reported with 20 errors in the text and figures. Sample
locations are shown in figure 2; GPS coordinates, sample descriptions, and full
tabulations of the isotopic data are given in the Appendix in table Al.

Results

Zircons from four meta-igneous samples (RCA-FLG, fig. 3A; WS-1-14, fig. 3B;
WA-1-14, fig. 3C; CH-1-14, fig. 3D) from the major units comprising the Dadeville
Complex in Alabama were analyzed in order to constrain the timing of magmatism.
Zircons from a felsic layer (CM-AL-3, fig. 3E) in the Agricola Schist were analyzed in
order to constrain the timing of local magmatism and minimum depositional age of
the Agricola Schist protoliths. Detrital zircons from three metasedimentary samples
were dated to identify the sedimentary provenances of the Agricola Schist (fig. 3F) and
uppermost Emuckfaw Group (fig. 3G) protoliths. Moreover, as metamorphic over-
growths of varying thickness (mostly ~5-30 pm) generally occur in subhedral/
anhedral zircons, rare large (>40 pm) overgrowths were also dated in order to
constrain the timing of metamorphism. Age data and CL images of representative
zircons are shown in figures 4 and 5, and the results for individual samples are
described below.

Zircons from a fine- to medium-grained, biotite-hornblende quartzofeldspathic
gneiss (sample RCA-FL6) in the Ropes Creek Amphibolite are generally subhedral to
anhedral and show oscillatory zoning in CL images (fig. 4A). Thirty-two of 39 analyses
yield an error-weighted average *’°Pb/***U age of 457.6 = 5.1 Ma (MSWD = 0.7, fig.
4A). Zircons from a strongly foliated, very fine-grained, chlorite-sericite-biotite-
hornblende schist in the Waresville Formation (sample WS-1-14) are generally subhe-
dral and show oscillatory zoning in CL images (fig. 4B). Nineteen of 20 analyses give an
error-weighted average °°Pb/***U age of 464.8 + 3.8 Ma (MSWD = 1.7, fig. 4B). A
moderately foliated, medium-grained, muscovite-hornblende-biotite quartzofeld-
spathic gneiss in the Waverly Gneiss (sample WA-1-14) contains zircons with oscillatory
zoning in the interiors and a few relatively wide (~40-50 wm) metamorphic over-
growths (fig. 4C). Twentz—spven analyses were obtained in grain interiors and yield an
error-weighted average 06pp /238y age of 453.9 = 6.5 Ma (MSWD = 1.4, fig. 4C).
Analyses in the overgrowth domains of zircons from sample WA-1-14 have distinctively
higher uranium contents (246-945 ppm, table Al) than that of the zircon interiors
(<150 ppm, mostly <50 ppm, table Al). Five of 9 analyses of these overgrowths yield
an error-weighted average ’°Pb/***U age of 402.4 = 11.5 Ma (MSWD = 1.9, fig. 4C).
Zircons from a strongly foliated, medium- to coarse-grained, hornblende-muscovite-
biotite granitic gneiss of the Camp Hill Gneiss (sample CH-1-14) also show oscillatory
zoning in the interiors (fig. 4D). Twelve of 20 analyses yield an error-weighted average
206p /238 age of 480 = 6.0 Ma (MSWD = 2.9, fig. 4D).

The felsic layer from the Agricola Schist (sample CM-AL-3) contains two types of
zircons: medium to highly luminescent anhedral grains with uranium concentrations
of <200 ppm (table Al), and dark subhedral grains with uranium concentrations of
>3000 ppm (fig. 4E, table Al). Two of the medium to highly luminescent zircons are
dated to be 901 * 62 Ma and 912 * 140 Ma, while 17 of the 22 high-uranium zircons
yield an error-weighted average *’°Pb/***U age of 393.7 = 8.1 Ma (MSWD = 0.5, fig.
4E). There is no correlation between age and uranium concentration for the dark
zircons.

Zircon grains from three samples were dated to reveal detrital zircon age-
populations within metasedimentary rocks of the Dadeville Complex and its adjacent
terrane: two from the Agricola Schist, and one from the uppermost Emuckfaw Group
of the eastern Blue Ridge that has been overprinted by crystal-plastic shearing along
the Brevard fault zone. The sample from the uppermost Emuckfaw Group (fig. 2) is a
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Fig. 3. Outcrops or hand specimens of the rocks analyzed in the current study. (A) Deformed felsic
layer intruded in the Ropes Creek Amphibolite. (B) Fine-grained felsic schist from the Waresville Formation.
(C) Felsic layer from the Waverly Gneiss. (D) Foliated granitic gneiss of the Camp Hill Gneiss. (E) Felsic
boudins in the Agricola Schist (right) and hand specimen of a felsic boudin (left). (F) Typical fabrics of the
Agricola Schist. (G) Strongly sheared button schist of the Emuckfaw Group immediately beneath the
Brevard fault zone; view of foliation plane (left) and perpendicular to foliation (right). Hammer, pen, and
key for scales.
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Fig. 4. Representative cathodoluminescence images and U-Pb ages of zircons from meta-igneous
samples of the Dadeville Complex: (A) felsic layer of Ropes Creek Amphibolite, (B) Waresville Formation,
(C) felsic layers of Waverly Gneiss, (D) Camp Hill Gneiss, (E) felsic boudin of Agricola Schist. For each
sample, data are plotted on Tera-Wasserburg diagrams and weighted averages are calculated using IsoplotR
(Vermeesch, 2018). n = number of analyses.

garnet-chlorite-muscovite-biotite schist exhibiting a strong S-C fabric (fig. 3G). Zircons
from this sample display a strong metamorphic overprint, as shown by the common
metamorphic overgrowths (fig. 5A) and high degree of discordance for a large portion
of the data (table Al). Thirty-six analyses were performed in the interiors of zircons
and 21 of them passed the discordance filter and give a Precambrian age population
that discontinuously ranges from 2576 * 67 Ma to 628 * 56 Ma. Analyses made in the
overgrowths of zircons define a Paleozoic population centered at about 408 Ma
(weighted average = 408.2 * 6.6 Ma, MSWD = 1.49, fig. 5A).

Both samples of the Agricola Schist are described as a medium- to coarse-grained
muscovite-garnet-biotite schist. One hundred and one of 144 analyses of zircons from
sample CM-AL-4 passed the discordance filter and yield ages ranging continuously
within error from 1337 = 88 Ma to 662 = 28 Ma with an outlier of 466 = 70 Ma (table
Al). The detrital zircons from this sample are characteristic of a dominant 1300 to 900
Ma source (fig. 5B). One hundred and thirty-seven of 160 analyses of zircons from
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Fig. 4. (continued).

sample AG-1-14 passed the discordance filter and give ages ranging continuously
within error from 1382 = 43 Ma to 622 * 16 Ma with four outliers of 2776 = 50, 1605 *
55,493 * 13, and 461 * 18 Ma (table Al). Zircons from this sample are dominated by a

1300 to 850 Ma source (fig. 5C).
DISCUSSION

Nature of the Taconian Arc in the Dadeville Complex

The bulk of the Dadeville Complex (>50%) is composed of metamorphosed
mafic and intermediate volcanic and volcanoclastic rocks (Bentley and Neathery, 1970;
Sears and others, 1981; Neilson and Stow, 1986) that are intercalated with andesitic,
dacitic, and/or granitic gneisses, minor metasedimentary rocks, and local mafic and
ultramafic intrusive bodies (Neathery, 1968; Sears and others, 1981; Higgins and
others, 1988). These lithologies, in combination with previously reported elemen-
tal, isotopic, and geochronologic data, indicate that the Dadeville Complex con-
tains a Taconian-aged (for example, VanDervoort and others, 2015) volcanic arc
terrane, herein termed the Dadeville arc, that was developed along the southeast-
ern Laurentian margin (Farris and others, 2017; Tull and others, 2018).

The extensive Ropes Creek Amphibolite is interpreted to represent arc volcanism
as part of the Dadeville arc (Tull and others, 2018). Because the Japan arc and Japan
Sea back-arc basin system has been proposed to be the present-day analogy of the
Taconian orogen in the southern Appalachians (Tull and others, 2012; Barineau and
others, 2015), we compare trace element compositions of basaltic rocks between the
Ropes Creek Amphibolite, the Japan frontal/rear arc, and the Japan Sea back-arc basin
in figure 6. The enriched Rb, Ba, Th, U, and Pb and depleted Nb, Ta, Zr, and Hf of the
basaltic rocks of the Ropes Creek Amphibolite (Stow and others, 1984; Tull and others,
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2018) are most consistent with the frontal arc basalts in northeastern Japan (fig. 6A),
although the light rare earth element abundances of some Ropes Creek Amphibolite
are depleted relative to the heavy rare earth elements (fig. 6B). The significant
depletions of Zr and Hf relative to Sm and high enrichment of Ba relative to Th
observed in the Ropes Creek Amphibolite are commonly found in mantle-derived arc
basalts (for example, Hochstaedter and others, 2001). Moreover, depleted-mantle
components are suggested in the sources of some the Ropes Creek Amphibolite
lithologies, as evidenced by zircon €Hf;) values of +12 to +5 of a felsic layer and
whole-rock éNd ;, values of up to +7 for some basaltic rocks (Tull and others, 2018).
The Ropes Creek Amphibolite, therefore, likely represents volcanic rocks formed
proximal to the frontal arc of the Dadeville arc and originated from magmas involved
depleted-mantle components and subduction zone fluids.

Tull and others (2018) reported zircon gHf ;) values of +6 to 0 for the Camp Hill
Gneiss and —1 to —13 for the Rock Mills Gneiss, which indicates a source magma with a
depleted-mantle component for the Camp Hill Gneiss that formed at 480 = 6 Ma (fig.
4D) and an evolved magma with a significant crustal component for the Rock Mills
Gneiss that formed at 456 = 9 Ma (Tull and others, 2018). These two granitic
batholiths, therefore, document the evolution of Dadeville arc magmatism from older,
more primitive magmas to younger, more evolved magmas during the construction of
the arc. This interpretation is consistent with the fact that the Camp Hill Gneiss is
low-potassium and low-Al,Og, whereas the Rock Mills Gneiss is high-potassium and
strongly peraluminous (Bentley and Neathery, 1970; Osborne and others, 1988;
Neilson and others, 1997; Tull and others, 2018). The evolving felsic magmatism was
probably accompanied by evolving ultramafic/mafic magmas, as indicated by the
negative éNd ;) values (=4 to —9) in the Doss Mountain and Slaughters suites (Tull
and others, 2018). The nature of the Dadeville arc, therefore, is consistent with a
continental margin arc formed by various interaction between depleted-mantle and
evolved crustal components (probably Grenvillian, Tull and others, 2018).

U-Pb dates of the volcanic and plutonic rocks from the Dadeville Complex define
the timing of magmatic phases responsible for partial construction of the Dadeville
arc. The meta-igneous rocks dated in the current study (fig. 7) consist of granitic
gneisses and metavolcanics collected from the type localities of the major constitute
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units of the Dadeville Complex in Alabama (Bentley and Neathery, 1970). The
weighted mean ages of 457.6 £ 5.1 Ma for the felsic intrusion in the Ropes Creek
Amphibolite, 464.8 = 3.8 Ma for the felsic metatuff from the Waresville Formation,
and 453.9 = 6.5 Ma for the felsic layer of the Waverly gneiss (figs. 4A, 4B, 4C) all
overlap within error. These magmatic ages are compatible with the 456 * 9 Ma date
from the Rock Mills Gneiss (Tull and others, 2018) and, based on the current dataset,
~465 to 454 Ma is considered to represent the main magmatic phase of the preserved
components of the Dadeville arc. The older age of 480 = 6 Ma of the Camp Hill Gneiss
(fig. 4D) is interpreted to represent an early magmatic pulse associated with the arc
construction. The zircon U-Pb ages of ~450 to 440 Ma in Tull and others (2018) are
interpreted to represent the waning stage of the Dadeville arc magmatism.

A regional metamorphic event at about 408 to 394 Ma is revealed in the current
study by new zircon U-Pb data from the Dadeville Complex and the adjacent eastern
Blue Ridge. This metamorphic event is represented by (1) overgrowths on zircons
from the Waverly Gneiss (402.4 = 11.5 Ma, figs. 2 and 4C) and from a button-schist
collected from the uppermost Emuckfaw Group (408.2 = 6.6 Ma, figs. 2 and bA), and
(2) felsic melts (393.7 = 8.1 Ma, figs. 2 and 4E) locally preserved in the Agricola Schist.
Zircon overgrowths with ages of ~400 Ma have also been reported for some other
meta-igneous rocks of the Dadeville Complex (Tull and others, 2018, their fig. 8).

Deposition and Provenance of the Sedimentary Cover of the Dadeville Arc

The detrital zircon age-spectra of the Agricola Schist reported in the current study
(figs. 5B and 5C) indicate that the sedimentary cover of the Dadeville arc was sourced
primarily from provenances containing Grenville-aged (1300—900 Ma) zircons. De-
trital zircon data of the Agricola Schist in Tull and others (2018) show a similar 1300 to
900 Ma population and an additional grouping of 500 to 440 Ma centered at ~460 Ma
(fig. 5D). The youngest population of detrital zircons in the available dataset, there-
fore, defines 2 maximum depositional age of ~460 Ma (figs. 5B, 5C, and 5D). The
zircon crystallization age (394 * 8 Ma, fig. 4E) of the felsic layer in the Agricola Schist
provides a minimum constraint on the depositional age. The protoliths of the Agricola
Schist, therefore, were likely deposited between ~460 Ma and ~394 Ma. Apparently,
future work is needed to further constrain the depositional age of the Agricola Schist
protoliths.

During the Middle Ordovician—Early Devonian, southeastern Laurentia was likely
featured by an active convergent margin with marginal basins fed by detritus from
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Laurentia and Taconian terranes (for example, Drake and others, 1989). In this
tectonic setting, the 1300 to 900 Ma detrital zircons of the Agricola Schist were likely
sourced from the Grenville orogen in southeastern Laurentia or recycled from
(meta)sedimentary rocks containing Grenville-aged zircons. The early Paleozoic zir-
cons that cluster at ~460 Ma were likely derived from igneous rocks comprising the
Dadeville arc and/or other igneous rocks coeval with those 480 to 440 Ma plutons
currently exposed in the Inner Piedmont and eastern Blue Ridge from Virginia to
Alabama (fig. 1B) (McDowell and others, 2002; Bream, ms, 2003; Miller and others,
2006; Sinha and others, 2012; Sagul, ms, 2016; Huebner and others, 2017).

Orogen-Parallel Transport of the Dadeville Arc
The Ordovician rocks described in the Geologic Background show the current
distribution of a variety of lithotectonic elements associated with the Taconian orogeny
in the southern Appalachians. A complete understanding of the Taconian orogeny in
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this region, however, requires a palinspastic view of all the key Ordovician lithologies
associated with this event.

Published data and those from the current study have collectively shown that the
Dadeville Complex is composed of a Taconian magmatic arc assemblage (that is, the
Dadeville arc) and a sedimentary cover (now the Agricola Schist). The ~465 to 454 Ma
age range is considered to represent the main phase of magmatic construction of the
Dadeville arc; an early phase of magmatism at ~480 Ma (fig. 4D) and a waning stage at
450 to 440 Ma (Tull and others, 2018) appear to bracket a more comprehensive
evolution of the arc. On the basis of the geometry and kinematics of high-temperature
shear zones and folds in the Inner Piedmont of North Carolina, South Carolina, and
Georgia (Merschat and others, 2005), in conjunction with conditions and timing of
regional metamorphism within the context of transpressional accretion of the Caro-
lina superterrane onto Laurentian/Taconian components, Hatcher and Merschat
(2006) suggested that the Dadeville Complex was extruded southwestward along the
bottom of a tectonically-forced orogenic channel during the Acadian-Neoacadian
orogeny. This interpretation is consistent with the Dadeville Complex as a gently
northeast-plunging, recumbent sheath fold possibly formed during the Acadian-
Neoacadian (Steltenpohl and others, 2013), which was overprinted by the Alleghanian
orogeny to form the Tallassee synform (Bentley and Neathery, 1970). Estimates of 200
to 400 km of southwest-directed displacement were made for the Inner Piedmont
(Merschat and others, 2005; Merschat and Hatcher, 2007; Huebner and others, 2017),
which is of the magnitude necessary to palinspastically restore the Dadeville Complex
to the Tennessee embayment (fig. 1B). In the regional context of the Ordovician
geology of the southern Appalachians, our new geochronologic data and tectonic
analysis support that the Dadeville arc may have formed in the vicinity of the Tennessee
embayment during the Taconian orogeny prior to being transported to the Alabama
promontory as a result of the subsequent orogenic processes during the Acadian-
Neoacadian orogeny.

Ordovician bentonites and coeval clastic wedges preserved in the Appalachian
foreland provide supporting evidence for the original locus of the Taconian orogeny
in the southern Appalachians. Thickness distribution patterns of the Deicke and
Millbrig bentonites (fig. 1A), the two thickest (up to 1.4-1.5 m) bentonite layers,
indicate that the depocenter of these ash deposits and their associated volcanic vents
were located in the region of the Tennessee embayment (fig. 1B) (Haynes, 1994; Huff
and others, 1996). The Deicke and Millbrig bentonites have been dated to be 454.5 *
0.5 Ma and 453.1 = 1.3 Ma, respectively, by zircon U-Pb (Tucker, 1992), and to be
450 £ 2 Ma and 448 = 2 Ma, respectively, by biotite 10Ar/PAr (Min and others, 2001).
These two layers of bentonites, thus, record volcanism coeval with the late-stage
magmatism of the Dadeville arc.

The late Middle to early Late Ordovician Blount clastic wedge was deposited in the
foreland basin as the Taconian orogeny was active in the hinterland (for example,
Ettensohn, 2004; Thomas, 2006). Remnants of the Blount clastic wedge are now
preserved throughout the foreland from the Virginia promontory to the Alabama
promontory (fig. 1B); the thickness pattern suggests that the depocenter for this clastic
wedge was also located in the Tennessee embayment (Bayona and Thomas, 2006).

Moreover, Taconian peak metamorphism is recorded in the Blue Ridge in the
Tennessee embayment region (fig. 1B) by: (1) the ~459 Ma high-pressure eclogite at
Lick Ridge that likely represents metamorphosed oceanic basalts (Miller and others,
2010); (2) the 470 to 460 Ma retrograded eclogites (metabasalts) at Boone and
Dellwood (Anderson and Moecher, 2009); (3) the ~458 Ma granulite-facies metamor-
phism recorded in rocks at Winding Stair Gap (Moecher and others, 2004); (4) the
450 £ 5 Ma high-grade metamorphism and deformation at the Great Smoky Moun-
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tains (Corrie and Kohn, 2007); and (5) the garnet Sm-Nd age of 449 * 12 Ma from a
clinoamphibole-garnet-chlorite schist in western Blue Ridge (Dickson and others,
2019). The available pressure-temperature estimates of these metamorphosed rocks
(ranging from 7 to 19 kbar and 625 to 875 °C: Adams and others, 1995; Abbott and
Greenwood, 2001; Moecher and others, 2004; Anderson and Moecher, 2009; Miller
and others, 2010), which are surrounded by accretionary complexes containing
ophiolite fragments (for example, Peterson and others, 2009; Raymond and others,
2016), suggest subduction of oceanic rocks in a back-arc oceanic basin to >50 km
depth followed by exhumation to shallower crustal levels (for example, Miller and
others, 2010).

In short, published evidence for Taconian volcanism and plate convergence at the
latitude of the Tennessee embayment is compelling in the Blue Ridge, foreland, and
cratonic interior, where the Taconian rocks were not significantly translated along the
orogen-parallel strike-slip faults during the subsequent Acadian-Neoacadian and Alle-
ghanian orogenies (Merschat and others, 2005; Hatcher and others, 2017). This
suggests that the locus of the Taconian orogeny in the southern Appalachians was
located at the Tennessee embayment. The Dadeville arc, therefore, might be palinspas-
tically restored to the Tennessee embayment based on the lines of evidence presented
above. The following data further support such a connection between the Dadeville arc
and those Taconian lithotectonic elements found in the Tennessee embayment.

Evidence of Early Devonian regional metamorphism and magmatism at ~408 to
394 Ma is recorded by zircon overgrowths in meta-igneous rocks of the Dadeville
Complex (fig. 4C) and in metasedimentary rocks from the Emuckfaw Group collected
along the Brevard fault zone (fig. 5A), and by zircons from a felsic layer in the Agricola
Schist (fig. 4E). Metamorphism and magmatism at ~408 to 394 Ma are not reported
elsewhere in the Alabama Appalachians, but are evident in the eastern Blue Ridge of
the Carolinas and northeastern Georgia. The supporting data include: (1) metamor-
phic overgrowths of Taconian monazites at ~400 Ma during prograde metamorphism
in the Great Smoky Mountains (fig. 1B) (Kohn and Malloy, 2004; Corrie and Kohn,
2007); (2) a titanite closure date of 394 = 4 Ma from a partially amphibolitized eclogite
in Lick Ridge (fig. 1B) (Miller and others, 2010); (3) a garnet overgrowth Sm-Nd age of
411 = 12 Ma (Dickson and others, 2019) from a migmatitic gneiss in the Winding Stair
Gap area (fig. 1B); and (4) the ~404 to 377 Ma Spruce Pine plutonic suite from the
Ashe Metamorphic Suite of the eastern Blue Ridge (Swanson and Veal, 2010). These
data collectively indicate burial of some of the Blue Ridge and Inner Piedmont rocks at
amphibolite-facies or higher conditions at the beginning of the Acadian orogeny in the
Tennessee embayment (see also Merschat and others, 2005; Merschat and Hatcher,
2007; Huebner and others, 2017).

The detrital zircon age-spectra of the Dadeville Complex also suggest a connec-
tion to the Tennessee embayment. There are two distinctive features for the Dadeville
Complex metasedimentary rocks: (1) the protoliths of the Agricola Schist appear to be
deposited in an environment where it could receive detrital zircons of ~1300 to 1000
Ma and ~460 Ma; and (2) the metasedimentary rocks near the base of the Ropes Creek
Amphibolite received detrital zircons of ~1400 Ma in addition to Grenvillian and
Taconian grains (Tull and others, 2018). Compilation of published detrital zircon data
from the eastern Blue Ridge as well as the Tugaloo terrane and Cat Square terrane of
the Inner Piedmont of North Carolina, South Carolina, central Georgia, and Alabama
is presented in figure 8. In the Carolina segment, the Chauga River Formation of the
Tugaloo terrane (deposited prior to the ~448 Ma Henderson gneiss, Huebner and
others, 2017) contains detrital zircons dominated by ~1400 Ma and ~1300 to 1000 Ma,
and the metasedimentary rocks of the Cat Square terrane (deposited after ~430 Ma,
Bream and others, 2004; Merschat and others, 2010; Huebner and others, 2017)
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includes zircons dominated by ~1300 to 1000 Ma and ~460 Ma. This suggests that the
detrital zircon sources required for the sedimentary protoliths of the Dadeville
Complex were available in the Tennessee embayment.

In addition, remnants of a Taconian arc are proposed to be preserved as the
Persimmon Creek Gneiss (fig. 1B) in the Tennessee embayment region. Zircons from
this mafic-felsic igneous complex were crystallized at ~468 to 458 Ma and contain ~1.4
Ga and ~1.2 to 1.0 Ga inherited cores (McDowell and others, 2002; Miller and others,
2006). Trace elements and Nd-Sr-O isotopic compositions indicate an arc origin for
the Persimmon Creek Gneiss (McDowell and others, 2002).

In summary, the depocenters of the late Middle to early Late Ordovician benton-
ites and the coeval Blount clastic wedge in the foreland, and the subduction-related
eclogite- and granulite-facies metamorphism at 470 to 460 Ma, jointly suggest that
Taconian volcanism and plate convergence took place at the latitude of the Tennessee
embayment. Data from the Dadeville Complex suggest that the Taconian Dadeville arc
originally formed at the Tennessee embayment where detrital sources of ~1400 Ma,
~1300 to 1000 Ma, and ~460 Ma zircons were available. This interpretation is
corroborated by the occurrence of Taconian arc remnants (Persimmon Creek Gneiss)
in the Tennessee embayment, the ~408 to 394 Ma metamorphism and magmatism
shared by a variety of rocks in the Dadeville Complex and the Tennessee embayment,
and the southwest-directed channel-flow structures with estimated displacements of
200 to 400 km in the Inner Piedmont (Hatcher and Merschat, 2006; Merschat and
Hatcher, 2007; Hatcher and others, 2017; Huebner and others, 2017).

The structures that accommodated the transport of the Dadeville Complex in
Alabama, in addition to internal structures in the Dadeville Complex, are possibly
preserved in the Brevard fault zone and the uppermost eastern Blue Ridge, that is, the
Jacksons Gap Group (fig. 2) and Emuckfaw Group (fig. 1B), respectively. The
structurally higher Dadeville Complex contains sillimanite-grade, top-to-the-southwest
shear zones (Bittner and Neilson, 1990; Abrahams, ms, 2014). The structurally lower
Jacksons Gap Group, however, is characterized by sillimanite-bearing, subhorizontally
sheared rocks showing top-to-the-northeast displacement (fig. 9A) near Tallassee,
Alabama (fig. 2). The similar metamorphic grade and ductile strain as well as
compatible structural orientation suggest that these mylonitic rocks possibly formed
coevally due to the same event. As coexistence of opposite kinematics across different
structural levels indicates differential rates of ductile flow, extrusion tectonics (for
example, Thompson and others, 1997), therefore, might have contributed to the
transport of the Dadeville Complex at certain structural levels.

The main deformation responsible for the orogen-parallel transport of the
Dadeville Complex, however, were probably the southwest-directed shearing primarily
recorded in Alabama by the pervasive, dextrally sheared, southeast-dipping lithologies
observed in the northeast-striking segment of the Jacksons Gap Group (Abrahams, ms,
2014) and the Emuckfaw Group (figs. 9B, 9C, and 9D). S-C-C’ (schistosity-cisaillement-
extensional crenulation cleavage) structures are widespread in the Emuckfaw Group
(fig. 9B), Kowaliga Gneiss (fig. 9C), Zana Gneiss (fig. 9D), and the southeastern
margin of the Elkahatchee Quartz Diorite (fig. 1B) (Steltenpohl and others, 2013).
These highly sheared rocks define a ~10 km wide Acadian/Neoacadian ductile shear
zone located just west of the Brevard fault zone (see also Steltenpohl and others, 2013).
Similar structures occur continuously from Alabama to North Carolina along the
Brevard fault zone and the adjacent eastern Blue Ridge (Merschat and others, 2005;
Hatcher and Merschat, 2006).

A Palinspastic View of the Taconian Orogen in the Southern Appalachians

Palinspastic restoration of the Dadeville arc to the Tennessee embayment adjacent
to the eastern Blue Ridge of North Carolina (fig. 1B) suggests that the accretionary



Implications for the Taconian Orogeny in the Southern Appalachians 599

Alabama, USA

*O[eD$ I0J IOWWRY PUE [DUDJ SUONELIUI] SUIYDI21S [BIUOZLIOYGNS SUTPUII) ISEIYLIOU UTLIUOD PUE IsLdIN0S o)) 01 A[oreropowr dip ‘pareays A[[enxop [[e a1e ()
pue (D) ‘(g) Ul SYO0Y 'SSIDU BURZ UBDIAOPIO [PPIN oY) UL 21mdnns )-)-§ () "SSious) eSIemos] UBDIAOPIO I[PPIA oY) UI a1mdonns )-)-S (D) ‘dnorg meppnuy
9y} JO ISIYDS UONN] Y} UI DIMINIS D)~ () "BWRJR[Y ‘DISSE[[B ], JeIU dUOZ J[NeJ PIBAIIY IsOWUIaInos ay3 Suruyop dnoiny des suosyoe[ oy3 jo serowo[Suooeiow
ONIUOAW “GULIEI-I)ITURII[[IS ‘[RIUOZLIOYNS IsedIou-211-0)-do ], (y) "xordwon) ofpaape 2} ypeauaq sarmonns aanejuasaxdar pue syooa pareays A[YSIf] 6 S




600 C. MA and others—Formation and orogen-parallel transport of the Dadeville Complex,

complex represented by the Ashe Metamorphic Suite (for example, Stewart and
others, 1997; Raymond and others, 2016) was a part of the companion back-arc basin
of the Dadeville arc (see also Miller and others, 2006). This back-arc basin might
continue into the original Wedowee-Emuckfaw-Dahlonaga basin as the latter currently
extends to the Tennessee embayment (Tull and others, 2014). Occurrence of eclogites
and metabasalts of oceanic affinities (for example, Stewart and others, 1997; Abbott
and Greenwood, 2001; Collins, ms, 2011) and ophiolite fragments (for example,
Peterson and others, 2009; Raymond and others, 2016) in the Ashe Metamorphic Suite
indicates that this back-arc basin contains oceanic crust. It was, therefore, an oceanic
back-arc basin that possibly formed due to rifting along the southeastern Laurentia
margin (see also Stewart and others, 1997; Abbott and Greenwood, 2001; Miller and
others, 2006; Anderson and Moecher, 2009). An oceanic back-arc basin is consistent
with the positive éNd ;) values for some of the volcanic rocks in the region, such as the
Pumpkinvine Creek Formation (fig. 1B) (Holm-Denoma and Das, 2010). The Dadev-
ille arc, therefore, possibly formed as a volcanic arc built atop a continental crustal
block that was rifted and separated from Laurentia by an oceanic back-arc basin. This is
consistent with both positive and negative eNd;, and eHf;, values for some of the
felsic-mafic rocks of the Dadeville Complex (Tull and others, 2018). Direct evidence
for the continental crust is possibly preserved as zircon cores in Taconian arc granitic
rocks such as the ~1.2 to 1.0 Ga inherited zircons in the Persimmon Creek Gneiss (fig.
1B) (McDowell and others, 2002), or, as gneissic bodies in Taconian plutons such as
the ~1.1 Ga Snapping Shoals augen gneiss in the Lithonia Gneiss (fig. 1B) (Huebner
and others, 2017).

On the basis of the data presented above, a regional model for the evolution of the
Taconian Dadeville arc and its back-arc basin at the Tennessee embayment is described
in figure 10. At the beginning of the Taconian orogeny in the southern Appalachians
(fig. 10A), westward subduction of the Iapetus oceanic plate was likely on-going under
a rifted crustal fragment of Laurentia and the associated oceanic back-arc basin at the
latitude of the Tennessee embayment (for example, Hatcher, 1978; Hibbard and
others, 2007; Anderson and Moecher, 2009). Between ~480 Ma and ~460 Ma (fig.
10B), magmatism was active in the Dadeville arc that was developed on the rifted
continental block while some of the oceanic rocks of the back-arc basin were sub-
ducted to high-pressure conditions to form the eclogites that are currently preserved
in the eastern Blue Ridge (for example, Stewart and others, 1997; Miller and others,
2006, 2010; Anderson and Moecher, 2009). Between ~460 Ma and ~440 Ma (fig.
10C), the Dadeville arc continued growing and the subducted back-arc basin litho-
sphere was possibly detached from the Laurentian margin that underwent attempted
subduction. This potentially resulted in tectonic under-pressure above the subducting
plate (for example, Majka and others, 2014), which facilitated buoyancy-driven exhu-
mation of the continental crust that incorporated accretionary complexes and high-
grade rocks such as the Lick Ridge eclogite and the Winding Stair Gap granulite (for
example, Anderson and Moecher, 2009).

From ~480 Ma to ~440 Ma, multiple phases of plutonism and volcanism occurred
in the oceanic back-arc basin and the neighboring continental crust. This is supported
by the ~470 to 440 Ma granitic plutons (fig. 1B) containing enriched large-ion
lithophile elements, depleted high field-strength elements, and negative EHfm and
€Nd;, values in the Inner Piedmont and eastern Blue Ridge (for example, Sagul, ms,
2016; Huebner and others, 2017), and by the Ordovician basaltic rocks of back-arc
basin signatures and positive/negative €¢Hf;, and e€Nd, values represented by the
Wedowee-Emuckfaw-Dahlonega basin and its equivalents in the Tennessee embay-
ment (Holm-Denoma and Das, 2010; Tull and others, 2014; Barineau and others,
2015). During the late-stage of the Taconian orogeny, the Deicke and Millbrig
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Rifted continental crust

(A) ~480 Ma from Laurentia
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(B) ~460 Ma
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(C) ~440 Ma

Back-arc basin sequence
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Active magmatism in Dadeville arc
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Spruce Pine plutonic suite Agricola Schist
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Granitic intrusions in Cat Square terrane

Regional metamorphism and magmatism
affecting rocks in Tennessee embayment including the Dadeville arc

Fig. 10. Tectonic model for the formation and metamorphism of the Dadeville arc and associated
back-arc in the Tennessee embayment region during and after the Taconian orogeny, prior to the
orogen-parallel translation of Dadeville arc to Alabama promontory. (A) Westward subduction of oceanic
crust under a rifted continental margin and back-arc basin (for example, Anderson and Moecher, 2009). (B)
Partial subduction of the back-arc basin to high-pressure conditions (subduction direction is after Miller and
others, 2006; Merschat and others, 2017) and active magmatism on the Dadeville arc. (C) Closure of the
back-arc basin, exhumation of continental crust incorporating eclogites, and continued magmatism on the
Dadeville arc. (D) Regional metamorphism affecting the Dadeville arc and eastern Blue Ridge rocks due to
the tectonic burial by the approaching Carolina superterrane (Merschat and others, 2017).
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bentonites were deposited in the foreland and sourced from the continental arc at
the Tennessee embayment, as phenocryst mineralogy and geochemical data indi-
cate that the parental magmas of the Deicke and Millbrig bentonites were dacitic to
rhyolitic and involved a significant component of continental crust (Huff and
others, 1992).

Around ~400 Ma (fig. 10D), the Dadeville Complex protoliths and parts of the
Blue Ridge experienced regional metamorphism in the Tennessee embayment due to
tectonic burial resulting from the initial accretion of the Carolina superterrane. Early
phases of the ~404 to 377 Ma Spruce Pine plutonic suite in the Ashe Metamorphic
Suite (Swanson and Veal, 2010) and the ~404 to 371 Ma granitoids in the Cat Square
terrane (Huebner and others, 2017) likely formed in this tectonic setting. Subse-
quently, as the transpressional accretion of the Carolina superterrane onto the
Laurentian/Taconian margin continued, the Dadeville arc and some of the eastern
Blue Ridge rocks adjacent to the Brevard fault zone were likely transported at
mid-crustal levels in a northeast-southwest orogenic channel that extended from the
Tennessee embayment to the Alabama promontory by the time of peak Acadian-
Neoacadian metamorphism at ~360 to 345 Ma (Merschat and others, 2005; Hatcher
and others, 2017; Merschat and others, 2017). The northeast-trending Ordovician
plutons discontinuously distributed in the Inner Piedmont (fig. 1B) might result from
this mid-crustal ductile flow. Finally, due to the collision of Gondwana with Laurentia
during the Alleghanian orogeny, the Blue Ridge-Inner Piedmont was transported
further onto the Laurentian basement and platform rocks as a megathrust sheet (for
example, Hatcher and others, 1989).

CONCLUSIONS

This study reports new zircon U-Pb geochronology data for constraining magma-
tism, metamorphism, and sedimentary provenance of the Dadeville Complex in the
southernmost Appalachians and provides a new regional view of the original Taconian
orogen. In combination with literature data, the following conclusions are proposed:
(1) felsic meta-igneous rocks of the Dadeville Complex reveal the main phase of arc
magmatism at ca. 465 to 454 Ma, an earlier phase at ca. 480 Ma, and a possible late
phase at 450 to 440 Ma; (2) detrital zircons from the sedimentary cover of the Dadeville
arc are dominated by Grenville-aged grains with secondary Taconian-aged zircons;
(3) metamorphic zircon overgrowths and local melts in the Dadeville Complex and
metamorphic zircon overgrowths in the adjacent Blue Ridge collectively define a
metamorphic/magmatic event at about 408 to 394 Ma; (4) the Taconian Dadeville arc
represented by the meta-igneous rock of the Dadeville Complex was likely built on a
rifted Laurentian block; and (5) the Dadeville arc and the companion oceanic back-arc
basin were likely transported at mid-crustal levels along the Brevard fault zone and the
adjacent eastern Blue Ridge from the Tennessee embayment to the Alabama promon-
tory due to the dextral transpression associated with the Acadian-Neoacadian orogeny.
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