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Computing systems, including real-time embedded systems, are becoming increasingly connected to allow for
more advanced and safer operation. Such embedded systems are also often resource-constrained, for example,
with lower processing capabilities compared to general purpose computing systems like desktops or servers.
With the advent of paradigms such as internet-of-things (IoT), embedded systems in both commercial and
industrial contexts are being increasingly interconnected and exposed to the external networks to improve
automation and efficiency of operation. However, allowing external interfaces to such embedded systems
increases their exposure to attackers. With an increase in attacks against embedded systems ranging from home
appliances to industrial control systems operating critical equipment that have real-time requirements, it is
imperative that defense mechanisms be created that explicitly consider such resource and real-time constraints.
Control-flow integrity (CFI) is a family of defense mechanisms that prevent attackers from modifying the flow
of execution. We survey CFI techniques, ranging from the basic to state-of-the-art, that are built for embedded
systems and real-time embedded systems and find that there is a dearth, especially for real-time embedded
systems, of CFI mechanisms. We then present open challenges to the community to help drive future research
in this domain.
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1 INTRODUCTION

Today, computing systems communicate through a complex web of interconnections. For instance,
the modern smartphone can simultaneously capture photographs and videos at quality rivaling that
of movie cameras, upload gigabytes of information to the internet, turn on lamps and automatically
control thermostats, stream high fidelity music to the nearest speaker, and can even unlock a car.
We now live in the age of internet-of-things (IoT [8]) where the physical world around us can be
manipulated by a push of a button.

Authors’ addresses: Tanmaya Mishra, tanmayam@vt.edu, tanmayam@vt.edu, Virginia Polytechnic Institute and State
University, USA, 22311; Thidapat Chantem, tchantem@vt.edu, Virginia Polytechnic Institute and State University, USA,
22311; Ryan Gerdes, rgerdes@vt.edu, Virginia Polytechnic Institute and State University, USA, 22311.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1539-9087/2018/3-ART $15.00

https://doi.org/10.1145/1122445.1122456

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: March 2018.


https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

2 Mishra, et al.

The convenience afforded by such interconnections is, unfortunately, countered by the incon-
venience of dealing with malicious parties who try to take control of these connected devices to
inflict monetarily, and in some cases, bodily harm. A simple smart bulb from a reputed company
was exploited to launch a distributed denial-of-service (DDOS) attack [63]. While a DDOS attack
may have, at the most, an economic impact on the victim, an attacker could reprogram the lights
to blink so as to induce an epileptic attack in some individuals. Unfortunately, such instances of
malicious behavior are not confined to small home appliances. Stuxnet [36] is a computer worm
built to infect supervisory control and data acquisition (SCADA) systems. Infections of this worm
were first uncovered in 2010 and by then it had already infected nuclear reactor control systems
and caused significant damage to Iran’s nuclear program. Malicious entities could, theoretically,
cause the reactors to fail and cause catastrophic damage to both life and property. Interestingly,
many Stuxnet systems were air-gapped, i.e, did not have a direct connection to external systems.
Instead, the infection spread from physical drives inserted by human operators.

Over the years, a variety of system defense mechanisms have been proposed for a wide range of
threat models and system configurations. These mechanisms can be either hardware assisted [39],
entirely in software [91], implemented in the system pre-deployment, such as compiler-based
protections [71], detect attacks during system runtime [37]. Discussing the entire body of work
of such defenses is beyond the scope of this survey. We therefore focus on a class of defense
mechanisms, collectively called control-flow integrity (CFI), which are designed to defend against a
powerful set of attacks, called control-flow attacks, that can allow attackers to have arbitrary control
over program execution. In this work, we discuss CFI for embedded, and particularly, real-time
embedded systems.

Our major contributions are:

(1) We explore a number of recently proposed mechanisms targeting embedded systems, specifi-
cally those that are resource-constrained, such as reduced processing capabilities over general-
purpose processing environments systems such as those found in desktop or server-grade
equipment. Such embedded systems usually feature low-end processing environments such
as microcontrollers (and their related underlying processor architecture). We also identify
key techniques that could provide inspiration for more robust real-time systems CFI design.

(2) We find that there are very few CFI mechanisms built specifically for real-time embedded
systems. Our exploration of the work for embedded systems show that there is an avenue to
extend CFI techniques from general embedded systems to create powerful CFI mechanisms
that uniquely leverage real-time properties.

(3) We consolidate our findings and present challenges and suggestions for future research in
Section 6.

We give definitions for embedded systems and real-time embedded systems later in this section

that defines the scope of our survey. We will now provide an overview of the type of attacks that
are countered by CFI and an overview of CFI itself.

1.1 Scope of Attacks and Defenses: Control-Flow Attacks and CFI

To aid the discussion of CFI, which is the main focus of this survey, it is necessary to first describe
the type and scope of attacks for which they are built. This family of attacks are collectively called
control-flow attacks. We shall now discuss these types of attacks.

1.1.1  Control-Flow Attacks: Control-flow attacks capture and modify the flow of execution of a
program. These attacks attack control information, that is information presented to a program
during runtime that determines the path that a program takes to continue execution. A simple
example of such information is the return address of a function call. See Figure 1.a for an example
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of the stack frame of a function call on a generic ARM architecture-based microcontroller. Here,
the value stored in the LR field of the stack frame is popped into the special LR or link register.
ARM calling convention [33], which is implemented by all compilers that officially support this
architecture, utilizes the LR to implement the return sequence of a function call. Return sequences
are implemented by branching on the LR such as by using the BX LR instruction. Therefore, the
contents of the LR effectively constitutes control information. Control-flow attacks aim to modify
such information to redirect program execution for malicious purposes. The same figure showcases
a sample attack where the attacker utilizes a buffer-overflow bug in the code that writes to a
memory buffer in the stack frame, such that it uses the bug to overwrite the LR information thereby
tainting the return address with a desired target address. Therefore, when the function returns, the
tainted value is popped and becomes the target of the branch statement. Note that since control-flow
attacks redirect program execution, they are also sometimes called code redirection attacks.

Two broad categories exist in control-flow attacks. While each category is a large research
domain by itself, we briefly describe them here for context:

(1) Code injection attacks - The sample attack we discuss above is a simple example of a code
injection attack. As discussed above, the attack can be broken into two stages that are a)
injecting (writing) code into some form of executable memory, followed by b) a redirection to
the beginning of the injected code, such as by using the LR register. Due to code injection that
takes place in stage a), these attacks are termed code injection attacks. Code injection attacks
have a large body of work [38, 42, 72]. However, such attacks have lost favor over time with
advancements in software and hardware architecture. Note that an implicit assumption of
the attack is that code is injected into executable memory, that is, the stack is executable.
Therefore, to defeat such attacks, it is sufficient to introduce countermeasures that ensure that
writeable memory addresses are not executable. A large body of research has been presented
to counter code injection attacks with relatively inexpensive performance overheads [51, 58].
Even for lower-end processors, such as microcontrollers from the ARM Cortex-M family,
prior work have implemented defenses [57]. Modern hardware now include architectural
features such as the memory protection unit (MPU) that make it trivial for system designers
to implement writeable but non-executable memory, an important requirement for code
injection attacks to propagate [22]. Since such attacks can be defended against relatively
easily, such attacks are outside the scope of this survey.

(2) Code reuse attacks - With the addition of defenses against a code injection attacks, a new
class of attacks emerged that are collectively called code reuse attacks. These attacks are a
logical extension of code injection attacks where attackers modify control information to
reuse arbitrary sequences of code already present within the program binary to perform
malicious operations. One of the most famous examples of code reuse attacks is the the
return-oriented programming or ROP [75, 81, 92] attack. We provide more details of ROP, and
defenses against such attacks, in Section 3. Increasingly sophisticated variants of ROP [17],
such as some that do not even require return sequences [18, 29] have been proposed over
the past decade. A large set of defenses have also been proposed to counter ROP and related
attacks [20, 52, 88], showcasing the relevance and danger such type of attacks represent for
modern systems.

Since control-flow attacks modify the control-flow of the program, it is necessary to maintain the
integrity of the control-flow by detecting malicious control-flow deviation when it occurs. Therefore,
any defense mechanism that enforces this integrity is called control-flow integrity (CFI) [4]. In this
survey, we discuss CFI that is specifically designed to defend against code reuse attacks. Note that
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we alternatively refer to CFI as CFI enforcement, CFI mechanism, or CFI technique throughout this
paper.

1.1.2  Control-Flow Integrity (CFI):. CFl is the set of system security techniques built to prevent
an attacker from forcing a software system to execute code in an unintended manner. CFI focuses
on ensuring that system code does not deviate from known software control-paths during system
runtime. CFI mechanisms are built to address powerful threat models where it is assumed that the
attacker can bypass all other defenses to infiltrate the system and force system software to execute
in an arbitrary manner. There is a wealth of research in recent years that develop CFI mechanisms
for increasingly complex and powerful attack scenarios [13, 31]. CFI mechanisms are also available
in many commercial and production-grade software. For example, the Clang compiler implements
control-flow violation detection mechanisms [1], and Microsoft has its own CFI implementation
called Control Flow Guard [62] for its Windows operating system which has been available since
Windows 8.1.

While the literature concerning CFI mechanisms (and techniques to bypass them [16, 34])
is rich with studies regarding the non-negligible performance and/or memory overhead of the
mechanisms, few are built specifically for embedded systems and even fewer explicitly consider the
real-time requirements of such systems. Therefore, we shall first look at CFI mechanisms for general
embedded systems and then move towards mechanisms built explicitly for those with real-time
constraints. We shall look at both software-based and hardware-assisted mechanisms, as well as a
mechanism that takes advantage of the predictability of real-time systems. However, before we
begin discussion of CFI techniques, we shall now define resource and real-time constraints.

1.2 Systems Considered: Embedded and Real-Time Embedded Systems

There exists numerous prior work that are excellent surveys and compilations regarding CFI
defenses for general systems [4, 13, 31, 79, 85]. However none of these work explicitly consider
system capabilities and constraints. We now define the types of systems that we consider for the
rest of this work, and their constraints that influence the design of CFI for such systems.

1.2.1 Embedded Systems: As discussed earlier, the Stuxnet worm was built specifically to target
and control SCADA systems. A SCADA system is usually composed of a number of embedded
computing systems built for specific operations, such as data gathering and actuator control.
However, embedded computing systems themselves can be found in a wide variety of operating
environments, ranging from complex SCADA systems, to robots used for medical procedures
as well as small household appliances. These embedded systems are usually severely resource-
constrained to minimize size, weight and power (SWaP), cost and/or simplify operations. Typically,
they consist of microcontrollers that are low-end processors with integrated memory, executing
software built to perform specific operations in a deterministic and predictable manner. For example,
the modern vehicle can have over a hundred individual computing units, called Electronic Control
Units (ECU) that control different functionalities of the vehicle. These units usually consist of
a microcontrollers [56] that operate at a clock frequency an order of magnitude lower than the
processors found in modern internet servers, and have similarly small amounts memory for
storage and operation. These computing units control vehicle operations ranging from non-critical
infotainment systems, to extremely critical Advanced Driver Assistance Systems (ADAS), such as
anti-lock braking systems, whose failure could result in passenger loss-of-life. Further, the software
for such systems may not be regularly updated due to the inaccessibility of their deployment
locations. Therefore, once security vulnerabilities in the software are found, they may not be
easily patched, making them lucrative targets for malicious entities. In addition, in the case of
modern vehicles, increasing inter-vehicular connectivity to improve ADAS as well as increasing
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number of interfaces such as WiFi and Bluetooth for passenger convenience, has widened the
attack surface that can be exploited by such entities [19]. Therefore, due to the wide range of
applications of resource-constrained embedded systems and their increasing attack surface due to
system inter-connectivity, it is imperative that such systems have built-in defense mechanisms to
prevent their exploitation by attackers.

To summarize, our definition of embedded system is in the broader sense. That is, our definition
encompasses embedded systems with fixed system resources (memory, processor, peripherals, etc.)
where processing elements are embedded off-the-shelf microcontroller architectures such as ARM
Cortex-M and ARM Cortex-R [98] or bespoke architectures that evolve from those that could be
utilized in similar systems. Such processing environments have fewer architectural features than
desktop or server grade processors and usually paired with slower/limited memory and peripherals
for managing costs and/or special memory systems for redundancy and safety. Such systems are
usually deployed in mission-specific applications in a wide range of domains, such as industrial,
automotive, space and medical systems or even internet-of-things (IoT) systems. Our definition of
such systems is broad since it allows us some flexibility to look at CFI mechanisms that may work
for a specific type of embedded system, but could be applied to similar architectures with some
modifications, giving us a broader field-of-view of the domain. For each mechanism we take a closer
look at in later sections, we state the specific architectural considerations that informed its design.
Note that for completeness we also briefly discuss some techniques that use external processing
resources such in Section 4.5 and show their fundamental similarities with techniques that do
not require external processing resources. However, we do not present in-depth information for
these techniques since they utilize external processing resources that makes it difficult to compare
with techniques that do not require such external resources. Note that our definition of embedded
systems assumes that such systems are resource-constrained and we interchangeably refer to
embedded systems as embedded systems or resource-constrained embedded systems throughout this
work.

1.2.2  Real-time embedded systems: Many resource-constrained embedded systems require real-
time guarantees. In the case of ADAS systems such as anti-lock braking systems, for example,
multiple control loops (including actuator control) must be completed per second to maintain safe
vehicle operation. We term such embedded systems as real-time embedded systems. If such a system
misses any deadline, regardless of the correctness of the computation, the consequences could
include the loss of life. When such guarantees are required atop resource-constraints, developing
defense mechanisms for such systems become especially challenging.

We therefore focus on defense mechanisms that are built for embedded systems and real-time
embedded systems. Since such systems have both resource and real-time constraints, considering
systems that have a combination of these two types of constraints leads to a unique set of problems
for designing useful CFI mechanisms for such systems. In general, some of the problems are:

(1) Weaker processing capabilities as compared to general-purpose desktop or server grade
systems constrains the complexity of the design and scope of the CFI mechanism that can
be introduced in the system. Complex CFI would introduce unmanageable overheads that
would break the real-time guarantees of the system. For example most of the defenses we
discuss specifically for embedded systems in Section 4 detect irregularities in branch source
and targets, individually for each branch. However, general-purpose architectures have more
complex mechanisms available [20, 25] since such systems are not constrained by real-time
guarantees and can accept greater performance reductions for higher degree of security.

(2) In addition, due to reduced hardware capabilities, certain defense mechanisms that are built
for general-purpose systems may not be directly applicable to resource-constrained embedded
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systems. For example some defenses [20] require advanced memory management features
such as virtual memory which are not available on low-end microcontrollers. Therefore
defenses for such systems require hardware/software workarounds to maintain acceptable
levels of defense without hampering real-time operation.

(3) Real-time systems require a study of the increased overhead due to CFI mechanisms, and
its impact on the schedulability of the system. Many CFI techniques designed for general-
purpose and, in fact, as we see later in Section 4, resource-constrained embedded systems do
not discuss schedulability, nor do they discuss possible security-schedulability trade-offs that
may be required to balance timing and security.

(4) Other system parameters, such as power consumption are rarely considered when discussing
CFL. Many resource-constrained embedded systems may have access to limited (such as
battery-based) or intermittent (such as via renewable energy like solar) power supply. Such
constraints are rarely discussed by prior work. We, in fact, realize a gap in knowledge with
respect to impact of CFI and power consumption and suggest readers to explore this domain
in future work (see Section 6).

To the best of our knowledge, this survey is the first to identify a gap in research of CFI mecha-
nisms for real-time embedded systems, and propose future research avenues that could be considered
by the real-time systems community. In this survey, we discuss CFI for real-time embedded systems
and not general real-time systems that do not consider resource-constraints (such as memory or
low end computation environments) typical to embedded systems. This is due to a lack of CFI
literature that explicitly considers real-time constraints without considering resource constraints.
On the other hand, we believe that our discussion of CFI for real-time embedded systems provides
adequate coverage of possible techniques that can be utilized, without many modifications, for
any general real-time system. We also believe there is ample opportunity to investigate the unique
hardware-software constraints of resource-constrained embedded systems and utilize real-time
execution characteristics to aid the development of CFI techniques which are equally applicable to
real-time systems that do not suffer from resource-constraints. Such timing based co-design, as we
show in later sections, is severely lacking and we present a few possible paths of investigation for
the reader to follow for future work in Section 6.

2 PAPER ORGANIZATION

The rest of this work is divided into 4 major sections. These are:

(1) CFI Techniques for Backward and Forward-Edges (Section 3) - We discuss different CFI
designs, from both theoretical and practical approach, for general-purpose systems. This
section provides the reader a general overview of how state-of-the art CFI mechanisms, both
basic and advanced, are usually designed and implemented.

(2) CFI for Embedded Systems (Section 4) - We discuss different types of CFI techniques built
specifically for resource-constrained embedded systems. Please note our definition of embed-
ded systems is provided in Section 1.2. As stated in Section 1.2, the nomenclature “embedded
systems" and “resource-constrained embedded systems" are synonymous and interchangeably
used depending on context for clarity.

(3) CFI for Real-Time Embedded Systems (Section 5) - We then discuss how real-time consid-
erations play into the design of CFI for embedded systems. Four specific techniques are
considered that explicitly consider real-time constraints and discuss schedulability-security
trade-offs and/or schedulability analyses.
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CFI Forward-edge Backward-
Mechanisms Fine- Coarse- edge
grained | grained
Advanced forward-edge techniques for general systems (Section 3.2):

Mechanism highlights

Block-based enforcement - binary-only approach

BBB-CFI [48] v v without need for CFG

PathArmor [86] v v v Context-sensitivity - requires architectural support

CFI for embedded systems (Section 4)

Silhouette [97] (Section 4.1) v v Uses shadow-stacks and labeling

E)iﬁ::él_[q;‘])v (Section 4.2) v v v Lazy + shadow-stack replacement.

HRAI [6], o . .

Zipper Stack [59], (Section 4.3) v i;etge;srtsr t]j}?::é]jcfl ( sgz(i;w stack replacement

PACStack [60] P &

CFI CaRE [67], Section 4.4) v ARM TrustZone based shadow-stack, nested

TZmCFI [54] (Section 4. interrupts Stronger threat models

HCFI [21] (Section 4.4) v New ISA thfit integrates shadpw-stack
operations in processor pipeline

CFI for real-time embedded systems (Section 5)

. Large-scale schedulability study of common

RECFISH [90] (Section 5.1.1) v v CFI techniques applied to an RTOS

Improve schedulability (Section 5.1.2) v Searching the number of task jobs that can have

by reducing security [45] cction . 1. CFI turned on to improve schedulability

Timing-deviation [11] (Section 5.2.1) Detects c9ntr0_l-ﬂ0w deviation by excess
computation time

ECFI [5] (Section 5.2.2) v v v CFI for ha%'d-real time PLC c.ode that detects
abnormal increase in execution

Table 1. Table of contents of advanced forward-edge CFI techniques discussed in Section 3.2, CFI techniques
for embedded systems discussed in Section 4, and CFI techniques for real-time embedded systems discussed
in Section 5. Important highlights of each technique and degree of coarseness of forward-edge path deviations
is discussed.

(4) Summary and Open Challenges (Section 6) - We summarize our discussion of different
CFI techniques and discuss some challenges from a real-time perspective, and from overall
resource-constrained embedded system perspective.

Table 1 provides a brief overview of the relevant sections where we discuss specific CFI techniques,
especially for Section 3.2, Section 4 and Section 5.

3 CFI TECHNIQUES FOR BACKWARD AND FORWARD-EDGES

We shall now look at some general techniques that are used in many CFI mechanisms. We will first
look at techniques developed to prevent an attacker from modifying return sequences of function
calls (backward-edge) or modifying other points-of-interest, such as indirect branches/function
calls (forward-edge). Techniques for the former are well established and extensively utilized in
mechanisms for embedded systems and real-time embedded (Section 4 and Section 5). However,
some recently proposed advanced techniques for forward-edge CFI have not yet been considered
for real-time embedded systems and are highlighted in Table 1. Note that for this section and the
rest of this paper, “performance overhead" and “overhead", unless stated otherwise, are synonymous
and refer to the increase in the CPU cycles required due to the addition of the CFI mechanism
into the system.“‘Memory overhead" refers to the increase in the total memory (code and data)
required to implement the mechanism, unless otherwise specified. Unfortunately, not all prior
work discussed in this survey utilized the same benchmarking software and hardware. Neither did
they always report memory overheads. We present the information regarding overheads as it was
presented in the original work. We only quantitatively compare different work if the overheads
have been measured using the same combination of hardware and software. That said, we try to
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provide a qualitative discussion when possible to aid the reader in determining the pros/cons of
the CFI technique based on the values reported.

3.1 Backward-edge CFI techniques

The first step to any control-flow attack is infiltration. There must be some flaw in the system
that can be exploited by an external attacker to begin a control-flow redirection. A very common
software flaw is the buffer overflow. Due to the tight memory restrictions of embedded systems,
and the flat memory model due to the lack of complex (and potentially expensive, from both
economic and performance perspectives) memory management units, buffer overflow or stack
overflow flaws are common in resource-constrained embedded systems since they are usually
programmed using memory-unsafe languages such as C/C++ [82]. A simple example of such a
flaw is a statically allocated array that is filled past its capacity. Imagine such a flaw exists within a
function call of a driver code that handles user input from a keyboard. In the absence of proper
memory management, such flaws can be easily exploited to overwrite adjacent locations within the
function stack frame as seen in Figure 1(a). Of particular interest is the return address value in the
stack frame. Overwriting the return address with a target address ensures that when the function
returns, the code will continue execution at the target address, successfully redirecting the flow of
the program. The target address could be either a location within the pre-existing code memory
or to some other memory address. A simple use case for the latter technique is to first inject the
malicious code into the stack memory using the overflow vulnerability, and then set the return
address to the start of the injected code. When the function returns, the injected code executes.
Code-injection attacks can be thwarted with the help of memory protection mechanisms that
implement the W @ X memory policy, i.e., prevent execution from writable memory. Such memory
protections are now readily available in many commercial-off-the-shelf (COTS) low-end processors
and microcontrollers. Therefore, the rest of our discussion will be focused on the consequences of
the former technique of forcing the processor to continue execution at a target address in code
memory.

Pointing the processor to an incorrect location by overwriting the return address is an example
attack that serves as an entry point to a set of very powerful code-reuse attacks. For example, a
well-studied sub-family of control-flow attacks is Return-Oriented Programming (ROP) [75]. A
ROP attack is where an attacker chain together arbitrary code sequences (also called gadgets) that
are already present on the device to achieve their objective. Post the seminal work by Shacham [81],
ROP attacks have become increasingly popular and very sophisticated. It should be noted that
using the return address to perform a control-flow diversion is also referred to as backward-edge
control-flow attack. On the other hand, forward-edge control-flow attacks modify function pointers,
or the targets of indirect function calls, to reuse code. An example is that by Checkoway et.al. [18]
that modifies the target of indirect function calls to create gadget chains. Forward-edge defenses
are discussed in the next section and are slightly more ambiguous in nature. It is interesting to note
that all these attacks require exploiting an initial vulnerability such as a simple buffer overflow bug.

Two simple mechanisms to deal with backward-edge control-flow attacks are stack canaries [24]
and shadow stacks [15]. Both these mechanisms, especially the latter, feature heavily in more
sophisticated realistic CFI mechanisms for resource-constrained embedded systems. Stack canaries
are special values inserted into the stack frame and are located in between the return address
and the local statically allocated variables as seen in Figure 1(b). The concept behind using stack
canaries is that an attacker overwriting the stack using a buffer overflow will have to first overwrite
the canary value before overwriting the return address. Checking the canary value in the stack
frame before a return operation can help determine whether the return address can be trusted.
However, stack canaries can be bypassed by a sophisticated attacker, especially if the canary value
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High Detect Detect
Address modification difference

Link Register

Link Register Canary Link Registef

Register Register Register

Values | |Overflow Values Values
Local Modify Local Local Copy

Variables Variables Variables

Buffer Buffer Buffer
Low Main [ | Main Stack | Main Parallel
Address ~Stack e w/Canary -w Stack @ Shadow Stack
(a) (b) c

Fig. 1. (a) A function stack without any defenses, (b) Backward-edge CFl using an embedded canary, or (c) a
parallel shadow stack (Section 3.1).

is known (not random) or if the value can be guessed (not random enough). Further, they do not
stop the attacker from overwriting local variables located before the canary value. By doing so, the
attacker can still influence the function call operation [74].

Shadow stacks are a more sophisticated defense mechanism. Under the assumption that the
attacker cannot access or modify a portion of the memory, a copy of the stack frames, or at least
return addresses, is kept in that memory portion. Figure 1(c) presents an example of a shadow stack.
This copy is updated during the initial stages of a function call (such as in the function prologue),
and the return address is checked just before the return instruction is executed. If a discrepancy
exists between the stored and actual addresses, it can be indicative of an attack. Shadow stacks are
essentially more sophisticated canaries since both mechanisms indicate an attack by checking for
discrepancies in the contents of the stack, with the major difference being that the shadow stack
keeps a copy of the correct value [27]. While these mechanisms are relatively simple, applying
them comes at a cost.

Dang et.al. [27] performed a study of the overheads caused by two different shadow stack
implementations on the SPEC CPU2006 [2] standard suite of benchmarks on an x86 architecture
processor. The first is a "traditional” shadow stack that has its own stack pointer and stores only
the return addresses. The second is a "parallel” shadow stack that uses the same stack pointer
as the main stack, however, the parallel shadow stack is stored at a different base address and
records the return addresses while skipping over the other values in the stack frame (Figure 1(c)).
Architecturally, this makes the parallel shadow stack faster than the traditional shadow stack
since the same offset can be used for both the main and shadow stacks. The correct entry can be
accessed by simply swapping out the contents of the stack base register which can be achieved
with a single instruction. On the other hand, a traditional shadow stack would require additional
code to maintain the stack as well as at least one extra instruction per operation to increment
or decrement the shadow stack pointer for push and pop operations. Their measurements of the
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performance overhead shows that traditional shadow stack implementation, on average, introduces
a9.69% overhead (over a system without shadow stacks) while the parallel shadow stack introduces
a 3.51% overhead. Worst case overheads of both were 52.5% and 19.6%, respectively. The cost of
checking the return address was an additional 0.8%. On the other hand, stack canaries had an
average performance overhead of 2.54%. At first glance the parallel shadow stack mechanism
is clearly better suited to applications that are performance sensitive. As discussed above, the
performance benefits of parallel shadow stacks is expected since accessing the relevant position in
the parallel shadow stack only requires swapping the stack base register since both stacks share
the same offset whereas multiple operations are required for an equivalent operation on traditional
shadow stacks. However, the traditional shadow stack has its merits for a resource-constrained
system with a low amount of memory.

3.2 Forward-edge CFI techniques

Forward-edge control-flow attacks are the logical extension to backward-edge attacks. The in-
creasing popularity of backward-edge defense mechanisms forced attackers to consider other
points-of-interest (POI) to redirect control-flow. These POI include indirect branches and indirect
function calls via pointers. By attacking the destination of these branches, the attacker could call
any arbitrary location without the need for return instructions [18].

Forward-edge CFI is difficult and, in general, subtler than backward-edge CFI This is simply
because looking at the past is easier than predicting the future. Forward-edge CFI techniques that
could theoretically predict all possible combinations of branch start and end points are called
fine-grained [4] CFIL. Valid combinations of start and endpoints, essentially valid control-flow, can
be represented as a control-flow graph (CFG). For example, Abadi et.al’s [4] approach performs
a binary static analysis using Vulcan [84] to generate a CFG and utilize said CFG to determine
whether a branch is valid or not. A common mechanism to help enforce the valid control-flow
paths in a CFG is labeling. Labeling is a process where all possible forward-edges that can be used
by an attacker such as indirect branch locations, functions, and any other potential branch targets,
are labeled with unique IDs. Figure 2 is an example of a labeling scheme where indirect branches
and function prologues are labeled and matched against a CFG. When a branch occurs, the source
label (such as an indirect branch) is checked against the destination label (such as a function) via
code that has been instrumented into the binary (such as checks in a function prologue). A simple
example of such an approach is presented in Figure 2.

An obvious problem of this approach, especially in the resource-constrained embedded systems,
is the amount of memory required to store and enforce a CFG. However, more subtle issues arise
in real-world cases. Many real-time embedded systems are industrial control systems, robotics
systems, etc. In many cases, these environments run proprietary legacy software whose source code
is difficult to obtain for analysis, or due to licensing issues, do not allow instrumentation. Due to these
reasons, fine-grained CFG may not be possible to obtain, or the performance overhead associated
with checking every branch may be prohibitive, especially in a real-time context. Therefore, many
coarse-grained CFI [96] have been proposed which allow varying degrees of relaxation of which
branches or jumps need to be checked and which can be ignored. Due to reduced memory and
processing requirements when utilizing coarse-grained CFG, coarse-grained forward-edge CFI are
sometimes used for resource-constrained embedded systems. Due to the nature of coarse-grained
CFI, such mechanisms may have blind spots that can be exploited by attackers [30]. A simple
example is where a coarse-grained CFI allows any branch to any legal target, such as the start of
a function, due to the unavailability of quality control-flow graphs. In such a case, the attacker
could jump to targets which would have otherwise been identified as illegal by a fine-grained CFL
An interesting approach to overcome the need for a CFG, or the codebase to determine a CFG, is
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Fig. 2. Using labels and an embedded control-flow graph to enforce forward-edge CFI (Section 3.2).

proposed by the authors of BBB-CFI [48] where the authors inspect the binary and divide it into
basic-blocks, with each block having a single entry and exit point. A runtime mechanism prevents
branches to the middle of a block, ensuring that the blocks are the smallest unit of code.

Interestingly, even fine-grained CFI can be defeated [16, 35], such as by exploiting the inability
of current code static-analysis techniques to perfectly capture coding practices. Advanced forward-
edge CFI techniques such as Van Der Veen et.al’s PathArmor [86] can defend against such attacks.
PathArmor logs control-flow transfers and then performs path verification by having access to
the program CFG and performs a depth-first comparison of the logged transfers with the CFG
to determine if the path taken during runtime is legitimate. This allows checking if a legitimate
pair of source and destination addresses of a control-flow transfer are also contextually correct
with respect to neighboring transfer events. However, the requirement for architectural support
to record control-flow transfers prevent its direct application to low-end microcontroller-based
systems that lack such specialized hardware.

3.3 A note on control-flow checking for soft errors

While CFI techniques are built considering an adversarial perspective, there exists a line of research
that applies similar methodologies to detect erroneous control-flow redirection due to non-malicious
soft-errors [43, 73, 80, 95]. These works utilize very similar techniques, such as by creating signatures
for each basic block (code blocks that are delineated by control-flow transfers but do not contain
any transfers themselves) and comparing currently executing basic block against a pre-determined
graph of valid signature chains [68]. While such techniques utilize similar underlying principles to
those discussed in prior sections, such as the forward-edge techniques in Section 3.2, soft-errors
are generally one-shot errors that arise due to environmental factors. Control-flow redirection
that is caused due to these errors are not easily predictable. For example, a redirection could take
place due to reading the incorrect branch target from memory due to a bit-flip that took place
in memory. However, control-flow redirection due to attacker control takes place under more
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predictable conditions (such as a buffer-overflow bug) and at a control-flow transfer point such
as a branch/return statement. Further, advanced control-flow redirection, such as control-flow
bending [16], where a control-flow transfer has valid start and end points but is incorrect only
within the context of past control-flow transfers, cannot be detected by control-flow checking
techniques since they are built to detect single-shot soft errors. For this survey, we will focus on
techniques explicitly built for defending against various forms of control-flow redirection attacks.

4 CFI FOR EMBEDDED SYSTEMS

We now move towards more realistic CFI implementations in the context of resource-constrained
embedded systems. The mechanisms presented here either combine techniques from Section 3 or
propose entirely new techniques. Highlights of some of the mechanisms discussed in this section
are presented in Table 1.

4.1 Implementation of basic techniques

We stated a pre-requisite in the prior section with respect to shadow stacks - ... Under the assumption
that the attacker cannot access or modify a portion of the memory. This assumption does not have a
straightforward justification in the context of embedded systems. As previously noted low-end
embedded systems simply do not have complex memory management units to support well-
known features such as virtual memory, which is now common in higher-end processors, let alone
have special built-in mechanisms to support hiding shadow stacks from an attacker. Therefore,
a successful CFI mechanism has to first wrangle the available hardware capabilities to support
shadow stacks.

Zhou et.al’s Silhouette [97] is an attempt to support shadow stacks on ARMv7-M [49], the
architecture underlying ARM Cortex-M series of processors commonly found in embedded systems.
It also supports forward-edge CFI checks. Silhouette is designed for bare-metal codebases that do
not utilize an RTOS. It is, thus, an example of how a sophisticated CFI mechanism would look like
in the context of a resource-constrained embedded system with a bare-metal codebase.

The ARMv7-M architecture supports two privilege levels in hardware, privileged and unprivileged.
The optional memory protection unit (MPU) allows a system designer to decide access rights to
an address. A limitation of the ARMv7-M architecture is that the MPU can be controlled by any
privileged code. For example, most RTOS, such as FreeRTOS [10], by default, execute both the tasks
and the operating system as privileged code to mitigate the overhead of switching privilege levels.
This makes using the MPU to protect a shadow stack a moot point, simply because an attacker that
has infiltrated the system could re-program the MPU since they would most likely already execute
under the privileged execution context.

Silhouette ensures that the MPU access rights are adhered to by working around this limitation.
It replaces all store instructions, other than those that are supposed to directly store to the shadow
stack, or the hardware abstraction layer (HAL) code, with unprivileged store variants, at compile
time, to ensure adherence to the memory access policies defined in the MPU for the target address,
regardless of the processor’s current execution privilege level. The shadow stack is implemented in
a similar manner as the parallel shadow stack explained in Section 3.1. To ensure that the store
instructions with higher privilege levels are not abused by an attacker, Silhouette implements
forward-edge CFI checks. Silhouette utilizes a labeling mechanism (Section 3.2) to guarantee
forward-edge CFI [14].

On the performance front, Silhouette is benchmarked using well known embedded systems
benchmark suites, namely CoreMark-Pro [23] and BEEBS [69]. We will see these same benchmarks
being used in other approaches too in later sections, providing a common playing field. The maxi-
mum performance overhead reported for the two benchmark suites is 4.9% and 24.8%, respectively,
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and a code memory overhead of 8.9% and 2.3% respectively. The geometric mean of the performance
overheads for all the benchmarks in each test suite is 1.3% and 3.4%, respectively. The approach
used by Silhouette, which they term as store hardening, basically utilizes a memory management
technique to hide the shadow stack from the attacker.

Another mechanism that can be used to prevent access to the shadow stack is called software
fault isolation [64, 89] (SFI). SFI is a technique where the address space is partitioned into fault
domains. Any code within a fault domain has unrestricted access to code or data within the same
fault domain, but the partitioning scheme prevents the code from accessing any memory outside
the fault domain. This is achieved by instrumenting load/store instructions during compile time to
trigger the fault handler if the memory access takes place outside the fault domain. A variant of
Silhouette is proposed that utilizes this technique by instrumenting store instructions to restrict
them from writing to the shadow stack unless the store instruction is part of the shadow stack
manipulation code. The authors note a higher performance overhead, with the geometric mean
results being 2.2% and 10.2% respectively for the two benchmarks, which leads the authors to
conclude that the store hardening approach is superior in performance. However, it would be
interesting to note how the performance would vary if the shadow stack was protected using an
approach similar to Aweke and Austin’s [9] lightweight SFI for IoT systems that shows an overhead
of just 1% on the MiBench [44] benchmarks. Their approach utilizes a small amount (150 lines) of
trusted code that sets up the MPU to create the fault domains, trapping accesses outside the domain
as memory access faults. Unfortunately, they do not present results using the CoreMark-Pro or
BEEBS suites making direct comparisons difficult.

While the Silhouette and its variant provide a good overview of the well-known techniques of
shadow-stacks and labels can be applied to a real low-end processor architecture, Kage [32] extends
Silhouette to provide an implementation of CFI for an RTOS environment on microcontrollers based
on ARMv7-M. Kage modifies FreeRTOS and introduces the concept of a trusted kernel and untrusted
tasks. Untrusted code is passed through the store hardening compiler technique introduced in
Silhouette and transformed into unprivileged store variants. This prevents their write access to
the trusted portions of memory which can only be accessed through privileged store instructions.
Therefore, the trusted code such as the kernel and its associated data structures are maintained
as privileged instructions so that they may access any portion of the privileged or unprivileged
memory. Portions of the trusted kernel, such as common RTOS infrastructure that is expected of
application tasks (locks, queues, etc.) are made available via a secure API that is designed to vet
arguments from untrusted code such that they are unable to overwrite control information within
the trusted kernel. The authors showcase that the Kage kernel incurs an average performance
overhead of 5.2% over the baseline FreeRTOS kernel when running a multitasking workload of one
to three benchmarking tasks from the CoreMark test suite.

Silhouette and Kage provide a good overview of how well-known techniques of shadow-stacks
and labels can be applied to a real low-end processor architecture. However, there are avenues to
improve the operation of such systems. We shall now look at some of them.

4.2 Beyond the basics

While the techniques discussed in Section 3 consider forward-edge and backward-edge separately,
some effort has been applied in recent years to develop more holistic mechanisms that apply to
backward and forward-edges at the same time.

An example of such a mechanism is the Control-Flow Locking (CFL) technique [12]. This is also
an example of a lazy CFI that trades-off attack detection speed with performance overhead. While
CFL is not explicitly targeted at resource-constrained embedded systems, the mechanism can be
implemented with similar memory and performance overhead as any general label-based CFI for
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Fig. 3. Control-flow locking operation. Note the exclusive use of lock/unlocks for the entire operation
(Section 4.2).

detecting forward-edge control-flow attacks. CFL uses locks, instead of shadow stacks, to determine
if an attacker has diverted control-flow to an arbitrary location. An overview of the CFL operation is
given in Figure 3. The idea behind CFL approach is simple. Similar to how labels are generated based
on the valid control-flow graph, key values are assigned to legitimate call/jump target locations. CFL
targets indirect calls/jumps as well as return instructions (an x86 architecture-based processor was
assumed). Once the unique key values, which essentially represent valid edges in the control-flow
graph, are generated, the authors propose to then instrument the target binary with instructions to
lock and unlock control-flow paths using these key values. Every legitimate control-flow redirection
start point, which may be an indirect call, jmp or ret instruction, is preceded by a lock operation,
i.e., the key value is stored into a buffer. The assumption here is that the buffer is stored in a
memory location such that it can be modified only by the lock and unlock subroutines, and not
by attacker-controlled code. Once program control is redirected to a valid destination (such as a
function entry-point), it is immediately succeeded by an unlock operation where the key value is
validated, i.e., it is checked against a list of key values that could end up at this target location. If
the values match, the key is zeroed out (unlocked) and execution continues as before. When the
next control-flow redirection operation must take place, the key buffer is first checked to see if it
contains a non-zero value. If it does, an attack is detected since no legitimate transfer would allow
the key buffer to have a non-zero value due to the paired lock-unlock operations. Depending on
the quality of the available CFG, this pairing of lock-unlock operations could be coarse or fine.
The overall mechanism is interesting due to its simplicity and the introduction of laziness. Not
only does it prevent an illegitimate jump to a valid control-flow transfer site, but also automatically
detects an illegitimate jump to an invalid control-flow site in recent history without requiring addi-
tional runtime memory such as using a shadow stack. Evaluations show that CFL can outperform
fine-grained CFI mechanisms , with a maximum overhead of 21% vs 31% overhead under Abadi
et.al’s [4] mechanism on the SPEC CPU2000 [2] benchmarks. However, as discussed earlier, the
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mechanism is lazy. This laziness can introduce blind spots that can be exploiteed by an attacker.
For example, the attacker can redirect control and can remain undetected until it is caught by
the next locking site. While laziness allows the mechanism to work with the time and memory
overhead similar to a labeling scheme, it could have interesting security repercussions especially in
the context of the real-time embedded systems, many of which are used in industrial environments,
controlling actuators in critical processes. If an attacker is able to send out control commands to
these actuators before they are detected, the attacker can still inflict catastrophic damage. However,
laziness is not inherently flawed. There is therefore an avenue to leverage real-time requirements
to enforce timing bounds on laziness.

While CFL is an example of a CFI technique that re-purposes control-flow labels to solve both
forward and backward control-flow attack detection at the same time, it still uses a form of
memory protection. All the techniques discussed up to this point attempt to work around hardware
limitations to enforce memory protection and are conservative. However, they do not take full
advantage of the processor architecture or require radical software/hardware changes to improve
performance.

4.3 Register-based shadow stacks

We will now discuss two approaches that would require significant software modifications to allow
them to work. We will first briefly look at Zipper Stack [59] which is the more radical of the two
since it proposes CPU architecture modifications to forego shadow stacks. The other is yRAI [6] that
is built for COTS embedded systems. It takes a more moderate approach by requiring reservation
of parts of the CPU but can be implemented by recompiling the codebase with a modified compiler.
Both implement backward-edge CFL

Zipper stack aims to solve the problem of securing shadow stacks by replacing them with a set of
processor architecture modifications. Shadow stacks, as discussed in Section 3 are inherently simple
but require additional support to secure them from attacker manipulation. For example, Silhouette
in Section 4.1 requires additional code instrumentation to secure the shadow stack. Zipper Stack
aims to solve this problem by replacing the shadow stack with a single value stored in a special-
purpose register called the top register. A separate register, the key register, holds a secret key. At
the start of a new process, the key register and top register are initialized with random values. Each
time a function call takes place, the top register is pushed onto the main stack alongside the actual
return address. A message authentication code (MAC) algorithm, a cryptographic operation that is
commonly used to authenticate messages from a known source, generates a new MAC from the top
register value and the return address using the key in the key register. This newly created MAC is
then stored in the top register. During a return sequence, the steps are reversed to authenticate the
return address. First, the previous MAC value is popped from the stack and the MAC is recalculated
using the return address and the popped MAC value. If the calculated MAC matches that currently
in the top register, the return address is verified to be authentic. The processor replaces the top
register with the popped value and continues execution at the return address. The purpose of the
MAC based design is to reduce the attack surface. By utilizing the top register and chaining the
MAC values with each successive function call, an attacker can only modify the return address
and evade detection if it first modifies the value present in the top register (which is inaccessible
to application code and is automatically updated by the hardware) before modifying the other
MAC:s. Therefore, the rest of the MACs can be kept in non-secure memory that may be accessible
to the attacker, reducing the amount of overhead introduced by accessing the “zipper stack" of
MAC addresses.

The operation shows that Zipper Stack is heavily dependent on a) the efficacy of the MAC
algorithm to ensure collisions (same MAC from different inputs) do not occur, b) the speed of the
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algorithm since every function call would constitute running the algorithm at least twice, and c)
the attacker not being able to access the key register to forge MACs. For a), The authors use a
well-known MAC algorithm, for b) the authors argue that a hardware implementation would allow
MAC calculation in a single cycle, and for c) the authors argue that even if the key is leaked, the
top register can only be modified at a call or a return operation. Their custom implementation on
an FPGA with a RISC-V CPU achieves a 1.86% overhead on the SPEC CINT 2000 [2] benchmark.

While Zipper Stack presents a very radical approach that may never see wide-scale commercial
adoption due to its hardware modifications, it is still interesting since custom architectures for
specific applications, such as defense, are not uncommon in the embedded system world. In such
cases, a custom architecture designed with optimized built-in defense mechanisms is not hard to
envision. Interestingly, the use of MACs for authenticating return address may become possible very
soon on commodity hardware. For example, PACStack [60] re-purposes the ARM pac instruction to
create a MAC chain of return addresses, very similar to Zipper Stack. As part of the ARMv8.3-A PA
extension, and soon to be available on SoCs based on ARMv8.3-A and later architecture revisions,
pac allows generating pointer authentication codes (PAC) which are MACs generated on pointer
values and stored along side the pointer. Similar to Zipper Stacks, the authors use a chain register to
store PAC values which are generated from previous chain register values and the return address of
a function call. When a return sequence takes place, similar to Zipper Stack, the reverse operation
takes place. PACStack showed a geometric mean of 2.75% and 3.28% performance overhead on the
SPECrate and SPECspeed (part of the SPEC CPU 2017 benchmark suite), respectively. PACStack
provides a strong argument for MAC based shadow stack replacement, especially since it depends
on architecture extensions which will soon be available in commodity hardware.

On the other hand, the authors of yRAI take a similar but more realistic approach, especially on
current-generation hardware. yRAI is also concerned solely with the backward-edge, but instead of
verifying the return address as is common with shadow stack approaches, yRAI enforces Return
Address Integrity (RAI) where the return address simply cannot be modified by an attacker. Their
approach, in essence, is to prevent write access to the return address. yRAI has the same set of
requirements as many of the schemes we have discussed in previous sections, such as data execution
prevention (DEP or W @ X) and an MPU. Similar to Zipper Stack, it requires that one of the processor
registers is wholly dedicated to its operation and should never spill. This is called the State Register
(SR). uRAT’s operation requires that the attacker cannot modify the register.

URAI works by instrumenting code before branches and at return points, similar to CFL. It
works solely with direct branches, i.e. branches with encoded destinations, and converts all indirect
branches into direct branches by matching all possible start and endpoints. Figure 4 provides a
basic overview of how pRAI instrumented code looks like and operates. Every function call site
is assigned a unique function key (FK). As is seen in the figure, a Function A can have multiple
call sites to another Function B. yRAI instruments code such that before every such call site, the
value in the SR register is XOR’ed with the FK for the call site. This value is also called the Function
ID (FID). The call goes through and Function B operates. At the point where Function B returns,
it checks what the authors call the Function Lookup Table (FLT). This table has all the FIDs that
could call this function. Based on which FID matches the value in the SR, the function returns to
the corresponding location. Finally, the SR is XOR’ed with the same FK used before the branch,
returning it to the original value before the function call. The authors tested their approach on
an ARM Cortex-M4 based board and report a maximum performance overhead of 8.1% on the
CoreMark [41] (a lighter variant of CoreMark-Pro) benchmark with an average of just 0.1%, making
it comparable with shadow stack mechanisms discussed previously. However, it requires on average
34.6% extra flash memory for instrumentation and FLT.
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Fig. 4. uRAIl operation. Shadow stack operation is implemented via SR register and FID table during return
(Section 4.3).

The reader may have noticed that the possible return addresses are encoded into the code memory
under DEP restrictions that prevent an attacker from modifying the code memory. DEP is enforced
using the MPU. yRAI, therefore, foregoes the return address that the processor may record in its
stack, which is inherently writable memory, during a function call. Instead, it implements a function
return mechanism that is implemented completely in code memory. This enforces yRAI’s goal of
return address integrity. yRAI is also the first mechanism that we have discussed in this survey, that
explicitly considers interrupts. Since interrupts can occur at any time and can potentially interfere
with shadow stack operations, they require explicit consideration. yRAI instruments interrupt
handler code to first save the return address which has been automatically stored on the stack by
the hardware before the handler code is executed. uRAI saves the return address to a safe memory
hidden behind the MPU. Here yRAI has to essentially create a shadow stack due to the limitation of
the hardware. Supporting interrupts is a significant step to eventually supporting multi-threaded
scheduling under a real-time operating system (RTOS). However, dedicating a register to uRAI
operations would require modifications to the compiler as well as incompatibility with embedded
systems having a severely limited processing capacity, especially when the software requires large
number of registers for computational purposes.

Unfortunately, none of these techniques improve forward-edge CFI. For example, in the case
of yRAI, the attacker could keep redirecting code execution using branch operations without
allowing code to execute till an FID table. Therefore, such CFI mechanisms are helpful from only a
performance or memory perspective over a regular shadow stack. That is, they do not provide any
additional security guarantees, while requiring significant codebase changes or at least a modified
compiler to support their operation.
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4.4 CFl using processor architecture extensions

Before we finally move towards real-time aware CFI mechanisms, we will look at two mechanisms
that depend on very modern processor architecture extensions such as ARM TrustZone [70].
TrustZone allows a processor to support two execution domains, secure and non-secure, each with
its own address space with the secure domain having supervisory access to the non-secure domain.
CFI designers have found creative ways to use it as part of their designs.

The first is Nyman et.al’s CFI CaRE [67] that presents an alternative approach to secure the
shadow stack, to that of Silhouette 4.1. An overview of its operation is given in Figure 5. While
Silhouette uses binary instrumentation to prevent a privileged attacker from modifying the MPU
that hides the shadow stack, CFI CaRE hides the shadow stack behind the TrustZone in the secure
domain. CFI CaRE assumes that the original binary is only allowed to execute under the non-secure
domain. It replaces all function calls with a supervisory call (SVC) that launches a special function
called the branch monitor. The branch monitor runs in a privileged context and based on the
parameter passed to the SVC that launches it, the branch monitor is able to identify if the source of
the SVC is a branch or a return. It then calls secure domain code, passing the source identifier as a
parameter, that updates the shadow stack. While the SVC ensures that all branches and returns
are effectively trapped into the branch monitor, the TrustZone boundary ensures that non-secure
domain code cannot view or modify the shadow stack. The authors used the Dhrystone (precursor
to CoreMark) benchmarks to evaluate their work on an ARM Cortex-M23 processor. Performance
overhead ranged between 13% to 513% with an overall 14.5% increase in flash memory consumption.

While CFI CaRE may seem like just a different implementation from previous approaches, it
proposes a mechanism to address a crucial flaw in previous approaches with respect to embedded
systems. The previously discussed approaches instrument binaries with no regard to the original
layout. While this may be a non-issue for systems whose source code is available, many real-time
embedded systems use proprietary legacy software and access to the source code may be limited.
Further, due to memory and processor restrictions, these binaries are painstakingly built with strict
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adherence to page limits, available flash memory, etc. Unchecked binary instrumentation may
destroy compatibility with the hardware. CFI CaRE’s usage of SVC simply overwrites the branch
or return instructions, keeping the original binary layout intact. However, it does require extra
space for the branch monitor.

CFI CaRE also support interrupts and uses trampolines which are short sequences of code at
the start of interrupt that call the secure domain to store the return address in a shadow stack.
However, it does not support nested interrupts. If an attacker-controlled higher priority interrupt
fires before the trampoline can store the return address in the shadow stack, the attacker-controlled
interrupt code could rewrite the return address. When the lower priority interrupt finally gets
to run, its trampoline would store a modified return address. Furthermore, nested interrupts can
occur on an RTOS controlled system. For example, the timer tick could fire alongside interrupts
from other peripherals. Kawada et.al’s [54] TZmCFI fills in this gap. They too propose using the
TrustZone to hide the shadow stack. However, they also extend the shadow stack concept to what
they term as exception shadow stacks that support nested interrupts. They modify the trampolines
such that every trampoline will complete all pending shadow stack transactions of lower priority
interrupts before the interrupt body is allowed to execute. This ensures that if an attacker controls
the interrupt body, it cannot affect the shadow stack copy of the interrupt return address. TZmCFI
showed a performance overhead of up to 84% when supporting FreeRTOS as compared to FreeRTOS
without CFI. For nested interrupts, the instrumented interrupts (with the trampolines) increased
interrupt execution time from 30 cycles (un-instrumented) to 132-236 cycles, i.e., up to a 550%
increase in execution time.

Other work that involves extending the architecture of the processing environment includes
Intel’s Control-Flow Enforcement (CET) [53] architecture extensions in their recent Tiger Lake [87]
processors. The CET extensions provides hardware support for shadow stacks and forward-edge
CFL Due to their recent introduction in production hardware, there is a lack of prior CFI work that
builds upon CET. Further, the Tiger Lake processor family are powerful desktop-grade processors
which are outside the scope of this work which focuses on embedded systems (see definition in
Section 1.2.1). Similar in concept to CET, the authors of HCFI [21] suggest creating a new CFI
enabled instruction set architecture (ISA) by modifying an existing ISA such as SparcV8’s Leon3 [40].
They do so by adding new stages in the CPU pipeline to perform CFI operations such as shadow
stack operations and show that performance overhead with respect to an unmodified Leon3 core
is less than 1% on their FPGA implementation for the SpecInt2000 benchmarks. While optimum
performance can be achieved by extending the processor architecture and/or designing custom
processor cores, it remains to be seen if such extensive hardware modifications are feasible for the
more resource-constrained processing environments of embedded systems. Until such a time, the
TrustZone-based approaches discussed earlier are more realistic.

4.5 CFl using separate processing environments

We wrap up our discussion of different CFI mechanisms for embedded systems with a brief note
about CFI by utilizing off-chip processing environments since they behave very similarly to CFI
achieved via TrustZone and utilize the same set of techniques presented in detail in Section 3.
For example, techniques such as Abad et al’s [3] uses a separate monitoring module to track the
program counter and detect deviation from the control-flow. Similarly, SecMonQ [66] is designed for
automotive systems and utilizes the Hardware Security Module (HSM) found in many commercial
automotive ECU’s to detect anomalous path behaviour. In a more general sense, techniques such as
RTTV [93] utilize the Trusted Platform Module (TPM), a common co-processing environment used
as a store for keys for cryptographic keys and perform a limited and static set of cryptographic
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operations in many embedded systems, can be used to store the CFG and perform regular mea-
surements against the stored CFG. All these techniques inherit and apply the basic techniques
presented in Section 3.

4.6 Section Summary

The techniques discussed in this section generally follow the basic techniques listed in Section 3. The
proposed mechanisms either directly apply those basic techniques, or have progressively complex
hardware modifications, from special registers to reduce the cost of shadow stacks (Section 4.3)
to novel ISA (Section 4.4). However, the techniques do not inherently change the underlying
principles of CFI and can be conventional by their nature. That is, they all verify the source and
target destination addresses without much variation. Another important observation is that each
of the techniques presented is uniquely tied to the underlying hardware for both performance
and enforcement of CFIL, making it difficult to compare their individual overheads. However, on a
qualitative note, it is clear that the most performant CFI require radical hardware changes, such as
integrating shadow stack operations into the pipeline of the processor [21].

A common theme in the techniques discussed, however, is the lack of any discussion regarding
the implications of the overhead they introduce on systems where timing is critical, e.g. real-time
systems. Real-time systems have certain characteristics that could be utilized to aid CFI and/or
reduce the impact of the overhead introduced. We will now discuss these characteristics:

(1) In periodic real-time systems, work is performed in a temporally predictable manner. That is,
tasks execute during defined periodic intervals. CFI could utilize this predictable periodic
nature to determine if an application is misbehaving due to attacker control.

(2) The system is usually underutilized due to safety requirements. Since real-time systems are,
in many cases, deployed in critical environments such as medical, industrial or automotive
systems, such systems are designed to not perform work all the time to reduce or eliminate
the possibility of missing deadlines. For example, the system is usually provisioned with
enough computing resources such that tasks do not need to consume 100% of the computing
resource at all times to complete by their deadlines. Therefore the system may have large
periods of idle times. CFI could utilize the idle time thereby reducing localized spikes in
computational load and reducing the possibility of missing deadlines. Note that although
these systems may be underutilized, they are still considered to be resource-constrained. The
underutilization is intentional due to safety concerns and any addition in the computational
requirements must be done judiciously.

(3) The total system utilization at any given point of time is usually well characterized and
there exist schedulability tests to determine if the system may be successfully scheduled
without missing deadlines under a given scheduling algorithm. These tests may differ for
different type of real-time task models (periodic tasks, aperiodic tasks, etc.). None of the
techniques discuss their applicability and/or changes that must be introduced to satisfy these
schedulability tests.

None of the techniques discussed in Section 4 consider timeliness, We now discuss CFI work
that are specific to real-time embedded systems.

5 CFI FOR REAL-TIME EMBEDDED SYSTEMS

We have discussed multiple CFI techniques in the previous section for embedded systems. In this
section, we survey the state-of-the-art mechanisms that consider real-time requirements. Unfor-
tunately, there is little prior work that explicitly consider real-time properties of the system’s
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operation. Therefore, this section discusses a few available CFI mechanisms. We divide our dis-
cussion into two parts, the first part covers techniques that are built specifically with an RTOS
scheduler in mind, and the second discusses non-conventional CFI approaches. Highlights of the
mechanisms discussed in this section are presented in Table 1.

5.1 CFI with an RTOS

5.1.1 An analytical approach for common CFI techniques. TZmCFI, presented in the previous
section, is an example of CFI mechanisms for embedded systems that can work alongside an RTOS,
or more specifically, a scheduler. A scheduler consists of supervisory code that decides when code
that does actual work, i.e. complete the goal of the system, is able to run. A scheduler is critical to
ensure system timeliness. While TZmCFI supports an RTOS, it lacks a study of system schedulability
under different workloads. The recent work by Walls et.al. [90] addresses this deficiency in research.
Their approach, called RECFISH, is an RTOS-aware CFI scheme. Since RECFISH shares several
similarities with techniques discussed in prior sections, we will briefly discuss the mechanism and
take a closer look at the evaluation results.

RECFISH is designed for ARM Cortex-R [61] processors that are built specifically for critical
real-time applications. Like the Cortex-M series, they forego memory management units, and have
special caching mechanisms to maintain predictability, support a small address space, but do not
support TrustZone. RECFISH, instead, utilizes the MPU, like yRAI, to enforce DEP. It assumes
that the task code executes in the unprivileged mode while the RTOS runs in privileged mode.
This ensures that if an attacker infiltrates a task, it cannot override the MPU settings. RECFISH is
designed to be used with FreeRTOS and modifies it to allow setting up a per-task shadow stack
(which only privileged code, such as the RTOS, can modify since it is hidden by the MPU), and
modifies the scheduler to update the shadow stack when switching between tasks. Finally, RECFISH
also instruments the binary to add labels to function prologues, as well as enforce shadow stack
operations before (and after, in the function epilogue) the function body can execute. The labeling
mechanism is used for enforcing forward-edge schemes, while the shadow stack operations are
enforced by calling privileged shadow stack handling code using SVC just like that seen in CFI
CaRE.

While the operation of RECFISH may look similar to multiple ideas presented in previous sections,
the authors are the first to present a study of their approach’s effect on real-time workloads. They
evaluate and note a 21% performance overhead for their approach on the CoreMark benchmarks.
Microbenchmarks show that RECFISH increases scheduler context switching time from 120 CPU
cycles to 159. Further, the label checking and shadow stack operations increase function prologue
and epilogue overheads from 19 cycles (without any CFI operation) to 275 cycles. The authors
then perform a large-scale schedulability study on simulated workloads. They randomly generated
synthetic task sets with varying utilization values, task periods, and number of indirect branches.
Utilization values ranging from 0.1% to 90% were considered. The overhead of task context switch
(39 cycles) was incorporated into the task’s worst-case execution time (WCET). For incorporating
the function prologue and epilogue overheads (label checking for forward-edge CFI), the authors
considered a varying number of indirect branches per task that were either 0, or ranging from 1
every 10° — 10° cycles to 1 every 10° — 107 cycles. Multiplying the number of branches with the
256 cycle overhead for the task yielded the overhead for the label checking mechanism which was
then incorporated into the task WCET. RECFISH performs well for task sets where the number
of tasks is few and each task has a high utilization, and when indirect branches are infrequent.
However, the results show that up to 30% of the system utilization can become unusable for task
sets with more frequent indirect branches and function calls and more tasks. Overall, RECFISH
could schedule 85% of the 6 million task sets generated from 5760 different parameter combinations.
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Fig. 6. Utilizing execution time (MID) as a metric to determine control-flow attacks (Section 5.2).

The results show that well known CFI mechanisms such as shadow-stack and labeling could be
used with a wide range of multi-threaded real-time workloads.

5.1.2  Trade-off security for schedulability. While RECFISH provides a schedulability study of
common CFI techniques, Hao et al. [45] provides a novel technique to improve the schedulability
of a real-time system by trading-off security with system schedulability. They focus on defending
against ROP attacks (Section 1). They do so by selectively switching on CFI checks for a subset of
instances (also called jobs) for each task in the system by exhaustively searching for the maximum
set of jobs that can have CFI checks without hindering the schedulability of the system. The authors
provide a comparison of an approximated scheduling algorithm that is designed to be faster to
execute during runtime with respect to the exhaustive search algorithm which is determined to
be optimal. Experimental results show that their approximation approaches optimality at lower
(< 0.6) utilizations. A schedulability study shows that there is a sharp drop-off in schedulability of
task sets if the CFI checks are added to task sets with utilization greater than 0.8. This observation
echoes the results of the study of RECFISH that as task sets become "heavier", that is, have a higher
utilization, schedulability sharply drops down to zero.

5.2 CFl utilizing timing deviations

5.2.1 Utilizing WCET:. While RECFISH implements well known CFI techniques, Bellec et.al’s [11]
proposal utilizes the predictability of real-time systems to detect control-flow violations. An
overview of the approach is provided in Figure 6. Their approach is based on the simple idea
that an attacker will cause a control-flow violation to perform some malicious action. This will
undoubtedly cause an increase in execution time, over and above the execution time of the system’s
tasks. Since real-time systems have well-defined task timing parameters, it is within reason to
expect that an attacker-controlled execution would show a marked increase in execution time. A
monitoring mechanism could, theoretically, detect such an increase and expose an attacker. The
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authors are able to support such a mechanism by first splitting the code base, consisting of a single
task, into regions. Regions are either non-overlapping or located entirely within another region.
Since the WCET of the task is known, each region within the task code is assigned a WCET of its
own, called the maximal inner duration (MID). The MID of a region does not include the MID of a
sub-region. Therefore, the sum of MIDs of all regions covering a task’s code, would equal the task’s
WCET. The authors define another metric called the maximal attack window (MAW). For a set of
monitored regions, the MAW is the maximum MID of that set. Therefore, the goal is to find the best
possible set of regions such that a) the entire task code is covered, and b) the MAW is minimized.
The authors perform a search, bounded by the available memory to store region boundaries as
well as performance metrics during runtime, to find the best possible set of regions. To evaluate
their approach, the authors propose a custom hardware architecture that can detect when code
execution enters and exits a region, as well as keep constant track of the time the processor spends
within a region. If the time spent exceeds the MAW, an attack would be detected. The authors
utilized two benchmark suites, Malarden, and Polybench. They found that their approach had a
mean latency of 95% (maximum of 99%) of the MAW before it detected an attack, where the MAW
sizes ranged from few hundred up to over 160,000 CPU cycles. However, they found that their
approach calculated MAWs of 600 or fewer CPU cycles for half of the benchmarks.

Due to the detection latency, this approach has similar issues as those that utilize laziness,
specifically, the attacker could damage the system before it is detected. Further, it requires extensive
modifications to the architecture to support it. However, it presents an interesting starting point
for CFI mechanisms that effectively utilize the predictability of a real-time system to inform their
approach.

5.2.2 Timing code in hard real-time context. We end our discussion of the state-of-the-art CFI for
real-time systems with Abbasi et.al’s [5] ECFI. ECFI is built for Programmable Logic Controllers
(PLC) which are commonly found as the computing units for industrial-control systems. ECFI is
a middle-ground approach, utilizing coarse-grained or fine-grained (depending on whether the
code has pointer-based calls) CFI as well as exploiting the high predictability of the typical hard
real-time system where PLCs serve as computational units, to detect if an attack causes a sudden
increase in execution time to warrant the need to perform CFI checks. ECFI operates by capturing
control-flow data in a global shadow-stack during system execution, and then check the data in a
low-priority process. ECFI presents an amalgamation of traditional CFI techniques and utilization
of predictability of the time-domain.

Note that there are related techniques to improve the schedulability of security mechanisms
in general, such as Hasan et al’s Contego framework [46] that introduces the concept of abstract
security tasks into the system, but such techniques are not specifically designed for CFI and are
not directly compatible with any of the work presented in this section.

5.3 Section Summary and Observations

Our discussion of CFI techniques for real-time embedded systems is summarized in Table 1. In
general, we see a lack of techniques that consider timing constraints. While prior work has explored
applying, with varying degrees, timing constraints to improving CFI schedulability there is still
clear room for exploring this domain. For example, none of the techniques presented consider
overloaded system conditions, or utilize timing to amortize the cost of CFI in such situations.
For example, a periodic real-time system has well-defined intervals of slack. By deferring CFI
operations to these slack intervals, it would be possible to reduce the effective in-line overhead
that the CFI operation introduces while executing the system application, an observation we also
state in Section 4.6. In our survey of CFI techniques for real-time systems, we have not found any
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Category Technique and Summary
Implementation:
Standard CFI techniques on
different architectures

1) Silhouette - Shadow stack and binary labeling on ARM Cortex-M
2) RECFISH - Shadow stack and binary labeling on ARM Cortex-R

1) Control-Flow Locking - Lazy control-flow evaluation. Single technique

for forward and backward-edge

2) uRAI - Collapse shadow stack into a single register using XOR operations.

3) Zipper Stack - Custom hardware to collapse shadow stack into a single register
via HMAC operations.

1) CFI Care - Shadow stack hidden by ARM TrustZone

2) TZmCFI - Nested interrupts (RTOS) aware shadow stack in ARM TrustZone.

3) PACStack - ARM pointer authentication (ARMv8.3-A) utilized for collapsing
shadow stack in single register

Design Changes:
Non-standard CFI techniques
utilizing standard control-flow
start and end points

Modern hardware architecture:
Techniques that utilize new
processor architecture features

Underlying Principle:
CFI techniques that detect 1) Timing deviation - Detect WCET violation of code segments using custom hardware
control-flow deviations using 2) ECFI - Built for PLCs. Detects timing violations code during runtime

non-standard principles

Table 2. A summary of techniques discussed in depth in Section 4 and Section 5

technique that capitalizes on system slack in this manner. On the other hand, Hao et al’s technique
in Section 5.1.2 while useful to reduce the cost of CFI to maintain schedulability, can be considered
incomplete in terms of security since only a subset of the code executed at runtime is actually
checked. This could be exploited by a smart attacker, especially one aware of the technique used
to decide which jobs do not have CFI checks. Some mitigation could be provided by randomizing
the schedule using techniques such as using Yoon et al’s TaskShuffler [94], but even such works
have been shown to be defeated by carefully crafting an attack [65] that defeats the randomization.
Essentially we do not see novel techniques that successfully use real-time constraints to amortize
the cost of a complete implementation of CFI for real-time systems. Bellec et al’s approach could be
considered as a good starting point for creatively using timing constraints, however, it has its own
failings which we discuss in Section 5.2.1.

6 SUMMARY AND OPEN CHALLENGES

For convenience, special terminology/mechanisms names that have been discussed before are listed
here alongside the relevant section in the paper:

Silhouette - Section 4.1, Lazy - Section 4.2, Timing deviation - Section 5.2, BBB-CFI - Section 3.2,
RECFISH, ECFI - Section 5.1.1, Context-sensitive - Section 3.2

A summary of our discussion in prior sections is presented in Table 2. Some common themes
and omissions in the techniques presented are:

(1) Most prior CFI work utilize some form of software-hardware bypass to accommodate hard-
ware constraints present in resource-constrained embedded systems. The techniques trade-off
performance and security to create the best possible compromise for their target hardware
architecture.

(2) The wide variety and heterogeneity of embedded system hardware make it difficult to all
but qualitatively compare techniques in terms of memory and performance. Many require
the use of custom/bespoke hardware architectures such as Zipper Stack (which requires a
custom HMAC and special registers to speed up CFI). It is, therefore, difficult to judge if
one technique is better. The applicability of any of the approaches we list for embedded
and real-time embedded systems is dependent on the target application. We, therefore, only
provide some qualitative discussion and summary, especially for the techniques discussed
in-depth for embedded systems in Section 4 to aid the reader.

(3) With the exception of Bellec et al.s work [11], the design of conventional CFI for embedded
and/or real-time embedded systems can primarily be viewed as memory-based, where CFI is
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performed by detecting deviations from expected instruction memory accesses. There is no
fundamental difference in the detection methodology across all the presented techniques.

(4) Real-time CFI mechanisms, other than techniques such as that presented by Bellec et al.’s
work [11], are ad-hoc in design. None of the techniques seem to utilize the strict timing
requirements of the system to aid CFI. CFI, in essence, is detecting deviation in system behavior
and timing critical systems depend heavily on being temporally correct. However, utilizing
temporal guarantees exclusively to detect abnormal behavior can reduce the effectiveness of
the mechanism as we discuss in Section 5.2 In fact, for a real-time embedded system, some
assumptions can be made (we will discuss a possible approach later in this section) that can
synergistically aid conventional CFI and improve its performance.

In this section we first present open challenges to the real-time community based on our under-
standing of the state-of-research in CFI for real-time embedded systems. We also present general
consideration points that have not yet been incorporated into CFI designs.

6.1 Real-time challenges

We believe there exists two broad avenues of research that could be undertaken immediately,
considering the state-of-the-arts.

Bounded laziness: CFI designs for real-time systems are few in number and do not seem to
capitalize on system predictability. In particular, laziness, such as that introduced by control-flow
locking is a promising mechanism for hard real-time systems due to its ability to defer CFI checks.
However, a drawback of their approach, and Bellec et.al’s timing deviation based mechanism
(Section 5.2) is the lack of expressiveness in the threat model, specifically, the time at which an
attacker is able to affect the system. For example, the proposed mechanisms fail to consider that
an attacker could modify and produce system outputs, such as sending messages via a network
controller to other systems, before the CFI mechanism detects an attack. On the other hand,
conventional CFI techniques have an unnecessary sense of urgency since CFI is performed as close
to when control-flow path changes as possible. For example, the mechanism presented in Silhouette
adapts well-known CFI techniques which all perform CFI during a control-flow transfer event. We
believe there is a middle-ground that can improve performance and still maintain the usefulness of
CFIL That is, the purpose of CFI to detect an attacker before they are able to damage the system, is
still maintained. This is because real-time systems inherently have discrete and well-known time
instances where they must generate system output. For example, in a typical industrial control-
system, an I/O controller [26] may scan for sensor data periodically. In such a setting, there is no
need to urgently perform CFI on the sensor task code execution, and the CFI work can be deferred.
That is, any control-flow transfer events that may occur can be recorded and can be verified at
a later stage before any actuator commands (or some other form of system output) are sent out.
Since all current techniques introduce CFI in-line during execution, effectively inflating task WCET
which may cause overload situations rendering certain task sets unschedulable, deferring CFI could
possibly avoid such WCET inflation and increase its acceptance in more real-time systems as more
deadlines can potentially be met. However, such techniques would possibly require a record of
control-flow events such as the addresses of the start and endpoints of a control-flow transfer,
thereby increasing memory usage depending on the granularity of the CFL For example, a fine-
grained CFI would consume more memory to record every control-flow transfer event. Capturing
and quantifying such memory-timing-security tradeoffs in real-time systems is an open problem
and should be investigated.

Multi-thread/core scheduling: RECFISH and ECFI showcases the applicability of well-known CFI
techniques to multi-threaded hard real-time systems. We believe there is an opportunity to extend
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the concept of bounded laziness to multi-threaded/multicore systems and utilize available multicore
real-time scheduling theory for increased parallelization [78]. In the case of multi-core scheduling,
a number of cores could be dedicated to performing CFI operations. Note that there is prior work
that considers arbitrary security operations as security tasks and explores their schedulability
in multicore real-time systems [46, 47]. However, such work do not explicitly consider temporal
bounds for completing security operations. From a security perspective, ECFI implicitly trusts
the scheduler’s integrity. However, in advanced threat models where an attacker could have the
privilege to disrupt scheduler operations, such as modifying the system timer to warp the scheduler’s
sense of time, such defense mechanisms could fail. Prior work to secure time sources, such as
TimeSeal [7] could provide some inspiration to solve this problem.

Determining CFI related workload attributes: Addressing the previous challenges would
also require determining the real-time properties of CFI operations, such as the WCET of CFI
operations, or how CFI operations would be incorporated into other real-time models such as those
that consider varying task periods [55] and systems with mixed real-time tasks (for example, a
system with both periodic and aperiodic tasks [83]), etc. The WCET of CFI too could be difficult to
accurately determine especially if the mechanism operates on historical control-flow data, such as
in context-sensitive CFI, where the amount of data can vary during system operation.

6.2 General challenges

In addition to the real-time system specific challenges listed above, there are some general con-
siderations that should be incorporated into future designs. The following challenges are not just
limited to CFI mechanisms but the system security research in general.

Power consumption: An often overlooked component of embedded system development is
power consumption. This is also evident in every CFI design reviewed in this paper. None of the
mechanisms consider power consumption, which is especially important in embedded systems
operating off batteries and deployed in the field. Some designs such as that provided by Das et
al. [28] provide power consumption measurements of their custom control-flow checking hardware
design implemented on an FPGA. However, such measurements are an exception rather that
the norm with respect to CFI research. Custom designs presented by other work such as Zipper
Stack [59] do not provide information regarding power consumption, making it difficult to decide
applicability of such work to severely power-constrained and hard real-time environments such as
heart pacemakers. Since CFI techniques such as shadow stacks have high memory access rates,
impacts on system power consumption of different techniques must be considered.

We believe that, alongside real-time scheduling theory, techniques such as Dynamic Voltage
Frequency Scaling (DVEFS), backed by an extensive pool of scheduling algorithms that utilize
DVES [76, 77], could provide significant reduction in system power consumption and interesting
schedulability issues. Interestingly, a logical correlation can be made between coarse-grained CFI
and reduced power consumption, by virtue of reduction of CFI checks that are required due to the
coarseness of the design. A study on the relation between coarse CFI and power consumption of
design on commercial-off-the-shelf hardware could have an immediate impact within the research
community, providing researchers guidance on which type of CFI and what aspects of CFI design
have the worst effects on power consumption. We also believe that a new class of schedulability-
power co-design problems could arise from utilizing laziness in CFI to limit the peak power
consumption of a system by carefully differing CFI to low power consumption phases of the system.

The goal of CFI is similar to that of system reliability improvement techniques, i.e., to prevent
incorrect execution and/or detect when incorrect execution occurs. There is a large amount of
prior work that discuss mechanisms to implement recovery schemes with minimal impact to
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system power consumption. Such work could be used as inspiration to create energy-aware CFI
mechanisms.

Portability: In general, CFI for resource-constrained embedded systems adapt well-known CFI
techniques such as shadow stacks and labeling to such systems while working around their limita-
tions. A primary observation is that many of these workarounds are very specific to the hardware
platform that the authors target. For example, Silhouette targets ARMv7-M and therefore modifies
store instructions to use the MPU on this architecture. Since these limitations are hardware-specific,
designing realistic CFI mechanisms for such systems that are also portable is difficult. Unlike
desktop or server-grade hardware, where commodity systems usually include processors with
similar underlying architecture, embedded system utilize architectures from ARM, RISC-V, MIPS,
etc. as well as application-specific designs. Designing a one-size-fits-all mechanism for such a
wide-range of target architectures is a difficult challenge. Further, architectures such as ARM are
very modular, allowing hardware vendors a high-degree of flexibility to add or remove features
to adjust manufacturing costs and provide a wide portfolio of devices at every price point. There
is, thus, a need to design feasible CFI mechanisms that operate completely in software (or with
minimal hardware requirements), to allow for portable designs. However, the overhead of such
designs remains to be seen.

Advanced CFI and beyond: As discussed in Section 3.2, there is a need to consider context-
sensitivity in real-time embedded systems to thwart attacks that can bypass even fine-grained CFI.
We are not aware of the existence of such techniques. Finally, there is a gap in research for embedded
and real-time embedded systems regarding state-of-the-art data oriented programming [50] (DOP)
attacks. These do not redirect control-flow, but attack program data, such as the counter variable
used for a loop. Such attacks cannot be mitigated using any of the CFI designs discussed in this
paper since they do not cause deviations in control-flow path. Note that techniques such as timing
deviation detection discussed in Section 5.2 may be able to detect such attacks, but the assumption
here is that the attacker is knowledgeable and does not violate the MAW during an attack. Data
oriented attacks are powerful and have been shown to be capable of influencing program output as
well as disclose private information.

7 CONCLUSION

We have examined multiple CFI schemes in the paper, starting from the core mechanisms that
help enforce CFI, to the necessary workarounds required to support them in resource-constrained
embedded environments. We have also looked at the modifications necessary to support real-time
schedulers and how real-time characteristics can be effectively utilized for CFI. While CFI has been
adopted by higher-end systems, designs for resource-constrained embedded systems are still mostly
academic and not yet widely deployed due to unmanageable performance overhead in some cases.
As we have seen CFI will undoubtedly have overhead due to hardware constraints, but techniques
such as laziness that trades-off detection speed with overhead could provide an interesting avenue
for future work.
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