

Multiple global changes drive grassland productivity and stability: A meta-analysis

Jishuai Su¹ | Yujin Zhao¹ | Fengwei Xu^{1,2,3} | Yongfei Bai^{1,4}

¹State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China

²Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China

³Grassland Research Center, National Forestry and Grassland Administration, Beijing, China

⁴College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China

Correspondence

Jishuai Su and Yongfei Bai
 Email: sujishuai@ibcas.ac.cn (J. S.); Email: yfbai@ibcas.ac.cn (Y. B.)

Funding information

National Key R&D Program of China, Grant/Award Number: 2017YFA0604702; National Natural Science Foundation of China, Grant/Award Number: 32192464

Handling Editor: Adam Clark

Abstract

1. Temporal stability of primary productivity is the key to stable provisioning of ecosystem services to human beings. Yet, the effects of various global changes on grassland stability remain ambiguous.
2. Here, we conducted a comprehensive meta-analysis based on 1070 multi-year paired observations from 173 studies, to examine the impacts of various global changes on productivity, community stability and plant diversity of grasslands on a global scale. The global change drivers include nitrogen (N) addition, phosphorus (P) addition, N and P addition, precipitation increase, precipitation decrease, elevated CO₂ and warming.
3. Global change drivers generally had stronger impacts on grassland productivity than on temporal stability, except for precipitation changes. Community temporal stability was reduced by N addition, N and P addition and precipitation decrease, but was increased by precipitation increase and remained unchanged under P addition, elevated CO₂ and warming. In addition, species richness decreased under N addition, N and P addition and precipitation decrease. At the plant functional group level, N and P addition reduced grasses' stability and precipitation increase enhanced forbs' stability.
4. Nutrient additions decreased community stability via increasing the inter-annual variation more than the mean of primary productivity, while precipitation changes mainly affected community temporal stability via changing mean productivity. The negative impacts of global change drivers (i.e. N and P addition, warming) on community temporal stability increased with the degree of species loss but decreased with increasing stability of grasses. Moreover, the negative impacts of nutrient addition and precipitation decrease on community stability was lessened while the positive effect of precipitation increase on community stability was enhanced in grasslands with higher historical precipitation variability, greater soil fertility and longer experimental duration.
5. *Synthesis.* Our findings demonstrate that N-based nutrient additions and drought destabilise grassland productivity, while precipitation increase enhances community stability. Impacts of global changes on community productivity and stability are mediated by species richness, plant functional group, site-specific

environmental conditions (i.e. climate, soil) and experimental duration, which deserve more attention in grassland management practices under future global change scenarios.

KEY WORDS

ecosystem stability, environmental conditions, experimental duration, global change ecology, plant functional group composition, primary productivity, species richness

1 | INTRODUCTION

Contemporary global changes are largely attributed to increasing human activities, which have substantially altered ecosystem functions and services in recent decades (IPCC, 2013). Atmospheric nitrogen (N) deposition, phosphorus (P) fertilization, precipitation alterations, elevated CO₂ concentration and climate warming are considered to be some of the most pervasive global change drivers (Yue et al., 2017). Numerous empirical and experimental studies have documented the effects of each of these global change drivers on the functions (e.g. primary productivity, carbon storage) of terrestrial ecosystems, including grasslands (Bai et al., 2010; De Schrijver et al., 2011; Deng et al., 2015; Deng et al., 2017; Li et al., 2016; Soons et al., 2017; Wang et al., 2019; You et al., 2017; Yue et al., 2017; Zhou et al., 2016). However, less attention has been paid to the stability of ecosystem functions, which refers to the ability of a system to maintain its fundamental processes and provide reliable ecosystem services in response to environmental changes (Tilman et al., 2006). A synthetic view of how these global change drivers influence the stability of ecosystem functions, including the temporal stability of primary productivity in grasslands on a global scale, is currently lacking.

For a given ecosystem, temporal stability is often measured as the inverse of the coefficient of variation (CV) for the ecosystem properties (Bai et al., 2004; Hautier et al., 2015; Tilman et al., 2006). Integrative studies have shown that fertilization weakens the stabilizing effect of plant diversity on grassland productivity at multiple spatial scales (Hautier et al., 2014; Hautier et al., 2020). However, these results are derived from a fertilization study with multiple nutrients added at a specific rate, and thus these results may limit our understanding of grassland stability responses to fertilization at various rates (which simulates various nutrient deposition rates occurring in different regions). The effects of nutrient inputs on ecosystem productivity and/or diversity may rely on the intensity of nutrient additions and the experimental duration (Bai et al., 2010; Soons et al., 2017). For instance, several studies demonstrate that species loss intensified with increasing nutrient addition rate in grasslands (Hautier et al., 2015; Isbell, Reich, et al., 2013a; Lan & Bai, 2012). Plant diversity may or may not recover after long term cessation of fertilization, depending on the removal of accumulated nutrient stores, such as haying (Berendse et al., 2021; Isbell, Tilman, et al., 2013b; Tilman & Isbell, 2015). Grassland biodiversity often decreases as the number of limiting resources added increases due to reduced niche dimensionality (Harpole et al., 2016; Harpole &

Tilman, 2007). Hence, the effects of fertilization with multiple nutrient elements on grassland functions may differ from those of single nutrient elements, especially for N and P because these essential nutrients are inherently coupled (Li et al., 2016). Additionally, eutrophication effects may vary with nutrient identity (Carroll et al., 2022), calling for a global evaluation of the effects of individual nutrient elements. Additionally, effects of other global change drivers (e.g. elevated CO₂, climatic warming, precipitation increase and precipitation decrease) on grassland stability at the global scale remain unelucidated although their inconclusive effects on grassland stability have been reported in several studies (Grime et al., 2008; Hautier et al., 2015; Ma et al., 2017). Therefore, research efforts should focus on the type, treatment intensity and duration of global change drivers since they could regulate the responses of ecosystem processes to global changes, and these responses are also impacted by vegetation, climate and soil properties (Komatsu et al., 2019; Li et al., 2016; Wang et al., 2019; Yue et al., 2017; Zhou et al., 2016).

The relationship between stability and species diversity has long been debated in biodiversity experiments (Isbell et al., 2015; Tilman et al., 2006; Tilman & Downing, 1994). In agreement with the positive diversity–productivity relationship (Loreau & Hector, 2001), a positive diversity–stability relationship prevails not only in experimental grasslands (Isbell et al., 2015; Tilman et al., 2006) but also in natural grasslands (Hautier et al., 2014). In general, plant diversity promotes the temporal stability of productivity via asynchronous responses among species to environmental fluctuations (Craven et al., 2018; Hector et al., 2010; Valencia et al., 2020); thus, the loss of species diversity may weaken the stabilizing effect of diversity on productivity.

A recent meta-analysis of factorial experiments manipulating both biodiversity and the environment revealed that high-diversity communities are more resistant to environmental change, highlighting the direct role of biodiversity in regulating ecosystem response to global changes (Hong et al., 2022). Given that plant diversity is threatened by many anthropogenic global changes, including global biodiversity loss driven by fertilization (De Schrijver et al., 2011; Soons et al., 2017), changes in plant diversity may substantially alter ecosystem functions and reduce stability. For instance, Hautier et al. (2015) demonstrated that anthropogenic environmental drivers (N deposition, elevated CO₂, fire, herbivory and precipitation change) affected community stability by altering biodiversity regardless of the nature of drivers. More research is necessary for determining whether this 'diversity route' of the global change effect on ecosystem stability within the individual grassland site could be generalised to global grasslands.

Growing evidence shows that the dominant species (Chen et al., 2016; Ma et al., 2017; Yang et al., 2017) or dominant plant functional group (Mackie et al., 2019; Shi et al., 2016), rather than species richness, plays an important role in regulating grassland stability under global changes, especially for communities dominated by only a few species. Large contributions to community primary productivity from dominant species or functional groups may diminish the role of plant diversity in ecosystem functions (Grime, 1998), and variations in community stability may largely depend on the changes in the stability of dominant species or functional groups, irrespective of the changes in species diversity (Chen et al., 2016; Yang et al., 2017). The inconsistency of results from individual studies may arise from inherent differences in plant community structure and/or environmental factors in habitats (Song et al., 2019). Recently, climate and soil conditions have been proposed to have an important role on the plant diversity effect on ecosystem stability (Garcia-Palacios et al., 2018). Temperature and soil nutrients are often stable at an individual site, and the variability in plant productivity is largely determined by the amount of precipitation and precipitation variability (Knapp & Smith, 2001). In addition, the relative importance of the biotic mechanisms of community stability may also vary with the amount of precipitation and precipitation variability (Garcia-Palacios et al., 2018; Hallett et al., 2014). For instance, sites with higher historical rainfall variability are more stable under climatic disturbance (Ciemer et al., 2019), and to determine whether this response pattern is applicable to global grasslands and other global changes requires further investigation. Furthermore, soil fertility may modify community stability responses to global changes by favouring specific plant functional traits and affecting plant productivity via nutrient limitation (Eskelinen & Harrison, 2015). Plant communities on infertile soils often exhibit resource-conservative functional traits, which may limit their responses to climate change (Fernandez-Going et al., 2012). Conversely, they may also be more vulnerable to climate variation once nutrient limitations are relieved under eutrophication (Carroll et al., 2022). At present, the response of the stability of plant communities to various global changes along a soil fertility gradient and the underlying mechanisms remain unelucidated.

Here, we conducted a meta-analysis to assess the effects of multiple global change drivers on grassland productivity and its temporal stability, using the published literature containing multiple years of observations (≥ 3 years) from globally distributed field manipulated experiments. These global change drivers include N addition, P addition, N and P addition, precipitation increase, precipitation decrease, elevated CO_2 concentration (eCO_2) and warming. Specifically, our study addressed three questions: First, how do primary productivity and community temporal stability respond to seven global change drivers in global grasslands? Second, how do biotic factors (e.g. grassland type, plant species richness and functional group composition) mediate the stability responses to global changes? Third, how do abiotic factors (e.g. climate, soil properties, treatment intensity and duration) affect the responses of grassland stability? To address these questions, we test three interrelated hypotheses: (1) nutrient addition would decrease the temporal stability of grasslands by

lessening nutrient limitations (Bai et al., 2010; Carroll et al., 2022); (2) both plant species richness (Hautier et al., 2015) and dominant plant functional group (Mackie et al., 2019; Shi et al., 2016) would play an important role in regulating stability responses to global changes and (3) community stability would be less affected by global changes in grasslands with lower soil fertility (Fernandez-Going et al., 2012), higher climate variability (Ciemer et al., 2019), with low intensity treatments and with treatments that occurred only over short durations.

2 | MATERIALS AND METHODS

2.1 | Data compilation

Peer-reviewed literature were searched on the ISI Web of Science (<http://apps.webofknowledge.com/>) on 30 November, 2018, by using the following search term combinations: (grassland OR steppe OR prairie OR rangeland OR pasture OR savannah OR meadow) AND (biomass OR productivity OR richness OR diversity OR stability OR temporal variation OR coefficient of variation OR interannual variation) AND (N addition OR nitrogen addition OR nitrogen enrichment OR nitrogen supply OR P addition OR phosphorous addition OR fertili* OR elevated CO_2 OR CO_2 enrichment OR warming OR elevated temperature OR temperature increase OR water addition OR water supply OR precipitation increase OR irrigation OR precipitation decrease OR drought) AND experiment. We aimed to search for literature involving effects of global changes on primary productivity, community stability and plant diversity in global grasslands. Furthermore, we also searched the literature listed in the references of the relevant reviews and meta-analyses. Global change drivers included N addition, P addition, N and P addition, precipitation increase, precipitation decrease, CO_2 enrichment and warming.

To avoid bias in publication selection, each publication was examined based on the following criteria:

1. Focusing on grassland responses to global changes, studies were excluded if herbaceous communities were classified as wetland, tundra or cropland, to avoid potential confounding effects from their intrinsic differences in climatic conditions, plant community characteristics and management practices compared with grasslands.
2. Studies were conducted in the field and contained at least one of the following target variables: above-ground biomass or above-ground net primary productivity (ANPP) at community level or functional group level and plant species richness. When above-ground biomass or ANPP were unavailable, plant coverage, abundance or plant carbon storage were selected as proxies.
3. Studies contained at least three consecutive years of data for subsequent stability calculations.
4. Studies conducted at different sites and with different treatment intensities were treated as independent. Studies conducted at

the same site with the same treatment design but presented in separate papers were combined into one study to obtain multiple years of observations.

In total, these criteria yielded 173 publications which were used for further analysis. A list of the publications is provided in the Data Source section. N addition and N and P addition are the main global change drivers, and a period of 3–5 years is the main duration for the multiple years' data used for the stability calculation (Figure S9). The raw data in the text, tables and figures of the publications were directly extracted. When the data were presented graphically, WebPlotDigitizer 4.1 (<https://automeris.io/WebPlotDigitizer/>) was used to digitise and extract the data. Additionally, background information of each study was collected, including the mean annual temperature (MAT), mean annual precipitation (MAP), latitude, longitude, treatment intensity (fertilization rate, precipitation percent changes, CO₂ concentration increment, degree of increased temperature) and experimental duration. Notably, MAT and MAP reported in different studies may be derived from different historical climate records and may be missing in some studies. To address this issue, we extracted the uniform long-term climatic characteristics of the same historical period (1970–2000) from the Worldclim dataset (Fick & Hijmans, 2017) (30×30 s) at <http://www.worldclim.org/> based on the latitude and longitude coordinates for each study site, and we obtained the aridity index, with lower values indicating a drier climate. Inter-annual precipitation variability was calculated as the CV (the ratio of standard deviation [SD] to mean) of annual precipitation and intra-annual precipitation variability, also termed as precipitation seasonality, was calculated as the CV of 12 monthly precipitation totals (Le Bagousse-Pinguet et al., 2017). Among the collected studies, MAT ranged from −2.6°C to 26.5°C, MAP ranged from 129 mm to 2248 mm and aridity index ranged from 0.15 to 2.43. To facilitate our analysis and the interpretation of the results, we also collected a range of soil variables to identify their roles in regulating the response of the grassland community to global changes. Soil variables of 0–20 cm soil depths were obtained from a gridded soil dataset ISRIC-WISE (Batjes, 2016) (30×30 s) at <https://www.isric.org/> based on the latitude and longitude coordinates for each study site. Soil variables included sand proportion (%), silt proportion (%), clay proportion (%), bulk density (g cm^{−3}), pH, available water content (%), organic carbon content (g kg^{−1}), total nitrogen content (g kg^{−1}), C: N ratio and cation exchange capacity (cmol kg^{−1}).

2.2 | Data analysis

A natural log-transformed response ratio (RR) was used as the effect size to assess the effects of global changes on grassland primary productivity, species richness and stability.

The RR was calculated as follows:

$$RR(\text{Mean}) = \ln \frac{X_t}{X_c}, \quad (1)$$

$$RR(SD) = \ln \frac{SD_t}{SD_c}, \quad (2)$$

$$RR(\text{Stability}) = \ln \frac{Stability_t}{Stability_c} = \ln \frac{X_t / SD_t}{X_c / SD_c} = RR(\text{Mean}) - RR(SD). \quad (3)$$

The sampling variance was used to account for the sampling uncertainty for each index. Observations with lower sampling variance were assigned a greater weight in the analysis. As in Hedges et al. (1999) and Nakagawa et al. (2015), we assume that the natural log-transformed mean ($\ln X_t$, $\ln X_c$) and SD ($\ln SD_t$, $\ln SD_c$) are approximately normally distributed and independent from each other; thus, RRs calculated from them are also approximately normally distributed, provided that the mean and variance of each are properly bounded (Marsaglia, 2006). The variances of the RRs for the three indexes described above were calculated as follows:

$$\text{var}(RR(\text{Mean})) = \text{var}(\ln X_t) + \text{var}(X_c) = \frac{SD_t^2}{N_t X_t^2} + \frac{SD_c^2}{N_c X_c^2}, \quad (4)$$

$$\text{var}(RR(SD)) = \text{var}(\ln SD_t) + \text{var}(\ln SD_c) = \frac{1}{2(N_t - 1)} + \frac{1}{2(N_c - 1)}, \quad (5)$$

$$\begin{aligned} \text{var}(RR(\text{Stability})) = & \text{var}(RR(\text{Mean})) + \text{var}(RR(SD)) = \frac{SD_t^2}{N_t X_t^2} + \frac{1}{2(N_t - 1)} \\ & + \frac{SD_c^2}{N_c X_c^2} + \frac{1}{2(N_c - 1)}. \end{aligned} \quad (6)$$

where X and SD represent the temporal mean and temporal SD of the multi-year observations for grassland productivity, respectively; N represents the number of observation years and the subscripts 't' and 'c' refer to the treatment and control groups, respectively.

Stability was calculated as the ratio of the temporal mean to its temporal SD, that is, the inverse of the CV (Tilman et al., 2006). Correlation analysis indicated that the RRs of stability calculated from the multi-year observations of productivity showed no difference with the directly measured ones, indicating that the calculation procedure is reliable (Figures S7 and S8).

For each variable, the weighted mean of the response ratio (RR_{++}) was analysed using the 'rma.mv' function in the R package METAFOR (Viechtbauer, 2010). Because many of the studies contributed more than one RR, the 'study' was treated as a random factor. Based on each individual RR (RR_{ij}) and its corresponding weight W_{ij} , RR_{++} was calculated as follows:

$$RR_{++} = \frac{\sum_{i=1}^m \sum_{j=1}^k W_{ij} RR_{ij}}{\sum_{i=1}^m \sum_{j=1}^k W_{ij}}, \quad (7)$$

where m is the number of groups (e.g. grassland types); k is the number of comparisons in the i th group and W_{ij} is the reciprocal of variance for each RR. The effects of global changes were considered significant if the 95% confidence interval did not overlap with zero.

Percent changes of the variables under global changes were calculated as follows:

$$(e^{RR_{++}} - 1) \times 100\%. \quad (8)$$

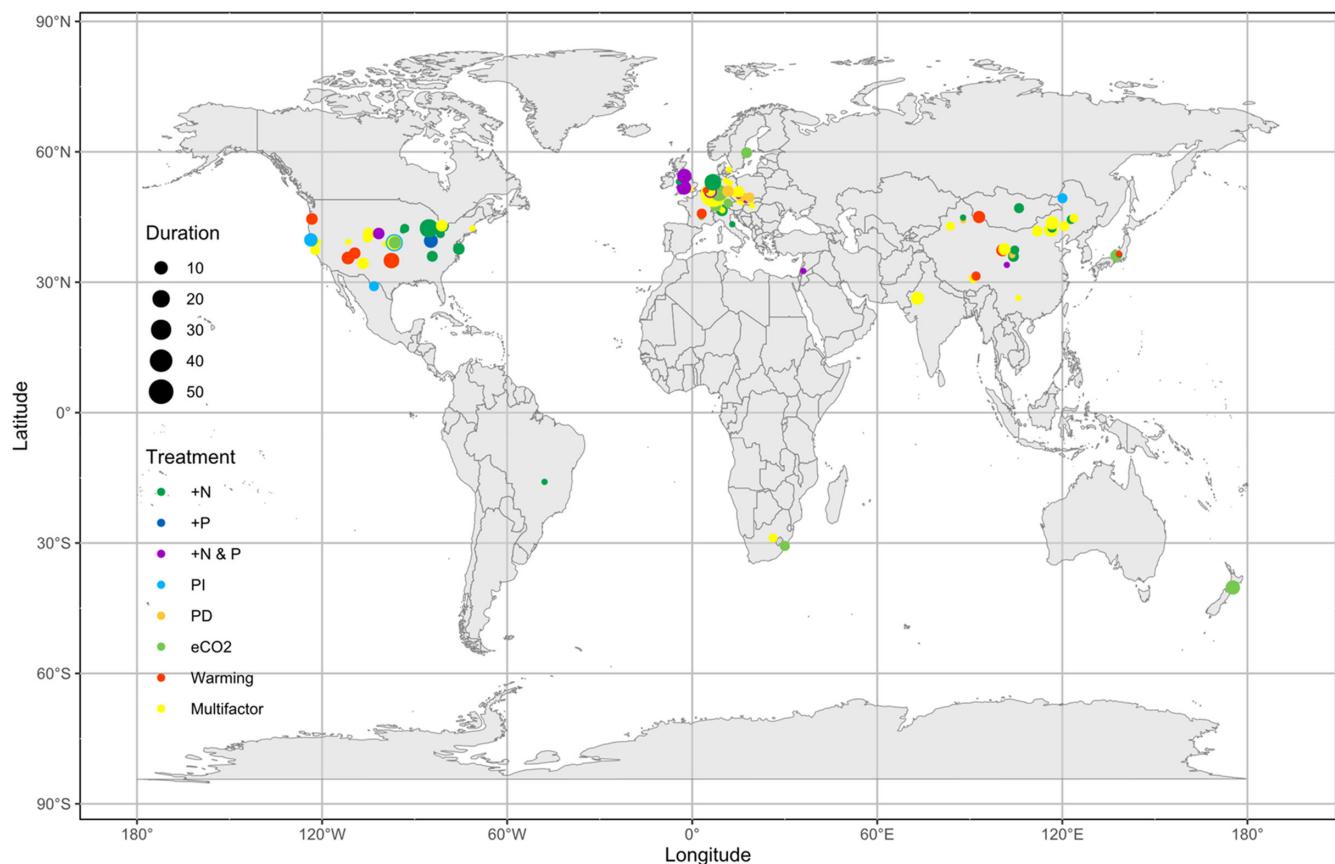
We examined the relative effects of multiple variables on responses of grassland ANPP and community stability to global changes by using model-selection analysis in the R package *GLMULTI* (Terrer et al., 2016). The relative importance for each variable was calculated as the sum of the Akaike weights for all the models in which the variable was included, and a cut-off of 0.8 was set to differentiate between important and non-essential predictors (Terrer et al., 2016). In the model-selection analysis for ANPP and stability responses under global changes, MAT, MAP, precipitation variability, aridity and soil fertility of study site, domination and life-form type of grassland, treatment intensity and treatment duration were included. Except for MAT and MAP, the other variables were all treated as categorical moderators to evaluate their relative effects on the responses of grassland ANPP and stability to global changes (see classification details in Table S2). Furthermore, RRs were grouped based on the levels of the moderators, and a Q_M test was conducted to estimate the significance of the differences in the RRs among different levels of moderators (Hedges et al., 1999; Tables S1 and S2). We preformed meta-regressions by using the inverse of the variance as the weight to examine the relationships among the responses of community stability, the responses of functional group stability and site-specific environmental characteristics (e.g. climatic conditions and soil fertility). To examine the temporal trends in the stability responses to global changes, we used the overlapping intervals of three consecutive years to determine short-term stability for the treatment and control groups. In this section, only studies with observations for a minimum of five consecutive years were included. Thus, the stability of years 1–3 after the initiation of the experiment became post treatment period 1, the stability of years 2–4 became post-treatment period 2, and so on (Hautier et al., 2015). Correlation analysis was conducted to test whether the stability responses to global changes depended on the post treatment period.

All the meta-analyses were conducted in R software version 4.0.3 (R Core Team, 2020). To evaluate the possibility of publication bias, we created funnel plots to visualise the distribution asymmetry of observations around the mean effect size (Figures S11 and S12), and Egger's regression was used to statistically assess the publication bias, where $p > 0.05$ indicated the absence of publication bias (Egger et al., 1997).

3 | RESULTS

This meta-analysis focused on the responses of ANPP, community temporal stability and species richness to seven global change drivers in global grasslands. The database used for the analyses was composed of 1070 multi-year comparisons from 173 published studies across 109 study sites, which were mainly located in Asia, Europe and North America (Figure 1). Generally, our results are

robust despite the relatively small sample size for the non-N addition global changes, except for ANPP response to P addition, species richness response to N and P addition and grass biomass responses to precipitation decrease and elevated CO_2 (Figures S6, S11 and S12).


3.1 | Productivity, stability and species richness responses

Generally, global change drivers had stronger impacts on grassland productivity than community stability, except for the precipitation changes. On a global scale, ANPP increased on average by 36.9% under N addition, 53.3% under N and P addition, 19.0% under precipitation increase, 12.5% under eCO_2 and 8.1% under warming; whereas it decreased by 13.3% under precipitation decrease and showed no significant response to P addition (Figure 2). The SD of productivity increased on average by 62.8% under N addition, 78.2% under N and P addition, 16.1% under eCO_2 ; whereas it decreased by 14.1% under precipitation increase and showed no significant response to P addition, precipitation decrease or warming (Figure 2). Community stability and species richness showed similar patterns in their responses to various global changes. Specifically, both stability and richness declined under N addition (-12.7% in stability vs. -11.9% in richness), N and P addition (-17.9% vs. -14.0%) and precipitation decrease (-16.9% vs. -6.7%) (Figure 2). However, the other four global change drivers showed no significant impacts on community stability or species richness on a global scale, except for precipitation increase which enhanced community stability by 40.7% (Figure 2).

At the plant functional group level, the responses of above-ground biomass, SD and temporal stability to global changes differed substantially between grasses and forbs (Figure S1). Specifically, the biomass of grasses was enhanced on average by 48.6% under N addition, 3.8% under N and P addition, 12.2% under precipitation increase, and was not significantly affected by the other global change drivers. The SD of grasses biomass was enhanced by 70.6% and 80.9% under N and N and P additions, respectively. In contrast, the stability of grasses was decreased by 41.2% under N and P addition and exhibited no significant responses to the other global changes. In contrast, both the biomass and stability of forbs were increased by precipitation increase (14.9% in biomass vs. 62.9% in stability). Elevated CO_2 increased the above-ground biomass and SD of forbs by 39.8% and 37.1%, respectively, while having no significant effect on forb stability. The other global changes showed no significant effect on biomass, SD or stability of forbs.

3.2 | Factors regulating productivity and stability responses to global changes

The model-selection analysis showed that soil fertility was the most important predictor for community stability responses to N

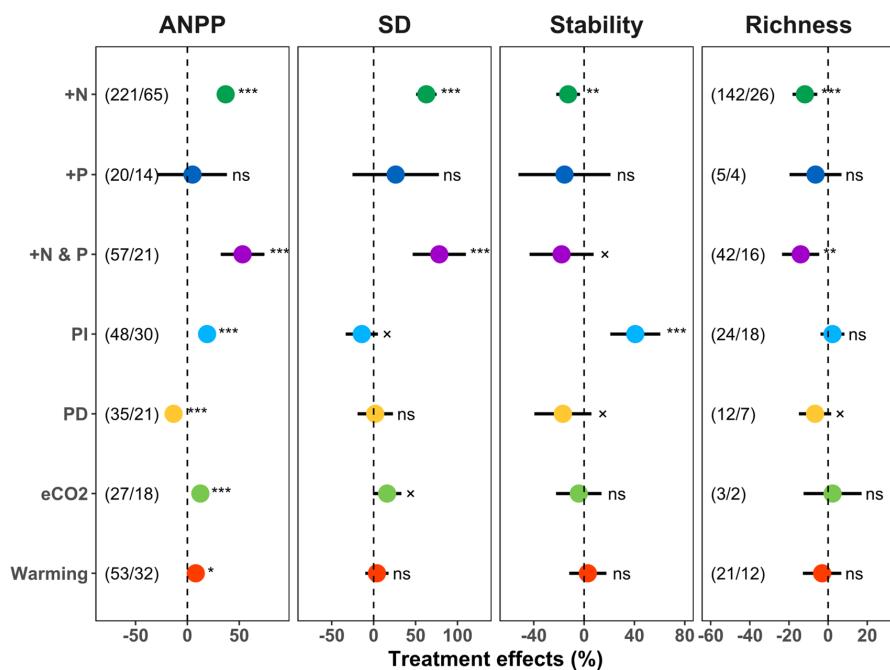


FIGURE 1 Global distribution of the study sites included in the meta-analysis. Different colored dots represent different treatment types, and larger dot sizes denote longer treatment duration (years). +N, N addition; +P, P addition; +N and P, N and P addition; PI, precipitation increase; PD, precipitation decrease; eCO₂, elevated CO₂ concentration; and Multifactor, experimental site with at least two global change drivers.

addition, where N addition decreased the grassland stability in infertile soils, but had no significant impact on grassland stability in fertile soils (Figures 3–5). The response of grassland community stability to N and P addition was best explained by precipitation variability and aridity, and the grassland stability was reduced less by N and P addition in sites with high precipitation amount and precipitation variability (Figures 3–5). Subgroup analysis further implied that community stability responses to global changes might also be impacted by dominant plant functional type (e.g. grasses vs. forbs), life-form (perennials vs. annuals) and the intensity and duration of treatment (Figure 4; Table S1). Specifically, N addition exhibited a significant negative effect on community stability in grasslands dominated by grasses and perennial plants (Figure 4), and the negative effects of N addition on community stability were substantially greater under high N inputs and short-term treatment. The community stability responses to N and P treatment were similar to that of N treatment (Figure 4). Precipitation increase showed a positive effect on community stability in sites with higher precipitation variability and soil fertility and under long-term treatment (Figures 4 and 5), while precipitation decrease reduced the community stability in wetter areas (Figure 4). However, stability responses to P addition, eCO₂ and warming were less affected by

climatic conditions, vegetation traits, soil properties and experimental design (Figure 4). Moreover, by analyzing the tendency of stability changes over a 3-year interval, we found that the negative effects of N addition on community stability increased over time, while the magnitude of the positive effects of precipitation increase tended to decrease with increasing experimental duration (Figure S4). The effects of P and N and P additions on community stability shifted from negative to positive over time, and the magnitude of the positive effects of eCO₂ on community stability tended to increase with experimental duration (Figure S4).

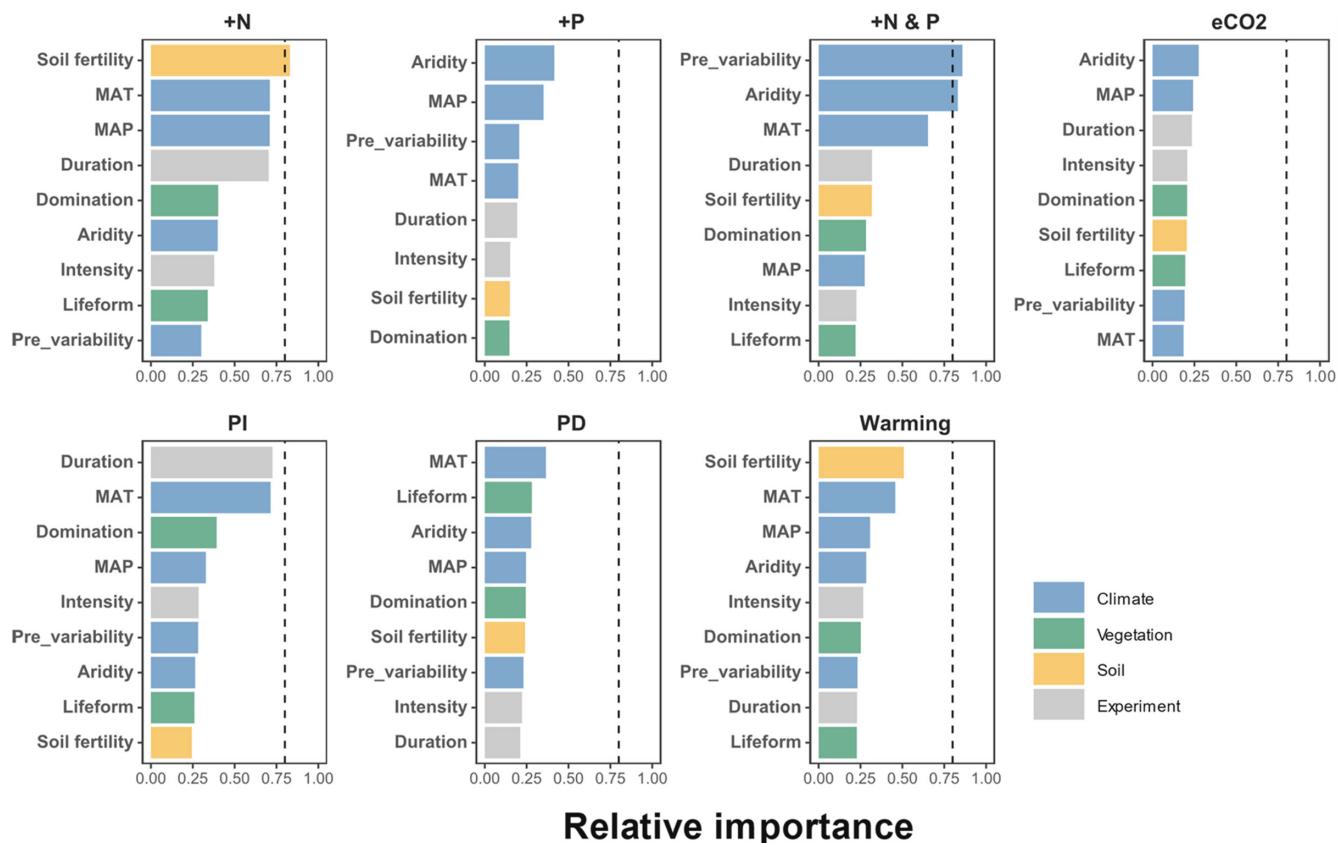
In general, the ANPP responses to global changes were largely controlled by climatic condition, dominant plant functional type, life-form, treatment intensity and treatment duration (Figure S2, Figure 3; Table S1). For example, the positive effects of N addition and precipitation increase and negative effects of precipitation decrease on productivity were greater in sites with higher precipitation variability (Figure 5, Figure S3). In addition, the positive effects of N and N and P additions on productivity were greater under high addition rates compared with low addition rates (Figure 5, Figure S3; Table S1). Additionally, the positive effects of N addition and precipitation increase were greater under long-term treatments (Figure 5, Figure S3; Table S1).

FIGURE 2 Effects of different global change drivers on grassland community above-ground net primary productivity (ANPP), standard deviation (SD), stability and species richness. Error bars depict 95% confidence intervals (CIs). The effects of an individual global change driver are considered significant if the CIs do not overlap with zero. For each global change driver, the numbers of the observations and studies are shown in parentheses, and the numbers of variables 'Stability' and 'SD' are the same as those of the variable 'ANPP'. Significant differences are reported as ***, $p < 0.001$; **, $p < 0.01$; *, $p < 0.05$; x, $p < 0.1$ and ns, $p > 0.1$. See Figure 1 for the abbreviations of the global change drivers.

3.3 | Relationships between stability and productivity responses with climate conditions and biotic properties

When data were pooled across all global change drivers, the negative effects of global change drivers on community stability decreased with increasing MAT. Changes in community stability were positively related to those in species richness and stability of grasses and forbs, where the variations in community stability were well explained by the stability of grasses (Figure 6a,d–f). Changes in ANPP were also positively related to biomass changes in both grasses and forbs (Figure 6i,j) but were negatively related to changes in species richness (Figure 6h), and the positive effects of global change drivers on ANPP decreased with increasing MAP (Figure 6g). Additionally, changes in community stability were positively related to those in species asynchrony, but were unrelated to those in the stability of the dominant species (Figure S5).

When data were analyzed for each global change driver, N addition-induced changes in stability and ANPP of community were positively associated with those of grasses (Figure 6d,i), and changes in ANPP were negatively related to those in species richness (Figure 6h). In addition, the enhancement of N addition on ANPP declined with increasing MAP (Figure 6g). The positive effects of P addition on community stability shifted to negative effects as MAP increased (Figure 6b), while P addition-induced changes in community stability were negatively related to changes in species richness but positively related to the stability of grasses (Figure 6c,d). Similarly, P addition-induced changes in ANPP showed positive relationships with changes in grasses and forbs (Figure 6i,j). The negative impacts of N and P addition and warming on community stability decreased with increasing MAT and MAP, while changes in community stability showed positive relationships with changes in species

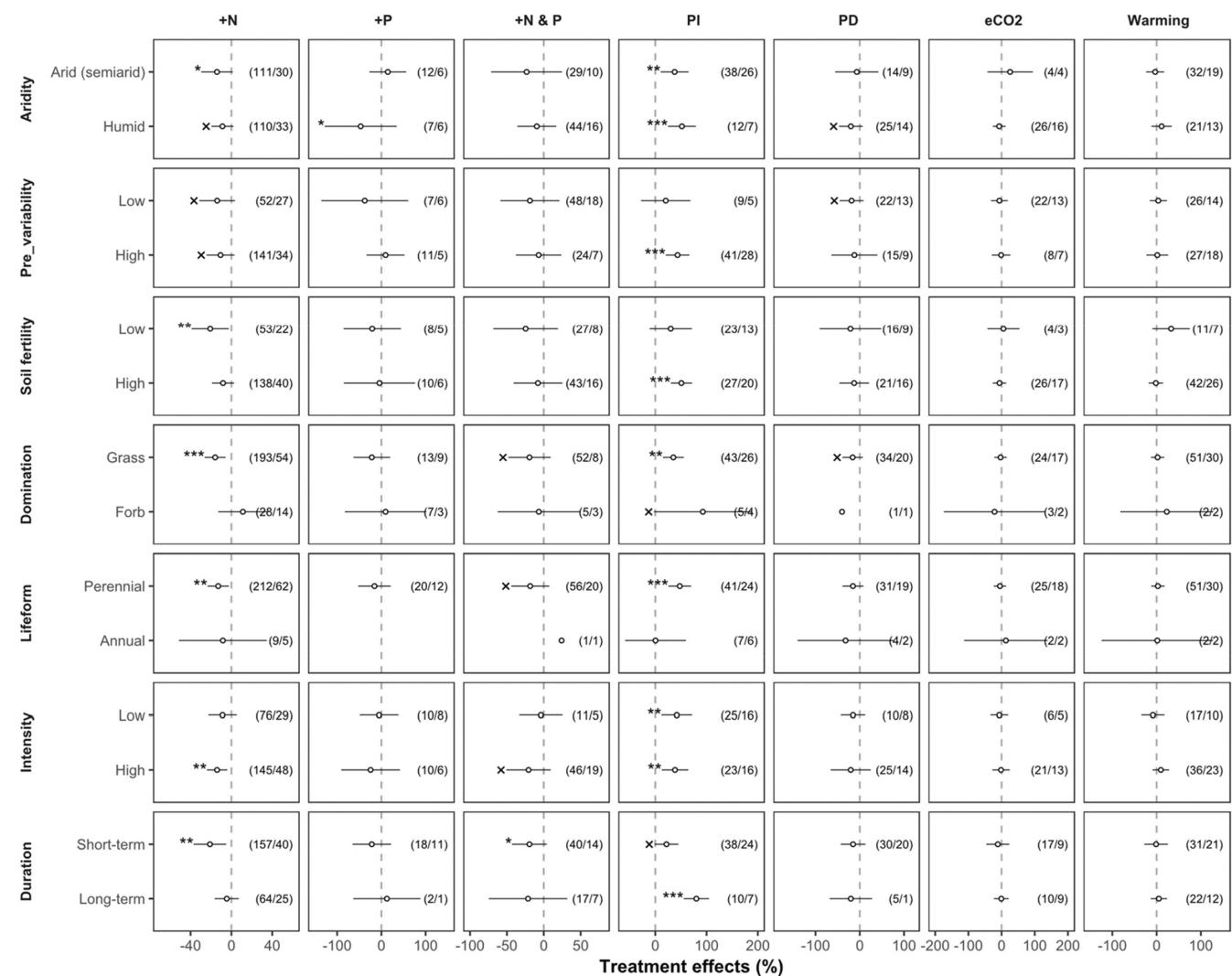

richness and the stability of grasses (Figure 6a,d). Additionally, the enhancement of N and P addition on ANPP increased with MAP and changes in ANPP were negatively associated with changes in species richness (Figure 6b,c). Warming-induced changes in ANPP were positively related to changes in species richness and the biomass of grasses (Figure 6h,i). The positive effects of elevated CO₂ on community stability became negative effects with increasing MAP, while the positive effects of elevated CO₂ on ANPP increased with MAT (Figure 6b,f). The enhancement of precipitation increase on ANPP increased with MAT and MAP, and ANPP changes were negatively related to changes in species richness (Figure 6f–h). In contrast, the impacts of precipitation decrease on community stability and ANPP were little affected by the climatic conditions and biotic properties.

4 | DISCUSSION

This study, to our knowledge, represents the first comprehensive synthesis of the effects of seven global change drivers on primary productivity and community temporal stability in global grasslands. The results demonstrate that variations in ANPP and stability are strongly regulated by the direct effects of global change drivers (i.e. type, intensity and duration of treatment) and the indirect effects mediated by vegetation (i.e. plant diversity, dominant plant functional groups), climate and soil properties.

4.1 | Effects of the type, intensity and duration of global change drivers

Variations in ANPP and stability with global changes were found to depend on the type, intensity and duration of treatments. Our

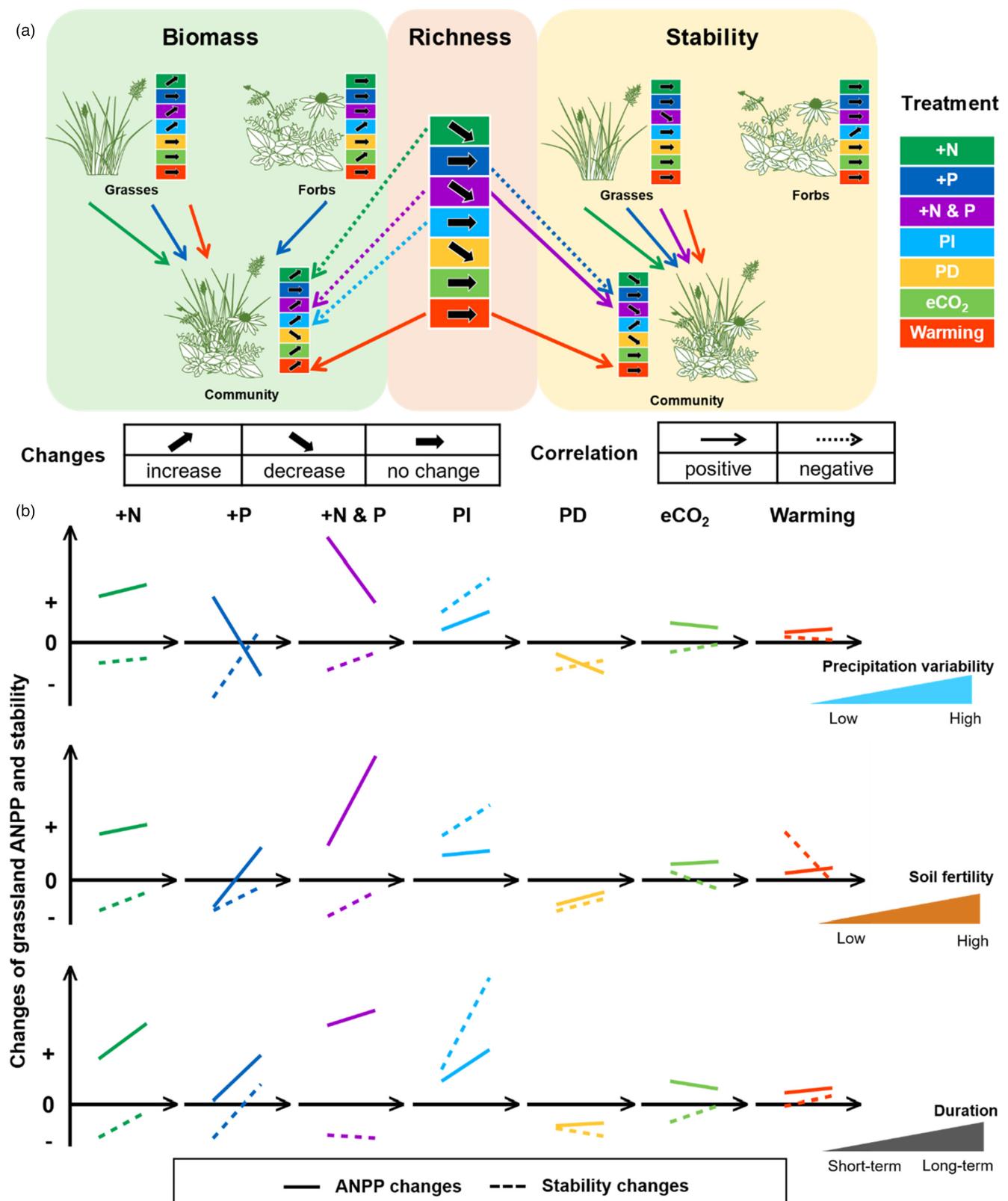

FIGURE 3 Model-averaged importance of the predictors for the effects of different global change drivers on grassland stability (a) and above-ground net primary productivity (ANPP) (b). The relative importance value is based on the sum of the Akaike weights derived from the model selection using corrected Akaike's Information Criteria. Cutoff is set at 0.8 to differentiate between essential and nonessential predictors. MAT, mean annual temperature; MAP, mean annual precipitation; Aridity: arid (semi-arid) and humid; Pre_variability, the variability of precipitation, categorised as low and high; Soil fertility: low and high; Life-form: perennial and annual; Domination: grasses and forbs; Intensity: low and high; Duration: short and long term. See Figure 1 for the abbreviations of the global change drivers.

results showed similar ANPP responses to global changes as was reported in previous meta-analyses (De Schrijver et al., 2011; DeMalach et al., 2017; Deng et al., 2015, 2017; Li et al., 2016; Soons et al., 2017; Wang et al., 2019; You et al., 2017; Yue et al., 2017; Zhou et al., 2016). Among the seven global change drivers that we tested, precipitation increase enhanced ANPP and stability, while precipitation decrease reduced ANPP and stability. N and N & P additions increased ANPP but decreased community stability, suggesting that N and N & P additions increased the temporal variability of aggregate ecosystem processes. These findings support our first hypothesis that nutrient additions would destabilise biomass production of grasslands. These results are consistent with general findings from long-term observations and field experiments in which primary productivity of grasslands is primarily limited by water and nutrient availabilities (Bai et al., 2010; Harpole et al., 2011). Precipitation increase and nutrient enrichment (i.e. N addition, N and P addition) reduced water and nutrient limitations, enhanced community photosynthesis and plant growth, and thereby increased ANPP (Bai et al., 2010; Li et al., 2016; Yang et al., 2011). Furthermore, a lower carbon allocation to below-ground tissues under nutrient addition may increase grassland sensitivity to climate changes, which may further destabilise grassland productivity (Bharath et al., 2020; Song et al., 2019). In contrast, precipitation decrease may

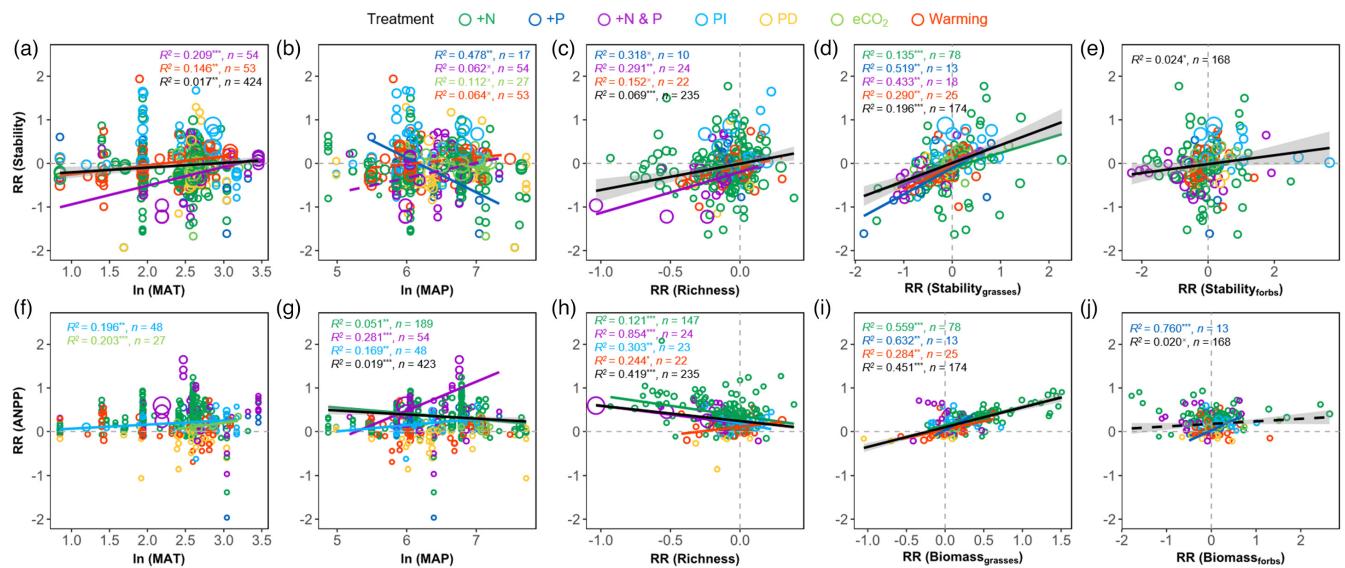
intensify water and/or nutrient limitations on plant growth, leading to a reduction in ANPP and stability. P addition showed little effect on ANPP and stability, implying that N-limitation rather than P-limitation prevails in grasslands on a global scale.

On a global scale, both eCO₂ and warming showed positive effects on ANPP but had no effect on stability, indicating that eCO₂ and warming did not alter the inter-annual variability of primary productivity. Previous studies suggest that eCO₂ has direct effects on grassland productivity by stimulating plant photosynthesis and growth (Körner, 2006), and eCO₂ has indirect effects by reducing stomatal conductance (Liu et al., 2018). Additionally, warming also enhances grassland productivity by stimulating plant growth and lengthening the growing season (Penuelas et al., 2017).

Our results demonstrated that the intensity and duration of treatments could affect the responses of ANPP and stability to global changes. For example, the increase in ANPP and reduction in stability under N addition were greater under high ($>50\text{ kg N ha}^{-1} \text{ year}^{-1}$) rather than low N inputs ($\leq 50\text{ kg N ha}^{-1} \text{ year}^{-1}$), partly supporting the hypothesis that community stability would be less affected at low treatments intensities. Given that most experiments imposed larger amounts of N than is typically imposed by atmospheric N deposition, the responses of grassland productivity and stability to N inputs may have been


FIGURE 4 Effects of different global change drivers on grassland community stability among different subgroups. Error bars depict 95% confidence intervals (CIs). Significant differences are reported as ***, $p < 0.001$; **, $p < 0.01$; *, $p < 0.05$; x, $p < 0.1$. See Figure 1 for the abbreviations of the global change drivers. See Table S2 for details about the categories of aridity, pre_variability, soil fertility, domination, life-form, intensity and duration.

overestimated. Similarly, community stability was decreased less by nutrient additions and increased more by precipitation increase under the long-term treatment duration, suggesting that short-term experiments might also overestimate the negative effects of eutrophication on grassland stability. However, when stability responses were estimated using short-term observations (3 years) for long-term studies, the negative effects of N addition on community stability increased over time, possibly due to the N-induced changes in community composition, indicating that there was a time-scale dependency for stability responses to global changes, especially under N enrichment.


4.2 | Effects of species richness and plant functional groups

Changes in ANPP and stability were found to correlate with those in species richness and plant functional group, providing evidence for

the second hypothesis that both plant species richness and dominant plant functional group played an important role in regulating stability responses to global changes. Plant diversity could have direct and indirect effects on the responses of community stability to global change drivers. On one hand, the stabilizing effects of biodiversity on biomass production have been well demonstrated in both biodiversity experiments (Hector et al., 2010; Isbell et al., 2015; Tilman et al., 2006) and observational studies (Hautier et al., 2014; Hautier & Van der Plas, 2022). Plant diversity could directly regulate the effects of global changes on ecosystem functions via facilitative interaction, sampling effect and niche complementarity (Hector et al., 1999; Hong et al., 2022; Reich et al., 2001). In contrast to the strong and stabilizing effects of biodiversity on ecosystem functioning in stressed environments, including drought (Hong et al., 2022; Kreyling et al., 2017; Wagg et al., 2017), we found that changes in grassland productivity and stability were unrelated to those in plant diversity under precipitation decrease at the global scale.

FIGURE 5 Graphical illustration of the changes in productivity, diversity and stability and their changing tendencies along the gradients of precipitation variability, soil fertility and experimental duration. In panel (a), the arrows indicate increase (up), decrease (down), and no change (horizontal) in target variables, and the connectors with arrows indicate positive (solid) and negative (dashed) relationships between two variables. In panel (b), '+' and '−' indicate the increase and decrease of variables, respectively. Solid and dashed lines indicate the changes in above-ground net primary productivity and the stability of community, respectively. The colour of the connectors with arrows (in panel (a)) and lines (in panel (b)) correspond to the global change drivers in Figure 1. See Figure 1 for the abbreviations of the global change drivers.

FIGURE 6 Relationship of the response ratios (RRs) of community stability and above-ground net primary productivity (ANPP) with climatic and biotic factors under different global change drivers. We determined the RRs of community stability and ANPP with MAT (a, f), MAP (b, g) and RRs of richness (c, h), grasses (d, i) and forbs (e, j). Circle size represents the inverse of variance, and only the significant fitted regressions ($p < 0.1$) are shown. Colours of circles and regression lines correspond to the global change drivers in Figure 1. Black lines represent the overall relationship across all global change drivers, and the 95% confidence intervals are shaded.

On the other hand, global changes could indirectly affect ecosystem stability via modifying biodiversity (Hautier & Van der Plas, 2022). For instance, a wide range of global environmental changes have been shown to affect ecosystem stability via changing biodiversity in grasslands, regardless of the attribute of global change driver (Hautier et al., 2015). In our study, N addition, N and P addition and precipitation decrease may destabilise primary productivity by reducing species richness. However, the positive relationship between the changes in species richness and stability can only be applied to N and P addition and warming in this study (Figure 6c), implying that the effects of global change on grassland stability may be mediated by factors other than diversity. Moreover, global change could indirectly affect stability by modifying the diversity–stability relationship (Hautier & Van der Plas, 2022). Hautier et al. (2014) demonstrated that fertilization weakened the positive relationship between biodiversity and stability, whereas the effects of other global change drivers on the diversity–stability relationship remain uncharacterised. Contrary to the widely recognised positive diversity–productivity relationship (Tilman et al., 2006), we found that changes in plant productivity were negatively related to changes in species richness, which implies a directional shift in community composition towards highly productive species under global changes (Carroll et al., 2022).

The stabilizing effects of diversity on temporal stability may be dampened by the dynamics of the dominant species (Chen et al., 2016; Ma et al., 2017; Yang et al., 2011) and plant functional groups (Mackie et al., 2019; Shi et al., 2016). We found that community stability was largely controlled by the stability of grasses, particularly under nutrient additions and warming. The predominant effects of grasses on grassland stability under global changes may have arisen from their greater contributions to the changes in

community productivity (Bai et al., 2004; DeMalach et al., 2017; You et al., 2017), supporting the ‘mass ratio’ hypothesis (Grime, 1998). Grasses typically have a shallow and fibrous root system (Mackie et al., 2019), which enables them to be the superior competitors in the surface soil layer under global changes and helps to track environmental fluctuations. As a result, the stability of grasses was only decreased under N and P addition, indicating that the growth of grasses was co-limited by both N and P nutrients. Forbs, in contrast, are often characterised by their deep taproot system and resource-conservative strategy (Yang et al., 2011). Based on multisite grassland experiments, recent studies demonstrated that forbs mediated drought resistance, while grasses governed drought recovery (Mackie et al., 2019; Stampfli et al., 2018). In our study, precipitation increase enhanced the stability of forbs by increasing productivity, and other global changes drivers showed no effect on the stability of forbs. Forbs often exhibit a higher temporal stability than grasses, possibly due to the inherently high phylogenetic diversity and functional diversity among the forb species (Cadotte et al., 2008).

We found a positive relationship between changes in community stability and species asynchrony under various global changes. As asynchronous responses among species can help stabilise productivity in grasslands with high diversity (Hector et al., 2010; Tilman, 1996), variations in species asynchrony caused by global changes may translate into alterations in community stability (Hautier et al., 2014). These results were partially supported by a recent synthesis study that showed that species asynchrony was the most crucial factor controlling positive biodiversity–stability relationships (Hautier & Van der Plas, 2022). Notably, synchrony dynamics among dominant species matter more than species richness in determining plant community stability in global grasslands, and these findings emphasise the importance of community evenness

to regulate the effects of species richness on stability (Valencia et al., 2020; Wang et al., 2021). Furthermore, global change drivers could further disrupt the interplay between species richness, synchrony and stability, and this disruption highlights the necessity for more experiments with the interactive manipulation of biodiversity and global changes.

4.3 | Effects of climate and soil conditions

Environmental (e.g. climate, soil) factors mediate the responses of community stability to global changes (Fernandez-Going et al., 2012; Garcia-Palacios et al., 2018). For example, the negative effects of warming on community stability decreased with increasing MAT, suggesting that grasslands in cold regions are more vulnerable to warming due to higher sensitivity (Ma et al., 2017). Our findings also showed that eCO₂, P addition and precipitation decrease tended to lower community stability in wetter grasslands, which may have arisen from intensified N limitation under eCO₂ (Luo et al., 2004) and higher P limitation in wetter regions (Li et al., 2016). The negative effect of precipitation decrease on community stability only occurred in wetter regions, as drought tolerance traits (e.g. higher leaf dry matter content and lower specific leaf area) are typically favoured by plants in arid regions, and this increases their resistance to drought (Wilcox et al., 2021). However, a recent meta-analysis showed that the climatic sensitivity of global grassland vegetation productivity was greater in dry habitats (Liu et al., 2021). Hence, more studies are required to evaluate how grassland stability varies under global changes along a precipitation gradient. Consistent with previous studies (Ciemer et al., 2019; Kreyling et al., 2017), we found that the historical precipitation variability could mitigate the negative effects of nutrient- and water-related global changes on community stability in grasslands. This finding partially supported our third hypothesis that community stability would be less affected in grasslands with higher climate variability. Higher precipitation variability could increase plant functional diversity due to trade-offs in the species responses to water availability (Gherardi & Sala, 2015), which in turn ameliorates the negative impacts on productivity and its stability (Perez-Ramos et al., 2017).

Moreover, in contrast to the third hypothesis that community stability might be less affected by global changes in grasslands with lower soil fertility, we found that community stability in infertile soils was reduced more under nutrient additions, which agrees with previous studies (Carroll et al., 2022; Shovon et al., 2020). Plant communities in nutrient-poor soils are usually characterised by conservative species with slow growth rates and resource uptake, and these species may be replaced by exploitative species capable of rapid growth and resource uptake under nutrient additions (Eskelinen & Harrison, 2015; Martinez-Almoyna et al., 2020), thus destabilizing community productivity under environmental fluctuations. In an era of increased climatic variability (IPCC, 2013), it is important to better understand the response patterns of plant functional traits and soil fertility to global changes and their subsequent roles in driving

ecosystem processes so that ecosystem functions can be effectively promoted and maintained under variable environments.

5 | CONCLUSIONS

Our meta-analysis has provided a comprehensive synthesis of the effects of seven global change drivers on primary productivity and community stability in global grasslands. Despite increased productivity, N-based nutrient additions reduced community stability whereas neither elevated CO₂ nor warming affected community stability. Precipitation increase and decrease showed positive and negative effects on community stability, respectively, due to changes in productivity. In contrast, P addition had little effect on grassland productivity and stability. Our results also highlighted the importance of plant diversity and functional group, environment characteristics and experimental setup in regulating community stability responses to various global changes. Nevertheless, our study has several limitations. First, the effects of global change drivers on productivity, stability and species richness may be confounded by the inherent heterogeneity in the plant community characteristics, environment conditions and treatment setup among different studies. Second, the small sampling size regarding changes in species diversity under eCO₂ limits our ability to evaluate the species richness effects on productivity and stability. Third, global change-induced alterations in nutrient availability (Li et al., 2016; Liu et al., 2018; Luo et al., 2004) and nutrient cycling (Xiao et al., 2018) may mediate stability responses to environmental fluctuations. Furthermore, given that grasslands are simultaneously influenced by multiple global change drivers, their interactive effects on grassland productivity may potentially modify the stability response (Komatsu et al., 2019), which requires further investigation.

AUTHOR CONTRIBUTIONS

Yongfei Bai designed the study; Jishuai Su, Yujin Zhao, Fengwei Xu and Yongfei Bai carried out data compilation and analysis; Jishuai Su and Yongfei Bai wrote the manuscript. All authors contributed critically to the manuscript drafts and gave final approval for publication.

ACKNOWLEDGEMENTS

We thank the handling editors Dr. Jane Catford and Dr. Adam Clark and two reviewers (Dr. Yann Hautier and one anonymous reviewer) for their valuable comments on the manuscript. We also thank all the researchers whose data were used in this meta-analysis. This work was supported by the National Key R&D Program of China (2017YFA0604702) and National Natural Science Foundation of China (32192464).

CONFLICT OF INTEREST

All authors declare no conflict of interests.

PEER REVIEW

The peer review history for this article is available at <https://publon.com/publon/10.1111/1365-2745.13983>.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available at Dryad Digital Repository <https://doi.org/10.5061/dryad.5x69p8d5d> (Su et al., 2022).

ORCID

Jishuai Su <https://orcid.org/0000-0001-7263-2654>
 Yujin Zhao <https://orcid.org/0000-0003-0225-6491>
 Fengwei Xu <https://orcid.org/0000-0003-1705-4278>
 Yongfei Bai <https://orcid.org/0000-0001-6656-4501>

REFERENCES

Bai, Y. F., Han, X. G., Wu, J. G., Chen, Z. Z., & Li, L. H. (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. *Nature*, 431(7005), 181–184. <https://doi.org/10.1038/nature02850>

Bai, Y. F., Wu, J. G., Clark, C. M., Naeem, S., Pan, Q. M., Huang, J. H., Zhang, L. X., & Han, X. G. (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from inner Mongolia Grasslands. *Global Change Biology*, 16(1), 358–372. <https://doi.org/10.1111/j.1365-2486.2009.01950.x>

Batjes, N. H. (2016). Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. *Geoderma*, 269, 61–68. <https://doi.org/10.1016/j.geoderma.2016.01.034>

Berendse, F., Geerts, R., Elberse, W. T., Bezemer, T. M., Goedhart, P. W., Xue, W., Noordijk, E., ter Braak, C. J. F., & Korevaar, H. (2021). A matter of time: Recovery of plant species diversity in wild plant communities at declining nitrogen deposition. *Diversity and Distributions*, 27(7), 1180–1193. <https://doi.org/10.1111/ddi.13266>

Bharath, S., Borer, E. T., Biederman, L. A., Blumenthal, D. M., Fay, P. A., Gherardi, L. A., Knops, J. M. H., Leakey, A. D. B., Yahdjian, L., & Seabloom, E. W. (2020). Nutrient addition increases grassland sensitivity to droughts. *Ecology*, 101(5), e02981. <https://doi.org/10.1002/ecy.2981>

Cadotte, M. W., Cardinale, B. J., & Oakley, T. H. (2008). Evolutionary history and the effect of biodiversity on plant productivity. *Proceedings of the National Academy of Sciences of the United States of America*, 105(44), 17012–17017. <https://doi.org/10.1073/pnas.0805962105>

Carroll, O., Batzner, E., Bharath, S., Borer, E. T., Campana, S., Esch, E., Hautier, Y., Ohlert, T., Seabloom, E. W., Adler, P. B., Bakker, J. D., Biederman, L., Bugalho, M. N., Caldeira, M., Chen, Q. Q., Davies, K. F., Fay, P. A., Knops, J. M. H., Komatsu, K., ... MacDougall, A. S. (2022). Nutrient identity modifies the destabilising effects of eutrophication in grasslands. *Ecology Letters*, 25, 754–765. <https://doi.org/10.1111/ele.13946>

Chen, W. Q., Zhang, Y. J., Mai, X. H., & Shen, Y. (2016). Multiple mechanisms contributed to the reduced stability of Inner Mongolia grassland ecosystem following nitrogen enrichment. *Plant and Soil*, 409(1-2), 283–296. <https://doi.org/10.1007/s11104-016-2967-1>

Cierner, C., Boers, N., Hirota, M., Kurths, J., Muller-Hansen, F., Oliveira, R. S., & Winkelmann, R. (2019). Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. *Nature Geoscience*, 12(3), 174–179. <https://doi.org/10.1038/s41561-019-0312-z>

Craven, D., Eisenhauer, N., Pearse, W. D., Hautier, Y., Isbell, F., Roscher, C., Bahn, M., Beierkuhnlein, C., Bönnisch, G., & Buchmann, N. (2018). Multiple facets of biodiversity drive the diversity–stability relationship. *Nature Ecology & Evolution*, 2(10), 1579–1587. <https://doi.org/10.1038/s41559-018-0647-7>

De Schrijver, A., De Frenne, P., Ampoorter, E., Van Nevel, L., Demey, A., Wuysts, K., & Verheyen, K. (2011). Cumulative nitrogen input drives species loss in terrestrial ecosystems. *Global Ecology and Biogeography*, 20(6), 803–816. <https://doi.org/10.1111/j.1466-8238.2011.00652.x>

DeMalach, N., Zaady, E., & Kadmon, R. (2017). Contrasting effects of water and nutrient additions on grassland communities: A global meta-analysis. *Global Ecology and Biogeography*, 26(8), 983–992. <https://doi.org/10.1111/geb.12603>

Deng, Q., Hui, D. F., Dennis, S., & Reddy, K. C. (2017). Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta-analysis. *Global Ecology and Biogeography*, 26(6), 713–728. <https://doi.org/10.1111/geb.12576>

Deng, Q., Hui, D. F., Luo, Y. Q., Elser, J., Wang, Y. P., Loladze, I., Zhang, Q. F., & Dennis, S. (2015). Down-regulation of tissue N: P ratios in terrestrial plants by elevated CO₂. *Ecology*, 96(12), 3354–3362. <https://doi.org/10.1890/15-0217.1>

Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. *British Medical Journal*, 315(7109), 629–634. <https://doi.org/10.1136/bmj.315.7109.629>

Eskelinen, A., & Harrison, S. P. (2015). Resource colimitation governs plant community responses to altered precipitation. *Proceedings of the National Academy of Sciences of the United States of America*, 112(42), 13009–13014. <https://doi.org/10.1073/pnas.1508170112>

Fernandez-Going, B. M., Anacker, B. L., & Harrison, S. P. (2012). Temporal variability in California grasslands: Soil type and species functional traits mediate response to precipitation. *Ecology*, 93(9), 2104–2114. <https://doi.org/10.1890/11-2003.1>

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. *International Journal of Climatology*, 37(12), 4302–4315. <https://doi.org/10.1002/joc.5086>

Garcia-Palacios, P., Gross, N., Gaitan, J., & Maestre, F. T. (2018). Climate mediates the biodiversity–ecosystem stability relationship globally. *Proceedings of the National Academy of Sciences of the United States of America*, 115(33), 8400–8405. <https://doi.org/10.1073/pnas.1800425115>

Gherardi, L. A., & Sala, O. E. (2015). Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity. *Ecology Letters*, 18(12), 1293–1300. <https://doi.org/10.1111/ele.12523>

Grime, J. P. (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. *Journal of Ecology*, 86(6), 902–910. <https://doi.org/10.1046/j.1365-2745.1998.00306.x>

Grime, J. P., Fridley, J. D., Askew, A. P., Thompson, K., Hodgson, J. G., & Bennett, C. R. (2008). Long-term resistance to simulated climate change in an infertile grassland. *Proceedings of the National Academy of Sciences of the United States of America*, 105(29), 10028–10032. <https://doi.org/10.1073/pnas.0711567105>

Hallett, L. M., Hsu, J. S., Cleland, E. E., Collins, S. L., Dickson, T. L., Farrer, E. C., Gherardi, L. A., Gross, K. L., Hobbs, R. J., Turnbull, L., & Suding, K. N. (2014). Biotic mechanisms of community stability shift along a precipitation gradient. *Ecology*, 95(6), 1693–1700. <https://doi.org/10.1890/13-0895.1>

Harpole, W. S., Ngai, J. T., Cleland, E. E., Seabloom, E. W., Borer, E. T., Bracken, M. E. S., Elser, J. J., Gruner, D. S., Hillebrand, H., & Shurin, J. B. (2011). Nutrient co-limitation of primary producer communities. *Ecology Letters*, 14(9), 852–862. <https://doi.org/10.1111/j.1461-0248.2011.01651.x>

Harpole, W. S., Sullivan, L. L., Lind, E. M., Firn, J., Adler, P. B., Borer, E. T., Chase, J., Fay, P. A., Hautier, Y., Hillebrand, H., MacDougall, A. S., Seabloom, E. W., Williams, R., Bakker, J. D., Cadotte, M. W., Chaneton, E. J., Chu, C. J., Cleland, E. E., D'Antonio, C., ... Wragg, P. D. (2016). Addition of multiple limiting resources reduces grassland diversity. *Nature*, 537(7618), 93–96. <https://doi.org/10.1038/nature19324>

Harpole, W. S., & Tilman, D. (2007). Grassland species loss resulting from reduced niche dimension. *Nature*, 446(7137), 791–793. <https://doi.org/10.1038/nature05684>

Hautier, Y., Seabloom, E. W., Borer, E. T., Adler, P. B., Harpole, W. S., Hillebrand, H., Lind, E. M., MacDougall, A. S., Stevens, C. J., & Bakker, J. D. (2014). Eutrophication weakens stabilizing effects of diversity in natural grasslands. *Nature*, 508(7497), 521–525. <https://doi.org/10.1038/nature13014>

Hautier, Y., Tilman, D., Isbell, F., Seabloom, E. W., Borer, E. T., & Reich, P. B. (2015). Anthropogenic environmental changes affect ecosystem stability via biodiversity. *Science*, 348(6232), 336–340. <https://doi.org/10.1126/science.aaa1788>

Hautier, Y., & Van der Plas, F. (2022). *The Ecological and Societal Consequences of Biodiversity Loss* (pp. 189–209). Wiley-ISTE. <https://doi.org/10.1002/9781119902911>

Hautier, Y., Zhang, P. F., Loreau, M., Wilcox, K. R., Seabloom, E. W., Borer, E. T., Byrnes, J. E. K., Koerner, S. E., Komatsu, K. J., Lefcheck, J. S., Hector, A., Adler, P. B., Alberti, J., Arnillas, C. A., Bakker, J. D., Brudvig, L. A., Bugalho, M. N., Cadotte, M., Caldeira, M. C., ... Wang, S. P. (2020). General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. *Nature Communications*, 11(1), 5375. <https://doi.org/10.1038/s41467-020-19252-4>

Hector, A., Hautier, Y., Saner, P., Wacker, L., Bagchi, R., Joshi, J., Scherer-Lorenzen, M., Spehn, E. M., Bazeley-White, E., & Weilenmann, M. (2010). General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. *Ecology*, 91(8), 2213–2220. <https://doi.org/10.1890/09-1162.1>

Hector, A., Schmid, B., Beierkuhnlein, C., Caldeira, M. C., Diemer, M., Dimitrakopoulos, P. G., Finn, J. A., Freitas, H., Giller, P. S., Good, J., Harris, R., Höglberg, P., Huss-Danell, K., Joshi, J., Jumpponen, A., Körner, C., Leadley, P. W., Loreau, M., Minns, A., ... Lawton, J. H. (1999). Plant diversity and productivity experiments in European grasslands. *Science*, 286(5442), 1123–1127. <https://doi.org/10.1126/science.286.5442.1123>

Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. *Ecology*, 80(4), 1150–1156. <https://doi.org/10.2307/177062>

Hong, P. B., Schmid, B., De Laender, F., Eisenhauer, N., Zhang, X. W., Chen, H. Z., Craven, D., De Boeck, H. J., Hautier, Y., Petchey, O. L., Reich, P. B., Steudel, B., Striebel, M., Thakur, M. P., & Wang, S. P. (2022). Biodiversity promotes ecosystem functioning despite environmental change. *Ecology Letters*, 25(2), 555–569. <https://doi.org/10.1111/ele.13936>

IPCC. (2013). *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*. Cambridge University Press.

Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., Bezemer, T. M., Bonin, C., Bruelheide, H., de Luca, E., Ebeling, A., Griffin, J. N., Guo, Q. F., Hautier, Y., Hector, A., Jentsch, A., Kreyling, J., Lanta, V., Manning, P., ... Eisenhauer, N. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. *Nature*, 526(7574), 574–577. <https://doi.org/10.1038/nature15374>

Isbell, F., Reich, P. B., Tilman, D., Hobbie, S. E., Polasky, S., & Binder, S. (2013a). Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. *Proceedings of the National Academy of Sciences of the United States of America*, 110(29), 11911–11916. <https://doi.org/10.1073/pnas.1310880110>

Isbell, F., Tilman, D., Polasky, S., Binder, S., & Hawthorne, P. (2013b). Low biodiversity state persists two decades after cessation of nutrient enrichment. *Ecology Letters*, 16(4), 454–460. <https://doi.org/10.1111/ele.12066>

Knapp, A. K., & Smith, M. D. (2001). Variation among biomes in temporal dynamics of aboveground primary production. *Science*, 291(5503), 481–484. <https://doi.org/10.1126/science.291.5503.481>

Komatsu, K. J., Avolio, M. L., Lemoine, N. P., Isbell, F., Grman, E., Houseman, G. R., Koerner, S. E., Johnson, D. S., Wilcox, K. R., & Alatalo, J. M. (2019). Global change effects on plant communities are magnified by time and the number of global change factors imposed. *Proceedings of the National Academy of Sciences of the United States of America*, 116(36), 17867–17873. <https://doi.org/10.1073/pnas.1819027116>

Körner, C. (2006). Plant CO₂ responses: An issue of definition, time and resource supply. *New Phytologist*, 172(3), 393–411. <https://doi.org/10.1111/j.1469-8137.2006.01886.x>

Kreyling, J., Dengler, J., Walter, J., Velev, N., Ugurlu, E., Sopotlieva, D., Ransijn, J., Picon-Cochard, C., Nijs, I., Hernandez, P., Guler, B., von Gillhaussen, P., De Boeck, H. J., Bloor, J. M. G., Berwaers, S., Beierkuhnlein, C., Arfin Khan, M. A. S., Apostolova, I., Altan, Y., ... Jentsch, A. (2017). Species richness effects on grassland recovery from drought depend on community productivity in a multisite experiment. *Ecology Letters*, 20(11), 1405–1413. <https://doi.org/10.1111/ele.12848>

Lan, Z. C., & Bai, Y. F. (2012). Testing mechanisms of N-enrichment-induced species loss in a semiarid Inner Mongolia grassland: critical thresholds and implications for long-term ecosystem responses. *Philosophical Transactions of the Royal Society B-Biological Sciences*, 367(1606), 3125–3134. <https://doi.org/10.1098/rstb.2011.0352>

Le Bagousse-Pinguet, Y., Gross, N., Maestre, F. T., Maire, V., de Bello, F., Fonseca, C. R., Kattge, J., Valencia, E., Leps, J., & Liancourt, P. (2017). Testing the environmental filtering concept in global drylands. *Journal of Ecology*, 105(4), 1058–1069. <https://doi.org/10.1111/1365-2745.12735>

Li, Y., Niu, S. L., & Yu, G. R. (2016). Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: A meta-analysis. *Global Change Biology*, 22(2), 934–943. <https://doi.org/10.1111/gcb.13125>

Liu, D. J., Zhang, C., Ogaya, R., Fernandez-Martinez, M., Pugh, T. A. M., & Penuelas, J. (2021). Increasing climatic sensitivity of global grassland vegetation biomass and species diversity correlates with water availability. *New Phytologist*, 230(5), 1761–1771. <https://doi.org/10.1111/nph.17269>

Liu, S. W., Ji, C., Wang, C., Chen, J., Jin, Y. G., Zou, Z. H., Li, S. Q., Niu, S. L., & Zou, J. W. (2018). Climatic role of terrestrial ecosystem under elevated CO₂: A bottom-up greenhouse gases budget. *Ecology Letters*, 21(7), 1108–1118. <https://doi.org/10.1111/ele.13078>

Loreau, M., & Hector, A. (2001). Partitioning selection and complementarity in biodiversity experiments. *Nature*, 412(6842), 72–76. <https://doi.org/10.1038/35083573>

Luo, Y. Q., Su, B., Currie, W. S., Dukes, J. S., Finzi, A., Hartwig, U., Hungate, B., McMurtrie, R. E., Oren, R., & Parton, W. J. (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. *Bioscience*, 54(8), 731–739. [https://doi.org/10.1641/0006-3568\(2004\)054\[0731:PNLOER\]2.0.CO;2](https://doi.org/10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2)

Ma, Z. Y., Liu, H. Y., Mi, Z. R., Zhang, Z. H., Wang, Y. H., Xu, W., Jiang, L., & He, J. S. (2017). Climate warming reduces the temporal stability of plant community biomass production. *Nature Communications*, 8, 15378. <https://doi.org/10.1038/ncomms15378>

Mackie, K. A., Zeiter, M., Bloor, J. M., & Stampfli, A. (2019). Plant functional groups mediate drought resistance and recovery in a multisite grassland experiment. *Journal of Ecology*, 107(2), 937–949. <https://doi.org/10.1111/1365-2745.13102>

Marsaglia, G. (2006). Ratios of normal variables. *Journal of Statistical Software*, 16(4), 1–10. <https://doi.org/10.18637/jss.v016.i04>

Martinez-Almoyna, C., Piton, G., Abdulhak, S., Boulangeat, L., Choler, P., Delahaye, T., Dentant, C., Foulquier, A., Poulenard, J., Noble, V., Renaud, J., Rome, M., Saillard, A., Thüller, W., Munkemuller, T., & Consortium, O. (2020). Climate, soil resources and microbial activity shape the distributions of mountain plants based on their functional traits. *Ecography*, 43(10), 1550–1559. <https://doi.org/10.1111/ecog.05269>

Nakagawa, S., Poulin, R., Mengersen, K., Reinhold, K., Engqvist, L., Lagisz, M., & Senior, A. M. (2015). Meta-analysis of

variation: Ecological and evolutionary applications and beyond. *Methods in Ecology and Evolution*, 6(2), 143–152. <https://doi.org/10.1111/2041-210x.12309>

Penuelas, J., Ciais, P., Canadell, J. G., Janssens, I. A., Fernandez-Martinez, M., Carnicer, J., Obersteiner, M., Piao, S. L., Vautard, R., & Sardans, J. (2017). Shifting from a fertilization-dominated to a warming-dominated period. *Nature Ecology & Evolution*, 1(10), 1438–1445. <https://doi.org/10.1038/s41559-017-0274-8>

Perez-Ramos, I. M., Diaz-Delgado, R., de la Riva, E. G., Villar, R., Lloret, F., & Maranon, T. (2017). Climate variability and community stability in Mediterranean shrublands: The role of functional diversity and soil environment. *Journal of Ecology*, 105(5), 1335–1346. <https://doi.org/10.1111/1365-2745.12747>

R Core Team. (2020). *R: A language and environment for statistical computing*. Retrieved from <https://www.R-project.org/>

Reich, P. B., Knops, J., Tilman, D., Craine, J., Ellsworth, D., Tjoelker, M., Lee, T., Wedin, D., Naeem, S., Bahauddin, D., Hendrey, G., Jose, S., Wrage, K., Goth, J., & Bengston, W. (2001). Plant diversity enhances ecosystem responses to elevated CO₂ and nitrogen deposition. *Nature*, 410(6830), 809–810. <https://doi.org/10.1038/35071062>

Shi, Z., Xu, X., Souza, L., Wilcox, K., Jiang, L. F., Liang, J. Y., Xia, J. Y., García-Palacios, P., & Luo, Y. Q. (2016). Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest. *Nature Communications*, 7, 11973. <https://doi.org/10.1038/ncomm s11973>

Shovon, T. A., Rozendaal, D. M. A., Gagnon, D., Gendron, F., Vetter, M., & Vanderwel, M. C. (2020). Plant communities on nitrogen-rich soil are less sensitive to soil moisture than plant communities on nitrogen-poor soil. *Journal of Ecology*, 108(1), 133–144. <https://doi.org/10.1111/1365-2745.13251>

Song, J., Wan, S. Q., Piao, S. L., Knapp, A. K., Classen, A. T., Vicca, S., Ciais, P., Hovenden, M. J., Leuzinger, S., & Beier, C. (2019). A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. *Nature Ecology & Evolution*, 3(9), 1309–1320. <https://doi.org/10.1038/s41559-019-0958-3>

Soons, M. B., Hefting, M. M., Dorland, E., Lamers, L. P. M., Versteeg, C., & Bobbink, R. (2017). Nitrogen effects on plant species richness in herbaceous communities are more widespread and stronger than those of phosphorus. *Biological Conservation*, 212, 390–397. <https://doi.org/10.1016/j.biocon.2016.12.006>

Stampfli, A., Bloor, J. M., Fischer, M., & Zeiter, M. (2018). High land-use intensity exacerbates shifts in grassland vegetation composition after severe experimental drought. *Global Change Biology*, 24(5), 2021–2034. <https://doi.org/10.1111/gcb.14046>

Su, J. S., Zhao, Y. J., Xu, F. W., & Bai, Y. F. (2022). Data from: Multiple global changes drive grassland productivity and stability: A meta-analysis. *Dryad Digital Repository*. <https://doi.org/10.5061/dryad.5x69p8d5d>

Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P., & Prentice, I. C. (2016). Mycorrhizal association as a primary control of the CO₂ fertilization effect. *Science*, 353(6294), 72–74. <https://doi.org/10.1126/science.aaf4610>

Tilman, D. (1996). Biodiversity: Population versus ecosystem stability. *Ecology*, 77(2), 350–363. <https://doi.org/10.2307/2265614>

Tilman, D., & Downing, J. A. (1994). Biodiversity and stability in grasslands. *Nature*, 367(6461), 363–365. <https://doi.org/10.1038/367363a0>

Tilman, D., & Isbell, F. (2015). Biodiversity: Recovery as nitrogen declines. *Nature*, 528(7582), 336–337. <https://doi.org/10.1038/nature16320>

Tilman, D., Reich, P. B., & Knops, J. M. H. (2006). Biodiversity and ecosystem stability in a decade-long grassland experiment. *Nature*, 441(7093), 629–632. <https://doi.org/10.1038/nature04742>

Valencia, E., de Bello, F., Galland, T., Adler, P. B., Leps, J., E-Vojtko, A., van Klink, R., Carmona, C. P., Danihelka, J., Dengler, J., Eldridge, D. J., Estiarte, M., Garcia-Gonzalez, R., Garnier, E., Gomez-Garcia, D., Harrison, S. P., Herben, T., Ibanez, R., Jentsch, A., ... Gotzenberger, L. (2020). Synchrony matters more than species richness in plant community stability at a global scale. *Proceedings of the National Academy of Sciences of the United States of America*, 117(39), 24345–24351. <https://doi.org/10.1073/pnas.1920405117>

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. *Journal of Statistical Software*, 36(3), 1–48. <https://doi.org/10.18637/jss.v036.i03>

Wagg, C., O'Brien, M. J., Vogel, A., Scherer-Lorenzen, M., Eisenhauer, N., Schmid, B., & Weigelt, A. (2017). Plant diversity maintains long-term ecosystem productivity under frequent drought by increasing short-term variation. *Ecology*, 98(11), 2952–2961. <https://doi.org/10.1002/ecy.2003>

Wang, N., Quesada, B., Xia, L. L., Butterbach-Bahl, K., Goodale, C. L., & Kiese, R. (2019). Effects of climate warming on carbon fluxes in grasslands—A global meta-analysis. *Global Change Biology*, 25(5), 1839–1851. <https://doi.org/10.1111/gcb.14603>

Wang, X.-Y., Ge, Y., Gao, S., Chen, T., Wang, J., & Yu, F.-H. (2021). Evenness alters the positive effect of species richness on community drought resistance via changing complementarity. *Ecological Indicators*, 133, 108464. <https://doi.org/10.1016/j.ecolind.2021.108464>

Wilcox, K. R., Blumenthal, D. M., Kray, J. A., Mueller, K. E., Derner, J. D., Ocheltree, T., & Porensky, L. M. (2021). Plant traits related to precipitation sensitivity of species and communities in semiarid shortgrass prairie. *New Phytologist*, 229(4), 2007–2019. <https://doi.org/10.1111/nph.17000>

Xiao, W., Chen, X., Jing, X., & Zhu, B. (2018). A meta-analysis of soil extracellular enzyme activities in response to global change. *Soil Biology and Biochemistry*, 123, 21–32. <https://doi.org/10.1016/j.soilbio.2018.05.001>

Yang, H. J., Li, Y., Wu, M. Y., Zhang, Z., Li, L. H., & Wan, S. Q. (2011). Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. *Global Change Biology*, 17(9), 2936–2944. <https://doi.org/10.1111/j.1365-2486.2011.02423.x>

Yang, Z. L., Zhang, Q., Su, F. L., Zhang, C. H., Pu, Z. C., Xia, J. Y., Wan, S. Q., & Jiang, L. (2017). Daytime warming lowers community temporal stability by reducing the abundance of dominant, stable species. *Global Change Biology*, 23(1), 154–163. <https://doi.org/10.1111/gcb.13391>

You, C. M., Wu, F. Z., Gan, Y. M., Yang, W. Q., Hu, Z. M., Xu, Z. F., Tan, B., Liu, L., & Ni, X. Y. (2017). Grass and forbs respond differently to nitrogen addition: A meta-analysis of global grassland ecosystems. *Scientific Reports*, 7(1), 1563. <https://doi.org/10.1038/s41598-017-01728-x>

Yue, K., Fornara, D. A., Yang, W. Q., Peng, Y., Peng, C. H., Liu, Z. L., & Wu, F. Z. (2017). Influence of multiple global change drivers on terrestrial carbon storage: additive effects are common. *Ecology Letters*, 20(5), 663–672. <https://doi.org/10.1111/ele.12767>

Zhou, X. H., Zhou, L. Y., Nie, Y. Y., Fu, Y. L., Du, Z. G., Shao, J. J., Zheng, Z. M., & Wang, X. H. (2016). Similar responses of soil carbon storage to drought and irrigation in terrestrial ecosystems but with contrasting mechanisms: A meta-analysis. *Agriculture, Ecosystems & Environment*, 228, 70–81. <https://doi.org/10.1016/j.agee.2016.04.030>

DATA SOURCES

Adair, E. C., Reich, P. B., Hobbie, S. E., & Knops, J. M. (2009). Interactive effects of time, CO₂, N, and diversity on total belowground carbon allocation and ecosystem carbon storage in a grassland community. *Ecosystems*, 12(6), 1037–1052. <https://doi.org/10.1007/s10021-009-9278-9>

Alhamad, M. N., Alrababah, M. A., & Gharaibeh, M. A. (2012). Impact of burning and fertilization on dry Mediterranean grassland productivity and diversity. *Acta Oecologica*, 40, 19–26. <https://doi.org/10.1016/j.actao.2012.02.005>

Andresen, L. C., Yuan, N., Seibert, R., Moser, G., Kammann, C. I., Luterbacher, J., Erbs, M., & Müller, C. (2018). Biomass responses in a temperate European grassland through 17 years of elevated CO₂. *Global Change Biology*, 24(9), 3875–3885. <https://doi.org/10.1111/gcb.13705>

Báez, S., Collins, S. L., Pockman, W. T., Johnson, J. E., & Small, E. E. (2013). Effects of experimental rainfall manipulations on Chihuahuan Desert grassland and

shrubland plant communities. *Oecologia*, 172(4), 1117–1127. <https://doi.org/10.1007/s00442-012-2552-0>

Bai, Y. F., Wu, J. G., Clark, C. M., Naeem, S., Pan, Q. M., Huang, J. H., Zhang, L. X., & Han, X. G. (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from inner Mongolia Grasslands. *Global Change Biology*, 16(1), 358–372. <https://doi.org/10.1111/j.1365-2486.2009.01950.x>

Bai, Z. J., Gao, Y., Xing, F., Sun, S. N., Jiao, D. Y., Wei, X. H., & Mu, C. S. (2015). Responses of two contrasting saline-alkaline grassland communities to nitrogen addition during early secondary succession. *Journal of Vegetation Science*, 26(4), 686–696. <https://doi.org/10.1111/jvs.12282>

Bassin, S., Volk, M., & Fuhrer, J. (2013). Species composition of subalpine grassland is sensitive to nitrogen deposition, but not to ozone, after seven years of treatment. *Ecosystems*, 16(6), 1105–1117. <https://doi.org/10.1007/s1002-013-9670-3>

Bloor, J. M., Pichon, P., Falcimagne, R., Leadley, P., & Soussana, J. F. (2010). Effects of warming, summer drought, and CO₂ enrichment on aboveground biomass production, flowering phenology, and community structure in an upland grassland ecosystem. *Ecosystems*, 13(6), 888–900. <https://doi.org/10.1007/s1002-010-9363-0>

Bollinger, E. K., Harper, S. J., & Barrett, G. W. (1991). Effects of seasonal drought on old-field plant communities. *American Midland Naturalist*, 125, 114–125. <https://doi.org/10.2307/2426374>

Bonanomi, G., Caporaso, S., & Allegrezza, M. (2006). Short-term effects of nitrogen enrichment, litter removal and cutting on a Mediterranean grassland. *Acta Oecologica*, 30(3), 419–425. <https://doi.org/10.1016/j.actao.2006.06.007>

Bowman, W. D., Gartner, J. R., Holland, K., & Wiedermann, M. (2006). Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: Are we there yet? *Ecological Applications*, 16(3), 1183–1193. [https://doi.org/10.1890/1051-0761\(2006\)016\[1183:NCLFAV\]2.0.CO;2](https://doi.org/10.1890/1051-0761(2006)016[1183:NCLFAV]2.0.CO;2)

Cantarel, A. A., Bloor, J. M., & Soussana, J. F. (2013). Four years of simulated climate change reduces above-ground productivity and alters functional diversity in a grassland ecosystem. *Journal of Vegetation Science*, 24(1), 113–126. <https://doi.org/10.1111/j.1654-1103.2012.01452.x>

Carpenter, A. T., Moore, J. C., Redente, E. F., & Stark, J. C. (1990). Plant community dynamics in a semi-arid ecosystem in relation to nutrient addition following a major disturbance. *Plant and Soil*, 126(1), 91–99. <https://doi.org/10.1007/BF00041373>

Carrillo, Y., Pendall, E., Dijkstra, F. A., Morgan, J. A., & Newcomb, J. M. (2011). Response of soil organic matter pools to elevated CO₂ and warming in a semi-arid grassland. *Plant and Soil*, 347(1–2), 339–350. <https://doi.org/10.1007/s11104-011-0853-4>

Chen, H., Ma, L., Xin, X., Liu, J., & Wang, R. (2018). Plant community responses to increased precipitation and belowground litter addition: Evidence from a 5-year semiarid grassland experiment. *Ecology and Evolution*, 8(9), 4587–4597. <https://doi.org/10.1002/ece3.4012>

Chen, J., Luo, Y. Q., Xia, J. Y., Shi, Z., Jiang, L. F., Niu, S. L., Zhou, X. H., & Cao, J. J. (2016). Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. *Agricultural and Forest Meteorology*, 220, 21–29. <https://doi.org/10.1016/j.agrformet.2016.01.010>

Chen, J., Luo, Y. Q., Xia, J. Y., Wilcox, K. R., Cao, J. J., Zhou, X. H., Jiang, L. F., Niu, S. L., Estera, K. Y., & Huang, R. J. (2017a). Warming effects on ecosystem carbon fluxes are modulated by plant functional types. *Ecosystems*, 20(3), 515–526. <https://doi.org/10.1007/s10021-016-0035-6>

Chen, Q., Hooper, D. U., Li, H., Gong, X. Y., Peng, F., Wang, H., Ditttert, K., & Lin, S. (2017b). Effects of resource addition on recovery of production and plant functional composition in degraded semiarid grasslands. *Oecologia*, 184(1), 13–24. <https://doi.org/10.1007/s00442-017-3834-3>

Chen, Q., Hooper, D. U., & Lin, S. (2011). Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian steppe, China. *PLoS ONE*, 6(3), e16909. <https://doi.org/10.1371/journal.pone.0016909>

Chimner, R., Welker, J., Morgan, J., LeCain, D., & Reeder, J. (2010). Experimental manipulations of winter snow and summer rain influence ecosystem carbon cycling in a mixed-grass prairie, Wyoming, USA. *Ecohydrology*, 3(3), 284–293. <https://doi.org/10.1002/eco.106>

Chou, W. W., Silver, W. L., Jackson, R. D., Thompson, A. W., & Allen-Diaz, B. (2008). The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. *Global Change Biology*, 14(6), 1382–1394. <https://doi.org/10.1111/j.1365-2486.2008.01572.x>

Clark, C. M., & Tilman, D. (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. *Nature*, 451(7179), 712–715. <https://doi.org/10.1038/nature06503>

Collins, S. L., Koerner, S. E., Plaut, J. A., Okie, J. G., Brese, D., Calabrese, L. B., Carvajal, A., Evansen, R. J., & Nonaka, E. (2012). Stability of tallgrass prairie during a 19-year increase in growing season precipitation. *Functional Ecology*, 26(6), 1450–1459. <https://doi.org/10.1111/j.1365-2435.2012.01995.x>

Collins, S. L., Ladwig, L. M., Petrie, M. D., Jones, S. K., Mulhouse, J. M., Thibault, J. R., & Pockman, W. T. (2017). Press-pulse interactions: effects of warming, N deposition, altered winter precipitation, and fire on desert grassland community structure and dynamics. *Global Change Biology*, 23(3), 1095–1108. <https://doi.org/10.1111/gcb.13493>

Czobél, S., Németh, Z., Szirmai, O., Gyuricza, C., Tóth, A., Házi, J., Vikár, D., & Penksza, K. (2013). Short-term effects of extensive fertilization on community composition and carbon uptake in a Pannonic loess grassland. *Photosynthetica*, 51(4), 490–496. <https://doi.org/10.1007/s1109-013-0052-z>

Czobél, S., Szirmai, O., Nagy, J., Balogh, J., Ürmös, Z., Péli, E., & Tuba, Z. (2008). Effects of irrigation on community composition and carbon uptake in Pannonic loess grassland monoliths. *Community Ecology*, 9(S1), 91–96. <https://doi.org/10.1556/ComEc.9.2008.S.13>

Darenova, E., Holub, P., Krupkova, L., & Pavelka, M. (2017). Effect of repeated spring drought and summer heavy rain on managed grassland biomass production and CO₂ efflux. *Journal of Plant Ecology*, 10(3), 476–485. <https://doi.org/10.1093/jpe/rtw058>

Day, F. P., Conn, C., Crawford, E., & Stevenson, M. (2004). Long-term effects of nitrogen fertilization on plant community structure on a coastal barrier island dune chronosequence. *Journal of Coastal Research*, 20, 722–730. [https://doi.org/10.2112/1551-5036\(2004\)20\[722:LEONFO\]2.0.CO;2](https://doi.org/10.2112/1551-5036(2004)20[722:LEONFO]2.0.CO;2)

De Boeck, H. D., Lemmens, C., Zavalloni, C., Gielen, B., Malchaire, S., Carnol, M., Merckx, R., Van den Berge, J., Ceulemans, R., & Nijs, I. (2008). Biomass production in experimental grasslands of different species richness during three years of climate warming. *Biogeosciences*, 5(2), 585–594. <https://doi.org/10.5194/bg-5-585-2008>

Dickson, T. L., & Gross, K. L. (2013). Plant community responses to long-term fertilization: Changes in functional group abundance drive changes in species richness. *Oecologia*, 173(4), 1513–1520. <https://doi.org/10.1007/s0044-2-013-2722-8>

Dukes, J. S., Chiariello, N. R., Cleland, E. E., Moore, L. A., Shaw, M. R., Thayer, S., Tobeck, T., Mooney, H. A., & Field, C. B. (2005). Responses of grassland production to single and multiple global environmental changes. *PLoS Biology*, 3(10), e319. <https://doi.org/10.1371/journal.pbio.0030319>

Fan, L. L., Tang, L. S., Wu, L. F., Ma, J., & Li, Y. (2014). The limited role of snow water in the growth and development of ephemeral plants in a cold desert. *Journal of Vegetation Science*, 25(3), 681–690. <https://doi.org/10.1111/jvs.12121>

Faust, C., Storm, C., & Schwabe, A. (2012). Shifts in plant community structure of a threatened sandy grassland over a 9-yr period under experimentally induced nutrient regimes: is there a lag phase? *Journal of Vegetation Science*, 23(2), 372–386. <https://doi.org/10.1111/j.1654-1103.2011.01355.x>

Fay, P., Blair, J., Smith, M., Nippert, J., Carlisle, J., & Knapp, A. (2011). Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. *Biogeosciences*, 8(10), 3053–3068. <https://doi.org/10.5194/bg-8-3053-2011>

Ganjurjav, H., Gao, Q., Gornish, E. S., Schwartz, M. W., Liang, Y., Cao, X. J., Zhang, W. N., Zhang, Y., Li, W. H., & Wan, Y. F. (2016). Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau. *Agricultural and Forest Meteorology*, 223, 233–240. <https://doi.org/10.1016/j.agrformet.2016.03.017>

Ganjurjav, H., Gao, Q. Z., Zhang, W. N., Liang, Y., Li, Y. W., Cao, X. J., Wan, Y. F., Li, Y., & Danjiu, L. (2015). Effects of warming on CO₂ fluxes in an alpine meadow ecosystem on the central Qinghai-Tibetan Plateau. *PLoS ONE*, 10(7), e0132044. <https://doi.org/10.1371/journal.pone.0132044>

Gilgen, A. K., & Buchmann, N. (2009). Response of temperate grasslands at different altitudes to simulated summer drought differed but scaled with annual precipitation. *Biogeosciences*, 6(11), 2525–2539. <https://doi.org/10.5194/bg-6-2525-2009>

Gill, R. A. (2014). The influence of 3-years of warming and N-deposition on ecosystem dynamics is small compared to past land use in subalpine meadows. *Plant and Soil*, 374(1–2), 197–210. <https://doi.org/10.1007/s1110-013-1868-9>

Grime, J. P., Fridley, J. D., Askew, A. P., Thompson, K., Hodgson, J. G., & Bennett, C. R. (2008). Long-term resistance to simulated climate change in an infertile grassland. *Proceedings of the National Academy of Sciences of the United States of America*, 105, 10028–10032. <https://doi.org/10.1073/pnas.0711567105>

Grman, E., Lau, J. A., Schoolmaster, D. R., & Gross, K. L. (2010). Mechanisms contributing to stability in ecosystem function depend on the environmental context. *Ecology Letters*, 13(11), 1400–1410. <https://doi.org/10.1111/j.1461-0248.2010.01533.x>

Gross, K. L., & Mittelbach, G. G. (2017). Negative effects of fertilization on grassland species richness are stronger when tall clonal species are present. *Folia Geobotanica*, 52(3–4), 401–409. <https://doi.org/10.1007/s12224-017-9300-5>

Hallett, L. M., Stein, C., & Suding, K. N. (2017). Functional diversity increases ecological stability in a grazed grassland. *Oecologia*, 183(3), 831–840. <https://doi.org/10.1007/s00442-016-3802-3>

Hao, T. X., Song, L., Goulding, K., Zhang, F. S., & Liu, X. J. (2018). Cumulative and partially recoverable impacts of nitrogen addition on a temperate steppe. *Ecological Applications*, 28(1), 237–248. <https://doi.org/10.1002/eaap.1647>

Hartmann, A. A., & Niklaus, P. A. (2012). Effects of simulated drought and nitrogen fertilizer on plant productivity and nitrous oxide (N_2O) emissions of two pastures. *Plant and Soil*, 361(1–2), 411–426. <https://doi.org/10.1007/s11104-012-1248-x>

Hebeisen, T., Lüscher, A., Zanetti, S., Fischer, B., Hartwig, U., Fehnner, M., Hendrey, G., Blum, H., & Nösberger, J. (1997). Growth response of *Trifolium repens* L. and *Lolium perenne* L. as monocultures and bi-species mixture to free air CO_2 enrichment and management. *Global Change Biology*, 3(2), 149–160. <https://doi.org/10.1046/j.1365-2486.1997.00073.x>

Hejman, M., Strnad, L., Hejmanová, P., & Pavlů, V. (2012). Response of plant species composition, biomass production and biomass chemical properties to high N, P and K application rates in *Dactylis glomerata*-and *Festuca arundinacea*-dominated grassland. *Grass and Forage Science*, 67(4), 488–506. <https://doi.org/10.1111/j.1365-2494.2012.00864.x>

Henry, H. A., Hutchison, J. S., Kim, M. K., & McWhirter, B. D. (2015). Context matters for warming: interannual variation in grass biomass responses to 7 years of warming and N addition. *Ecosystems*, 18(1), 103–114. <https://doi.org/10.1007/s10021-014-9816-y>

Hoeppner, S. S., & Dukes, J. S. (2012). Interactive responses of old-field plant growth and composition to warming and precipitation. *Global Change Biology*, 18(5), 1754–1768. <https://doi.org/10.1111/j.1365-2486.2011.02626.x>

Holub, P., Fabšičová, M., Tůma, I., Záhora, J., & Fiala, K. (2013). Effects of artificially varying amounts of rainfall on two semi-natural grassland types. *Journal of Vegetation Science*, 24(3), 518–529. <https://doi.org/10.1111/j.1654-1103.2012.01487.x>

Holub, P., Tůma, I., Záhora, J., & Fiala, K. (2015). Biomass production of different grassland communities under artificially modified amount of rainfall. *Polish Journal of Ecology*, 63(3), 320–332. https://doi.org/10.3161/15052249PJ_E2015.63.3.003

Holub, P., & Záhora, J. (2008). Effects of nitrogen addition on nitrogen mineralization and nutrient content of expanding *Calamagrostis epigejos* in the Podyjí National Park, Czech Republic. *Journal of Plant Nutrition and Soil Science*, 171(5), 795–803. <https://doi.org/10.1002/jpln.200700184>

Huberty, L. E., Gross, K. L., & Miller, C. J. (1998). Effects of nitrogen addition on successional dynamics and species diversity in Michigan old-fields. *Journal of Ecology*, 86(5), 794–803. <https://doi.org/10.1046/j.1365-2745.1998.8650794.x>

Jančovič, J., Vozář, L., Jančovičová, L., & Petříková, S. (2004). Effect of fertilization renovation on the production capacity of permanent grassland. *Plant Soil and Environment*, 50(3), 129–133. <https://doi.org/10.17221/4018-PSE>

Jarchow, M. E., & Liebman, M. (2013). Nitrogen fertilization increases diversity and productivity of prairie communities used for bioenergy. *Global Change Biology Bioenergy*, 5(3), 281–289. <https://doi.org/10.1111/j.1757-1707.2012.01186.x>

Jentsch, A., Kreyling, J., Elmer, M., Gellesch, E., Glaser, B., Grant, K., Hein, R., Lara, M., Mirzae, H., & Nadler, S. E. (2011). Climate extremes initiate ecosystem-regulating functions while maintaining productivity. *Journal of Ecology*, 99(3), 689–702. <https://doi.org/10.1111/j.1365-2745.2011.01817.x>

Jiang, J., Shi, P. L., Zong, N., Fu, G., Shen, Z. X., Zhang, X. Z., & Song, M. H. (2015). Climatic patterns modulate ecosystem and soil respiration responses to fertilization in an alpine meadow on the Tibetan Plateau, China. *Ecological Research*, 30(1), 3–13. <https://doi.org/10.1007/s11284-014-1199-1>

Jiang, L., Guo, R., Zhu, T. C., Niu, X. D., Guo, J. X., & Sun, W. (2012). Water-and plant-mediated responses of ecosystem carbon fluxes to warming and nitrogen addition on the Songnen grassland in Northeast China. *PLoS ONE*, 7(9), e45205. <https://doi.org/10.1371/journal.pone.0045205>

Kammann, C., Grünhage, L., Grüters, U., Janze, S., & Jäger, H.-J. (2005). Response of aboveground grassland biomass and soil moisture to moderate long-term CO_2 enrichment. *Basic and Applied Ecology*, 6(4), 351–365. <https://doi.org/10.1016/j.baae.2005.01.011>

Kinugasa, T., Tsunekawa, A., & Shinoda, M. (2012). Increasing nitrogen deposition enhances post-drought recovery of grassland productivity in the Mongolian steppe. *Oecologia*, 170(3), 857–865. <https://doi.org/10.1007/s00442-012-2354-4>

Kirkham, F. W., Tallowin, J. R., Dunn, R. M., Bhogal, A., Chambers, B. J., & Bardgett, R. D. (2014). Ecologically sustainable fertility management for the maintenance of species-rich hay meadows: A 12-year fertilizer and lime experiment. *Journal of Applied Ecology*, 51(1), 152–161. <https://doi.org/10.1111/1365-2664.12169>

Knapp, A., Briggs, J., & Koelliker, J. (2001). Frequency and extent of water limitation to primary production in a mesic temperate grassland. *Ecosystems*, 4(1), 19–28. <https://doi.org/10.1007/s100210000057>

Koerner, S. E., Avolio, M. L., La Pierre, K. J., Wilcox, K. R., Smith, M. D., & Collins, S. L. (2016). Nutrient additions cause divergence of tallgrass prairie plant communities resulting in loss of ecosystem stability. *Journal of Ecology*, 104(5), 1478–1487. <https://doi.org/10.1111/1365-2745.12610>

Koerner, S. E., & Collins, S. L. (2014). Interactive effects of grazing, drought, and fire on grassland plant communities in North America and South Africa. *Ecology*, 95(1), 98–109. <https://doi.org/10.1890/13-0526.1>

Kongstad, J., Schmidt, I. K., Riis-Nielsen, T., Arndal, M. F., Mikkelsen, T. N., & Beier, C. (2012). High resilience in heathland plants to changes in temperature, drought, and CO_2 in combination: Results from the CLIMAITE experiment. *Ecosystems*, 15(2), 269–283. <https://doi.org/10.1007/s10021-011-9508-9>

Ladwig, L. M., Collins, S. L., Swann, A. L., Xia, Y., Allen, M. F., & Allen, E. B. (2012). Above-and belowground responses to nitrogen addition in a Chihuahuan Desert grassland. *Oecologia*, 169(1), 177–185. <https://doi.org/10.1007/s00442-011-2173-z>

Lan, Z. C., & Bai, Y. F. (2012). Testing mechanisms of N-enrichment-induced species loss in a semiarid Inner Mongolia grassland: Critical thresholds and implications for long-term ecosystem responses. *Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences*, 367(1606), 3125–3134. <https://doi.org/10.1098/rstb.2011.0352>

Lannes, L. S., Bustamante, M. M., Edwards, P. J., & Venterink, H. O. (2016). Native and alien herbaceous plants in the Brazilian Cerrado are (co-) limited by different nutrients. *Plant and Soil*, 400(1–2), 231–243. <https://doi.org/10.1007/s11104-015-2725-9>

Lanta, V., Doležal, J., Lantová, P., Kelišek, J., & Mudrák, O. (2009). Effects of pasture management and fertilizer regimes on botanical changes in species-rich mountain calcareous grassland in Central Europe. *Grass and Forage Science*, 64(4), 443–453. <https://doi.org/10.1111/j.1365-2494.2009.00709.x>

Lanta, V., & Lepš, J. (2007). Effects of species and functional group richness on production in two fertility environments: An experiment with communities of perennial plants. *Acta Oecologica*, 32(1), 93–103. <https://doi.org/10.1016/j.actao.2007.03.007>

Leadley, P. W., Niklaus, P. A., Stocker, R., & Körner, C. (1999). A field study of the effects of elevated CO_2 on plant biomass and community structure in a calcareous grassland. *Oecologia*, 118(1), 39–49. <https://doi.org/10.1007/s00442-005-0701>

Lee, M. A., Manning, P., Walker, C. S., & Power, S. A. (2014). Plant and arthropod community sensitivity to rainfall manipulation but not nitrogen enrichment in a successional grassland ecosystem. *Oecologia*, 176(4), 1173–1185. <https://doi.org/10.1007/s00442-014-3077-5>

Lepš, J. (1999). Nutrient status, disturbance and competition: An experimental test of relationships in a wet meadow. *Journal of Vegetation Science*, 10(2), 219–230. <https://doi.org/10.2307/3237143>

Lepš, J. (2004). Variability in population and community biomass in a grassland community affected by environmental productivity and diversity. *Oikos*, 107(1), 64–71. <https://doi.org/10.1111/j.0030-1299.2004.13023.x>

Li, F. Y., Newton, P. C., & Lieffering, M. (2014). Testing simulations of intra-and inter-annual variation in the plant production response to elevated CO_2 against measurements from an 11-year FACE experiment on grazed pasture. *Global Change Biology*, 20(1), 228–239. <https://doi.org/10.1111/gcb.12358>

Li, K. H., Liu, X. J., Song, L., Gong, Y. M., Lu, C. F., Yue, P., Tian, C. Y., & Zhang, F. S. (2015). Response of alpine grassland to elevated nitrogen deposition and water supply in China. *Oecologia*, 177(1), 65–72. <https://doi.org/10.1007/s00442-014-3122-4>

Lin, X. W., Zhang, Z. H., Wang, S. P., Hu, Y. G., Xu, G. P., Luo, C. Y., Chang, X. F., Duan, J. C., Lin, Q. Y., & Xu, B. (2011). Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the

Tibetan plateau. *Agricultural and Forest Meteorology*, 151(7), 792–802. <https://doi.org/10.1016/j.agrformet.2011.01.009>

Liu, C. C., Liu, Y. G., Guo, K., Qiao, X. G., Zhao, H. W., Wang, S. J., Zhang, L., & Cai, X. L. (2018a). Effects of nitrogen, phosphorus and potassium addition on the productivity of a karst grassland: Plant functional group and community perspectives. *Ecological Engineering*, 117, 84–95. <https://doi.org/10.1016/j.ecoleng.2018.04.008>

Liu, H. Y., Mi, Z. R., Lin, L., Wang, Y. H., Zhang, Z. H., Zhang, F. W., Wang, H., Liu, L. L., Zhu, B., & Cao, G. M. (2018b). Shifting plant species composition in response to climate change stabilizes grassland primary production. *Proceedings of the National Academy of Sciences of the United States of America*, 115, 4051–4056. <https://doi.org/10.1073/pnas.1700299114>

Liu, W. X., Jiang, L., Hu, S. J., Li, L. H., Liu, L. L., & Wan, S. Q. (2014). Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe. *Soil Biology and Biochemistry*, 72, 116–122. <https://doi.org/10.1016/j.soilbio.2014.01.022>

Ludewig, K., Donath, T. W., Zelle, B., Eckstein, R. L., Mosner, E., Otte, A., & Jensen, K. (2015). Effects of reduced summer precipitation on productivity and forage quality of floodplain meadows at the Elbe and the Rhine River. *PLoS ONE*, 10(5), e0124140. <https://doi.org/10.1371/journal.pone.0124140>

Luo, Y. Q., Sherry, R., Zhou, X. H., & Wan, S. Q. (2009). Terrestrial carbon-cycle feedback to climate warming: experimental evidence on plant regulation and impacts of biofuel feedstock harvest. *Global Change Biology Bioenergy*, 1(1), 62–74. <https://doi.org/10.1111/j.1757-1707.2008.01005.x>

Ma, Z. Y., Liu, H. Y., Mi, Z. R., Zhang, Z. H., Wang, Y. H., Xu, W., Jiang, L., & He, J. S. (2017). Climate warming reduces the temporal stability of plant community biomass production. *Nature Communications*, 8, 15378. <https://doi.org/10.1038/ncomms15378>

Mao, W., Felton, A. J., & Zhang, T. H. (2017). Linking changes to intraspecific trait diversity to community functional diversity and biomass in response to snow and nitrogen addition within an inner Mongolian grassland. *Frontiers in Plant Science*, 8, 339. <https://doi.org/10.3389/fpls.2017.00339>

Marissink, M., & Hansson, M. (2002). Floristic composition of a Swedish semi-natural grassland during six years of elevated atmospheric CO₂. *Journal of Vegetation Science*, 13(5), 733–742. <https://doi.org/10.1111/j.1654-1103.2002.tb02101.x>

Marissink, M., Pettersson, R., & Sindhøj, E. (2002). Above-ground plant production under elevated carbon dioxide in a Swedish semi-natural grassland. *Agriculture, Ecosystems & Environment*, 93(1–3), 107–120. [https://doi.org/10.1016/S0167-8809\(01\)00356-5](https://doi.org/10.1016/S0167-8809(01)00356-5)

McPhee, J., Borden, L., Bowles, J., & Henry, H. A. (2015). Tallgrass prairie restoration: Implications of increased atmospheric nitrogen deposition when site preparation minimizes adventive grasses. *Restoration Ecology*, 23(1), 34–42. <https://doi.org/10.1111/rec.12156/references>

Morgan, J. A., Milchunas, D. G., LeCain, D. R., West, M., & Mosier, A. R. (2007). Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. *Proceedings of the National Academy of Sciences of the United States of America*, 104(37), 14724–14729. <https://doi.org/10.1073/pnas.0703427104>

Morgan, J. A., Mosier, A. R., Milchunas, D. G., LeCain, D. R., Nelson, J. A., & Parton, W. J. (2004). CO₂ enhances productivity, alters species composition, and reduces digestibility of shortgrass steppe vegetation. *Ecological Applications*, 14(1), 208–219. <https://doi.org/10.1890/02-5213>

Mountford, J., Lakhani, K., & Kirkham, F. (1993). Experimental assessment of the effects of nitrogen addition under hay-cutting and aftermath grazing on the vegetation of meadows on a Somerset peat moor. *Journal of Applied Ecology*, 30, 321–332. <https://doi.org/10.2307/2404634>

Mueller, K. E., Blumenthal, D. M., Pendall, E., Carrillo, Y., Dijkstra, F. A., Williams, D. G., Follett, R. F., & Morgan, J. A. (2016). Impacts of warming and elevated CO₂ on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time. *Ecology Letters*, 19(8), 956–966. <https://doi.org/10.1111/ele.12634>

Mueller, K. E., LeCain, D. R., McCormack, M. L., Pendall, E., Carlson, M., & Blumenthal, D. M. (2018). Root responses to elevated CO₂, warming and irrigation in a semi-arid grassland: Integrating biomass, length and life span in a 5-year field experiment. *Journal of Ecology*, 106, 2176–2189. <https://doi.org/10.1111/1365-2745.12993>

Newton, P. C., Lieffering, M., Parsons, A. J., Brock, S. C., Theobald, P. W., Hunt, C. L., Luo, D., & Hovenden, M. J. (2014). Selective grazing modifies previously anticipated responses of plant community composition to elevated CO₂ in a temperate grassland. *Global Change Biology*, 20(1), 158–169. <https://doi.org/10.1111/gcb.12301>

Niklaus, P., Leadley, P., Schmid, B., & Körner, C. (2001). A long-term field study on biodiversity × elevated CO₂ interactions in grassland. *Ecological Monographs*, 71(3), 341–356. [https://doi.org/10.1890/0012-9615\(2001\)071\[0341:ALTSO\]2.0.CO;2](https://doi.org/10.1890/0012-9615(2001)071[0341:ALTSO]2.0.CO;2)

Niklaus, P. A., & Körner, C. (2004). Synthesis of a six-year study of calcareous grassland responses to in situ CO₂ enrichment. *Ecological Monographs*, 74(3), 491–511. <https://doi.org/10.1890/03-4047>

Niu, D. C., Yuan, X. B., Cease, A. J., Wen, H. Y., Zhang, C. P., Fu, H., & Elser, J. J. (2018). The impact of nitrogen enrichment on grassland ecosystem stability depends on nitrogen addition level. *Science of the Total Environment*, 618, 1529–1538. <https://doi.org/10.1016/j.scitotenv.2017.09.318>

Niu, K., Choler, P., de Bello, F., Mirochnick, N., Du, G., & Sun, S. (2014). Fertilization decreases species diversity but increases functional diversity: A three-year experiment in a Tibetan alpine meadow. *Agriculture, Ecosystems & Environment*, 182, 106–112. <https://doi.org/10.1016/j.agee.2013.07.015>

Niu, S. L., Sherry, R. A., Zhou, X. H., Wan, S. Q., & Luo, Y. Q. (2010). Nitrogen regulation of the climate–carbon feedback: evidence from a long-term global change experiment. *Ecology*, 91(11), 3261–3273. <https://doi.org/10.1890/09-1634.1>

Owensby, C. E., Coyne, P. I., Ham, J. M., Auen, L. M., & Knapp, A. K. (1993). Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated CO₂. *Ecological Applications*, 3(4), 644–653. <https://doi.org/10.2307/1942097>

Owensby, C. E., Ham, J. M., Knapp, A. K., & Auen, L. M. (1999). Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO₂. *Global Change Biology*, 5(5), 497–506. <https://doi.org/10.1046/j.1365-2486.1999.00245.x>

Parfitt, R. L., Yeates, G. W., Ross, D. J., Schon, N. L., Mackay, A. D., & Wardle, D. A. (2010). Effect of fertilizer, herbicide and grazing management of pastures on plant and soil communities. *Applied Soil Ecology*, 45(3), 175–186. <https://doi.org/10.1016/j.apsoil.2010.03.010>

Patrick, L. B., Fraser, L. H., & Kershner, M. W. (2008). Large-scale manipulation of plant litter and fertilizer in a managed successional temperate grassland. *Plant Ecology*, 197(2), 183–195. <https://doi.org/10.1007/s11258-007-9369-7>

Pavlů, V., Gaisler, J., Pavlů, L., Hejcmán, M., & Ludvíková, V. (2012). Effect of fertiliser application and abandonment on plant species composition of *Festuca rubra* grassland. *Acta Oecologica*, 45, 42–49. <https://doi.org/10.1016/j.actao.2012.08.007>

Pavlů, V., Schellberg, J., & Hejcmán, M. (2011). Cutting frequency vs. N application: Effect of a 20-year management in *Lolio-Cynosuretum* grassland. *Grass and Forage Science*, 66(4), 501–515. <https://doi.org/10.1111/j.1365-2494.2011.00807.x>

Phillips, C. L., Gregg, J. W., & Wilson, J. K. (2011). Reduced diurnal temperature range does not change warming impacts on ecosystem carbon balance of Mediterranean grassland mesocosms. *Global Change Biology*, 17(11), 3263–3273. <https://doi.org/10.1111/j.1365-2486.2011.02483.x>

Phillips, C. L., Murphrey, V., Lajtha, K., & Gregg, J. W. (2016). Asymmetric and symmetric warming increases turnover of litter and unprotected soil C in grassland mesocosms. *Biogeochemistry*, 128(1–2), 217–231. <https://doi.org/10.1007/s10533-016-0204-x>

Picon-Cochard, C., Teyssonneyre, F., Besle, J. M., & Soussana, J. F. (2004). Effects of elevated CO₂ and cutting frequency on the productivity and herbage quality of a semi-natural grassland. *European Journal of Agronomy*, 20(4), 363–377. [https://doi.org/10.1016/S1161-0301\(03\)00040-6](https://doi.org/10.1016/S1161-0301(03)00040-6)

Plassmann, K., Edwards-Jones, G., & Jones, M. L. M. (2009). The effects of low levels of nitrogen deposition and grazing on dune grassland. *Science of the Total Environment*, 407(4), 1391–1404. <https://doi.org/10.1016/j.scitotenv.2008.10.012>

Prechsl, U. E., Burri, S., Gilgen, A. K., Kahmen, A., & Buchmann, N. (2015). No shift to a deeper water uptake depth in response to summer drought of two lowland and sub-alpine C 3-grasslands in Switzerland. *Oecologia*, 177(1), 97–111. <https://doi.org/10.1007/s00442-014-3092-6>

Prevéry, J. S., & Seastedt, T. R. (2014). Seasonality of precipitation interacts with exotic species to alter composition and phenology of a semi-arid grassland. *Journal of Ecology*, 102(6), 1549–1561. <https://doi.org/10.1111/1365-2745.12320>

Rao, A., Singh, K., & Wight, J. (1996). Productivity of *Cenchrus ciliaris* in relation to rain-fall and fertilization. *Journal of Range Management*, 49, 143–146. <https://doi.org/10.2307/4002684>

Reich, P. B., & Hobbie, S. E. (2013). Decade-long soil nitrogen constraint on the CO₂ fertilization of plant biomass. *Nature Climate Change*, 3(3), 278. <https://doi.org/10.1038/nclimate1694>

Reich, P. B., Hobbie, S. E., Lee, T. D., & Pastore, M. A. (2018). Unexpected reversal of C3 versus C4 grass response to elevated CO₂ during a 20-year field

experiment. *Science*, 360(6386), 317–320. <https://doi.org/10.1126/science.aas9313>

Ren, F., Song, W. M., Chen, L. T., Mi, Z. R., Zhang, Z. H., Zhu, W. Y., Zhou, H. K., Cao, G. M., & He, J. S. (2016). Phosphorus does not alleviate the negative effect of nitrogen enrichment on legume performance in an alpine grassland. *Journal of Plant Ecology*, 10(5), 822–830. <https://doi.org/10.1093/jpe/rtw089>

Ren, H. Y., Xu, Z. W., Isbell, F., Huang, J. H., Han, X. G., Wan, S. Q., Chen, S. P., Wang, R. Z., Zeng, D. H., & Jiang, Y. (2017). Exacerbated nitrogen limitation ends transient stimulation of grassland productivity by increased precipitation. *Ecological Monographs*, 87(3), 457–469. <https://doi.org/10.1002/ecm.1262>

Robertson, T. R., Bell, C. W., Zak, J. C., & Tissue, D. T. (2009). Precipitation timing and magnitude differentially affect aboveground annual net primary productivity in three perennial species in a Chihuahuan Desert grassland. *New Phytologist*, 181(1), 230–242. <https://doi.org/10.1111/j.1469-8137.2008.02643.x>

Robertson, T. R., Zak, J. C., & Tissue, D. T. (2010). Precipitation magnitude and timing differentially affect species richness and plant density in the sotol grassland of the Chihuahuan Desert. *Oecologia*, 162(1), 185–197. <https://doi.org/10.1007/s00442-009-1449-z>

Ross, D., Newton, P., & Tate, K. (2004). Elevated [CO₂] effects on herbage production and soil carbon and nitrogen pools and mineralization in a species-rich, grazed pasture on a seasonally dry sand. *Plant and Soil*, 260(1–2), 183–196. <https://doi.org/10.1023/B:PLSO.0000030188.77365.46>

Schellberg, J., Möserer, B., Kühbauch, W., & Rademacher, I. (1999). Long-term effects of fertilizer on soil nutrient concentration, yield, forage quality and floristic composition of a hay meadow in the Eifel mountains, Germany. *Grass and Forage Science*, 54(3), 195–207. <https://doi.org/10.1046/j.1365-2494.1999.00166.x>

Schneider, M. K., Lüscher, A., Richter, M., Aeschlimann, U., Hartwig, U. A., Blum, H., Frossard, E., & Nösberger, J. (2004). Ten years of free-air CO₂ enrichment altered the mobilization of N from soil in *Lolium perenne* L. swards. *Global Change Biology*, 10(8), 1377–1388. <https://doi.org/10.1111/j.1365-2486.2004.00803.x>

Shi, Z., Sherry, R., Xu, X., Hararuk, O., Souza, L., Jiang, L. F., Xia, J. Y., Liang, J. Y., & Luo, Y. Q. (2015). Evidence for long-term shift in plant community composition under decadal experimental warming. *Journal of Ecology*, 103(5), 1131–1140. <https://doi.org/10.1111/1365-2745.12449>

Shi, Z., Xu, X., Souza, L., Wilcox, K., Jiang, L. F., Liang, J. Y., Xia, J. Y., García-Palacios, P., & Luo, Y. Q. (2016). Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest. *Nature Communications*, 7, 11973. <https://doi.org/10.1038/ncomms11973>

Sindhøj, E., Andrén, O., Kätterer, T., Marissink, M., & Pettersson, R. (2004). Root biomass dynamics in a semi-natural grassland exposed to elevated atmospheric CO₂ for five years. *Acta Agriculturae Scandinavica, Section B-Soil & Plant Science*, 54(2), 50–59. <https://doi.org/10.1080/09064710310022032>

Sindhøj, E., Hansson, A.-C., Andrén, O., Kätterer, T., Marissink, M., & Pettersson, R. (2000). Root dynamics in a semi-natural grassland in relation to atmospheric carbon dioxide enrichment, soil water and shoot biomass. *Plant and Soil*, 223(1–2), 255–265. <https://doi.org/10.1023/A:1004801718567>

Snyman, H. (2002). Short-term response of rangeland botanical composition and productivity to fertilization (N and P) in a semi-arid climate of South Africa. *Journal of Arid Environments*, 50(1), 167–183. <https://doi.org/10.1006/jare.2001.0858>

Song, L., Bao, X., Liu, X., Zhang, Y., Christie, P., Fangmeier, A., & Zhang, F. (2011). Nitrogen enrichment enhances the dominance of grasses over forbs in a temperate steppe ecosystem. *Biogeosciences*, 8(8), 2341–2350. <https://doi.org/10.5194/bg-8-2341-2011>

Song, L., Bao, X. M., & Liu, X. J. (2012). Impact of nitrogen addition on plant community in a semi-arid temperate steppe in China. *Journal of Arid Land*, 4(1), 3–10. <https://doi.org/10.3724/SP.J.1227.2012.00003>

Song, M. H., & Yu, F. H. (2015). Reduced compensatory effects explain the nitrogen-mediated reduction in stability of an alpine meadow on the Tibetan Plateau. *New Phytologist*, 207(1), 70–77. <https://doi.org/10.1111/nph.13329>

Souza, L., Zelikova, T. J., & Sanders, N. J. (2016). Bottom-up and top-down effects on plant communities: nutrients limit productivity, but insects determine diversity and composition. *Oikos*, 125(4), 566–575. <https://doi.org/10.1111/oik.02579>

Stock, W. D., Ludwig, F., Morrow, C., Midgley, G. F., Wand, S. J., Allsopp, N., & Bell, T. L. (2005). Long-term effects of elevated atmospheric CO₂ on species composition and productivity of a southern African C 4 dominated grassland in the vicinity of a CO₂ exhalation. *Plant Ecology*, 178(2), 211–224. <https://doi.org/10.1007/s11258-004-3654-5>

Storm, C., & Suss, K. (2008). Are low-productive plant communities responsive to nutrient addition? Evidence from sand pioneer grassland. *Journal of Vegetation Science*, 19(3), 343–354. <https://doi.org/10.3170/2008-8-18374>

Su, J. Q., Li, X. R., Li, X. J., & Feng, L. (2013). Effects of additional N on herbaceous species of desertified steppe in arid regions of China: A four-year field study. *Ecological Research*, 28(1), 21–28. <https://doi.org/10.1007/s11284-012-0994-9>

Sullivan, M. J., Thomsen, M. A., & Suttle, K. (2016). Grassland responses to increased rainfall depend on the timescale of forcing. *Global Change Biology*, 22(4), 1655–1665. <https://doi.org/10.1111/gcb.13206>

Suzuki, M., Suminokura, N., Tanami, K., Yoshitake, S., Masuda, S., Tomotsune, M., & Koizumi, H. (2016). Effects of long-term experimental warming on plants and soil microbes in a cool temperate semi-natural grassland in Japan. *Ecological Research*, 31(6), 957–962. <https://doi.org/10.1007/s11284-016-1386-3>

Suzuki, R. O. (2014). Combined effects of warming, snowmelt timing, and soil disturbance on vegetative development in a grassland community. *Plant Ecology*, 215(12), 1399–1408. <https://doi.org/10.1007/s11258-014-0396-x>

Teyssonneyre, F., Picon-cochard, C., Falcimagne, R., & Soussana, J. F. (2002). Effects of elevated CO₂ and cutting frequency on plant community structure in a temperate grassland. *Global Change Biology*, 8(10), 1034–1046. <https://doi.org/10.1046/j.1365-2486.2002.00543.x>

Theodore, T. A., & Bowman, W. D. (1997). Nutrient availability, plant abundance, and species diversity in two alpine tundra communities. *Ecology*, 78(6), 1861–1872. [https://doi.org/10.1890/0012-9658\(1997\)078\[1861:NAPAAS\]2.0.CO;2](https://doi.org/10.1890/0012-9658(1997)078[1861:NAPAAS]2.0.CO;2)

Tilman, D. (1987). Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. *Ecological Monographs*, 57(3), 189–214. <https://doi.org/10.2307/2937080>

Van der Woude, B., Pegtel, D., & Bakker, J. (1994). Nutrient limitation after long-term nitrogen fertilizer application in cut grasslands. *Journal of Applied Ecology*, 31, 405–412. <https://doi.org/10.2307/2404438>

Wagg, C., O'Brien, M. J., Vogel, A., Scherer-Lorenzen, M., Eisenhauer, N., Schmid, B., & Weigelt, A. (2017). Plant diversity maintains long-term ecosystem productivity under frequent drought by increasing short-term variation. *Ecology*, 98(11), 2952–2961. <https://doi.org/10.1002/ecy.2003>

Wan, S. Q., Hui, D. F., Wallace, L., & Luo, Y. Q. (2005). Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. *Global Biogeochemical Cycles*, 19(2), GB2014. <https://doi.org/10.1029/2004GB002315>

Wan, S. Q., Xia, J. Y., Liu, W. X., & Niu, S. L. (2009). Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. *Ecology*, 90(10), 2700–2710. <https://doi.org/10.1890/08-2026.1>

Wan, Z. Q., Yan, Y. L., Chen, Y. L., Gu, R., Gao, Q. Z., & Yang, J. (2018). Ecological responses of *Stipa* steppe in Inner Mongolia to experimentally increased temperature and precipitation. 2: Plant species diversity and sward characteristics. *Rangeland Journal*, 40(2), 147–152. <https://doi.org/10.1071/RJ16082>

Wang, C., Butterbach-Bahl, K., He, N., Wang, Q., Xing, X., & Han, X. (2015a). Nitrogen addition and mowing affect microbial nitrogen transformations in a C4 grassland in northern China. *European Journal of Soil Science*, 66(3), 485–495. <https://doi.org/10.1111/ejss.12231>

Wang, C., Wang, G. X., Wang, Y., Zi, H. B., Lerdau, M., & Liu, W. (2017a). Effects of long-term experimental warming on plant community properties and soil microbial community composition in an alpine meadow. *Israel Journal of Ecology & Evolution*, 63, 85–96. <https://doi.org/10.1007/s11284-016-1386-3>

Wang, J. F., Knops, J. M., Brassil, C. E., & Mu, C. S. (2017b). Increased productivity in wet years drives a decline in ecosystem stability with nitrogen additions in arid grasslands. *Ecology*, 98(7), 1779–1786. <https://doi.org/10.1002/ecy.1878>

Wang, S. P., Duan, J. C., Xu, G. P., Wang, Y. F., Zhang, Z. H., Rui, Y. C., Luo, C. Y., Xu, B., Zhu, X. X., & Chang, X. F. (2012). Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. *Ecology*, 93(11), 2365–2376. <https://doi.org/10.1890/11-1408.1>

Wang, Y. B., Jiang, Q., Yang, Z. M., Sun, W., & Wang, D. L. (2015b). Effects of water and nitrogen addition on ecosystem carbon exchange in a meadow steppe. *PLoS ONE*, 10(5), e0127695. <https://doi.org/10.1371/journal.pone.0127695>

Wang, Z., Li, Y. H., Hao, X. Y., Zhao, M. L., & Han, G. D. (2015c). Responses of plant community coverage to simulated warming and nitrogen addition in a desert steppe in Northern China. *Ecological Research*, 30(4), 605–614. <https://doi.org/10.1007/s11284-015-1265-3>

Wertin, T. M., Reed, S. C., & Belnap, J. (2015). C 3 and C 4 plant responses to increased temperatures and altered monsoonal precipitation in a cool desert on the Colorado Plateau, USA. *Oecologia*, 177(4), 997–1013. <https://doi.org/10.1007/s00442-015-3235-4>

Willems, J., Peet, R., & Bik, L. (1993). Changes in chalk-grassland structure and species richness resulting from selective nutrient additions. *Journal of vegetation science*, 4(2), 203–212. <https://doi.org/10.2307/3236106>

Willems, J., & Van Nieuwstadt, M. (1996). Long-term after effects of fertilization on above-ground phytomass and species diversity in calcareous grassland. *Journal of Vegetation Science*, 7(2), 177–184. <https://doi.org/10.2307/3236317>

Winkler, J. B., & Herbst, M. (2004). Do plants of a semi-natural grassland community benefit from long-term CO₂ enrichment? *Basic and Applied Ecology*, 5(2), 131–143. <https://doi.org/10.1078/1439-1791-00219>

Wu, Z., Dijkstra, P., Koch, G. W., & Hungate, B. A. (2012). Biogeochemical and ecological feedbacks in grassland responses to warming. *Nature Climate Change*, 2(6), 458. <https://doi.org/10.1038/nclimate1486>

Xu, X., Luo, Y. Q., Shi, Z., Zhou, X. H., & Li, D. J. (2014). Consistent proportional increments in responses of belowground net primary productivity to long-term warming and clipping at various soil depths in a tallgrass prairie. *Oecologia*, 174(3), 1045–1054. <https://doi.org/10.1007/s00442-013-2828-z>

Xu, X. T., Liu, H. Y., Song, Z. L., Wang, W., Hu, G. Z., & Qi, Z. H. (2015). Response of aboveground biomass and diversity to nitrogen addition along a degradation gradient in the Inner Mongolian steppe, China. *Scientific Reports*, 5, 10284. <https://doi.org/10.1038/srep10284>

Xu, Z. W., Wan, S. Q., Zhu, G. L., Ren, H. Y., & Han, X. G. (2010). The influence of historical land use and water availability on grassland restoration. *Restoration Ecology*, 18, 217–225. <https://doi.org/10.1111/j.1526-100X.2009.00595.x>

Yamada, D., Ebato, M., & Shibuya, T. (2014). Fertilizer efficiency of two types of coated urea in a pasture. *Grassland science*, 60(1), 36–44. <https://doi.org/10.1111/grs.12038>

Yang, G. W., Liu, N., Lu, W. J., Wang, S., Kan, H. M., Zhang, Y. J., Xu, L., & Chen, Y. L. (2014). The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. *Journal of Ecology*, 102(4), 1072–1082. <https://doi.org/10.1111/1365-2745.12249>

Yang, H. J., Li, Y., Wu, M. Y., Zhang, Z., Li, L. H., & Wan, S. Q. (2011a). Plant community responses to nitrogen addition and increased precipitation: The importance of water availability and species traits. *Global Change Biology*, 17(9), 2936–2944. <https://doi.org/10.1111/j.1365-2486.2011.02423.x>

Yang, H. J., Wu, M. Y., Liu, W. X., Zhang, Z., Zhang, N. L., & Wan, S. Q. (2011b). Community structure and composition in response to climate change in a temperate steppe. *Global Change Biology*, 17(1), 452–465. <https://doi.org/10.1111/j.1365-2486.2010.02253.x>

Yang, X., Yang, Z. L., Tan, J. Q., Li, G. Y., Wan, S. Q., & Jiang, L. (2018). Nitrogen fertilization, not water addition, alters plant phylogenetic community structure in a semi-arid steppe. *Journal of Ecology*, 106(3), 991–1000. <https://doi.org/10.1111/1365-2745.12893>

Yang, Z. L., Jiang, L., Su, F. L., Zhang, Q., Xia, J. Y., & Wan, S. Q. (2016). Nighttime warming enhances drought resistance of plant communities in a temperate steppe. *Scientific Reports*, 6, 23267. <https://doi.org/10.1038/srep23267>

Yang, Z. L., van Ruijven, J., & Du, G. Z. (2011c). The effects of long-term fertilization on the temporal stability of alpine meadow communities. *Plant and Soil*, 345(1–2), 315–324. <https://doi.org/10.1007/s11104-011-0784-0>

Yang, Z. L., Zhang, Q., Su, F. L., Zhang, C. H., Pu, Z. C., Xia, J. Y., Wan, S. Q., & Jiang, L. (2017). Daytime warming lowers community temporal stability by reducing the abundance of dominant, stable species. *Global Change Biology*, 23(1), 154–163. <https://doi.org/10.1111/gcb.13391>

Zavaleta, E. S., Shaw, M. R., Chiariello, N. R., Thomas, B. D., Cleland, E. E., Field, C. B., & Mooney, H. A. (2003). Grassland responses to three years of elevated temperature, CO₂, precipitation, and N deposition. *Ecological Monographs*, 73(4), 585–604. <https://doi.org/10.1890/02-4053>

Zhang, L. H., Xie, Z. K., Zhao, R. F., & Zhang, Y. B. (2018). Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland. *Applied Soil Ecology*, 127, 87–95. <https://doi.org/10.1016/j.apsoil.2018.02.005>

Zhang, T., Guo, R., Gao, S., Guo, J. X., & Sun, W. (2015a). Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem. *PLoS ONE*, 10(4), e0123160. <https://doi.org/10.1371/journal.pone.0123160>

Zhang, X. L., Tan, Y. L., Li, A., Ren, T. T., Chen, S. P., Wang, L. X., & Huang, J. H. (2015b). Water and nitrogen availability co-control ecosystem CO₂ exchange in a semiarid temperate steppe. *Scientific Reports*, 5, srep15549. <https://doi.org/10.1038/srep15549>

Zhou, X. B., Bowker, M. A., Tao, Y., Wu, L., & Zhang, Y. M. (2018). Chronic nitrogen addition induces a cascade of plant community responses with both seasonal and progressive dynamics. *Science of the Total Environment*, 626, 99–108. <https://doi.org/10.1016/j.scitotenv.2018.01.025>

Zhu, H., Wang, D. L., Wang, L., Fang, J., Sun, W., & Ren, B. Z. (2014). Effects of altered precipitation on insect community composition and structure in a meadow steppe. *Ecological Entomology*, 39(4), 453–461. <https://doi.org/10.1111/een.12120>

Zhu, H., Zou, X. H., Wang, D. L., Wan, S. Q., Wang, L., & Guo, J. X. (2015). Responses of community-level plant-insect interactions to climate warming in a meadow steppe. *Scientific Reports*, 5, 18654. <https://doi.org/10.1038/srep18654>

Zong, N., Shi, P. L., Chai, X., Jiang, J., Zhang, X. Z., & Song, M. H. (2017). Responses of ecosystem respiration to nitrogen enrichment and clipping mediated by soil acidification in an alpine meadow. *Pedobiologia*, 60, 1–10. <https://doi.org/10.1016/j.pedobi.2016.11.001>

Zong, N., Shi, P. L., Song, M. H., Zhang, X. Z., Jiang, J., & Chai, X. (2016). Nitrogen critical loads for an alpine meadow ecosystem on the Tibetan Plateau. *Environmental Management*, 57(3), 531–542. <https://doi.org/10.1007/s00267-015-0626-6>

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Su, J., Zhao, Y., Xu, F., & Bai, Y. (2022). Multiple global changes drive grassland productivity and stability: A meta-analysis. *Journal of Ecology*, 110, 2850–2869. <https://doi.org/10.1111/1365-2745.13983>