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ARTICLE INFO ABSTRACT

Editor: Manuel Esteban Lucas-Borja Plants may slow global warming through enhanced growth, because increased levels of photosynthesis stimulate the
land carbon (C) sink. However, how climate warming affects plant C storage globally and key drivers determining the
Keywords: response of plant C storage to climate warming remains unclear, causing uncertainty in climate projections. We per-
C-climate feedback formed a comprehensive meta-analysis, compiling 393 observations from 99 warming studies to examine the global

Climate warming patterns of plant C storage responses to climate warming and explore the key drivers. Warming significantly increased

Nitrogen availability

Meta-analysis
Mycorrhizal association
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total biomass ( + 8.4 %), aboveground biomass (+ 12.6 %) and belowground biomass (+ 10.1 %). The effect of exper-
imental warming on plant biomass was best explained by the availability of soil nitrogen (N) and water. Across the en-
tire dataset, warming-induced changes in total, aboveground and belowground biomass all positively correlated with
soil C:N ratio, an indicator of soil N availability. In addition, warming stimulated plant biomass more strongly in humid
than in dry ecosystems, and warming tended to decrease root:shoot ratios at high soil C:N ratios. Together, these results
suggest dual controls of warming effects on plant C storage; warming increases plant growth in ecosystems where N is
limiting plant growth, but it reduces plant growth where water availability is limiting plant growth.
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1. Introduction

Terrestrial ecosystems around the world are experiencing unprece-
dented climate warming, with global average temperatures projected to in-
crease between 1.1 and 6.4 °C over the next 100 years (IPCC, 2013). Rising
temperatures can stimulate decomposition of soil organic matter (Chen
et al., 2018), leading to a positive climate-carbon feedback (Arora et al.,
2020; Nottingham et al., 2020). Counteracting this, plants may buffer the
pace of global warming through enhanced photosynthesis, partly offsetting
soil C losses (Lu et al., 2013).

Over the last three decades, numerous studies have aimed to quantify
the response of plants to global warming by exposing them to experimental
warming. Recent meta-analyses of these studies suggest that experimental
warming generally stimulates plant biomass (Lin et al., 2010; Lu et al.,
2013; Song et al., 2019), but individual studies also reported decreases
(Lambrecht et al., 2007) and no changes in plant growth (Lim et al.,
2019). Several factors have been suggested as potential drivers of the re-
sponse of plant biomass to warming, including plant type (Lin et al.,
2010), ecosystem type, warming method and experiment duration (Lu
et al., 2013). The relative importance of these predictors remains unclear,
creating uncertainty in climate projections (Bradford et al., 2016).

Warming generally increases N availability by stimulating decomposi-
tion rates, as observed across a wide range of experimental and environ-
mental conditions (Rustad et al., 2001; Bai et al., 2013). Moreover,
warming generally stimulates the production of ligninase (Chen et al.,
2018), which could increase soil N availability because many N-
containing molecules are physically and chemically shielded by lignified
macromolecules (Moorhead and Sinsabaugh, 2006). Because N limits
plant production around the world (LeBauer and Treseder, 2008; Terrer
et al., 2019), these responses may stimulate plant growth, redistributing
N from soils to plants and causing net ecosystem C storage (e.g. Shaver
et al., 2000). Several experimental warming studies indeed suggest this is
the case (e.g. Schmidt et al., 2002; Melillo et al., 2011). Other studies
found that N additions reduce the positive effect or exacerbate negative ef-
fects of warming on plant growth (e.g. Chapin et al., 1995; Jonasson et al.,
1999; Rasheed et al., 2020). Together, these findings suggest that soil N sta-
tus is a key predictor of ecosystem responses to warming, and that warming
will increase plant biomass most strongly in ecosystems where N is limiting
plant growth. However, none of the aforementioned meta-analyses in-
cluded soil N availability as a predictor for treatment effects across their
datasets, making its role in determining the impact of warming unclear.

Plant responses to warming may also depend on climatic conditions
(Song et al., 2019). Indeed, several studies suggest that in water-limited
ecosystems, warming may suppress plant growth by decreasing soil mois-
ture contents (Bai et al., 2013). Warming-induced reductions in soil mois-
ture may increase drought stress in plants (e.g. Saleska et al., 1999;
Winkler et al., 2016) and may limit soil N cycling in semiarid and arid re-
gions (Bai et al., 2013). Based on these results, we hypothesized that N
availability and water availability jointly determine plant growth responses
to warming. To test our hypothesis, we synthesized 393 observations from
99 warming studies conducted in the field (Fig. 1, and Supplementary Text
S1), separating responses of total biomass (n = 94), aboveground biomass
(n = 181) and belowground biomass (n = 118), to evaluate the key drivers
determining warming responses of plant biomass. We trained a random-
forest meta-analysis model with this dataset to identify the underlying fac-
tors that best explain variation in the plant biomass response.

2. Materials and methods
2.1. Data collection

We collected published data on total, aboveground and belowground
biomass from climate warming experiments conducted in the field. We
used Web of Science, Google Scholar and the China National Knowledge In-
frastructure database (CNKI) to gather a total of 99 studies on manipulative
warming experiments published before December 2020 (Data S1, Notes
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S1). Search terms were either “experimental warming” or “elevated temper-
ature” or “climate change” and “plant production” or “plant biomass” or
“total biomass” or “aboveground biomass” or “belowground biomass”. We
only included the most recent data if variables were measured multiple
times within the same experiment. We excluded studies that 1) did not report
information on the experimental design (e.g., warming method, warming
magnitude); 2) lasted <1 growing season; 3) applied warming treatments
by transplanting soils along climate gradients; 4) showed differences in initial
species composition between control and warmed plots. Some studies in-
cluded in our dataset included multifactor global change experiments. For
these studies, we only compared control and warmed plots under equivalent
experimental conditions. We excluded observations at elevated CO, concen-
trations, as we intended to study the effect of warming under environmental
conditions that are existing in the world today. Mean values and standard er-
rors were taken from tables or extracted from figures using Web PlotDigitizer
(https://apps.automeris.io/wpd/). Our dataset is more than twice as large as
those used in recent meta-analyses on the same topic (Lin et al., 2010; Lu
et al., 2013; Song et al., 2019), and includes additional 61 studies that were
not included in any of these previous analyses.

For each experiment in our dataset, we tabulated information on N ad-
dition, longitude, latitude, mean annual precipitation (MAP), mean annual
temperature (MAT), warming magnitude (AT), experimental duration,
plant type, ecosystem type and warming method. We also tabulated soil
C:N ratio, an indicator for soil N availability (e.g. Ordofiez et al., 2009;
Van Sundert et al., 2020; Terrer et al., 2019). Because plant N acquisition
strategies depend on mycorrhizal association of the host plant (Terrer
etal., 2016), we also tabulated information on the mycorrhizal association
of the dominant species at each experimental site, using the database of
Wang and Qiu (2006). Data on MAT and MAP were obtained from the
WordClim database (http://www.worldclim.org/) if they were not re-
ported in the reference. Soil C:N data were obtained from the reference,
or from other studies conducted within the same experiment. If soil C:N
data were not reported in the literature, which was the case for 25 studies in
our dataset, we obtained these data (for 0-15 cm soil depth) from the
SoilGrids database (https://www.isric.org/explore/soilgrids). Soil C:N ratios
vary with depth (e.g. Marty et al., 2017), but studies in our dataset reported
soil C:N ratios across a range of sampling depths. To account for this source
of uncertainty, we repeated our analysis using soil C:N data derived from
SoilGrids (see Materials and methods) for all observations in our dataset,
thereby assuming the same sampling depth for all experiments. For each ex-
periment in our dataset we calculated the aridity index (AI) as the ratio of an-
nual precipitation over potential evaporation; the latter term was obtained
from the WorldClim database. Based on the Al, we classified experiments as
arid (Al < 0.2), semi-arid (0.2 < Al < 0.5), subhumid (0.5 < Al < 0.65) or
humid (0.65 < AI) (Middleton and Thomas, 1997). In total, we included 12
predictors of warming effects in our analysis (Supplementary Table S1).

2.2. Meta-analysis

We quantified the effect of warming on total, aboveground and below-
ground biomass by calculating the natural log of the response ratio (LnR), a
metric commonly used in meta-analysis (Hedges et al., 1999). We weighted
LnR by the inverse of its variance and estimated missing variances using the
average coefficient of variation across our data set.

We used random-forest model selection to identify the most important
predictors of the warming effects on total, aboveground and belowground
biomass, following the same approach as Terrer et al. (2019, 2021). In
short, we conducted variable pre-selection by including the 12 predictors in
the R package metaforest (Van Lissa, 2017) with 10,000 iterations, replicated
100 times with a recursive algorithm in the preselect function from the R pack-
age metafor (Viechtbauer, 2010). Moderators that consistently displayed neg-
ative variable importance (i.e., that showed a reduction in predictive
performance) were dropped using the preselect vars function. Moderators
that improved predictive performance were then carried forward to optimize
the model. Parameters of the metaforest model were optimized using the train
function from the caret package (Kuhn, 2008). Unlike maximum likelihood


https://apps.automeris.io/wpd/
http://www.worldclim.org/
https://www.isric.org/explore/soilgrids

G. Zhou et al.

Soil C:N
5-10
10 - 15
15 - 22

® 22-31
® 31-45

Science of the Total Environment 851 (2022) 158243

Fig. 1. Geographical distribution of experimental sites included in our dataset. The colour of each data point indicates the soil C:N value at the corresponding site.

model-selection approaches, this method can handle many potential predic-
tors and their interactions and considers nonlinear relationships.
Meta-analysis was conducted using the rma.my function in metafor, in-
cluding the variable “study” as a random factor to account for non-
independence of observations derived from the same study. The effects of
warming were considered significant if the 95 % confidence interval did
not overlap with zero. The results of LnR were back-transformed and re-
ported as the percentage change under warming (i.e. 100 x (e"™® — 1))

to ease interpretation. We evaluated the impacts of soil C:N on warming-
induced change in total, aboveground and belowground biomass using lin-
ear regression analysis in R. We also assessed the effect of N availability in
the subset of studies that included warming x N factorial experiments,
comparing plant responses to warming between high vs. low N treatments
for total (Data S2), aboveground (Data S3) and belowground (Data S4) bio-
mass. By keeping all other experimental factors constant, this analysis
allowed us to test directly whether plant biomass responses to warming
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Fig. 2. Meta-analysis of the effect of experimental warming on total plant biomass (a), aboveground biomass (b) and belowground biomass (c) across different factors. Error
bars represent 95 % confidence intervals; sample sizes are shown in parentheses. Arrows represent 95 % confidence intervals that extend beyond the limits of the plot. AM,

arbuscular mycorrhizae; ECM, ectomycorrhizae; OTC, open top chamber.
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depend on soil N availability. Due to a lack of data, the same approach
could not be applied to warming X water factorial experiments.

3. Results

We found that warming significantly increased total biomass by 8.4 %
(Fig. 2; 95 % confidence interval: 3.3 %-13.8 %), aboveground
biomass by 12.6 % (8.1-17.4 %) and belowground biomass by 10.1 %
(4.8-15.7 %). Across the experiments that reported both above- and below-
ground biomass, warming significantly increased the root:shoot ratio by 3.6
% (1.1-6.1 %). Warming significantly increased total biomass, above-
ground biomass and belowground biomass of woody plants while no effect
was found for herbaceous plants.

Across these variables, the effects of warming on total, above- and be-
lowground biomass were best predicted by soil C:N ratio and AI (Fig. 3).
Soil C:N ratio positively correlated with warming-induced changes in
total biomass (R* = 0.16, P < 0.001), aboveground biomass (R* = 0.26,
P < 0.001) and belowground biomass (R*> = 0.22, P < 0.001) (Fig. 3).
These correlations were significant within the individual subsets of studies
on herbaceous and woody plants (Fig. S1). When we repeated our analysis
using soil C:N ratios derived from SoilGrids for all studies in our dataset,
treatment effects again increased with soil C:N for both total, aboveground
and belowground biomass (Fig. S2).

The response of root:shoot ratios to warming decreased with soil C:N
ratio (Fig. 4; P < 0.05), with positive treatment effects dominating the
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lower half of the soil C:N range, and negative treatment effects dominating
the upper half.

Within the subset of data from factorial warming X N addition experi-
ments, the positive effects of warming on total, aboveground and below-
ground biomass were all significantly higher in the low N treatments than
in the high N treatments (Fig. 5). In addition to soil C:N, Al was also an impor-
tant predictor for plant growth responses to warming, with plants in humid
climates responding more strongly to warming than in dry climates (Figs. 2,
S3). Across our dataset, soil C:N ratios increased with AI (P < 0.05; Fig. S4).

4, Discussion

Our finding that warming on average increases plant biomass confirms
previous meta-analyses (Lin et al., 2010; Lu et al., 2013; Song et al., 2019),
and our analysis identified N as a key driver of plant growth responses to
warming. Warming responses are diminished in low soil C:N regions, be-
cause plant growth is less limited by the amount of available N (Chapin
et al., 2002). Soil C:N is a stronger predictor for total and aboveground bio-
mass responses to warming than root biomass responses, consistent with
previous meta-analyses showing that increases in N availability stimulate
aboveground biomass more strongly than root biomass (e.g. Lu et al.,
2011).

The key role of soil N availability is further supported by our analysis of
factorial warming x N addition experiments; our finding that N additions ne-
gated the positive effect of warming on plant biomass confirms that warming
stimulates plant growth most strongly at low soil N availability and suggests
that warming enhances plant growth by increasing N availability. These re-
sults partly confirm Song et al. (2019), who found a significant interaction be-
tween warming and N addition in their analysis of factorial warming x N
experiments for aboveground biomass, but not for total and belowground
plant biomass. This difference between our study and Song et al. (2019)
possibly reflects the larger size of our dataset, increasing statistical power to
detect differences between experimental categories.

In the temperate zone, soils under herbaceous vegetation typically have
lower C:N ratios than soils under woody vegetation (e.g. Cotrufo et al.,
2019). Thus, the correlation between soil C:N and treatment effects on
plant biomass could in theory be driven by differences between plant func-
tional types rather than by soil C:N per se. However, the same correlations
outlined above were also significant within the individual subsets of studies
on herbaceous and woody plants (Fig. S1). Together, these findings provide
further support for our interpretation that the response of plant biomass to
warming is largely determined by soil N availability.

Climate warming slightly decreased total, aboveground and below-
ground biomass at low soil C:N ratios (Fig. 3). These results likely reflect
the negative effect of warming exacerbating drought stress in dry

ecosystems (Xu et al., 2013), which are characterized by low C:N ratios
(Fig. S4; Miller et al., 2004). This explanation is supported by the overall
importance of Al as a predictor (Fig. 2; Song et al., 2019), and by individual
studies indicating that water addition negates negative effects of warming
on plant growth in dry climates (e.g. Zhao et al., 2019; Yu et al., 2019).
On the other hand, N addition stimulates plant growth more strongly in
humid climates than in dry climates (Xia and Wan, 2008). Together,
these findings suggest that plant growth responses to warming are dictated
by Lieibig's law of the minimum; warming increases plant growth in ecosys-
tems where N is limiting plant growth by increasing N availability, but it re-
duces plant growth where water availability is limiting plant growth by
increasing drought stress (Figs. 2, S3). This interpretation is consistent
with the negative correlation we found between soil C:N and the effect of
warming on root:shoot ratios. Plants typically shift carbon allocation above-
ground following an increase in N availability (e.g. Lu et al., 2011), espe-
cially in systems where N is limiting, i.e. in soils with high C:N ratios,
thereby decreasing root:shoot ratios. In contrast, N is less likely to be limit-
ing plant growth in soils with low C:N ratios. Because ecosystems with low
soil C:N ratios tend to be relatively dry, warming-induced drought stress in-
creases carbon allocation to roots (e.g. Zhou et al., 2016; Song et al., 2019),
thereby increasing root:shoot ratios.

The uneven distribution of experiments around the globe limits predic-
tions. Warming experiments are mainly clustered in North America, Europe
and China, with only a few in the Southern Hemisphere and at high lati-
tudes in the Northern Hemisphere. Our dataset also does not include any
studies conducted in the tropics. This spatial bias is important, because
the largely unstudied tropical forests contain the largest reservoir of bio-
mass C, and some models suggest that warming will decrease the tropical
land C sink (e.g. Cox et al., 2000). Indeed, a study published after our liter-
ature search had finished suggests that experimental warming decreases
root growth in a humid tropical forest with relatively low soil C:N ratios
(Yaffar et al., 2021). This warming experiment was affected by two hurri-
cane events and may therefore not be representative for large areas of trop-
ical forests. Nonetheless, these findings suggest that the results of our meta-
analysis possibly cannot be extrapolated to the tropics and emphasize the
need for more experimental warming studies in this climate zone. Clearly,
to improve predictions of carbon-climate feedbacks we need a better under-
standing of the processes driving the response of tropical ecosystems to
warming (Wang et al., 2014; Cavaleri et al., 2015).

Warming-induced increases in plant growth may decrease over time, as
mineralizable N pools will eventually deplete following increases in decom-
position rates and plant N uptake (Lim et al., 2019). Our finding that
warming responses did not depend on experiment duration suggests that
this may not happen globally within the time frame of the studies in our
dataset (that is, 1-14 years). Predicting dynamics of warming-induced



G. Zhou et al.

increases in N availability beyond this range requires longer-term experi-
ments and modelling efforts. Indeed, early terrestrial ecosystem models al-
ready predicted that warming stimulates plant growth by stimulating N
mineralization, and that warming stimulates plant growth most strongly
in N limited ecosystems (e.g. Melillo et al., 1993). The latest generation of
Earth system models now mostly include N limitations on plant growth as
well (Davies-Barnard et al., 2020). Most of these models predict a decrease
in global NPP with warming (Arora et al., 2020), largely because projected
temperatures exceed the optimal temperature for photosynthesis in the tro-
pics (Ziehn et al., 2021). However, some stimulation of plant growth occurs
by warming through increased soil N availability (Arora et al., 2020), caus-
ing smaller warming-induced decreases in global NPP in the ESMs that in-
clude the N cycle relative to those that do not (Ziehn et al., 2021). Our
findings may inform these models by identifying quantitative relationships
between the plant growth response to warming and empirical indicators of
N availability that are spatially explicit at the global scale (Terrer et al.,
2019). Similarly, droughts will increase with future climate warming
(Lehner et al., 2017; Park et al., 2018), causing drylands to expand
(Huang et al., 2016). Therefore, in addition to soil N availability, water lim-
itation of plant growth and plant traits associated with drought stress resis-
tance (e.g. Rowland et al., 2021) will be key to predicting future plant C
storage.
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