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ABSTRACT

Exploratory analysis over network data is often limited by the
ability to efficiently calculate graph statistics, which can provide
a model-free understanding of the macroscopic properties of a
network. We introduce a framework for estimating the graphlet
count—the number of occurrences of a small subgraph motif (e.g.
a wedge or a triangle) in the network. For massive graphs, where
accessing the whole graph is not possible, the only viable algo-
rithms are those that make a limited number of vertex neighbor-
hood queries. We introduce a Monte Carlo sampling technique for
graphlet counts, called Lifting, which can simultaneously sample
all graphlets of size up to k vertices for arbitrary k. This is the first
graphlet sampling method that can provably sample every graphlet
with positive probability and can sample graphlets of arbitrary size
k. We outline variants of lifted graphlet counts, including the or-
dered, unordered, and shotgun estimators, random walk starts, and
parallel vertex starts. We prove that our graphlet count updates are
unbiased for the true graphlet count and have a controlled vari-
ance for all graphlets. We compare the experimental performance
of lifted graphlet counts to the state-of-the art graphlet sampling
procedures: Waddling and the pairwise subgraph random walk.
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1 INTRODUCTION

In 1970, [7] discovered that transitivity—the tendency of friends
of friends to be friends themselves—is a prevalent feature in social
networks. Since that early discovery, real-world networks have
been observed to have many other common macroscopic features,
and these discoveries have led to probabilistic models for networks
that display these phenomena. The observation that transitivity
and other common subgraphs are prevalent in networks motivated
the exponential random graph model (ERGM) [8]. [2] demonstrated
that many large networks display a scale-free power law degree
distribution, and provided a model for constructing such graphs.
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Similarly, the small world phenomenon—that networks display sur-
prisingly few degrees of separation—motivated the network model
in [23]. While network science is often driven by the observation
and modelling of common properties in networks, it is incumbent
on the practicing data scientist to explore network data using sta-
tistical methods.

One approach to understanding network data is to fit free param-
eters in these network models to the data through likelihood-based
or Bayesian methods [20, 22]. Network statistics, such as the clus-
tering coefficient, algebraic connectivity, and degree sequence, are
more flexible tools. A good statistic can be used to fit and test mod-
els, for example, [23] used the local clustering coefficient, a measure
of the number of triangles relative to wedges, to test if a network is
a small-world graph. It was discovered that re-occurring subgraph
patterns can be used to differentiate real-world networks, and that
genetic networks, neural networks, and internet networks all pre-
sented different common interconnectivity patterns, [13]. In this
work, we will propose a new method for counting the occurrences
of any subgraph pattern, otherwise known as graphlets—a term
coined in [15]—or motifs.
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Figure 1: Examples of graphlets

A graphlet is a small connected graph topology, such as a triangle,
wedge, or k-clique, which we will use to describe the local behavior
of a larger network (example graphlets of size 3, 4, and 5, can be
seen in Figure 1). Let the graph in question be G = (V, E) where V
is a set of vertices and E is a set of unordered pairs of vertices (G is
assumed to be connected, undirected, and unweighted). Imagine
specifying a k-graphlet and testing for every induced subgraph of
the graph (denoted G|{v1, . ..,vi} where vy,...,vp € V), ifitis
isomorphic to the subgraph (it has the same topology). We would
like to compute the number of Connected Induced Subgraphs of
size k (denoted by k-CIS throughout) for which this match holds.
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We call this number the graphlet counts and the proportion of the
number of such matches to the total number of k-CISs is called the
graphlet coefficient.

Graphlets are the graph analogue of wavelets (small oscillatory
functions that are convolved with a signal to produce wavelet co-
efficients) because they are small topologies that are matched to
induced subgraphs of the original graph to produce the graphlet co-
efficients. Graphlet coefficients, also referred to as graph moments,
are used to fit certain graph models by the method of moments, [4],
and also are used to understand biological networks [16]. A naive
graphlet counting method simply counts every induced subgraph
which takes on the order of n¥ iterations. In a typical graph, the
majority of induced subgraphs are disconnected, which would not
count as a graphlet, so the majority of these iterates would not
count toward the graphlet coefficient. We propose a class of Monte
Carlo sampling methods called lifting that allow us to quickly esti-
mate graphlet coefficients. The lifting step takes a CIS of size k — 1
and produces a CIS of size k by adding an adjacent vertex to it
(according to a specific scheme), thereby forming graphlet samples
in an inductive, bottom-up fashion (see 2).

Monte Carlo sampling procedures perform random walks on
graphlets of a certain size within a large network. These methods
have the advantage of only requiring local graph information at
every step, which makes them memory efficient in computation.
The challenge in designing such an algorithm is showing that the
sampling procedure is unbiased in its graphlet estimates, has low
variance, and is sample efficient. Two such methods are GUISE
algorithm of [3] and the pairwise subgraph random walk (PSRW) of
[21], which differ in the way they perform a random walk between
CIS samples. Another option is to generate a sequence of vertices
that induces a CIS sample, which has been done in [11] using an
algorithm called the Waddling random walk. Very efficient exact
count methods exist [1, 5, 14, 17], but they have not been extended
to counting graphlets larger than k = 5.

We note that graphlet frequencies are one type of graph feature
that relate to the proportion of motifs in a graph. However, they do
not reflect more global properties of a graph, and are not comparable
to graph embeddings such as GraphSAGE [10] or node2vec [9].
Hence we do not offer such comparisons.

1.1 Our contributions

We provide two methods, the ordered lift estimator and the un-
ordered lift estimator, which differ in the way that subgraphs are
represented and counted. The ordered estimator allows for a modifi-
cation, called shotgun sampling that samples multiple subgraphs in
one shot, which effectively gives it more samples per iteration. For
our theoretical component, we prove that the estimated graphlet
coefficients are unbiased, and prove that the variance of the estima-
tor scales like AK=2 where A is the maximum degree. We conclude
with real-world network experiments that reinforce the contention
that graphlet lifting is competitive with a specialized Waddling
implementation and has better accuracy than subgraph random
walks. We implement 6-graphlet lifting on a 2.9M vertex Facebook
graph, demonstrating that lifting is the first sampling scheme that
can scale to 1M sized graphs and k-graphlets where k > 5, and do
so without any specialized modifications.
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2 SAMPLING GRAPHLETS

2.1 Definitions and notation

Recall our definitions thus far: G = (V, E) is a simple graph, G|W
is the induced subgraph for W c V. The set of all connected in-
duced k-subgraphs (or k-CISs) of G is denoted by Vi (G) (or simply
“Vi)- An unordered set of vertices is denoted {v1, .. ., vy} while an
ordered list is denoted [v1, . .., v ]. Let Hy, Ha, . .., Hy be all non-
isomorphic motifs for which we would like the graphlet counts. For
T € Vi.(G), we say that “T is subgraph of type m” if T is isomorphic
to Hp,, and denote this with T ~ Hy,. The number of k-subgraphs
in G of type m is equal to N (G) = Xrey,(c) 1(T ~ Hm), where
1(A) is the indicator function. For a subgraph S C G, denote Vs to
be the set of its vertices, Egs to be the set of its edges. Denote Ny, (S)
(vertex neighborhood of S) to be the set of all vertices adjacent to
some vertex in S not including S itself. Denote N, (S) (edge neigh-
borhood of S) to be the set of all edges that connect a vertex from
S and a vertex outside of S. Also, denote deg(S) (degree of S) to be
the number of edges in Ne(S), and denote degg(u) (S-degree of u)
to be the number of vertices from S that are connected to u. Note
that deg(S) + 2|Es| = Xy ey, deg(v).

2.2 Prior graphlet sampling methods

The ideal Monte Carlo procedure would sequentially sample CISs
uniformly at random from the set Vi (G), classify their type, and
update the corresponding counts. Unfortunately, uniformly sam-
pling CISs is not a simple task because a random set of k vertices
is unlikely to be connected. CIS sampling methods require Monte
Carlo Markov Chains (MCMCs) for which one can calculate the
stationary distribution, 7, over the elements of V. First, let us
consider how we update the graphlet counts, Ny, (G), given a sam-
ple of CISs, Ty, Ty, . . ., Ty Then we use Horvitz-Thompson inverse
probability weighting to estimate the graphlet counts,

1 & L(T; ~ Hy)
>

Nm(G) = ; - 2(Ty)

(1)
It is simple to see that this is an unbiased estimate of the graphlet
counts as long as 7 is supported over all elements of V.

Let us describe the subgraph random walk in [21] called the
pairwise subgraph random walk (PSRW). In order to perform a
random walk where the states are subgraphs V., we form the CIS-
relationship graph. Two k-CISs, T, S € V. are connected with an
edge if and only if vertex sets of T and S differ by one element,
i.e. when |V(T) N V(S)| = k — 1. Given the graph structure, we
sample k-CISs by a random walk on the set V., which is called
Subgraph Random Walk (SRW). Because the transition from state
S € Vi is made uniformly at random to each adjacent CIS, we know
that the stationary distribution will sample each edge in the CIS-
relationship graph with equal probability. This fact enables [21] to
provide a local estimator of the stationary probability 7(S). PSRW
is a modification of the SRW algorithm, where each transition is
performed from S to T in Vj._; and then the k-CIS SUT is returned.

Being a random walk-based procedure, insufficient mixing can
cause PSRW to be biased if the burn-in period is not long enough.
It was pointed out in [5] that the mixing time of the SRW can be
of order O(nk~2), even if the mixing time of the random walk on
the original graph G is of constant order O(1). PSRW also requires
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global constants based on the CIS-graph, which can be computa-
tionally intractable (super-linear time). It should also be noted that
a burn-in period is required for PSRW to converge to the stationary
distribution, so any distributed sampling scheme will require all
runs to perform this burn-in.

A naive method for sampling CIS’s would be to perform a ran-
dom walk on the graph, G, and then sample the k vertices most
recently visited. This scheme is appealing because it has an easy
to compute stationary distribution, and can ‘inherit’ the mixing
rate from the random walk on G (which is relatively small). Despite
these advantages, certain graphlet topologies, such as stars, will
never be sampled, and modifications are needed to remedy this
defect. [6] combined this basic idea with the SRW by maintaining a
I length history of the SRW on CISs of size k — [ + 1, and unioning
the history, but this suffers from the same issues as SRW, such as
slow mixing and the need to calculate global constants based on
the CIS-graph.

[11] introduced a Waddling protocol which retains a memory
of the last s vertices in the random walk on G and then extends
this subgraph by k — s vertices from either the first or last vertex
visited in the s-subgraph (this extension is known as the ‘waddle’).
Waddling requires that one samples from the stationary distribution
over G, but this can be achieved by selecting an edge uniformly at
random from the graph, thus avoiding the burn-in. The authors pro-
vide recommendations for calculating the stationary distribution
for this MCMC, and prove a bound on the error for the graphlet
coeflicients. The upside to this method is that the precise Wad-
dling protocol used should depend on the desired graphlet, and
the algorithm involves a rejection step which may lead to a loss of
efficiency. This is simultaneously a downside of the method: the
general specification of the method makes the algorithm implemen-
tation difficult. In contrast, lifting requires little tuning, perhaps at
the expense of customizability. Finally, lifting has the advantage of
never rejecting graphlets, has similar theoretical guarantees, and
has simple parallel extensions.

3 SUBGRAPH LIFTING

The lifting algorithm is based on a randomized protocol of attach-
ing a vertex to a given CIS. For any (k — 1)-CIS, S, we lift it to a
k-subgraph by adding a vertex from its neighborhood, Ny (S) at
random according to some probability distribution. Note that this
basic lifting operation can explore any possible subgraph in V.
You can see an example of the lifting sampling scheme in Figure
2, where the algorithm iteratively builds a 4-CIS from a chosen node.
First assume we have a node v; sampled from the distribution 7y,
a base distribution that can be computed from local information
(step (a)). We assume that m1(v) = m, where f(x) is some
function (usually a polynomial) and K is some global normalizing
constant which is assumed to be precomputed. Denote S; = {v1}.
To start our procedure, sample an edge (v, v2) uniformly from
Ne(S1) (step (b)). The vertex v is then attached to Sq, forming a
subgraph S = G|(Vs, +v2) (step (c)). After that, we sample another
edge (v;,v3) (with 1 < i < 2) uniformly from Ne(S2), and the vertex
v3 is then attached to S (steps (d-f)). At each step we sample an
edge (vj,vr41) (With 1 < i < r) from Ne(S;) uniformly at random,
and attach the vertex v,4; to the subgraph S, (steps (g-h)). After
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Figure 2: Lifting procedure

k — 1 operations, we obtain a k-CIS, T = Si. We'll refer to the
procedure above as the lifting procedure starting at vertex vy.

Once a k-CIS, T, has been sampled we need to classify its graphlet
topology, Hy, ~ T. Because lifting does not target specific graphlet
topologies, we need to be prepared to modify the coefficient for any
graphlet (the coefficients are elaborated on in the next section).

By induction, we can see that every k-CIS has a non-zero prob-
ability of being visited, assuming that 7; is supported on every
vertex. We consider two options for the starting vertex, 71: uni-
form distribution over vertices, and the stationary distribution for
a simple random walk on G. Lifting and waddling both can ‘inherit’
the mixing time of a simple random walk by initializing with the
stationary distribution. In addition, lifting can be parallelized by
having each thread start at a random vertex uniformly, while wad-
dling requires us to start from the stationary distribution. In the
next section, we show how to calculate the probability of sampling
the k-CIS, 7(S), using only its local information.

3.1 Unordered lift estimator

We can recursively compute the marginal probability of sampling
the graphlet, g7 (T), for the lifted CIS T € Vi (G). We say that this
method is unordered because we ignore the order in which we visit
the vertices in the graphlet. One advantage of this approach is that
this probability is a function of only the degrees of vertices V7. This
can be done either recursively or directly. Throughout, let the set
of vertices of T be vy, ..., V.

We begin the algorithm by querying the probability of obtaining
any vertex in T, m1(v;),i = 1,. .., k. We will build the probability of
obtaining any connected subgraph of T inductively. This is possible
because the probability of getting T via lifting is given by the sum
ay(T) = X, P(T|S)ny(S), where the sum is taken over all con-
nected (k — 1)-subgraphs S C T, and P(T|S) denotes the probability
of getting from S to T in the lifting procedure. Then

degg(Vr \ Vs)

7y(T) = Z 70(S) )

& INe(S)]
|E7| - |Es|
=), (S :
sg‘r U Sues deg(u) — 2IEs]

where the sum is taken over all connected (k — 1)-subgraphs S c T.
Consider the sampled k-CIS T := Si. Denote the set of possible
sequences A = [v1, ..., v ] that would form T in the lifting process
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as co(T). Notice that S, = G|{v1,...,v,} must be a connected
subgraph for all r. Thus,

co(T) = {[v1,...,vx] € VE | {v1,..., 08} =V,
T|{v1,...,vr} is connected } 3)

Since the elements of co(T) are just certain orderings of vertices in
T, we call an element from co(T) a compatible ordering of T. Note
that |co(T)| only depends on the type of the graphlet isomorphic to
T, and it can be precomputed using dynamic programming. Thus,
when T ~ H,,, the number of compatible orderings are equal:
|co(Hm)| = |co(T)|. Note that |co(Hp,)| can vary from 2k=1 (for
k-path) to k! (for k-clique). For a direct formula, we notice that
7u(T) = Y Aeco(r) %(A), and 7(A) is the probability of getting
sequence A € co(T) in the lifting process (see (3),(8)). Then

=y, L) ’i—[l syl = sl
r=1 Zi=1 deg(A[l]) - 2|ESV(A)|
4)
where, given A = [v1, . . ., v ], Ali] is the ith vertex in Aand S, (A) =
Gl{v1,...,0r}.

Although calculation of this probability on-the-fly is cost-prohibitive,
we can greatly reduce the number of operations by noticing that
the probability 7 (T) is a function of degrees of the vertices: for
a CIS T of type m, let [v1, . .., v ] be an arbitrary labelling of the
vertices of T with d; = deg(v;), then the probability of T is

Aeco(T)

1
7y(T) = I?Fm(dl, cdy)

for a cached function Fp, given by (4).

Example. Consider a triangle, which is a 3-graphlet with edges
(v1,v2), (v2,v3) and (v, v3). Given the degrees di,dz,ds of the
corresponding vertices, the probability function is

mdy) | ”l(dz)) 2

ny(triangle) = (

dq do diy+dy—2
mi(da)  mi(d3) 2
* ( do * ds do +d3—2
m1(d3)  mi(dy) 2
+( & T d ) drdi-z ©)

Example. Consider a wedge, which is a 3-graphlet with edges
(v1,v2) and (v1,v3). Given the degrees d1, da, d3 of the correspond-
ing vertices, the probability function is

m1(dy) + ﬂl(dz)) 1

my (wedge) = (

dq ds di+dy—2
m(d1) | m(ds) 1
+( dq * ds di+d3 -2 ©)

We need to only compute functions Fy,, once before starting the
algorithm. When a k-CIS T is sampled via lifting procedure, we find
the natural labelling of vertices in T via the isomorphism Hy, — T,
and use the function F,, together with the degrees dy, . ..,d; of
vertices of T to compute the value of 77 (T) = %Fm(dl, s di).

3.2 Ordered lift estimator

The sample estimator, (1), does not track the order of the vertices
as they are sampled to form a graphlet. We can, however, track
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Algorithm 1 Unordered Lift Estimator

input Graph G, graphlet size k
output N,,(G)
For each k-graphlet in canonical form, Hy,, precompute the func-
tion Fy,(d1, . . .,dg) and the global constant K
Initialize v at an arbitrary node, n « 0, Nm(G) —0
while stopping criteria is not met do
Sample initial vertex v from 7 (v)
Initialize V7 « {v} and ET « {}
Initialize Ne(T) < Ne(v)
while |V7| < k do
Sample an edge e = (v, u) uniformly from N,(T), with v €
Vrandu ¢ Vr
Set ET(u) « {(v,u) € Ne(T)}
Update V1 « V7 U {u} and ET < ET U ET(u)

Query Ne(u)
Update Ne(T) < [Ne(T) U Ne(w)] \ ET(w)
end while
Set Hy, = hash(T)
Determine the ordering [v1, . . ., v ] of vertices in V1 induced

by the isomorphism (V1, ET) ~ Hpp
Setd; = |Ne(vj)| foralli=1,...,k
Set 7(T) = %Fm(dl, cody)
Update Ny (G) «— Nim(G) + 2~ 1(T)
Updaten <—n+1

end while

Normalize N;;,(G) — %Nm(G)

the vertex information and thus define an estimator on ordered
sequences of vertices [vy, . . ., Ui |, denoted by A. Given a sampling
scheme of such sequences with probability 7(A), the estimator for
graphlet counts is given by

N om < 1(GlA; ~ Hm)

Nm(G) = e IZ_; Ay (7)
for some fixed weights wp,. The main difference between these
types of sampling is that we maintain the ordering of the vertices,
while a CIS is an unordered set of vertices.

We can think of a lifting procedure as a way of sampling a
sequence A = [v1, ..., v ], ordered from the first vertex sampled to
the last, that is then used to generate a CIS. Denote the set of such
sequences as VC];C. Let S, = G|{v1,...,v;} be the r-CIS obtained by
the lifting procedure on step r. The probability of sampling vertex
vr+1 on the step r + 1 is equal to

degg, (vr+1)  |Es,,,| - |Es,|

P(v S,) = = .
©ralSr) = 0 GO = S, deg(or) - 21Es, |

Thus, the probability of sampling a sequence A € Vé is equal to

k-1
#(4) = m(0) | | P@raalSy)
r=1

_ f(degw) ¥ IEs,, |~ IEs, |
=% s aee s @
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Critically, this equation can be computed with only neighborhood
information about the involved vertices, so it takes O(k) neighbor-
hood queries. Because there are many orderings that could have
led to the same CIS T, then we need to apply proper weights in the
graphlet count estimate (7) by enumerating the number of possible
orderings.

We set up the estimator from (7) as

1(G|A; ~ Hp)
7i(Ai)

11 %
N, = —
O™ eo(Hm)| Zl

We call it the ordered lift estimator for the graphlet count.

©

Algorithm 2 Ordered Lift Estimator (with optional shotgun sam-
pling)
input Graph G, graphlet size k
output N,,,(G)
Count |co(Hyy,)|- the number of compatible orderings in Hp,.
Initialize v at an arbitrary node, n « 0, Nm(G) « 0
while stopping criteria is not met do
Sample v1 from 71 (v)
Initialize Vs « {v1} and Es « {}
Initialize N, (S) < Ne(v1)
Initialize 7(S) « m1(v1)
while |[Vs| < k—1do
Sample an edge e = (v, u) uniformly from N,(S), with v €
Vsandu ¢ Vg
Set Es(u) < {(v,u) € Ne(S)}
Update 7(S) « 7(S) ||f/i((1§))l|
Update Vs « Vs U {u} and Es « Es U Es(u)
Query Ne(u)
Update Ne(S) < [Ne(S) U Ne(w)] \ Es(u)
end while
if not shotgun sampling then
Sample an edge e = (v, u) uniformly from N (S), with v €
Vsandu ¢ Vg
Set Eg(u) < {(v,u) € Ne(S)}
Set 7(T) < n(S) “fz((lé))ll
Set Vi « Vs U {u} and ET « Es U Eg(u)
Set Hy, = hash(T)
Update Nyy(G) « Ny (G) + 7~ 1(T)
end if
if shotgun sampling then
for all u € NV,(S) do
Set Es(u) — {(v,u) € Ne(5)}
Set Vi « Vs U {u} and ET « Es U Es(u)
Set H,,, = hash(T)
Update Nip(G) < Nim(G) + 771(S)

end for
end if
Updaten «— n+1
end while
Normalize Ny (G) « 1 L__Nn(G)

7 Jeo(Hm)]

A drawback of the algorithm is that it takes k — 1 queries to lift
the CIS plus the number of steps required to sample the first vertex
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(when sampled from Markov chain). To increase the number of
samples per query, notice that if we sample B = [vy, ..., v5_1] via
lifting, we can get subgraphs induced by A = [v1, ..., vg_q,u] for
all u € Ny (B) without any additional queries.

Thus, for each sampled sequence B; € VC];c ~1, we can compute the
sum ¥, e v, (B;) 1(GIB;U{u} ~ Hp,) to incorporate the information
about all k-CISs in the neighborhood of B;. We call this procedure
shotgun sampling. The corresponding estimator based on (7) is

5 ZueN,(8;) 1(GIBi U {u} ~ Hy)
#(Bi)

11
n |co(Hpm)|

Ns,m = (10)
i=1
Shotgun sampling produces more CIS samples with no additional
query cost, but the CIS samples generated in a single iteration will
be highly dependent. The following proposition states that the

resulting estimators are unbiased (see Appendix for the proof).

PRrROPOSITION 3.1. The ordered lifted estimator, No’m, and the
shotgun estimator, Ns p,, are unbiased for the graphlet counts Ny,.

4 LIFTING VARIANCE

One advantage of the lifting protocol is that it can be decoupled from
the selection of a starting vertex, and our calculations remained
agnostic to the distribution m; (although, we did require that it
was a function of the degrees). There are two methods that we
would like to consider: one is the uniform selection over the set of
vertices and the other is from a random walk on the vertices, that
presumably has reached its stationary distribution.

Consider sampling the starting vertex v independently and from
an arbitrary distribution 7; when we have access to all the vertices.
The advantage of sampling vertices independently, is that the lifting
process will result in independent CIS samples. A byproduct of
this is that the variance of the graphlet count estimator (1) can be
decomposed into the variance of the individual CIS samples. Given
iid draws, the variance of the estimator Ny, (G) is then

1 (IL(Tn ~ Hm))
-Var| ——
n 7wy (Tn)

_if 3 10~ Hy)
n P, wy(T)

VriL(NU,m) =

-Nm(G?|,  (11)

which is small when the distribution of 77 (T) is close to uniform
distribution on Vp,(G). Equation (11) demonstrates fundamental
property that when g7 (T) is small then it contributes more to the
variance of the estimator. The variation in (11) can be reduced by
an appropriate choice of 71, i.e. the starting distribution.

For example, if k = 3, let 71(v) = %deg(v)(deg(v) — 1), where
K = 3, ev,, deg(u)(deg(u) — 1). Then by (5) and (6)

2
ny (wedge) = T

Calculating K takes O(|V|) operations (preparation), sampling
starting vertex v takes O(log(|V|)) operations, and lifting takes
O(A), where A is the maximum vertex degree in G.

When we don’t have access to the whole graph structure, a
natural choice is to run a simple random walk (with transitional
probabilities p(i — j) = @ whenever j in connected to i with an

edge). Then the stationary distribution is m1(v) = deg(v)/(2|Eg|),

6
ny(triangle) = e
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and we can calculate all probabilities 73 accordingly. One feature
of the simple random walk is that the resulting edge distribution
is uniform: ny(e) = for all e € Eg (edges are 2-graphlets).

1
|Eg]
Therefore, the probabilities 7y are the same as if sampling an edge

uniformly at random and start Lifting procedure from that edge.

4.1 Theoretical variance bound

As long as the base vertex distribution, 71, is accurate then we
have that the graphlet counts are unbiased for each of the afore-
mentioned methods. The variance of the graphlet counts will differ
between these methods and other competing algorithms such as
Waddling and PSRW. The variance of sampling algorithms can
be decomposed into two parts, an independent sample variance
component and a between sample covariance component. As we
have seen the independent variance component is based on the
properties of 7 resulting from the procedure (see (11)). We have
three different estimators: Ordered Lift estimator I\AIO, m» Shotgun
Lift estimator N. s,m and Unordered Lift estimator NU, m. For each
estimator, we sample different objects: sequences A; € Vé for Or-
dered, sequences B; € Vg_l for Shotgun, and CISs T; € Vi (G) for
Unordered estimator. Throughout this section, we will denote

(1) for the Ordered Lift estimator,
_ L(GJA; ~ Hp)

= 2O~ Hm) 12
P04 = YeolHm (A0 2
(2) for the Shotgun Lift estimator,
boi = YueN,B;) L(GIB;i U{u} ~ Hpn) 13)
> |co(Hym)|7(B1) ’
(3) for the Unordered Lift estimator,
]I(Ti ~ Hm)

j= —— 14
b= = (149

Let ¢ be shorthand for ¢x 1, where X € {O, S, U}, and note that
N (G) = E¢1, and Nim(G) = % >.i ¢i for the corresponding esti-
mators.

The variance can be decomposed into the independent sample
variance and a covariance term,

Var(Nin(G) = Vi (@) + = 3 Cov (i) . (19
i<j

For Markov chains, the summand in the second term will typically
decrease exponentially as the lag j — i increases, due to mixing. If
we start from a random vertex then the samples are uncorrelated
and the covariance term disappears. For an analysis of the mixing
time for random walk-based graphlet Lifting, see the Appendix.

Let us focus on the first term, with the goal of controlling this for
either choice of base vertex distribution, 71, and the lifting scheme.

THEOREM 4.1. Let ¢1 be as defined in (12), (13) or (14). Denote
the first k highest degrees of vertices in G as A1, . .., Ay and denote
D=T152A1 +... +Ap).

(1) If my is the stationary distribution of the vertex random walk
then
2lEg| |

Vir(¢1) < Nm(G)m .

(16)
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(2) If 1 is the uniform distribution over the vertices then

V(1) < Nm() 221G Ly

lco(H)| a7

This result is comparable to analogous theorems for Waddling,
[11], and PSRW, [21]. Critically, Lifting works without modification
for all graphlets up to a certain size. It should be noted that the
variance of each lift method has the same bound in Theorem 4.1.
We do not observe significant differences between the empirical
variances of the unordered and ordered lifts. The shotgun method
does significantly reduce the observed variance, because it samples
more graphlets per iteration, but due to the dependence between
samples within a single lift, this is not reflected in the theory.

5 EXPERIMENTS

5.1 Description of experiments

All experiments were implemented on Amazon Web Services ‘t2.xlarge’

instances running Ubuntu 16.04 (January 2019). All algorithms were
implemented in Python, the code for which is available on GitHub®.
Throughout our experiments we only compare against graphlet
Monte Carlo sampling algorithms and do not compare against exact
graphlet counting methods (except in computing a ground truth).
This is consistent with our thesis, that Lifting can accurately com-
pute graphlet coefficients with a moderate number of samples that
only require neighborhood look-ups (as opposed to processing the
whole graph and counting all graphlets).

We implemented our own Waddle and PSRW protocols, for clean
comparisons. To get true count values, we used ESCAPE [14] for
k = 5 and PGD [1] for k = 3,4. All the methods were studied
under the same number of iterations where they had comparable
run times. The ground truth algorithms, ESCAPE and PGD, were
faster than our estimation method, but these methods are limited
to k < 6; we are aware of no exact counting method that does not
hit the hard complexity barrier for large graphlet counts.

The Lifting method for k graphlets was implemented as follows.
The initialization proceeds by pre-computing the probability func-
tions Fy, for every graphlet in the atlas of graphlets of size k and
caching them symbolically through SymPy. The probability func-
tions, r, are stored in a dictionary keyed by a canonical graph
labeling string certificate generated by nauty [12] to reduce the
cost of graph isomorphism checks. In every iteration of Lifting we:
sample a random node, lift up to a k-node graphlet, get the cached
probability function Fy, by graph hashing, and, finally, find an iso-
morphism between the sampled graph and the canonical graph
to obtain the probability of sampling the graphlet. Summing the
inverses of these probabilities gives the estimate.

For our experiments, we picked five networks of different size,
density, and domain [18]?. The size of the graphs is listed in Table 3.

o The CELE network is a list of edges of the metabolic network
of C. elegans.

e The EMAIL network is a university email exchange network.

e The CAIDA network is a network of packet routing relation-
ships between AS’s (e.g. Internet Service Providers).

Lgithub.com/dshemetov/GraphletLift
2Network names correspond online datasets at networkrepository.com
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Network name Vsl |Eg| | Avg. Deg.
bio-celegansneural (CELE) 297 | 2,148 15
ia-email-univ (EMAIL) 1,133 | 5,451 9
misc-as-caida (CAIDA) 26,475 | 52,281 1.97
misc-fullb (FULLB) 199,187 | 5.7M 28.9
socfb-B-anon (SOCFB) 2.9M | 20.9M 14

Figure 3: Networks used in experiments (M = millions).

o The FULLB network corresponds to a large positive definite
matrix arising from a finite-element method.

e The SOCFB network is a network of user friendships on
Facebook circa September 2005.

5.2 Comparisons on 4-graphlets

We performed a full comparison over all 4-graphlets (6 topologies),
all networks (5 datasets), and three methods (unordered lift, PSRW,
Waddle). Using the relative error between the estimate N, and the
ground truth Ny, defined by

[Nm(G) = Nm(G)|
Nm(G) ’

we can compare the performance of the algorithms on estimating
each graphlet. Fixing iterations to 40K, we produced the relative
errors for the algorithms across all graphs and all 4-graphlets in
Figure 4. On the CELE graph, lifting outperforms on all graphlets.
On the EMAIL graph, PSRW rivals lifting on some of the graphlets.
Lifting has its worst performance on the CAIDA dataset, which
the authors suspect is because the graph is extremely sparse and

Relative Error =

is mostly stars; rare graphlets, such as Hé4), are difficult to detect
for all methods. However, lifting is only the worst of the three
methods on the 3-star graph for CAIDA. On the plus-side, lifting
demonstrates the ability to find rare graphlets in large graphs, such
as HY, B HY in SOCFB.

To get a sense for the convergence rates, we can plot the conver-
gence to the true count as a function of iterations. We show this in
Figure 5 for the 4-graphlets on the FULLB graph. Overall, we find
comparable performance among the three algorithms on the 3-star,
4-tailed triangle, and the 4-clique. In some cases, such as H§4) and

H£4), PSRW does not converge to the truth in the allotted number
samples. This may be due to the mixing rate of PSRW, which was
not fast enough, leading to bias in the estimated sampling proba-
bility. Waddle and lifting do approximately equally well on all the
graphlets.

5.3 Comparisons on graphlets up tok =6

We can compute the total variation distance between a graphlet
frequency distribution (Ny,) and a target distribution (Ny,) as

TV(Nm’Nm) = Z |Nm — Nml.
m

We compare the performance of PSRW and the Unordered Lift with
this metric as a function of iterations on all the data sets, with
k = 3,4,5,6. This comparison is demonstrated in Figure 6. For
k =5, 6, as the ground truth is unavailable for these data sets (due
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Network/Graphlet Relative Error
Network | Graphlet Freq Lift | PSRW | Waddle
CELE | H 0.4668 || 0.0075 | 0.0180 | 0.2153

HY 0.3703 || 0.0024 | 0.0301 | 0.1938
H§4) 0.1336 || 0.0118 | 0.0225 | 0.2055
HY 0.0113 || 0.0063 | 0.3241 | 0.1802
HY 0.0163 || 0.0079 | 0.1184 | 0.1978
HY 0.0014 || 0.0077 | 0.0865 | 0.1831
EMAIL | HY 0.2865 || 0.0009 | 0.0083 | 0.1934
H§4) 0.5803 || 0.0062 | 0.0014 | 0.1587
HY 0.1137 || 0.0058 | 0.0058 | 0.2049
Y 0.0066 || 0.0462 | 03213 | 0.1585
H;%‘*) 0.0108 || 0.0239 | 0.1656 | 0.2134
HY 0.0017 || 0.0498 | 0.0369 | 0.1113
camA | HY 0.9588 || 0.0313 | 0.0038 | 0.0132
HY 0.03505 | 0.0525 | 0.0891 | 0.0126
H§4) 0.0058 || 0.0774 | 0.0740 | 0.0883
HY 5e-05 || 0.0355 | 0.2219 | 0.0134
HY 0.0002 || 0.0039 | 0.6531 | 0.199
HY 6.6e-06 || 0.6534 | 1.0000 | 0.2524
FULLB | HY 0.1083 || 0.0161 | 0.0030 | 0.0842
A 0.4858 || 0.0038 | 0.0348 | 0.0685
HE“) 0.2719 || 0.0102 | 0.0059 | 0.0684
HY 0.0065 || 0.1035 | 0.3928 | 0.1429
Hz4) 0.0901 || 0.0083 | 0.1379 | 0.0575
HY 0.0372 || 0.0007 | 0.0003 | 0.0439
socrB | HY 0.5283 || 0.1137 | 0.0051 | 0.3652
HE“) 0.4279 || 0.0815 | 0.0094 | 0.3622
HY 0.0393 || 0.1187 | 0.0043 | 0.3287
HY 0.0018 || 0.1931 | 03014 | 0.4095
Hz4) 0.0022 || 0.1172 | 0.2383 | 0.2368
HY 0.0001 || 0.0668 | 0.0682 | 0.2652

Figure 4: Graphlet frequencies for all networks with rela-
tive error PSRW, Waddle, and Unordered Lifting after 40K
graphlet samples (including rejections for Waddle).

to the inability of existing methods to handle such large graphlets),
we track the convergence of the total variation difference between
successive graphlet distribution estimates.

The k = 3, 4 plots show PSRW outperforming Lift on the SOCFB
network, while underperforming on the other data sets. We suspect
this is because PSRW is adapted to sampling the 3-star, the most
common graphlets in SOCFB; accordingly, PSRW performs well
on the CAIDA set which is dominated by ‘3-star’ graphlets. This
suspicion is confirmed by the advantage lift has on datasets such
as FULLB, which concentrates on the ‘4-path’ graphlet instead
of the star. In this case, PSRW has trouble converging. The k =
5,6 plots demonstrate an approximately equivalent convergence
rate between the methods. Both methods get fast initial gains by
obtaining a good estimate of the most common graphlets, while
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Figure 5: Convergence to the true frequency (shown in
black) of the PSRW, Waddle, and Graphlet Lift (GL) meth-
ods.

the slow convergence that follows depends on sampling the rare
graphlets. Note that PSRW demonstrates the correlation between
its samples here by the ‘plateau’ pattern. (Note that we omitted
Waddling from this comparison because in the case of size k = 5,6
graphlets there was no clear extension of the Waddle protocol.)
We also compare the shotgun ordered Lifting relative error

against Waddle for the 3-graphlets, the wedge (H§3)) and the trian-

gle (HgS)). In Figure 7, we see that the shotgun procedure converges
faster than Waddling in these cases. This advantage comes from
shotgun’s sampling of many graphlets essentially for free (with
the same number of neighborhood queries), we consider all of the
graphlets sampled from one shotgun sample to constitute one it-
eration. We have observed empirically, that although the shotgun
approach produces batches of dependent samples, it is advanta-
geous and we obtain faster convergence.

6 CONCLUSION

A reliable general purpose graphlet sampling algorithm is desireable
because it can then be used out of the box without customizations
and can scale to massive graphs. We provide three variants of the
Lifting procedure: unordered, ordered, and the shotgun approach.
We showed that the sampling probabilities in Lifting can be cal-
culated from closed form, precomputed functions of the degree
sequence of the subgraph. Lifting exemplifies the characteristics
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Figure 6: Here we compare the TV performance of Un-
ordered Lift with the PSRW method on graphlets k = 3, 4,5, 6.
The top four figures show the total variation difference be-
tween the estimated counts and the ground truth as a func-
tion of iterations on all the data sets. The bottom four figures
show the total variation between successive graphlet count
estimates (i.e. TV(Np,(i — 1), N (i) by each method.
needed for a practical graphlet sampling method: it is easily par-
allelizable, samples all k-graphlets without modification, and can
find rare graphlets. To the best of our knowledge, Lifting is the first
graphlet sampling algorithm that enjoys each of these properties.
Our theoretical results bound the variance of Lifting estimated
graphlet coefficients, which is based on the largest degrees in the
graph. These results are comparable with the theoretical guarantees
for PSRW (after sufficient mixing) and Waddling. Our experiments
demonstrate that Lifting performs well in many cases, obtaining
the lowest relative error, particularly for rare graphlets. We also see
that the shotgun procedure can significantly boost the performance
without additional neighborhood look-ups. We conclude by noting
that Lifting is able to estimate the 5, 6-graphlet coefficients over a
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Figure 7: A comparison of shotgun-Lifting and Waddling for
medium sized graphs, HES) (wedge) and Héa) (triangle).

2.9M vertex graph and the solution converges in total variation in
a moderate number of iterations.
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