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In this work, an asymptotic expansion is presented that takes into account a naturally-occurring perturbation
parameter in the context of a circular tube with an open-open endpoint configuration. This approach is shown to
produce accurate predictions of pressure mode shapes and frequencies for arbitrary temperature distributions
that mimic a wide variety of flow heating arrangements including, but not limited to, those associated with
a Rijke tube. The underlying formulation consists of two linearly coupled partial differential equations that
can be solved simultaneously while using a Green’s function to capture the thermoacoustic pressure. In the
present investigation, the strategy leading to an accurate prediction of the unsteady pressure oscillations is fully
detailed and then applied to several representative cases. Results pertaining to the pressure oscillations are
systematically discussed and compared to other recently developed models in the literature.

Nomenclature

𝑎0 mean speed of sound inside the Rijke tube
𝐴hs surface area of obstacle or heater element
𝐶𝑝 constant pressure specific heat
ℎ heat transfer coefficient
𝐼 acoustic intensity
𝑘 thermal conductivity
𝐿 internal tube length
𝑚 longitudinal oscillation mode, 𝑚 = 1, 2, 3, ...
𝑝′ oscillatory pressure component
𝑄 heat
𝑞 heat transfer rate, 𝑑𝑄/𝑑𝑡
𝑞′ oscillatory heat transfer rate
𝑇 temperature
𝑡 time
𝑢′ oscillatory velocity component
𝑢𝑞 velocity fluctuations at the heater location
𝜗 volume
𝑥 axial distance from the bottom-end

Greek
𝛾 average ratio of specific heats
𝜌 air density
𝜎 complex frequency
𝜓 mode shape
𝜔 circular frequency, 𝑚𝜋𝑎0/𝐿

Subscripts
hs refers to the heat source
∞ surrounding mean flow condition
0 denotes a steady or mean component
𝑥 derivative with respect to the axial coordinate
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I. Introduction

The fundamental mechanisms that affect the operation of a Rijke tube have often been the subjects of investigation
and interpretation by several prominent researchers. One may cite the works of Carrier [1], Chu [2], Miller and
Carvalho [3], Maling [4], Zinn [5], and the survey by Raun et al. [6]. The only aspect of the Rijke tube that is
presently lacking full understanding is perhaps limited to the detailed interplay between the heat source, thermal
patterns, and resulting acoustic motion. Functions have been proposed to relate interactions between the heat source
and velocity perturbations, but these have not been completely effective at predicting the observed coupled interactions.
In practice, complex interactions occur in two banded regions that are separated by a diffuse interface delineating a
zonal discontinuity across the heat source. The resulting problem continues to draw attention, especially when the
unsteady heat transfer in different segments of the tube is accounted for.

With these issues at hand, the present investigation is carried out in an attempt to further explain the unsteady heat
transfer mechanisms that cause the heat-driven oscillations in a Rijke tube. It represents an extension to a previous
study that devoted itself to the numerical simulation of the Rijke’s internal flowfield [7]. We recall here that the
phenomenon of heat-driven acoustic oscillations belongs to the field of thermoacoustics, a discipline that focuses
on the interactions between heat and sound. In this context, whenever an unsteady heat source is introduced into a
chamber, the potential for heat-driven acoustic oscillations exists. Typically, high intensity sound pressure levels are
generated by the incumbent acoustic oscillations in systems exhibiting a likeness to Rijke [8] or Soundhauss [9] tubes.
Consequences of such interactions may be either desirable or unfavorable depending on the type of application.

In practice, thermoacoustic systems have been devised to perform beneficial functions in a variety of industrial
applications. Examples abound and one may include: promoting higher combustion efficiency [10–12], fuel savings
[13, 14], controlled waste incineration[15], slurry atomization[16], reduced pollutant formation[17–26], increased fuel
residence time in combustion chambers [27–29], increased convective heat transfer rates [30], and lower operating and
equipment costs [13, 31, 32]. The basic mechanisms that trigger these beneficial outcomes are invariably associated
with controlling the acoustic field [31] in such a way to improve mixing [33], heat transfer [14, 34–37], or both.

One of the archetypal applications of thermoacoustics arises in the context of coal-fired furnace[14, 20, 28, 31] and
gas turbine operations [6, 35, 38]. In addition to its role at improving combustion efficiency, a pulsating pressure field
can be effectively used to increase the size of exhaust particles. In the absence of user intervention, these particles can
escape along with the flue gases to the extent of contributing to air pollution. In fact, conventional removal methods
allow over 70% of the particles in the form of fine particulates to escape. Practically, however, particles smaller than
about 5 microns are not efficiently removed. As a remedy, it has been demonstrated that the control of thermoacoustic
energy can be effective at promoting the agglomeration of fine ash particles that are entrained in high temperature gas
streams [17–21, 39].

As the name suggests, acoustic agglomeration is a process by which high intensity sound can be used to assemble
micron and submicron sized particles in aerosols. The effect of sound is to cause relative motions between particles
to the extent of increasing their collision rates. As particles collide, they tend to bond and form larger particles. As
a result, the average particle size in the aerosols can be made to increase over a short period of time. Naturally, the
larger particles can be more effectively separated from exhaust gases by conventional particulate removal instruments.
This thermoacoustic process holds the benefit of reducing particulate emissions and simplifying clean-up systems. In
addition to agglomeration control, acoustic energy can be employed to increase the rate and extent of coal combustion,
thus allowing combustors to release larger amounts of heat [14, 35–37].

Contrary to their function in industrial applications, heat-driven oscillations in ramjet engines [40] and solid
propellant rocket motors [41] are viewed as being undesirable. Corresponding thermoacoustic noise has often been
referred to as chugging, buzzing, screaming, screeching, or squealing, depending on its frequency range and severity.
These audible oscillations can, at times, cause unwanted vibrations to plague instrumentation and payloads to the point
of modifying rocket performance and throwing a missile off course [42].

Due to the commonality of features shared rather ubiquitously by pulse combustion devices, the coupling aspects
in a Rijke tube may be manifested in a variety of problems incorporating heat, pressure, and velocity perturbations.
Over time, detailed investigations of thermoacoustics and combustion stability prediction methods for Rijke tubes have
helped to advance our understanding of these problems. These have encompassed both linear and nonlinear stability
schemes that are capable of predicting characteristic stability features such as critical frequencies, amplitudes, growth
rates, limit-cycle oscillations, and the intricate relations between pressure, velocity, and heat release [43–46]. On this
count, one of the first prominent analytical models of Rijke tubes may be attributed to Nicoli and Pelce [47]; their
asymptotic analysis has since been shown to effectively predict the Rijke’s flame transfer function. Along similar lines,
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Hantschk and Vortmeyer [48] have shown that favorable agreement between their control-volume computations and
experiments could be achieved by introducing nonlinearities in limit-cycle amplitudes triggered by the heat release
feedback from the Rijke’s heating element. Matveev and Culick [49–51] have also developed a very elegant model to
predict the stability boundaries of a Rijke tube as a function of several salient parameters, such as the power supplied
or the mass flow rate.

Among his conclusions, Matveev [51] pinpoints the importance of accurately representing the axial temperature
gradient along the tube to avoid underpredicting the stability margins with a simplistically uniform mean temperature.
Unless thermal nonlinearities are accounted for, it is shown that the Rijke’s hysteresis behavior in the stability boundary
at a high mass flow rate cannot be adequately predicted by an otherwise linear thermal model. His work establishes
the criticality of quantifying the thermal profile as well as the nonlinearity in the transfer functions being implemented
between the heat release and one or more of the other acoustic variables.

A decade later, Bigongiari and Heckl [52, 53] use a Green’s function approach to model the Rijke tube’s internal
flowfield, particularly, the heater-induced velocity; their work leads to robust predictions that are comparable in accuracy
to those obtained from a computationally-based control volume approach. In fact, when compared to other available
techniques, the Green’s function approach is proven to be advantageous in its rapid implementation and prediction
of local properties around obstacles and segmented zones along the length of tube [54, 55]. Moreover, the Green’s
function approach enables the user to incorporate a rather simple nonlinear heat release correlation in conjunction
with a non-uniform axial temperature distribution. Accordingly, the tube can be partitioned into segments that help to
alleviate some of the issues encountered in other simulation methods.

Around the same timeframe, Juniper [56] undertakes an investigation of the triggering mechanism in a Rijke tube
using an adjoint-based method. The latter is shown to be effective at identifying the most critical initial states as well
as predicting the limit-cycle amplitudes using a numerical solution of the nonlinear governing equations. Also using
an adjoint-based approach, Magri and Juniper [57] are able to define the feedback mechanisms that can be effective
at suppressing thermaoustic instabilities that emerge in an oscillatory, heat-driven system. Among their findings, they
show that the most critical state can be directly related to a heat release parameter, and that even a small perturbation
of energy in the linear stable region can be sufficient to trigger high-amplitude oscillations. Subsequently, Juniper and
Sujith [58] address the sensitivity of thermoacoustic oscillations in the linear regime, specifically exploring the impact
of the heat release time lag and the phase relation between pressure and heat oscillations. They determine that both of
these quantities can have overall destabilizing effects on the system. Along similar lines, Balasubramanian and Sujith
[59] employ a numerical Galerkin appoach to demonstrate that the non-normal nature of thermoacoustic systems is
sufficient to promote transient growth in an otherwise linearly stable system.

As for Zhao and Chow [60], they carry out a Rijke tube investigation that is focused on the adaptation of a
hydrodynamic flame region around the heater, thereby simulating a laminar premixed flame from a Bunsen burner that
can be thoroughly tested experimentally. They report that the location of the hydrodynamic zone can play a key role
in the system’s stability and nonlinear characteristics due, in large part, to the frequency’s dependence on the location
of applied heat. Their findings support Matveev’s earlier conclusion that the temperature gradient within the tube
plays an appreciable role in controlling instabilities. They also suggest that, since the interactions between acoustic
disturbances and heat release are fundamentally non-normal, they can be either “constructive or destructive.” In this
vein, placing the heater around the well-known quarter-length location may be viewed as being the most destructive
stability-wise. At the outset, any supplemental energy will tend to amplify the growth of unstable modes, while possibly
triggering non-linear, limit-cycle behavior. Naturally, losses due to viscous damping, heat transfer, or the presence of
a hydrodynamic region can slightly alter the critical quarter-length location [48, 52, 53, 56, 60].

In the present investigation, a brief description of pulse combustors will be given at first in Sec. II. This will be
followed by a review of the fundamental concepts used to relate thermal fluctuations to acoustic pressure and velocity
oscillations. In Sec. III, a standard similarity analysis will be used to identify the non-dimensional parameters that may
be needed to establish a condition of similitude. In Sec. IV, the test apparatus used in the experimental investigation
will be discussed and its results will be leveraged to validate other models and speculations. A computational model
is also presented in Sec. V, followed by a discussion of independently obtained experimental and numerical data.
In Sec. VI, the numerical simulations will be shown to be in favorable agreement with existing experimental and
theoretical findings to the point of providing useful predictive tools. These observations will help to clarify existing
speculations and support, in Sec. VII, two analytical formulations developed sequentially by Matveev and Heckl using
either either a differential equation or Green’s function techniques. In extending this line of inquiry, an asymptotic
approximation of the heat-driven acoustic pressure and velocity equations will be introduced in Sec. VIII. More
specifically, assuming a small nonlinearity in the heat release term, expressions will be derived to predict the onset of
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acoustic pressure fluctuations in the presence of an arbitrary temperature gradient and a fluctuating heat source. The
resulting perturbation expansion will be solved using the Green’s function approach[52–55], thus leading to a relatively
straightforward formulation. Then, using several thermal profiles in an open-open enclosure, the latter will be shown
to predict the acoustic pressure mode shapes, peak pressure antinodes, and modal frequencies with a substantial degree
of accuracy.

II. On the Rijke Tube and Pulse Combustion

Inasmuch as conventional combustion involves steady-state fuel consumption, pulse combustion differs at the
fundamental level, especially in the presence of unsteady and often periodic phenomena that accompany the burning
process [28]. The oscillatory behavior can occur spontaneously or it can be triggered by an external device, such
as a spark plug, an igniter, or an acoustic driver. Pulsation becomes appreciable when the heat of combustion is
released at one of the system’s natural frequencies. Subsequent wave interactions with the combustion process result
in sustained heat flux fluctuations. So far, studies of the underlying mechanisms have suggested that the strength of the
thermoacoustic coupling remains contingent on the magnitude of the root mean square (RMS) of the heat input within
the system. In order for the oscillations to persist, the rate at which heat is removed from the system must not exceed
the rate at which acoustic heat energy is produced. Bearing these various perspectives in mind, a Rijke tube, which is
classified as a pulse combustion device [61], is pictured schematically in Fig. 1.

A. Fundamental Wave Equations

The wave equations for a constant temperature duct with the heat addition term acting as a driving mechanism can
be written for the acoustic pressure and velocity using [2]

1
𝑎2

0

𝜕2𝑝′

𝜕𝑡2
− ∇2𝑝′ =

1
𝐶𝑝𝑇0

𝜕𝑞′
𝜗

𝜕𝑡
, (1)
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Fig. 1. Schematic of a Rijke tube of length 𝑳.
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𝜕2𝑢′

𝜕𝑡2
− 𝑎2

0 ∇2𝑢′ =
1 − 𝛾
𝜌0

𝜕𝑞′
𝜗

𝜕𝑥
, (2)

where 𝑝′, 𝑢′, and 𝑞′
𝜗

denote the time-dependent pressure, velocity, and heat transfer rate per unit volume in one-
dimensional space; moreover, 𝑥, 𝑡, 𝜌0, 𝑇0, 𝑎0, 𝐶𝑝 , and 𝛾 stand for the axial distance from the lower edge of the Rijke
tube, time, average air density, average air temperature, constant pressure specific heat, and ratio of specific heats,
respectively. Equations (1) and (2) can give rise to self-excited or “feedback” oscillations owing to the nature of the
source terms. Since the unsteady heat release rate 𝑞′ that appears in Eqs. (1) and (2) is not externally controlled,
but rather induced by fluctuations in other properties within the system, the Rijke tube may be further classified as a
self-excited oscillator.

Through inspection of Eqs. (1) and (2), three unknown variables may be readily identified. These are 𝑢′, 𝑝′, and
𝑞′. The dependence of 𝑞′ on the acoustic pressure and velocity must therefore be established before closure to the
problem can be achieved. Moreover, proper auxiliary conditions in the vicinity of the heat source must be expressed.
Since no analytical formulation can be directly derived from Eqs. (1) and (2) without an additional equation that sets
the model’s character, an appropriate relation linking 𝑞′ to 𝑝′ or 𝑢′ must precede further theoretical developments. In
what follows, such a relation will be explored, specifically, after reviewing existing closure equations.

B. Pressure Coupling Relation

Chu [2] assumes that, in thermoacoustical systems, the rate of heat addition may be taken to be directly proportional
to the rate of acoustic pressure. Accordingly, one may set

𝑞′

𝐶𝑝𝑇0
= 𝐾𝑝′, (3)

where 𝐾 can be taken to be a constant. When inserted into Eq. (1), one obtains

1
𝑎2

0

𝜕2𝑝′

𝜕𝑡2
− ∇2𝑝′ = 𝐾

𝜕𝑝′

𝜕𝑡
. (4)

Forthwith, the solution of Eq. (4) may be shown to be strictly decaying for 𝐾 ≤ 0, and growing for 𝐾 > 0. Additionally,
Chu suggests letting 𝜀 ≡ 𝐾/(𝑝2

0 − 𝑝
′2) such that

1
𝑎2

0

𝜕2𝑝′

𝜕𝑡2
− ∇2𝑝′ = 𝜀0

(
𝑝2

0 − 𝑝
′2
) 𝜕𝑝′
𝜕𝑡

, (5)

where 𝑝0 refers to the average pressure. This last equation describes self-sustained, large-amplitude pressure
disturbances that continue to increase until a steady limit-cycle oscillation state is reached. In actuality, Chu’s
pressure coupling concept proves effective at explaining how heat and pressure oscillations can be self-sustaining.
However, it does not address why driving cannot occur at a velocity node despite the co-location of peak pressure
amplitudes. Moreover, Eq. (5) is somewhat non-compliant with the Rayleigh criterion; the latter requires oscillatory
amplitudes to increase when ∮

𝑞′𝑝′ d𝑡 > 0. (6)

In Eq. (6), the symbol
∮

is used to denote integration over one oscillation cycle. In short, although Chu’s assumption
remains valid for closed-open systems resembling the Soundhauss singing tube [9], it does not quite apply to Rijke
tubes [8].

C. Velocity Coupling Relation

Instead of attributing the coupling of heat oscillations to internal pressure fluctuations, another proposed relation
suggests that heat itself or velocity oscillations may stand behind the self-sustained motion. For example, Zinn [5] and
Zinn et al. [62] assume that, for a combustion-driven Rijke tube, the heat transfer from the source to the gas can depend
on the magnitude of the total instantaneous velocity. Mathematically, this hypothesis translates into

𝑞 = 𝐶0 + 𝐶1 |𝑢0 + 𝑢′ | = 𝐶0 + 𝑞0 + 𝑞′. (7)
5
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Here,𝐶0 and𝐶1 represent two pure constants, 𝑢0 denotes the mean flow velocity, and 𝑢′ alludes to the acoustic velocity.
This relation may be viewed as an improvement over the foregoing formulation wherein acoustic excitation is attributed
to pressure coupling alone.

D. Energy Coupling Relation

So far, we have reviewed two simple expressions by Chu [2] and Zinn [5] that relate heat oscillations to either the
pressure or the velocity coupling mechanisms via Eqs. (4) and (7). Our forthcoming analysis, however, leads us to
suspect a different functional form. Before delving into more detail, we bring the reader’s attention to the prevalent
symmetry in the coupled set of differential equations formed by Eqs. (1) and (2). This symmetry suggests that heat
oscillations are more likely to be a function of both acoustic pressure and velocity, than a sole function of either of the
two. At the outset, a possible relation between 𝒒′ and the product of the two acoustic quantities, 𝑝′ and 𝒖′, may be
considered. This hypothesis is further supported by work conducted on planar flames by McIntosh [63]; therein, the
unsteady heat release is shown to be dependent on both the pressure and velocity fluctuations through the underpinning
combustion dynamics. In this vein, a symmetric expression can be constructed by positing a relation between heat
oscillations and the energy-flux vector modulus, | |𝑝′𝒖′ | |. This proposed form will be further discussed, refined, and
justified below.

III. Scaling Analysis

A. Theoretical Considerations

It is well known that when heat is added to a volume of fluid, its density diminishes, thus leading to an expansion
of the heated flow. The periodic expansions and contractions of this volume due to unsteady heat release triggers the
formation of pressure waves in a Rijke tube. These pressure waves can, in turn, influence the time-dependent thermal
oscillations around the heater. In fact, amplified heat oscillation amplitudes are often reported in a Rijke tube when the
heat source is placed at a point where both acoustic pressure and velocity have nonzero amplitudes that are additive,
i.e., when they overlap with a favorable phase. Experimental observations also corroborate that when the heat source
is located at a distance of 𝐿/4 from the bottom of the tube (as shown in Fig. 1), the amplitude of pressure oscillations is
maximized. This point corresponds to a peak modular product of pressure and velocity. In order to reconcile between
former speculations and existing observations, a relation between acoustic heat, pressure, and velocity is suggested.
This relation has the form [7]

𝒒′ ∼ 𝑝′𝒖′𝐴, (8)
where 𝐴 designates the flow cross-sectional area. In Eq. (8), the right-hand side, 𝑝′𝒖′, is known as the energy-flux
vector. Its modulus represents the instantaneous energy flow per unit area for a given body of volume 𝜗. Furthermore,
the time average of this vector yields the acoustic intensity 𝑰, the latter may be determined from

𝑰 = ⟨𝑝′𝒖′⟩ = 1
𝜏

∫ 𝜏

0
𝑝′𝒖′ d𝑡, (9)

where integration is carried out over an oscillation period 𝜏. Since the acoustic intensity 𝑰 retains dimensions of power
per unit area, the integral of 𝑰 over a surface with unit normal 𝒏 will constitute a measure of acoustic power across that
surface, specifically,

P =

∫
𝐴

⟨𝑝′𝒖′ · 𝒏⟩ d𝐴. (10)

Based on energy conservation, it is therefore reasonable to suggest that, this acoustic energy per unit time that crosses
a given flow area must originate from the thermal heat source energy, 𝒒′. On this note, a more refined expression
relating thermodynamic variables may be proposed, namely,

⟨𝒒′⟩ ∼
∫
𝐴

⟨𝑝′𝒖′ · 𝒏⟩ d𝐴. (11)

For a mathematical model that is dominated by the longitudinal velocity component 𝑢′ (in the same direction as 𝒏),
Eq. (11) becomes

⟨𝑞′⟩ ∼
∫
𝐴

⟨𝑝′𝑢′ d𝐴⟩ . (12)
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Then, for a one-dimensional model, the acoustic pressure and velocity may be taken to be uniform along any cross-
section. As such, one is left with

⟨𝑞′⟩ ∼ ⟨𝑝′𝑢′⟩ 𝐴. (13)

This expression, proposed in previous work [64], agrees well with the relation derived recently by Yoon [65]. In
fact, this form of acoustic energy flux also appears to have a substantial bearing on the onset of acoustic instability
according to Sugimoto and Yoshida [66], Sugimoto et al. [67], and Biwa et al. [68], albeit entailing different solution
domains.

B. Scaling Considerations

Since laboratory experimentation and numerical simulations tend to be time-intensive, it may be helpful to correlate
measurements and computations in such a way to obtain the most information from the fewest experiments or computer
runs. To this end, the tools of dimensional analysis may be applied to identify the group parameters that can promote
a condition of similitude in a Rijke tube.

To begin, one may assume that heat oscillations can be influenced by a wide selection of variables. These include,
but are not limited to: the pressure oscillation (𝑝′), the longitudinal velocity oscillation (𝑢′), the temperature oscillation
(𝑇 ′), the temperature difference measured from the heat source (𝑇hs −𝑇), the heat source location (𝑥hs), the heat source
diameter (𝑑hs), and the Hertzian frequency of oscillations ( 𝑓 ). Here the subscript “hs” denotes properties associated
with the heat source element. In addition, we expect the viscosity (𝜇0), density (𝜌0), specific heat (𝐶𝑝), heat transfer
coefficient (ℎ), speed of sound (𝑎0), coefficient of thermal expansion (𝛽0), gravitational constant (𝑔0), tube length (𝐿),
tube diameter (𝐷), and thermal conductivity (𝑘0) to be relevant. Note that the temperature difference can be perceived
as the bulk difference between the warm and cold sections of the tube, following the analysis of Heckl and Howe [54].
In this context, the dependence of the dimensional heat oscillation on these parameters can be expressed as

𝑞′ = 𝑓 (𝑝′, 𝑢′, 𝑇 ′, 𝑇hs − 𝑇, 𝑥hs, 𝑑hs, 𝑓 , 𝜇0, 𝜌0, 𝐶𝑝 , ℎ, 𝑎0, 𝐿, 𝐷, 𝑘0, 𝛽0, 𝑔0
)
, (14)

where the form of the function 𝑓 is not yet known. After determining the rank of the dimensional matrix and applying
the Buckingham-Pi theorem, one may choose 𝑝′, 𝑢′, 𝑇 ′, and 𝐷 as repeating parameters. Forthwith, fourteen Pi
parameters emerge and these may be written as:

Π1 =
𝑞′

𝑝′𝑢′𝐷2
, Π2 =

𝜌0𝑢
′2

𝑝′
, Π3 =

𝐶𝑝𝑇
′

𝑢′2
, Π4 =

𝑓 𝐷

𝑢′
, Π5 =

𝑎0
𝑢′

, Π6 =
ℎ𝑇 ′

𝑝′𝑢′
, Π7 =

𝜇0𝑢
′

𝑝′𝐷
,

Π8 =
𝑥hs
𝐷

, Π9 =
𝐿

𝐷
, Π10 =

𝑑hs
𝐷

, Π11 =
𝑇hs − 𝑇
𝑇 ′

, Π12 =
𝑘0𝑇

′

𝑝′𝑢′𝐷
, Π13 = 𝛽0𝑇

′, and Π14 =
𝑔0𝐷

𝑢′2
.

As usual, these may be further rearranged into Π1 = 𝐹 (Π2,Π3, . . . ,Π14), or

𝑞′

𝑝′𝑢′𝐷2 = 𝐹

[
𝜌0𝑢

′2

𝑝′
, 𝜌0𝑢

′2

𝜌0𝐶𝑝𝑇
′
, 𝑓 𝐿
𝑎0

, 𝑢
′

𝑎0
, ℎ𝑇

′

𝑝′𝑢′
, 𝜇0𝑢

′

𝐷𝑝′
,𝑥hs
𝐿

, 𝐿
𝐷

,𝑑hs
𝐷

,𝑇hs − 𝑇
𝑇 ′

, 𝑘0𝑇
′

𝑝′𝑢′𝐷
, 𝛽0𝑇

′, 𝑔0𝐷

𝑢′2

]
. (15)

Aside from the geometric scaling ratios, eleven specific groups may be identified:
The first, Π1 = 𝑞′ /(𝑝′𝑢′𝐷2), defines a similarity grouping that relates the fluctuating heat flux to the acoustic

pressure and velocity. It is perfectly consistent with Eq. (13).
The reciprocal of the second term, 𝑝′ /(𝜌0𝑢

′2) = Eu, gives the ratio of the fluctuating thermodynamic and dynamic
pressures associated with the acoustic field. It represents a form of the unsteady Euler number. However, since the
unsteady Euler number is rarely utilized [69], one may apply scaling principles and replace Π2 by Π2/Π7, thus leading
to the unsteady Reynolds number, Π2 = 𝜌0𝑢

′𝐷/𝜇0 = Re.
The third, Π3 = 𝜌0𝑢

′2 /(𝜌0𝐶𝑝𝑇
′), yields the ratio of the dynamic pressure and the enthalpy of the acoustic field.

This parameter can be alternatively written, through Π11, as 𝑢′2/[𝐶𝑝 (𝑇hs − 𝑇)] = Ec. This unsteady Eckert number
gauges the fluctuating kinetic energy per unit sensible enthalpy.

The fourth, Π4 = 𝑓 𝐿/𝑎0 ∼ 𝑛, reflects a form of the Strouhal number based on the speed of sound. It actually returns
the acoustic oscillation mode number. Recalling that, for an open-open tube at constant temperature, the frequency
may be estimated from 𝑓𝑛 = 𝑛𝑎0/(2𝐿), Π4 reduces to 𝑛/2, which scales with 𝑛.

The fifth, Π5 = 𝑢′/𝑎0 = Ma, restores the unsteady Mach number.
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The sixth, Π6 = ℎ𝑇 ′/(𝑝′𝑢′), can be combined with Π12, or 𝑝′𝑢′ ∼ 𝑘0𝑇
′/𝐷, to recover the unsteady Nusselt number,

Π6 = ℎ𝐷/𝑘0 = Nu.
The seventh, Π7 = 𝜇0𝑢

′/(𝑝′𝐷) ∼ (𝜇0d𝑢′/d𝑟) /𝑝′, provides a measure of the unsteady viscous shear relative to
the acoustic pressure. This term can be further reduced using Π12 (or 𝑝′𝑢′ ∼ 𝑘0𝑇

′/𝐷), and Π3 (or 𝑇 ′ ∼ 𝑢′2/𝐶𝑝), to
deduce the unsteady Prandtl number, Π7 = 𝜇0𝑢

′2/(𝑝′𝑢′𝐷) = 𝜇0𝐶𝑝/𝑘0 = Pr.
The eighth, Π11 = 𝑇 ′/(𝑇hs − 𝑇) = 𝜃, refers to the so-called reduced temperature.
The ninth, Π12 = 𝑘0𝑇

′/(𝑝′𝑢′𝐷) orΠ12 = 𝑘0 (𝑇hs−𝑇)/(𝑝′𝑢′𝐷), captures the ratio between unsteady heat conduction
and the product of acoustic pressure and velocity. This term seems relevant to the computational work conducted by
Farouk et al. [70], where the wall temperature is permitted to vary along two bounding walls.

The tenth term, 𝛽0𝑇
′, may be divided by the reduced temperature and written more conveniently asΠ13 = 𝛽0 (𝑇hs−𝑇),

thus constituting a non-dimensional thermal expansion factor.
Lastly, the reciprocal of the eleventh term, 𝑢′2/(𝑔0𝐷) = Fr, returns the unsteady Froude number. However, given

the more appreciable role of buoyancy in driving the naturally convected upward motion in a Rijke tube, this parameter
may be multiplied by Π2

2Π13 and supplanted by the unsteady Grashof number, Π14 = 𝜌0𝑔0𝛽0 (𝑇hs − 𝑇)𝐷3/𝜇2
0 = Gr.

At this juncture, Eq. (15) may be conveniently reduced to

𝑞′

𝑝′𝑢′𝐷2 = 𝐹

[
𝑥hs
𝐿
,
𝐿

𝐷
,
𝑑hs
𝐷
,Re,Ec, 𝑛,Ma,Nu,Pr, 𝜃,

𝑘0𝑇
′

𝑝′𝑢′𝐷
, 𝛽0 (𝑇hs − 𝑇),Gr

]
. (16)

Note that the form of Π1 stands in perfect agreement with the proposed Eqs. (9) and (13) in Sec. III.A.

IV. Experimental Setup

A schematic of the Rijke tube, which is referred to in the experimental part of this study, is shown in Fig. 2. The
setup consists of a simple cylindrical configuration that can be easily retrofitted. The actual apparatus comprises several
modular two-inch nominal steel connectors. These interchangeable fittings are joined together by three-way tees, and
the smaller side of each tee is attached to a short threaded connector, a reducer, a long threaded connector, and a cap
for inserting a microphone [64].

The tube can be clamped either vertically or horizontally and its total length can be altered by replacing the
connectors with either shorter or longer fittings. Due to the isobaric openings on both ends, the length of the
tube corresponds to half of the fundamental oscillation wavelength, 𝜆𝑛 = 𝐿/(2𝑛), where 𝑛 = 1 prescribes the first
fundamental mode.

After introducing a heat source element at the critical location shown in Fig. 2, the magnitude and frequency of
pressure oscillations are measured at four different locations along the tube. This is done by inserting “Realistic”
microphones into the tees and connecting them to a two-channel HP-3582A spectrum analyzer. To protect each
microphone from the rising pressures and temperatures in the tube, the microphone tips are inserted perpendicularly
to the walls into the 15.24 cm (6”) long connectors. This is done in order to, firstly, avoid introducing vortex shedding
around the microphone tip [27]; secondly, reduce interference with measurements; and thirdly, provide a positive seal
that prevents flow leakage past the microphone.

V. Computational Model

The unsteady flowfield evolving in a Rijke tube can be characterized using axisymmetric coordinates and a Navier–
Stokes solver based on the volume of fluid (VOF) technique [71]. The VOF method consists of three elements: a
scheme to locate the surface, an algorithm to track the surface, and a means of applying boundary conditions at the
surface [72].

In the computational model, the tube length is set at 0.9 m and the internal diameter is chosen to be 0.05 m. Taking
advantage of the prevailing axisymmetry, only one cross section of the tube needs to be modeled. Evidently, since the
tube represents a body of revolution, material properties, boundary conditions, and other effects may be assumed to be
axisymmetric relative to the centerline.

The computational mesh for the flow domain comprising the Rijke tube and its surroundings may be taken in a
planar 𝑟-𝑥 slice as shown in Fig. 2. In this arrangement, a porous obstacle with a diameter of 3.75 cm may be inserted
into the tube at a location of 22.5 cm from the bottom-end. This heating element is intended to mimic the behavior of
a heat source. In this study, an obstacle porosity value of 0.9 is assigned to the heat source, thus implying a 90 percent
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6

r

x

centerline

h

convection

test cell

-30.0

-15.0

0.0

30.0

45.0

60.0

75.0

90.0

105.0

120.0 cm

15.0

22.5

0.0 25.0 cm

h

heater

Fig. 2. Schematics of the experimental diagram of the Rijke tube apparatus [7] as well as the computational
domain that includes the surrounding air volume. Items at left denote: i) the threaded connector section (2”
nominal), ii) the tee section (2”×2”× 1

2”), iii) the short connector ( 1
2” nominal), iv) the reducer ( 1

2”× 1
4”), v) the

long connector ( 1
4”×12”), and vi) the cap ( 1

4”).
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Table 1. Experimental measurements at different Rijke tube locations.

Microphone location from top outlet [cm] SPL [dB] 𝑝rms [Pa] 𝑓 [Hz]
65 134.5 108.3 248
55 135.7 124.3 254
35 135.6 122.9 246
25 132.5 86.0 260

open area fraction. The thermal conductivity, density, and heat capacity of steel are used to prescribe the properties of
the heating element. Finally, heat is released within the element over a finite length of time to avoid spurious errors
that can occur when heat is released suddenly.

A. Heat Transfer Coefficients

Quasi-steady approximations of heat transfer coefficients are evaluated by the code using standard correlations for
heat convection from flat surfaces. More specifically, the correlations are based on four thermal mechanisms: natural
convection, forced laminar convection, forced turbulent convection, and conduction within the fluid. All correlations
are evaluated and the largest value is automatically selected by the program.

B. Numerical Strategy

The numerical procedure is executed in two stages that take into account both transient and steady-state solution
developments. The first stage carries the problem from an initial state of rest to a time of 20 seconds. At this point, the
problem begins to exhibit limit-cycle oscillations that are characterized by nearly constant amplitudes.

The second stage carries the problem from 20 to 20.025 seconds over a much smaller time interval. This is done for
the purpose of tracking more precisely the progressive acoustic wave growth. Meanwhile, virtual probes are located
inside the simulated tube at several axial locations as shown graphically in Fig. 2. Numerically obtained pressures,
temperatures, densities, and velocities are subsequently acquired and tabulated.

VI. Results and Discussion

A. Experimental Results

In the actual experiment, the heat source (here, a Bunsen burner) is mounted vertically inside the lower half of
the tube. The burner heats the air around it, thus establishing a steady buoyancy-driven motion. The flame location
is typically moved back and forth until an optimal position is found to excite most effectively the system’s natural
frequency. The level of acoustic growth is measured using a soundmeter and, as the flame is displaced, a loud and
relatively pure tone is emitted and recorded by the microphones. This loud tone is continuously emitted as long as
energy is supplied at the heater. One finds that the maximum sound pressure level is realized when the heater is located
at 𝐿/4 from the bottom of the tube.

Acoustic oscillations diminish noticeably when the outflow area at the top is reduced or obstructed, and this behavior
may be attributed to two primary factors. First, by constricting the outlet of the tube, equal and opposite (mirror)
waves are produced that reflect back and forth at the tube’s endwalls. This motion reduces the amplitude of acoustic
oscillations. Second, by constricting the downstream end, the amount of air movement inside the tube is suppressed.
This limits the convection heat transfer coefficient and reduces the thermoacoustic mode coupling.

In fact, a separate test may be used to verify that coupling with the naturally convected airflow is indeed a
contributing factor to acoustic wave growth. This is accomplished by augmenting the air flowrate externally by means
of a blower. When this is done, a higher intensity tone is emitted, which enables us to infer that forcing the air through
the tube enhances the heat transfer coefficient and leads to a stronger acoustic environment.

The same experimental verification is then repeated in a Rijke tube held horizontally. Initially, using the standard
configuration, oscillations do not occur when the tube is laid horizontally. This observation may be attributed to
the absence of naturally convected flow, which is needed to promote thermoacoustic coupling. However, by adding
a separate blower that forces air circulation, a sufficiently active convective motion is induced. This motion is

10
American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

ub
ur

n 
U

ni
ve

rs
ity

 o
n 

M
ar

ch
 2

0,
 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
23

-0
76

8 



8 0
1 0 0
1 2 0

8 0
1 0 0
1 2 0

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 08 0
1 0 0
1 2 0

8 0
1 0 0
1 2 0

1 3 5 . 7  d B  a t  2 5 4  H z  SP
L [

dB
]

1 3 5 . 6  d B  a t  2 4 6  H z  

1 3 4 . 5  d B  a t  2 4 8  H z  

F r e q u e n c y ,          f   [ H z ]

1 3 2 . 5  d B  a t  2 6 0  H z

Fig. 3. Experimentally measured sound in the Rijke tube. From top to bottom, the microphone is located at 25,
35, 55, and 65 cm from the outlet section. The inset pinpoints the location of the microphone.

accompanied by a loud tone that is similar to that generated inside a naturally driven vertical tube.
Some experimental results are displayed in Fig. 3, where the amplitudes of the sound pressure level (SPL) are

recorded at four different microphone locations taken along the tube. According to the spectrum analyzer used in this
study, the frequency measurements are accompanied by a small uncertainty of ±0.003%. In all four cases, heat addition
is supplied at around 𝐿/4 from the bottom and the results are summarized in Table 1. Since the acoustic pressure
amplitude peaks in the middle and vanishes at the open ends, the maximum SPL is recorded by the microphones that
are closest to 𝑥 = 𝐿/2.

In these runs, only the fundamental mode is excited at a frequency of approximately 250 Hz. This frequency
corresponds to the finite length of the tube (𝐿 = 0.9 m). The small variations in frequency are due to the temperature
fluctuations inside the tube during the test. A slight displacement of the heat source either downward or upward causes
the amplitude to decrease. When the heat source is moved down to the 𝑥 = 𝐿/8 position, the second mode ( 𝑓 = 500
Hz) is observed along with the first mode. This behavior is corroborated by Carvalho’s experimental findings [73]. By
the same token, moving the heat element to 𝑥 = 𝐿/16 triggers the first three oscillation modes.

B. Computational Results

The computed pressure, axial velocity, and heat dissipation rate are illustrated in Fig. 4 for the first 20 seconds. It
can be clearly seen that, after about 8.5 seconds, the pressure, velocity, and heat oscillations begin to occur. At this
point in time, the temperature at the heater element would have reached its limit-cycle condition leading to constant
amplitude oscillations. Given that the establishment of thermal fluctuations must necessarily precede the inception of
strong pressure waves, the role of thermal oscillations in driving the acoustic motion may be readily inferred.

Following the first 20 seconds, Fig. 5 is used to illustrate the evolution of the pressure, axial velocity, and source-
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Fig. 4. Pressure, axial velocity, and heat release for the first 20.0 seconds. This is a standard run with 430 watts
supplied to the heat source at 𝒙 = 𝑳/4 .

to-air heat transfer during the second stage. Here, a smaller time step is used in the simulations to track the acoustic
wave growth more accurately. Based on the graph, one can infer that periodic oscillations are present in all of the
variables with a frequency of about 200 Hz. This value falls within 19 percent of the analytical and experimental
frequencies of 248 Hz. The former, which is given by 𝑓1 = 𝑎0/(2𝐿), is strongly dependent on the speed of sound
approximation. The underlying discrepancy may be attributed to the specification of an overall lower temperature
in the computational fluid dynamics (CFD) simulations compared to that affecting the experiments. In fact, a more
precise evaluation of the speed of sound would require a weighted spatial integration over both cool and warm sections
of the tube, i.e., by taking into account the spatial variation of the temperature. In our estimation, a global speed of
sound of 𝑎0 ≈ 331.2

√︁
(𝑇avg + 273.2)/273.2 ≈ 447 m/s, evaluated at an average temperature of 𝑇avg ≈ 225oC, would

be appropriate to use, as it would lead to a reconciliatory frequency of 248 Hz. In general, however, the use of a
simple average that assumes a constant temperature will not be sufficient to fully characterize the problem [50]. Other
methods that rely on a more detailed spatial average of the speed of sound across the tube will be later explored, and a
discussion of the temperature profile on the resulting mode shapes and frequencies will be later entertained.

As described previously by Entezam et al. [74], a threshold value for heat input intensity must be exceeded before
any appreciable acoustic coupling can be seen. The phase angle between acoustic pressure and fluctuating heat flux is
also found to be 45o. In hindsight, the most significant result reported by Entezam et al. [74] may be the observation
that maximum acoustic growth occurs when the energy heat flux vector is maximized. This observation lends support
to the scaling analysis outlined in Sec. III.A.

In what regards proper heat source positioning, it is found that the spatial location of the heater element constitutes
a key factor in producing thermoacoustic oscillations. When the source is placed in the lower half of the tube, large
amplitude oscillations are reported. The resulting oscillations are found to exhibit their largest amplitudes when the
source is located at precisely 𝐿/4 from the bottom. During separate runs, the source is relocated to both the middle
(𝑥 = 𝐿/2) and upper (2𝐿/3) sections of the tube, namely, to examine whether or not strong oscillations can be produced.

The numerical simulations confirm that when the source is positioned at 𝐿/2, the presence of an acoustic velocity
node precludes the onset of oscillations. This observation stands in agreement with the arguments presented in Sec. III.
The latter, let us recall, predict zero acoustic intensity at the chamber’s mid-point. By the same token, a very weak
signal is recorded when the source is placed at 2𝐿/3. At that point, the oscillatory velocity and pressure are strictly
out of phase. As a result, their potential to trigger acoustic excitation is drastically diminished.

Unsurprisingly, as the heat input is increased, the pressure oscillations are seen to grow progressively. Based on the
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Fig. 5. Pressure, axial velocity, and heat release using a time step of 0.0025 seconds during limit-cycle oscillations.

data collected, a minimum value of heat addition appears to exist below which the thermoacoustic coupling becomes
too weak to trigger any appreciable acoustic growth. When the heat input is sufficiently small, the acoustic sinks
exceed the sources and acoustic attenuation prevails. Conversely, when the heat input is augmented beyond a critical
threshold, acoustic sinks become insufficient and rapid acoustic amplification ensues. In our numerical simulation,
this critical value is observed for a heater power supply of approximately Pcrit ≈ 430 W.

The computational work also shows that the modulus of heat transfer oscillations remains rather proportional to
the modular product of acoustic velocity amplitude, acoustic pressure amplitude, and surface area of the heat source
(see Fig. 6). This key result confirms the arguments leading to Eqs. (8), (13) and (16). In this vein, we find it useful to
define the corresponding Rijke tube parameter as [69]

Rj ≡ 𝑞′

𝑝′𝑢′𝐷2
, (17)

where the symbol Rj is tentatively used in reference to Petrus (Pieter) Leonardus Rijke (1812-1899) for his brilliant
discovery of the thermoacoustically generated sound through an open tube back in 1859[75]. Note that the sharp slopes
that may be seen around 430 W in Fig. 6 suggest the presence of ‘switching’ or ‘triggering.’ Similar nonlinear jumps
that can occur in thermacoustic devices are described by Noiray et al. [76], Noble et al. [77], and Sujith et al. [78].

To summarize, audible sound pressure oscillations will occur when the product of velocity and pressure fluctuations
becomes sufficiently large at the location of the heat source, and will otherwise vanish when this product is suppressed.
One also notes that, when the pressure and velocity fluctuations stay out of phase, the flow fluctuations will experience
alternating pressure gradients that are continually unfavorable. This condition tends to suppress their motion and,
in turn, the coupling with thermal oscillations at the heat source. These observations, first made speculatively, are
now confirmed both numerically and experimentally. Moreover, they seem to agree with the interpretation offered by
Raun et al. [6] concerning the effect of heat source positioning. Accordingly, “maximum driving occurs at the point
a quarter of the way from the bottom of the tube where the product of the acoustic velocity and acoustic pressure has
the maximum magnitude.” Although they are stated differently, their conclusions support our observation that both
pressure and velocity fluctuations must be appreciable and in phase for driving to occur. They also concur with both
experimental and numerical findings suggesting that “driving does not occur if the gauze is placed at either a velocity
or pressure node.”
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Fig. 6. Comparison between the modular product of acoustic pressure and velocity using solid circles (•), and
the modulus of heat oscillations using hollow circles (◦).

VII. A Perturbative Approach

A. Basic Assumptions and Normalization

In this section, we initiate the development of an asymptotic procedure that takes into perspective some of the
approximations used by the foregoing formulations. Although the different models that we have explored predict
similar frequencies, the intent here is to pursue an alternative formulation that offers unique benefits and that may serve
as an independent verification tool. For example, each of the Green’s function and differential equation techniques
make certain assumptions on the temperature variation within the tube. As such, it would be useful to examine the
sensitivity of the ensuing oscillations to the spatial form of the temperature distribution. To do so, we shift our focus
to a one-dimensional acoustics formulation that can accommodate an arbitrary axial temperature gradient along with
an unsteady heat release function.

Based on a cursory review of the literature, it may be seen that several efforts have indeed been undertaken to
combine these effects. One may cite, for example, the foundational work by Sujith et al. [79], Sujith [80], Sugimoto
and Yoshida [66], Sugimoto et al. [67], Bednarik et al. [81], and Kumar and Sujith [82, 83], who have developed
different analytical combinations of pressure and energy flux approximations for continuously varying temperature
profiles. Assuming a linear temperature profile, Munjal and Prasad [84] have further managed to obtain a transfer
matrix solution to the acoustic wave distribution in a pipe that combines the effects of the mean flow and temperature
gradient. One may also pursue a WKB-type expansion for the acoustic field in ducted flows that are subject to an
axial temperature gradient [85]. On this count, Li and Morgans [86] have constructed a WKB series for the acoustic
motion in a duct given an arbitrary axial temperature gradient and mean flow; although the temperature gradient in
their analysis is taken to be linear over small intervals, their solution is shown to be continually reliable and accurate
over a wide range of Mach numbers. In the present investigation, however, it is desirable to account for a discontinuous
thermal profile. For this reason, our objective will be directed toward the development of a semi-analytical formulation
that is capable of accounting for the combined effects of an arbitrary temperature gradient and unsteady heat release
on the pressure and, subsequently, the velocity field.

To set the stage, several assumptions are made. First, the flow in the Rijke tube is considered to be essentially
one-dimensional, inviscid, and adiabatic, with constant thermophysical properties and no mean heat input or velocity.
Furthermore, the air may be taken to be a perfect gas with a mean pressure that remains constant and a temperature
distribution that depends solely on the axial coordinate. Although thermoacoustic instabilities are often accompanied
by three disturbance modes[87], only the acoustic and entropic modes will be considered; the boundary-driven vortical
mode will be neglected in view of the underlying inviscid and one-dimensional spatial assumptions. Under these
auspices, the density may be related to two state properties, namely, the pressure and the specific entropy, 𝑠. Then,
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using direct differentiation, one can split the material derivative of the density into

𝐷𝜌

𝐷𝑡
=
𝜕𝜌

𝜕𝑝

���
𝑠

𝐷𝑝

𝐷𝑡
+ 𝜕𝜌
𝜕𝑠

���
𝑝

𝐷𝑠

𝐷𝑡
=

1
𝑎2

0

𝐷𝑝

𝐷𝑡
+ 𝜕𝜌
𝜕𝑠

���
𝑝

𝐷𝑠

𝐷𝑡
. (18)

Furthermore, by dismissing viscous dissipation and heat conduction, one may follow Dowling [88] and write, for an
ideal gas,

𝐷𝜌

𝐷𝑡
=

1
𝑎2

0

[
𝐷𝑝

𝜕𝑡
− (𝛾 − 1) 𝑞𝜗

]
, (19)

where 𝑞𝜗 denotes the total heat release rate per unit volume. The resulting expression can be further simplified for the
case of negligible mean flow. One gets

𝐷𝜌

𝐷𝑡
=

1
𝑎2

0

[
𝜕𝑝′

𝜕𝑡
− (𝛾 − 1) 𝑞′𝜗

]
, (20)

with 𝑞′
𝜗

denoting the fluctuating heat release rate per unit volume. At this juncture, the velocity and pressure
disturbances may be taken to be small, in conformance with the theory of linear acoustics. This enables us to
decompose the instantaneous variables into mean and fluctuating quantities, namely, 𝑝 = 𝑝0 + 𝑝′, 𝜌 = 𝜌0 + 𝜌′, and
𝑢 = 𝑢′. As usual, this decomposition allows us to linearize the mass and momentum equations and recover their
standard acoustic forms [89],

𝐷𝜌

𝐷𝑡
+ 𝜌0∇ · u′ = 0 (mass conservation), (21)

and
𝜕𝑢′

𝜕𝑡
+ ∇𝑝′
𝜌0

= 0 (momentum conservation). (22)

Next, the dimensional pressure and velocity perturbation equations may be derived. This is done by combining
Eqs. (20–22) with the ideal gas equation, 𝑝0 = 𝜌0𝑅𝑇0, and expanding the derivatives in one-dimensional space. One
obtains

𝜕2𝑝′

𝜕𝑡2
− 𝑎2

0
𝜕2𝑝′

𝜕𝑥2 = 𝛾𝑅
d𝑇0
d𝑥

𝜕𝑝′

𝜕𝑥
+ (𝛾 − 1)

𝜕𝑞′
𝜗

𝜕𝑡
, (23)

and
𝜕2𝑢′

𝜕𝑡2
− 𝑎2

0
𝜕2𝑢′

𝜕𝑥2 = −𝛾𝑅 d𝑇0
d𝑥

𝜕𝑢′

𝜕𝑥
− 𝑅

𝑝0

[
d𝑇0
d𝑥

𝜕𝑝′

𝜕𝑡
− (𝛾 − 1) d𝑇0

d𝑥
𝑞′𝜗 + (𝛾 − 1) 𝑇0

𝜕𝑞′
𝜗

𝜕𝑥

]
. (24)

It may be helpful to note several characteristic properties in these coupled relations. First, in reference to the pressure
wave equation given by Eq. (23), the axial temperature gradient can modify the first derivative of the pressure by virtue
of its role as the coefficient of the pressure gradient on the right-hand-side. It can effectively serve as either a driver
or inhibitor depending on its sign; in fact, this functionality will become apparent once the perturbed expansion for
the pressure approximation is complete. Second, the derivative of the heat release in Eq. (23) is clearly seen to act
as a source of pressure waves. Third, in regards to the velocity wave equation given by Eq. (24), several effects may
be inferred. When the axial temperature gradient acts as a driver of pressure oscillations in Eq. (23), it becomes a
dissipator of acoustic velocity oscillations by virtue of the sign switch that its coefficient undergoes in Eq. (24). Fourth,
the time-dependent pressure disturbance gradient may be seen to function as a sink of acoustic velocity waves so long
as the axial temperature gradient remains positive. This confirms that, when the pressure oscillations increase with
the passage of time, the velocity oscillations decrease, namely, as one would expect from their 90o phase difference. If
we were to track a discrete packet of molecules that cross the heater element, the volume of this packet would greatly
expand. Assuming that the internal domain can be readily divided into two distinct temperature zones, the region above
the heater will then exhibit a higher temperature and so, by applying Boyle’s law, a change in volume will directly
induce a change in pressure. Lastly, the unsteady temperature and heat oscillations may be seen to function as sources
(or sinks) of acoustic velocity waves. In fact, the accurate specification of the axial temperature gradient along the tube
may be well justified given its strong bearing on the system’s wave dynamics. In contrast, higher-order temperature
derivatives do not appear to be consequential in the linear regime.

At this stage, it will be helpful to normalize our principal equations in Eqs. (23) and (24), starting with their basic
spatial and temporal coordinates. We proceed by taking

𝑝 =
𝑝′

𝑝0
, 𝑡 = 𝜔0𝑡 , 𝑢̃ =

𝑢′

(𝑎0)min
, 𝑥 =

𝑥

𝐿
, 𝑇0 =

𝑇0
(𝑇0)min

, 𝑞 =
𝑞′
𝜗
𝐿

𝑝0 (𝑎0)min
, and 𝜔0 =

(𝑎0)min
𝐿

, (25)
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where the tildes denote dimensionless quantities and 𝜔0 represents the characteristic normalizing frequency, not to be
confused with the first fundamental mode; the latter is labeled either 𝜔1 or 𝑓1 depending on whether it refers to the
circular or Hertzian frequency. These, in turn, may be normalized using 𝜔̃1 = 𝜔1/𝜔0 and 𝑓1 = 𝑓1/𝜔0, respectively. In
the above, the subscript “min” refers to the minimum value of a given property taken along the coldest section of the
tube, which typically occurs at entry. Note that, in mimicking the heat release law, the unsteady heat release, 𝑞′

𝜗
, is

normalized using the characteristic pressure, velocity, and length. By substituting these normalizing expressions into
Eqs. (23) and (24), one arrives at the following non-dimensional set:

𝜕2𝑝

𝜕𝑡2
− 𝑇0

𝜕2𝑝

𝜕𝑥2 =
d𝑇0
d𝑥

𝜕𝑝

𝜕𝑥
+ (𝛾 − 1) 𝜕𝑞

𝜕𝑡
, (26)

and
𝜕2𝑢̃

𝜕𝑡2
− 𝑇0

𝜕2𝑢̃

𝜕𝑥2 = −d𝑇0
d𝑥

𝜕𝑢̃

𝜕𝑥
− 1
𝛾

d𝑇0
d𝑥

𝜕𝑝

𝜕𝑡
− 𝛾 − 1

𝛾

(
𝑇0
𝜕𝑞

𝜕𝑥
− 𝑞 d𝑇0

d𝑥

)
. (27)

To make further headway, we find it useful to define the naturally occurring small parameter, 𝜀 ≡ (𝛾 − 1)/𝛾, at
the basis of our asymptotic expansion approach. This perturbation parameter enables us to capture the effect of the
temperature variation on the pressure and velocity disturbances while treating it as a primary contributor. It will also
enable us to incorporate the unsteady heat release effect as a secondary contributor, i.e., owing to the size of 𝜀 and
assuming small deviations from linearity.

B. Leading-Order Perturbation Expansion

Noting that 𝛾 = 1/(1 − 𝜀) = 𝑂 (1), Eqs. (26) and (27) may be reduced to:

𝜕2𝑝

𝜕𝑡2
− 𝑇0

𝜕2𝑝

𝜕𝑥2 =
d𝑇0
d𝑥

𝜕𝑝

𝜕𝑥
+ 𝜀𝛾 𝜕𝑞

𝜕𝑡
, (28)

and
𝜕2𝑢̃

𝜕𝑡2
− 𝑇0

𝜕2𝑢̃

𝜕𝑥2 = −d𝑇0
d𝑥

𝜕𝑢̃

𝜕𝑥
− (1 − 𝜀) d𝑇0

d𝑥
𝜕𝑝

𝜕𝑡
− 𝜀

(
𝑇0
𝜕𝑞

𝜕𝑥
− 𝑞 d𝑇0

d𝑥

)
. (29)

Clearly, the perturbation decomposition incorporates the effects of the temperature gradient at the leading order while
deferring those of the unsteady heat release to the first order in 𝜀. As usual, the solution may be reconstructed using
𝑝 = 𝑝 (0) + 𝜀𝑝 (1) + 𝑂 (𝜀2) and 𝑢̃ = 𝑢̃ (0) + 𝜀𝑢̃ (1) + 𝑂 (𝜀2), where the superscript refers to the perturbation order. At
the leading order, it is not necessary to specify 𝑞; the latter can be left as a placeholder that serves to accommodate a
user-defined heat release law, such as Eq. (8) or, alternatively, a particular flame transfer or a flame describing function.

1. Leading-Order Equation Type

The leading-order approximation examines the effect of a purely axial temperature gradient with no direct
participation from the unsteady heat release. The axial temperature can be taken to be an arbitrary function of 𝑥
with at least a continuous first derivative. Using the decomposed variables and letting 𝜀 → 0, Eqs. (28) and (29) render
the sequentially coupled set,

𝜕2𝑝 (0)

𝜕𝑡2
= 𝑇0

𝜕2𝑝 (0)

𝜕𝑥2 + d𝑇0
d𝑥

𝜕𝑝 (0)

𝜕𝑥
, (30)

with
𝜕2𝑢̃ (0)

𝜕𝑡2
= 𝑇0

𝜕2𝑢̃ (0)

𝜕𝑥2 − d𝑇0
d𝑥

𝜕𝑢̃ (0)

𝜕𝑥
− d𝑇0

d𝑥
𝜕𝑝 (0)

𝜕𝑡
. (31)

It should be noted at this point that the solution of Eq. (31) depends on 𝑝 (0) , and that the leading-order pressure wave
is retrievable directly from Eq. (30). Procedurally, it may be helpful to recognize that Eqs. (30) and (31) exhibit the
canonical form

𝜕2𝑤

𝜕𝑡2
= 𝑓 (𝑥) 𝜕

2𝑤

𝜕𝑥2 + 𝑔(𝑥) 𝜕𝑤
𝜕𝑥

+ 𝜙(𝑥, 𝑡). (32)

Using the identity provided in Section 4.5.3-3 of Polyanin [90], one may readily group congruent terms and write

𝜕2𝑝 (0)

𝜕𝑡2
=
𝜕

𝜕𝑥

(
𝑇0
𝜕𝑝 (0)

𝜕𝑥

)
, (33)
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with
1
𝑇2

0

𝜕2𝑢̃ (0)

𝜕𝑡2
=
𝜕

𝜕𝑥

(
1
𝑇0

𝜕𝑢̃ (0)

𝜕𝑥

)
− 1
𝑇2

0

d𝑇0
d𝑥

𝜕𝑝 (0)

𝜕𝑡
. (34)

We thus recover a modified wave equation that embodies the temperature distribution and its gradient explicitly. As
for the last term in Eq. (34), it corresponds to the arbitrary source term 𝜙(𝑥, 𝑡) in Eq. (32).

Fortuitously, a general solution for each of the transformed equations can be obtained based on a Green’s function and
a Sturm–Liouville eigenvalue solver [90]. A Green’s function expression is reassuring because a similar formulation is
used by Bigongiari and Heckl [53] to account for the presence of unsteady heat release and a piecewise axial temperature.
In fact, having procedurally identified a general solution form, we may proceed to define suitable boundary conditions.
Specifically, we may equate the characteristic length, 𝐿, to the Rijke tube’s, and assign pressure nodes and velocity
antinodes to the tube’s endwalls. As for the unsteady heat source, it may be expressed using a Dirac delta function at
𝑥 = 1/4.

2. Leading-Order Fluctuating Pressure Approximation

The boundary and initial conditions on Eq. (33) may be specified as:

𝑝 (0) = 0 at 𝑥 = 0,

𝑝 (0) = 0 at 𝑥 = 1,

𝑝 (0) = 𝑓𝑝 (𝑥) at 𝑡 = 0,
𝜕𝑝 (0)

𝜕𝑡
= 𝑔𝑝 (𝑥) at 𝑡 = 0,

(35)

where 𝑓𝑝 and 𝑔𝑝 designate the initial spatial distribution of the pressure wave throughout the tube along with its
time-derivative. Although a general solution to the resulting set is possible, the formulation that takes into account
these physical requirements leads to a Sturm–Liouville problem [90]. In the interest of simplicity, an asymptotic
approximation to the resulting set will be pursued.

To start, it may be recognized that the solution for Eq. (33) yields

𝑝 (0) =
𝜕

𝜕𝑡

(∫ 1

0
𝑓𝑝 (𝜉)𝐺 𝑝 (𝑥, 𝜉, 𝑡) d𝜉

)
+
∫ 1

0
𝑔𝑝 (𝜉)𝐺 𝑝 (𝑥, 𝜉, 𝑡) d𝜉, (36)

where

𝐺 𝑝 (𝑥, 𝜉, 𝑡) =
∞∑︁
𝑛=1

𝑦𝑛 (𝑥)𝑦𝑛 (𝜉)
∥𝑦𝑛∥2

sin (𝜔̃𝑛𝑡)
𝜔̃𝑛

; ∥𝑦𝑛∥2 =

∫ 1

0
𝑦2
𝑛 (𝑥) d𝑥. (37)

Here, 𝐺 𝑝 represents the Green’s function for the pressure wave, which allows the two initial pressure-related
distributions to propagate over the solution domain. It comprises both 𝜔̃𝑛 and 𝑦𝑛 (𝑥), the eigenvalue and eigenfunction
of the Sturm–Liouville problem for the pressure. In this particular problem, we recall that the latter exhibits infinitely
many positive definite and distinct eigenvalues. Moreover, the spatial solution to Eq. (33) for the pressure mode shape
can be written in the standard Sturm–Liouville form, namely,

d
d𝑥

[
𝑇0 (𝑥)

d𝑦𝑛 (𝑥)
d𝑥

]
+ 𝜔̃2

𝑛𝑦𝑛 (𝑥) = 0, (38)

with 𝑦𝑛 (0) = 𝑦𝑛 (1) = 0. The resulting homogenous problem can be solved either computationally for the appropriate
eigenvalues and eigenfunctions, or asymptotically, which will be the avenue undertaken here.

It may be useful to remark that despite the infinite summation in Eq. (37), the solution remains dominated by the
first set of eigenmodes; the contributions of the higher eigenmodes become increasingly smaller, as one may infer from
the squeeze theorem. Accordingly, we have

lim
𝜔̃𝑛→∞

sin(𝜔̃𝑛)
𝜔̃𝑛

= 0, lim
𝜔̃𝑛→∞

sin(𝜔̃𝑛𝑡)
𝜔̃𝑛

= 0; ∀𝑡 > 0, (39)

lim
𝜔̃𝑛→0

sin(𝜔̃𝑛)
𝜔̃𝑛

= 1, and lim
𝜔̃𝑛→0

sin(𝜔̃𝑛𝑡)
𝜔̃𝑛

= 𝑡; ∀𝑡 > 0. (40)
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The corresponding term in Eq. (37) will clearly dominate at low frequencies irrespective of time, becoming progressively
less appreciable with successive increases in 𝜔̃𝑛.

Interestingly, for 𝑛 ≫ 1, the eigenvalues and respective eigenfunctions can be approximated, thus leading to a more
compact asymptotic solution. Physically, the 𝑛 ≫ 1 condition occurs when all of the modes in the tube are accounted
for and superimposed. At the outset, the following modal waveforms may be specified:

𝑦𝑛 (𝑥)
∥𝑦𝑛∥

=

[
4

𝑇0 (𝑥)Θ2

]1/4
sin

[
𝜋𝑛

Θ

∫ 𝑥̃

0

1√︁
𝑇0 (𝑥)

d𝑥

]
+𝑂

(
1
𝑛

)
;

Θ ≡
∫ 1

0

1√︁
𝑇0 (𝑥)

d𝑥 and 𝜔̃𝑛 ≈ 𝜋𝑛

Θ
.

(41)

Hence, by combining these asymptotic expressions with the Green’s function formulation, the leading-order solution
for the pressure can be fully identified. It may be helpful to remark that this solution can accommodate an arbitrary
temperature distribution within a tube given a well-prescribed nodal pressure condition at both endwalls.

To make further headway, it may be helpful to recognize that, since both integrals in Eq. (36) are defined over the
same domain, and granted that the initial pressure distribution remains time invariant, the two integrals may be readily
combined using the Leibniz rule and rearranged into

𝑝 (0) =

∫ 1

0

[
𝑓𝑝 (𝜉)

𝜕𝐺 𝑝 (𝑥, 𝜉, 𝑡)
𝜕𝑡

+ 𝑔𝑝 (𝜉)𝐺 𝑝 (𝑥, 𝜉, 𝑡)
]

d𝜉 . (42)

Subsequently, by substituting Eq. (37) into Eq. (42), one obtains,

𝑝 (0) =
∞∑︁
𝑛=1

𝑦𝑛 (𝑥)
∥𝑦𝑛∥

[
cos (𝜔̃𝑛𝑡)

∫ 1

0

𝑦𝑛 (𝜉)
∥𝑦𝑛∥

𝑓𝑝 (𝜉) d𝜉 + 1
𝜔̃𝑛

sin (𝜔̃𝑛𝑡)
∫ 1

0

𝑦𝑛 (𝜉)
∥𝑦𝑛∥

𝑔𝑝 (𝜉) d𝜉
]

. (43)

We thus arrive at a closed-form asymptotic solution for the pressure waveform given an arbitrary temperature
distribution, 𝑇0 (𝑥). This expression enables us to predict the time-evolution of the pressure mode shapes for a
user-specified thermal profile through direct integration; in short, it obviates the need to solve modal differential
equations. Its accuracy will be further examined in an upcoming comparison with a differential equation formulation
developed by Sujith [79].

At this juncture, several useful insights may be inferred from the resulting formulation. On the one hand, assuming
a purely isentropic solution at leading order, one recovers strictly acoustic, inviscid, and irrotational waves that do not
exhibit any vortical or entropic disturbance effects. This behavior may be expected because the presence of vortical
waves is excluded by virtue of the inviscid and quiescent flow assumptions. On the other hand, the acoustic mode
shape, frequency, and speed of propagation appear to be primarily influenced by the mean temperature distribution
and its time-derivative. Lastly, the asymptotic formulation may be seen to produce closed-form expressions over a
wide selection of thermal profiles as long as the 1/

√︁
𝑇0 (𝑥) term can be analytically integrated. Otherwise, numerical

computations must be carried out, thus leading to a semi-analytical approximation. In what follows, we show that
Eq. (43) can be readily evaluated for a variety of thermal profiles.

C. Acoustic Pressure for a Prescribed Temperature Distribution

By way of verification, several thermal profiles will be used to evaluate the resulting pressure distribution. These
start with uniform and linearly increasing or decreasing thermal profiles and, as depicted in Table 2, extend to nonlinear
distributions that include quadratic, exponential, and sinusoidal profiles. For added clarity, these 10 basic patterns are
regrouped and illustrated in Fig. 7. Note that 𝑇0 (𝑥) can consist of any combination of these analytical functions, which
are defined over a unitary interval of [1, 2], except for the uniform profile; it may be further expressed in terms of
data measurements or computed predictions based on actual or simulated thermoacoustic environments. In practice,
because of the upward direction of natural convection, the temperature in a Rijke tube will typically remain fairly
constant in the cold segment below the heat source, and then switch to an exponentially decaying function in the hot
segment [7]. This particular behavior will be separately examined in Sec. VII.C.3. In fact, other attempts to determine
the pressure wave for a given temperature field have already been pursued in the literature; for example, Bednarik et al.
[81] rely on Heun’s equation, while Li and Morgans [86] employ a linearized approximation of an arbitrary temperature
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0.2 0.4 0.6 0.80 1

0.5

1.5

0

1

2

x

0T

a) Uniform (——) and quadratic (– – –)

0.2 0.4 0.6 0.80 1
1

2

x

0T

b) Linear increase (——) and decrease (– – –)

0.2 0.4 0.6 0.80 1
1

2

x

0T

c) Exponential growth (——) and decay (– – –)

0.2 0.4 0.6 0.80 1
1

2

x

0T

d) Half sine increase (——) and decrease (– – –); and
full sine increase (· · · · · ·) and decrease (— · —)

Fig. 7. Thermal profiles corresponding to Table 2 for spatial distributions that are a) uniform and quadratic,
b) linearly increasing and decreasing, c) exponentially increasing and decreasing, and d) sinusoidally increasing
and decreasing both with half and full periods.
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Table 2. Non-dimensional temperature distributions used in the leading-order pressure approximations.

Type Mean temperature, 𝑇̃0 ( 𝑥̃ ) Physical characteristics
Constant 𝑇̃0 ( 𝑥̃ ) = 1 Maintains uniform temperature throughout
Linearly increasing 𝑇̃0 ( 𝑥̃ ) = 1 + 𝑥̃ Corroborates case based on Sujith et al. [79]
Linearly decreasing 𝑇̃0 ( 𝑥̃ ) = 2 − 𝑥̃ Corroborates case based on Sujith et al. [79]
Quadratic (nonlinear) 𝑇̃0 ( 𝑥̃ ) = 1 + 𝑥̃2 Captures concave up thermal increase
Exponentially increasing 𝑇̃0 ( 𝑥̃ ) = 𝑒𝑥̃ ln 2 Mimics thermal profile below heat source
Exponentially decreasing 𝑇̃0 ( 𝑥̃ ) = 2𝑒− 𝑥̃ ln 2 Mimics thermal profile above heat source
Sinusoidally increasing (half period) 𝑇̃0 ( 𝑥̃ ) = 1 + sin(𝜋𝑥̃/2) Captures concave down thermal increase
Sinusoidally decreasing (half period) 𝑇̃0 ( 𝑥̃ ) = 1 + cos(𝜋𝑥̃/2) Captures concave down thermal decrease
Sinusoidally increasing (full period) 𝑇̃0 ( 𝑥̃ ) = 1 + sin(𝜋𝑥̃ ) Mimics increasing temperature off endwalls
Sinusoidally decreasing (full period) 𝑇̃0 ( 𝑥̃ ) = 2 − sin(𝜋𝑥̃ ) Mimics decreasing temperature off endwalls

distribution. Presently, the Green’s function formulation will be used at the basis of predicting the pressure waveform.
For all test cases considered, the solution is evaluated based on the first 50 eigenvalues, although a smaller number

of terms can be used to speed up computations. The initial distributions are set equal to 𝑓𝑝 = 𝑦𝑛 (𝑥)/∥𝑦𝑛∥, where
𝑛 specifies the acoustic mode to be captured, normalized such that the maximum value of 𝑓𝑝 is unity; we also take
𝑔𝑝 = 0, as these conditions reflect the expected acoustic waveform for a given thermal profile. For example, in the case
of a uniform temperature, the use of 𝑇0 (𝑥) = 1 leads to the well-known sinusoidal pressure waveform, 𝑓𝑝 = sin(𝜋𝑥),
in a quiescent tube.

Forthwith, solutions for different thermal profiles are generated and displayed in Fig. 8 through Fig. 11. Note that
full lines are used to demarcate the mode shape envelope by outlining its borders; in this context, broken lines are used
to represent evenly incremented timelines that proceed from the initial pressure modal line to the lowest trough over
half a period; on the other hand, hollow circles are used to represent the returning motion from the lowest trough to the
highest peak. Being separated by an equal fraction of the oscillation period, the timelines may be seen to overlap on
their way back, while the pressure peaks remain stationary, as expected of standing waveforms.

1. Effects of Uniform, Linear, and Quadratic Temperature Distributions

The first test case corresponds to a constant temperature throughout the tube. In an open-open configuration, one
expects the pressure to resemble a conventional sinusoidal wave. This isothermal condition can be simulated by letting
𝑇0 = 1. Then based on Eq. (43), 𝑝 (0) may be evaluated with a time step of 𝜏𝑛/12, where 𝜏𝑛 = 𝜏𝑛𝜔0 = 2𝜋/𝜔̃𝑛 denotes
the non-dimensional modal period for one cycle. This periodic designation will be implemented everywhere unless
specified otherwise. The corresponding timelines, which are evenly spaced in time, are displayed in Fig. 8a; these start
with the initial sinusoidal distribution, and end after one full cycle, with the final standing wave structure depicting a
stationary maximum amplitude.

It may be clearly seen from the resulting mode shape in Fig. 8a that we readily recover the sinusoidal pattern
associated with a standing wave in an open-open tube occupied by an isothermal fluid. The observed wave behavior is
consistent with acoustic theory and can thus be viewed as a limiting process verification of the underlying framework.

In addition to the uniform profile, a quadratic temperature distribution may be examined using 𝑇0 (𝑥) = 1 + 𝑥2;
the outcome is displayed side-by-side to the case of 𝑇0 (𝑥) = 1 in Fig. 8b. Although the pressure nodes and antinodes
remain stationary, the skewed thermal profile causes the antinodes to shift leftward and closer to the tube’s entrance,
namely, to 𝑥max ≈ 0.4378, where the subscript marks the peak pressure location. Although the timelines remain
symmetrical over a cycle, their peak values no longer coincide with the midpoint of the tube; they move closer to the
coldest point in the chamber due to the faster speed of sound in the top portion of the tube, i.e., where the temperature
is increasingly higher. This particular nodal shifting can be explained as follows: Since the speed of propagation is
lower near 𝑥 = 0 and higher near 𝑥 = 1, the right (upward) traveling wave becomes slower in the upstream section of
the tube and faster downstream; similarly, the left (downward) traveling wave becomes faster near the top and slower
near the bottom. This spatial imbalance in propagation speed of the two traveling waves leads to a leftward shift in the
peak value of their consolidated mode shapes, whose superposition determines the standing wave structure.

The next test cases that we consider correspond to the linearly increasing and decreasing temperature profiles,
𝑇0 (𝑥) = 1 + 𝑥 and 𝑇0 (𝑥) = 2 − 𝑥, respectively. These enable us to identify the effects of positive and negative
temperature gradients on the character of the pressure waveform. They also allow us to verify the present formulation
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a) 𝑇0 = 1
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b) 𝑇0 = 1 + 𝑥2

Fig. 8. Acoustic pressure variations corresponding to (a) constant mean temperature and (b) quadratic mean
temperature profiles. Unless specified otherwise, full lines (——) demarcate the mode shape envelope whereas
broken lines (– – –) and hollow circles (◦) represent evenly incremented timelines, taken every 𝝉̃𝒏/12 = 𝝅/(6𝝎̃𝒏),
over the first and second half periods, respectively.
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a) 𝑇0 = 1 + 𝑥
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b) 𝑇0 = 2 − 𝑥

Fig. 9. Acoustic pressure variations corresponding to (a) linearly increasing and (b) linearly decreasing mean
temperature profiles.

by facilitating comparisons to the predictions of Sujith et al. [79]; the latter investigate the behavior of linear temperature
distributions in ducts using a transformed wave equation that can be reduced to a linear ordinary differential equation.
The cases in question are depicted in Fig. 9a for the linearly increasing thermal profile and Fig. 9b for the linearly
decreasing counterpart. In these instances, the effects of temperature inhomogeneity may be clearly seen in the shifting
of the locus of the pressure peaks either upstream, toward the inlet of the tube, for the linearly increasing temperature
profile, or downstream, toward the outlet, for the linearly decreasing 𝑇0 (𝑥). Here too, the final locus of the stationary
pressure antinodes becomes apparent after a full cycle. Similar observations obtained by Sujith et al. [79] lend support
to the validity of the underlying framework.

2. Effects of Exponential and Harmonic Temperature Distributions

The exponentially varying temperature profile may be expressed in the form of 𝑇0 (𝑥) = 𝑘0𝑒
𝑘1 𝑥̃ , where 𝑘0 and 𝑘1

are yet to be determined. For an exponentially increasing temperature, one may impose 𝑇0 (0) = 1 and 𝑇0 (1) = 𝛼𝑒,
where 𝛼𝑒 represents the spatial growth factor. In this case, one finds 𝑘0 = 1 and 𝑘1 = ln𝛼𝑒 = ln 2 for a unit gain
in temperature. Conversely, for the exponentially decreasing pattern, one may set 𝑇0 (0) = 𝛼𝑒 and 𝑇0 (1) = 1. One
deduces 𝑘0 = 𝛼𝑒 = 2, and 𝑘1 = ln(1/𝛼𝑒) = − ln 2 for a unit decrease in temperature. The resulting pressure predictions
are provided in Fig. 10a for the exponentially growing profile and Fig. 10b for the exponentially decaying pattern.
Graphically, the spatial variations of the pressure mode shapes may be seen to resemble their counterparts for the
linearly varying temperature distributions; this behavior may be attributed to their comparable average values over the
𝑥-domain.
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a) 𝑇0 = 𝑒 𝑥̃ ln 2
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b) 𝑇0 = 2𝑒− 𝑥̃ ln 2

Fig. 10. Acoustic pressure variations corresponding to (a) exponentially increasing and (b) exponentially
decreasing mean temperature profiles.

Along similar lines, sinusoidal temperature distributions can be examined with either harmonically increasing or
decreasing thermal patterns. To ensure that the minimum non-dimensional temperature does not drop below unity, these
are expressed as 𝑇0 (𝑥) = 1 + sin(𝜋𝑥/2) and 𝑇0 (𝑥) = 1 + cos(𝜋𝑥/2), and then shown in Figs. 11a and 11b, respectively.
Furthermore, to investigate the effect of a complete thermal oscillation, the spatial distributions 𝑇0 (𝑥) = 1 + sin(𝜋𝑥)
and 𝑇0 (𝑥) = 2 − sin(𝜋𝑥), which are also depicted in Figs. 11c and 11d, are considered. In comparison to the linear
and exponentially varying patterns, the harmonic profiles exhibit the smallest deviations from the classic mode shapes.
Overall, the nodal location and frequency vary slightly as one alternates from the exponentially increasing to the
harmonically increasing cases. This upward shift may be attributed to the higher average temperature associated
with the harmonically increasing profile. This increased temperature also modifies the structure of the outer mode
shape envelope, which appears to swell for a harmonically increasing profile relative to Fig. 8a, and to shrink for a
harmonically decreasing case. The attendant swelling and shrinkage in Fig. 11 become particularly noticeable near the
endwalls.

In hindsight, the loci of the maximum acoustic pressure for the last two harmonic profiles in Figs. 11c and 11d do
not change relative to a uniform temperature distribution because these profiles reflect symmetrically with respect to
the chamber’s midpoint. In fact, for all cases considered, the effect of a thermal variation may be evaluated relative
to the benchmark case with no temperature gradient in Fig. 8a. For a profile exhibiting a higher temperature near
a boundary, say 𝑥 = 1, the corresponding increase in the local speed of sound leads to a shift in the peak pressure
away from that boundary, as experienced in Figs. 9a, 10a and 11a. Conversely, when the temperature decreases near a
boundary, the locally reduced propagation speed leads to a shift in the peak pressure toward that boundary itself, and
this shift is accompanied by an increased local pressure amplitude, namely, where the local speed of sound is reduced.
This behavior is showcased in Figs. 9b, 10b and 11b.

3. Effects of Piecewise Temperature Distributions

When a heat source is present, zone-specific temperature profiles can be combined in a manner that is consistent
with practical assumptions that are routinely made in the modeling of the thermal distribution in a Rijke tube. Two
cases will be considered here and these consist of a constant-constant profile with a sudden jump at the heat source,
and a constant-decaying exponential function that transitions at the heat source. In the first case, one may assume a
uniform cold temperature followed by a uniform hot temperature with a jump discontinuity over the heater location at
𝑥 = 0.25 [53]. The corresponding piecewise distribution may be written as

𝑇0 (𝑥) =
{

1; 0 ≤ 𝑥 < 1
4

𝑘0 ; 1
4 ≤ 𝑥 < 1

. (44)

22
American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

ub
ur

n 
U

ni
ve

rs
ity

 o
n 

M
ar

ch
 2

0,
 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
23

-0
76

8 



0.2 0.4 0.6 0.80 1

-0.5

0.5

-1

0

1

x

p

a) 𝑇0 = 1 + sin(𝜋𝑥/2)
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b) 𝑇0 = 1 + cos(𝜋𝑥/2)
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c) 𝑇0 = 1 + sin(𝜋𝑥)
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d) 𝑇0 = 2 − sin(𝜋𝑥)

Fig. 11. Acoustic pressure variations corresponding to a) increasing sinusoid with half period, b) decreasing
sinusoid with half period, c) increasing sinusoid, and d) decreasing sinusoid.

In the second model, a constant temperature may be assumed leading up to the heater, and this may be then followed
by a smoothly decaying exponential function such as

𝑇0 (𝑥) =


1; 0 ≤ 𝑥 < 1
4

𝑘0𝑒
𝑘1

(
𝑥̃− 1

4
)
; 1

4 ≤ 𝑥 < 1
. (45)

In the above, 𝑘0 represents the mean temperature at the heater location, and 𝑘1 may be chosen in a manner to secure
the outlet temperature at 𝑥 = 1. Presently, we let 𝑘0 = 13/6, and 𝑘1 = −1/5 to be consistent with the experimental
configuration described above. Specifically, these constants may be readily determined from the gain (650/300) and
decay rate of the mean temperature time history computed for the present configuration [7].

Forthwith, the fluctuating pressure approximations for the two modeled Rijke temperature distributions are readily
evaluated from Eq. (43) and provided in Figs. 12a and 12b. Firstly, the resulting approximations seem to corroborate
the experimental findings of Kosztin et al. [91]; these suggest that deviations between constant-constant and constant-
exponential temperature distributions may be neglected insofar as the pressure waveforms are concerned. In this vein,
the constant-constant model’s waveforms in parts a) and c) for the first two oscillation modes may be seen to exhibit a
striking resemblance to their counterparts in parts b) and d) that are replicated using the constant-exponential thermal
model.

Moreover, both models exhibit cusps at 𝑥 = 𝐿/4 that are caused by the localized temperature discontinuities;
unsurprisingly, these cusps diminish further downstream. A similar cusp formation is reported by Kosztin et al. [91],
where it is corroborated by experiments and an analytical model for a quarter-length resonator. It is interesting to note
that, in some models, a constant pressure amplitude is assumed across the heater element, which dismisses the possible
presence of a sharp discontinuity. The pressure cusp that is captured here seems to indicate a steep pressure front at
the heater location, a behavior that is consistent with the findings of Kosztin et al. [91] and Biwa et al. [68].
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a) Eq. (44); 𝑛 = 1
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b) Eq. (45); 𝑛 = 1
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c) Eq. (44); 𝑛 = 2
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d) Eq. (45); 𝑛 = 2

Fig. 12. Acoustic pressure variations corresponding to a) constant-constant and b) constant-decaying
exponential mean temperature profiles for the first oscillation mode and, respectively, in c) and d) for the
second oscillation mode. The jump in temperature occurs at the 𝑳/4 location.
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Table 3. Comparison of predicted eigenvalues (𝝎̃2
𝒏) and corresponding non-dimensional circular frequencies

with those of a numerical eigensolver [93].

Eigenvalue index Analytical 𝜔̃2
𝑛 Numerical 𝜔̃2

𝑛 Analytical 𝜔̃𝑛 Numerical 𝜔̃𝑛 Relative error

1 14.381 14.338 3.792 3.787 0.00132

2 57.524 57.480 7.584 7.582 0.00026

3 129.430 129.386 11.378 11.375 0.00026

4 230.097 230.053 15.169 15.167 0.00013

5 359.523 359.483 18.961 18.960 0.00005

6 517.718 517.674 22.753 22.752 0.00004

7 704.672 704.628 26.546 26.545 0.00004

8 920.338 920.344 30.338 30.337 0.00003

9 1164.866 1164.822 34.130 34.130 0.00000

10 1438.108 1438.063 37.922 37.922 0.00000

4. Verification and Validation of Predicted Modal Frequencies

Having verified the spatial characteristics predicted by the asymptotic formulation, it is instructive to explore its
temporal features. To do so, the frequencies associated with the eigenvalues of the resulting Sturm–Liouville problem
may be evaluated and compared to predictions from other models. As such, the first fundamental frequency may be
estimated to be

𝑓1 =
𝜔̃1
2𝜋

=
1

2Θ
and 𝜔̃1 =

𝜋

Θ
. (46)

The above expression displays a similar form to that used by Lieuwen [92]; it can be readily employed to predict higher
harmonics with a sufficient degree of accuracy. In reverting back to dimensional variables, 𝑓𝑛 may be simply multiplied
by (𝑎0)min/𝐿, where (𝑎0)min stands for the lowest speed of sound in the tube, which is typically taken at the cold inlet;
it is customarily taken to be approximately 347 m/s in most applications [50].

To illustrate the accuracy of the present approximation, the eigenvalues obtained based on the asymptotic expression,
𝜔̃𝑛, will be compared to a numerically evaluated Sturm–Liouville problem, using the program “Matslise” by Ledoux
and Van Daele [93]. As shown in Table 3, we start by performing this comparison for the first ten eigenvalues using
the same linear thermal profile, i.e., 𝑇0 (𝑥) = 1 + 𝑥.

It is clear from Table 3 that the analytically calculated eigenvalues, which are based on an asymptotic formulation
that is expected to increase in precision with successive increases in the mode number, remain quite accurate even
at the lowest five modes. In fact, their relative deviations from their “true” values rapidly drop from 0.13% for the
first fundamental frequency to 0.005% for the fifth mode. This accelerated convergence suggests that even though
the asymptotic approximation only becomes “exact” at very large values of 𝑛, its predictions are still precise for the
first few eigenmodes. On this note, and to further illustrate the accuracy of this spatially averaged frequency, we may
proceed to compare predictions based on the ensuing asymptotic formulation to that developed by Sujith et al. [79].

Based on a well-recognized framework by Sujith et al. [79], the solution may be assumed to possess periodic time
dependence to the extent of transforming it from a partial differential wave equation to an ordinary differential equation
for the pressure mode shape. Algebraically, one gets,

d2𝑃′
𝑛

d𝑥2 + 1
𝑇0

d𝑇0
d𝑥

d𝑃′
𝑛

d𝑥
+ (2𝜋 𝑓𝑛)2

𝛾𝑅𝑇0
𝑃′
𝑛 = 0, (47)

where 𝑃′
𝑛 represents the 𝑛th pressure mode shape and the other variables retain their usual meaning. Since Eq. (47)

cannot be solved directly for an arbitrary thermal profile, it may be conveniently transformed from the 𝑥-space to the
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Table 4. Comparison of predicted frequencies with those of Sujith et al. [79] for various initial temperatures.

𝑇𝑖 [K] Frequency [Hz] from Sujith et al. [79] Frequency [Hz] from Eq. (46) Relative deviation
500 49.67 49.71 0.0008
700 54.72 54.84 0.002
900 59.06 59.28 0.004
1100 62.92 63.25 0.005
3000 88.91 90.31 0.004

𝑇0-space using (
d𝑇0
d𝑥

)2 d2𝑃′
𝑛

d𝑇2
0

+ 1
𝑇0

d
d𝑥

(
𝑇0

d𝑇0
d𝑥

)
d𝑃′

𝑛

d𝑇0
+ (2𝜋 𝑓𝑛)2

𝛾𝑅

𝑃′
𝑛

𝑇0
= 0. (48)

By completing this transformation, an exact solution may be retrieved for a user-specified temperature profile; however,
solutions remain limited in scope as only a few profiles can be solved in conjunction with Eq. (48) [79, 82, 83]. In
what follows, we present the solution corresponding to a linear thermal profile; an exponential profile can also be
accommodated using the same procedure. A linear temperature profile enables us to rewrite Eq. (48) in such a manner
to produce an exact solution in terms of zeroth-order Bessel functions. The corresponding dimensional pressure
oscillation may be expressed as

𝑃′
𝑛 = 𝑐1𝐽0

[
2𝜋 𝑓𝑛
𝑏

√︁
𝑇0 (𝑥)

]
+ 𝑐2𝑌0

[
2𝜋 𝑓𝑛
𝑏

√︁
𝑇0 (𝑥)

]
; 𝑏 ≡ |𝛼𝑙 |

2
√︁
𝛾𝑅. (49)

In the above, 𝑐1 and 𝑐2 denote two arbitrary constants, 𝐽0 and 𝑌0 allude to the zeroth-order Bessel and Neumann
functions, and 𝛼𝑙 captures the temperature gain that controls the temperature gradient; presently, it represents the
constant slope of the temperature in the tube; as for 𝑓𝑛, 𝛾, and 𝑅, they allude to the Hertzian frequency of the 𝑛th mode,
ratio of specific heats, and universal gas constant, respectively. To determine the frequency, one may impose boundary
conditions that are appropriate for an open-open tube configuration, namely, where the pressure amplitude vanishes at
both ends. Then, since the resulting algebraic equations prove to be homogeneous, one can suppress their determinant.
The eigenfrequencies become those that will satisfy,

𝐽0

[
2𝜋 𝑓𝑛
𝑏

√︁
𝑇0 (0)

]
𝑌0

[
2𝜋 𝑓𝑛
𝑏

√︁
𝑇0 (𝐿)

]
− 𝐽0

[
2𝜋 𝑓𝑛
𝑏

√︁
𝑇0 (𝐿)

]
𝑌0

[
2𝜋 𝑓𝑛
𝑏

√︁
𝑇0 (0)

]
= 0. (50)

For the sake of comparison, the test conditions described in Table 1 of Sujith et al. [79] are considered; however,
conditions pertaining to an open-open tube configuration are imposed here, as opposed to the closed-open duct
configuration that is closely examined by Sujith et al. [79]. Note that all cases employ a linearly decreasing profile
with an arbitrary inlet temperature 𝑇𝑖 and a fixed outlet temperature 𝑇𝑜 = 300 K at 𝑥 = 𝐿. Interestingly, the predicted
duct frequency remains unaffected by whether the thermal profile is strictly increasing or decreasing: both cases lead
to the same average frequency owing to their globally symmetric profiles and mean temperature values over the length
of the tube. Nonetheless, reversing the temperature distribution does affect the pressure waveform, which becomes
perfectly mirrored with respect to the tube’s midpoint. This behavior may be partly attributed to the open-open tube
configuration, namely, where an increasing temperature profile from the tube’s inlet produces a similar effect on the
mode shape to that of a similarly decreasing thermal profile from the outlet.

As one may infer from Table 4, a compelling agreement may be seen to exist between the frequencies deduced from
the closed-form formulation given by Eq. (46) and those predicted from the well-established model by Sujith et al. [79].
Specifically, their relative differences vary from 0.08% for a modest thermal gradient with 𝑇𝑖 = 500 K to 0.4% for a
much steeper gradient with 𝑇𝑖 = 3000 K. In all cases considered, Eq. (46) returns a very reasonable and straightforward
prediction. Not only do we obtain a favorable frequency comparison, but, also, the corresponding acoustic mode
shapes are found to be imperceptible. These are shown in Fig. 13 and Fig. 14, where the hollow circles associated with
the model by Sujith et al. [79] are found to be rather indiscernible over the entire domain from the full and broken
lines associated with the present formulation for the first and second oscillation modes. This excellent agreement may
be attributed to the maximum discrepancy separating the two models at each time step being of 𝑂 (10−4); since such
deviations are likely due to inevitable round-off errors, we can proceed to compare the asymptotic model’s predictions
using a more realistic thermal profile.
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c) 𝑛 = 1 and 𝑇0 = 𝑒 𝑥̃ ln 2
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d) 𝑛 = 2 and 𝑇0 = 𝑒 𝑥̃ ln 2

Fig. 13. Comparison between the acoustic pressure mode shape formulation based on Sujith et al. [79] using
solid circles (•) and the present asymptotic solution using both full lines (——) for the mode shape envelope
and broken lines (– – –) for the remaining time history, taken every one-twelfth of a period. Both first and
second oscillation mode shapes are illustrated successively in parts a) and b) for a linearly increasing function,
𝑻̃0(𝒙̃) = 1 + 𝒙̃, and in parts c) and d) for an exponentially increasing function, 𝑻̃0(𝒙̃) = 𝒆 𝒙̃ ln 2.
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c) 𝑛 = 1 and 𝑇0 = 2𝑒− 𝑥̃ ln 2
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d) 𝑛 = 2 and 𝑇0 = 2𝑒− 𝑥̃ ln 2

Fig. 14. Comparison between the acoustic pressure mode shape formulation based on Sujith et al. [79] using
solid circles (•) and the present asymptotic solution using both full lines (——) for the mode shape envelope
and broken lines (– – –) for the remaining time history, taken every one-twelfth of a period. Both first and
second oscillation mode shapes are illustrated successively in parts a) and b) for a linearly decreasing function,
𝑻̃0(𝒙̃) = 2 − 𝒙̃, and in parts c) and d) for an exponentially decreasing function, 𝑻̃0(𝒙̃) = 2𝒆− 𝒙̃ ln 2.
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Table 5. Predicted frequency comparison for the actual Rijke tube.

Model Predicted frequency [Hz] Relative deviation
Green’s function formulation by Bigongiari and Heckl [53] 246.5 0.006
Integral formulation by Lieuwen [92] 228.6 0.078
Constant-constant temperature profile given by Eq. (44) 253.9 0.023
Constant-exponential temperature profile given by Eq. (45) 247.6 0.001

Having verified the frequency formulation, the present model can be further vetted by comparing its predictions of
the actual Rijke tube frequency to the distinct models developed by Bigongiari and Heckl [53] as well as Lieuwen [92].
As shown in Table 5, this may be accomplished using both the constant-constant and constant-decaying exponential
temperature profiles defined through Eqs. (44) and (45), respectively. The underlying test case is chosen to be the
temperature distribution obtained from the experimental results discussed in Sec. VI.A. At the outset, we recall that the
most reliable experimental measurement given in Table 1 corresponds to a frequency of 𝑓exp = 248 Hz for a microphone
placement that is adjacent to the heater element; this value will be treated as the true frequency in the tube.

In the first case, using a constant-constant temperature profile, the one-term integral method based on Eqs. (44)
and (46) yields a dimensional frequency of 253.9 Hz, which is only 2.3% higher than 𝑓exp. Using the method developed
by Lieuwen [92], a frequency of 228.6 Hz is retrieved, with a deviation of 7.8%. The method devised by Bigongiari and
Heckl [53] returns a frequency of 246.5 Hz, which undershoots the experimental value by a mere 0.6%. The accuracy
of the constant-constant temperature profile with a jump discontinuity supports the statement made by Kosztin et al.
[91] on the validity of assuming a constant temperature within a tube above and below the heater element. Clearly, the
assignment of uniform temperatures to the hot and cold segments of the Rijke tube leads to reasonable results.

In the second case, a realistic constant-exponential temperature profile is used; we recall that this particular model
is based on the two-parameter thermal distribution that is guided by numerical simulations of the actual experimental
configuration and leading to Eq. (45). In this case, our asymptotic approximation, given by Eq. (46), produces a
frequency of 247.6 Hz, thus entailing a negligible deviation of 0.1%; since the latter falls well within experimental
uncertainty, the predicted frequency may be viewed as being essentially identical to 𝑓exp. Moreover, the evaluation of
Eq. (46) remains straightforward, requiring the least intensive computations and excluding a flame describing function
specification. In fact, the ability to predict the frequency directly from the temperature profile gives further credence
to the asymptotic framework at leading order. As for the unsteady heat release oscillations, they may be deferred to
higher asymptotic orders.

5. Locus of Acoustic Pressure Peaks

So far, it has been well established that temperature gradients not only affect the frequency and mode shapes, but also
the locus of the maximum pressure antinode. The latter represents a fundamental property of a thermoacoustic system
that will be useful to characterize especially that it directly alters the structure of the standing waveform. To pinpoint the
corresponding antinodes, one may start with the pressure eigenfunction, given by Eq. (41), which prescribes the spatial
mode shape pattern. The locus of the temperature-sensitive pressure peaks may then be determined by suppressing the
derivative of the eigenfunction while setting

d
d𝑥

[
𝑦𝑛 (𝑥)
∥𝑦𝑛∥

]
=

4𝑛𝜋
Θ

√︃
𝑇0 (𝑥) cos

[
𝑛𝜋

Θ

∫ 𝑥̃

0

1√︁
𝑇0 (𝑥)

d𝑥

]
− d𝑇0 (𝑥)

d𝑥
sin

[
𝑛𝜋

Θ

∫ 𝑥̃

0

1√︁
𝑇0 (𝑥)

d𝑥

]
= 0. (51)

In the interest of brevity, the focus will be on the behavior for 𝑛 = 1; we get:

d
d𝑥

[
𝑦1 (𝑥)
∥𝑦1∥

]
=

4𝜋
Θ

√︃
𝑇0 (𝑥) cos

[
𝜋

Θ

∫ 𝑥̃

0

1√︁
𝑇0 (𝑥)

d𝑥

]
− d𝑇0 (𝑥)

d𝑥
sin

[
𝜋

Θ

∫ 𝑥̃

0

1√︁
𝑇0 (𝑥)

d𝑥

]
= 0. (52)

This relation may be solved asymptotically or using a root finding program to determine the location of the pressure
antinodes for any given 𝑇0 (𝑥). For the simple case of a uniform profile, the maximum pressure location, 𝑥max, may be
readily identified. Noting that the axial temperature derivative vanishes for 𝑇0 = 1, one is left with,

cos (𝜋𝑥max/Θ) = 0. (53)
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Table 6. Non-dimensional acoustic pressure peak locations based on various thermal profiles exhibiting either
zero or unitary temperature variations.

𝑇̃0 ( 𝑥̃ ) Θ 𝜔̃1 = 𝜋/Θ 𝑥̃max
𝑇̃0 ( 𝑥̃ ) = 1 1 𝜋 ≈ 3.14159 0.50000000
𝑇̃0 ( 𝑥̃ ) = 1 + 𝑥̃ 2(

√
2 − 1) ≈ 0.828427 𝜋/[2(

√
2 − 1) ] ≈ 3.79224 0.43968790

𝑇̃0 ( 𝑥̃ ) = 2 − 𝑥̃ 2(
√

2 − 1) ≈ 0.828427 𝜋/[2(
√

2 − 1) ] ≈ 3.79224 0.56031210
𝑇̃0 ( 𝑥̃ ) = 1 + 𝑥̃2 ln(1 +

√
2) ≈ 0.881374 𝜋/ln(1 +

√
2) ≈ 3.56443 0.43782274

𝑇̃0 ( 𝑥̃ ) = 𝑒𝑥̃ ln 2 (2 −
√

2)/ln 2 ≈ 0.845111 𝜋 ln 2/(2 −
√

2) ≈ 3.71737 0.43984995
𝑇̃0 ( 𝑥̃ ) = 2𝑒− 𝑥̃ ln 2 (2 −

√
2)/ln 2 ≈ 0.845111 𝜋 ln 2/(2 −

√
2) ≈ 3.71737 0.56015005

𝑇̃0 ( 𝑥̃ ) = 1 + sin(𝜋𝑥̃/2) (
√

2/𝜋 ) ln(3 + 2
√

2) ≈ 0.793515 𝜋2/[
√

2 ln(3 + 2
√

2) ] ≈ 3.95908 0.43679651
𝑇̃0 ( 𝑥̃ ) = 1 + cos(𝜋𝑥̃/2) (

√
2/𝜋 ) ln(3 + 2

√
2) ≈ 0.793515 𝜋2/[

√
2 ln(3 + 2

√
2) ] ≈ 3.95908 0.56320349

𝑇̃0 ( 𝑥̃ ) = 1 + sin(𝜋𝑥̃ ) (
√

2/𝜋 ) ln(3 + 2
√

2) ≈ 0.793515 𝜋2/[
√

2 ln(3 + 2
√

2) ] ≈ 3.95908 0.50000000
𝑇̃0 ( 𝑥̃ ) = 2 − sin(𝜋𝑥̃ ) 4

𝜋
EllipticF( 1

4 𝜋
�� − 2) ≈ 0.872278 𝜋2/

[
4 EllipticF( 1

4 𝜋
�� − 2)

]
≈ 3.60159 0.50000000

As expected, one quickly recovers Θ = 1 and 𝑥max = 0.5. Along similar lines, the loci of the nine other non-uniform
temperature profiles may be computed and cataloged one-by-one in Table 6. We note on this occasion that despite
their dissimilar forms, the spatially varying profiles lead to the same unitary temperature variation across the solution
domain, as illustrated in Fig. 7. For this reason, the corresponding shifts in pressure peaks prove to be comparable in
value and dependent on the sign of the temperature gradient.

More specifically, for a monotonically decreasing temperature over the entire domain, the antinode will shift toward
the aft end of the tube. Conversely, for a monotonically increasing temperature, the antinode will slide forward. A
steeper gradient seems to perturb the nodal location the most, as it leads to a relatively larger disparity in the local
speed of sound. This is corroborated by the case of a half sinusoid, where the nodal location shifts toward the inlet by
12.6%, notwithstanding the modest unitary temperature gain. From this limited group of test functions, the quadratic
profile produces the second largest peak pressure shift of 12.4%. Interestingly, for thermal profiles exhibiting reflective
symmetry with respect to the midsection plane, their antinodes remain stationary (e.g., the uniform and full sinusoidal
functions). In these instances, the left and right traveling waves, which reflect off the endpoints, will propagate at the
same average speeds after crossing regions with symmetrical thermal distributions. At the outset, their consolidated
maximum amplitudes will remain anchored at the tube’s midpoint. As for the antisymmetric profiles, such as the
increasing or decreasing linear, exponential, and half sinusoidal functions, their antinodes remain equidistant from the
midpoint location; their 𝑥max values can be shown to be strictly complementary, always adding up to unity.

Besides numerically calculating the peak pressure locations, it is possible to manipulate their defining equations
asymptotically. For example, Eq. (52) may be rearranged into

d𝑇0 (𝑥)
d𝑥

tan

[
𝜋

Θ

∫ 𝑥̃

0

1√︁
𝑇0 (𝑥)

d𝑥

]
− 4𝜋

Θ

√︃
𝑇0 (𝑥) = 0. (54)

In principle, Eq. (54) can be expanded algebraically and then solved for any temperature distribution, including one that
contains an arbitrary thermal gain, 𝛼̃. For the sake of illustration, four test functions will be considered, namely, the
conventional linear and exponential thermal profiles with increasing and decreasing gradients. These may be written
as

𝑇0 =

{
1 + 𝛼̃𝑙𝑥 (linear increase) or 1 + 𝛼̃𝑙 (1 − 𝑥) (linear decrease),

𝑒 𝑥̃ ln( 𝛼̃𝑒+1) (exponential growth) or (𝛼̃𝑒 + 1)𝑒− 𝑥̃ ln( 𝛼̃𝑒+1) (exponential decay),
(55)

where 𝛼̃𝑙 and 𝛼̃𝑒 prescribe the non-dimensional slopes and growth rate coefficients of the linear and exponential profiles,
respectively. These coefficients control the temperature gradients across the domain and are selected such that setting
𝛼̃𝑙 = 𝛼̃𝑒 = 0 restores the case of a uniform thermal profile with 𝑥max = 0.5. In fact, the temperature range in all four
cases remains strictly equal to 𝛼̃, being bracketed between unity and 1 + 𝛼̃ for 𝑥 ∈ [0, 1].

For modest temperature gradients, it is convenient to solve Eq. (54) by extracting the small deviation from the
traditional antinodal location at 𝑥max = 0.5. Inspired by the entries in Table 6, one may express the pressure antinode
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in terms of a small correction, 𝜖 ≤ 0.25, specifically,

𝑥max =

{
0.5 − 𝜖 (for ∇𝑇0 > 0 and 𝛼̃ ≤ 𝛼̃lim) or 𝜖 (for ∇𝑇0 > 0 and 𝛼̃ > 𝛼̃lim),
0.5 + 𝜖 (for ∇𝑇0 < 0 and 𝛼̃ ≤ 𝛼̃lim) or 1 − 𝜖 (for ∇𝑇0 < 0 and 𝛼̃ > 𝛼̃lim),

(56)

In practice, a large thermal gain corresponds to a value 𝛼̃lim that causes the pressure peak to shift by more than a quarter
distance from the tube’s midpoint. Being dependent on the actual temperature profile, we find 𝛼̃lim ≈ 31.98 and 35.86
for the linear and exponential distributions in Eq. (55), respectively.

At this stage, Eqs. (55) and (56) may be substituted back into Eq. (54) and then used to predict the dependence of
𝑥max on 𝛼̃𝑙 or 𝛼̃𝑒, as shown in Fig. 15, for the four representative test functions. Therein, the peak acoustic pressure loci
are depicted firstly in Figs. 15a and 15b using a logarithmic scale and a broad range of 𝛼̃ ∈ [10−2, 104] and, secondly
in Figs. 15c and 15d, using a magnified inset over a linear scale and a practical range of 𝛼̃ ∈ [0, 20]. In all cases
considered, full lines and broken lines are used to differentiate between the loci associated with increasing temperature
profiles and those referring to their decreasing mirror functions.

Forthwith, several observations can be made based on these graphs. First, in view of the antisymmetric character
of each of the linear and exponential profiles, one may confirm the symmetrical displacement of the loci above and
below the tube’s midpoint for any fixed value of the temperature gain. As such, the sum of any two loci for a given 𝛼̃
will equate to unity. Second, despite the large disparity in the basis functions associated with the linear and exponential
profiles, the curves defining their loci may be seen to bear a striking resemblance, especially in the practical range of
thermal gains depicted in Figs. 15c and 15d; one may infer that the loci remain strongly dependent on the thermal gain
itself, irrespective of the functional form used to describe the temperature distribution. This behavior is corroborated
by the findings of Kosztin et al. [91]. Third, in the practical range of 𝛼̃ ∈ [0, 20], the antinodal shift from the midpoint
location does not exceed 0.228; this represents a 45.6% excursion for a gain of 𝛼̃ = 20. Fourth, the temperature
gradient needed to effectuate a fixed deviation in the antinodal location becomes progressively larger with successive
increases in 𝛼̃. For example, using the linear growth distribution in Fig. 15a, the antinodal shift may be seen to decrease
from 𝑥max ≈ 0.31028 to 0.20737, 0.16955, and 0.16649 as 𝛼̃𝑙 is increased from 10 to 102, 103, and 104. The ensuing
variation in 𝑥max diminishes from 33.2% to 18.2% and 1.80% with each order-of-magnitude gain increment. Due to
this asymptotic plateauing, it becomes virtually infeasible to modify the antinodal location by any appreciable amount
without requiring an impractically large temperature gain.

Before leaving this subject, it may be instructive to illustrate the mode shape patterns associated with a thermal
profile with a relatively steep gradient. Using a characteristic gain of 𝛼̃𝑒 = 5 in concert with an exponential function,
acoustic pressure mode shapes corresponding to both steeply increasing and decreasing mean temperature profiles are
generated and displayed in Fig. 16. These are shown in succession for the first and second oscillation mode numbers
in Figs. 16a and 16b and, similarly, in Figs. 16c and 16d for the exponentially increasing and decreasing functions;
the latter are given by 𝑇0 = 𝑒 𝑥̃ ln 6 and 𝑇0 = 6𝑒− 𝑥̃ ln 6, respectively. As usual, the timelines are taken every one-twelfth
of a period, thus leading to a precise overlap between equispaced lines sweeping over the first and second half cycles.
For this particular thermal gain, the maximum acoustic pressure of the first fundamental standing waveforms may be
seen to shift to 𝑥max ≈ 0.3538 in Fig. 16a and to its complementary value of 0.6462 in Fig. 16c. For the second
oscillation mode, the dual loci per waveform yield 𝑥max ≈ 0.1720 and 0.6392 in Fig. 16b for the primary and secondary
antinodes. Their complementary values in Fig. 16d are found to be 0.8280 and 0.3608, respectively. Here too, the sum
of each set of complementary peak pressure loci returns a unit value. Being outside the original scope of this study, the
characterization of antinodal pressure loci for higher oscillation modes and other thermal functions will be relegated
to a later investigation.

Lastly, and as alluded to earlier, although the focus of this study has been centered on the determination of the
pressure waveforms and frequencies, it is possible to formulate and evaluate the equations leading to the fluctuating
velocity and heat oscillations directly from Eqs. (28) and (29) at successive orders in 𝜀. It is also possible to obtain
higher-order approximations of the pressure waveforms and frequencies based on the underlying framework. Through
this endeavor, the Rijke tube’s thermoacoustic instability behavior may be closely examined along with the influence
of various temperature gradients and boundary conditions on the attendant mode shape coupling. To keep this work
manageable, however, the development and further analysis of higher-order properties will be deferred to future work.
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Fig. 15. Peak acoustic pressure loci as a function of the thermal gain for both a) linear and b) exponential
temperature distributions using a logarithmic scale in 𝜶̃ ∈ [10−2, 104]. Magnified insets are provided,
respectively, in c) and d) using a linear scale and a practical range of 𝜶̃ ∈ [0, 20]. In all cases, full lines
(——) and broken lines (– – –) denote the loci for increasing or decreasing temperature profiles, respectively.
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a) 𝑛 = 1 and 𝑇0 = 𝑒 𝑥̃ ln 6
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b) 𝑛 = 2 and 𝑇0 = 𝑒 𝑥̃ ln 6

0.2 0.4 0.6 0.80 1

-0.5

0.5

-1

0

1

x

p

c) 𝑛 = 1 and 𝑇0 = 6𝑒− 𝑥̃ ln 6
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d) 𝑛 = 2 and 𝑇0 = 6𝑒− 𝑥̃ ln 6

Fig. 16. Acoustic pressure variations corresponding to (a-b) steeply increasing and (c-d) decreasing mean
temperature profiles using a characteristic gain of 𝜶̃𝒆 = 5. Both first and second oscillation mode shapes are
illustrated successively in parts a) and b) for an exponentially growing function, 𝑻̃0 = 𝒆 𝒙̃ ln 6, and in parts c) and
d) for an exponentially decaying function, 𝑻̃0 = 6𝒆− 𝒙̃ ln 6. As usual, full lines (——) demarcate the mode shape
envelope whereas broken lines (– – –) and hollow circles (◦) represent evenly incremented timelines, taken
every one-twelfth of a period, over the first and second half periods, respectively.
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VIII. Summary

This work overviews six different perspectives on the prediction of acoustic pressure mode shapes and frequencies
in a conventional Rijke tube resonator. The latter consists of a routinely invoked thermoacoustic energy conversion
device which, when properly triggered with an unsteady heat source, can be used to showcase rather compellingly the
application of Rayleigh’s criterion.

At first, traditional experimental and computational approaches are undertaken partly to confirm the Rijke’s sound
generation capability and, partly, to generate benchmark data that can be used to gauge the accuracy of other theoretical
models. This is followed by a scaling procedure that exposes fourteen non-dimensional parameters of which several may
be relevant to thermoacoustic stability theory. By way of modeling the underlying equations of motion, two particularly
innovative methods of analysis are examined. These include the pressure mode shape differential equation and the
Green function techniques that have been judiciously spearheaded by Matveev[51] and Heckl[54], respectively. These
are complemented by a simple asymptotic formulation that takes into account a naturally occurring small parameter
that conveniently depends on the ratio of specific heats, namely, 𝜀 = (𝛾−1)/𝛾 < 1. The ensuing perturbative approach,
when used in conjunction with a Green’s function formulation, enables us to prescribe the acoustic pressure mode
shape patterns and frequencies directly as a function of the mean temperature profile within the tube. It also permits
the identification of the asymptotic order at which the actual heat oscillation characteristics affect the acoustic pressure
and velocity. Although the asymptotic formulation can be carried out to an arbitrary order, the expansion approach
is evaluated for the pressure at the leading order of the perturbation parameter, 𝜀. In the interest of brevity, higher
approximations are deferred to later work. Presently, the evaluation of this technique remains limited in scope to a
dozen test cases and representative thermal profiles that help to demonstrate its versatility at resolving the acoustic
pressure field. The method’s unique features are also showcased through side-by-side comparisons of pressure mode
shapes and frequency predictions to other available formulations such as those by Matveev [51], Heckl et al. [52–55],
Lieuwen [92], and Sujith et al. [79].

In hindsight, the dimensional analysis may be viewed as being useful at identifying several similarity parameters,
nine to be precise. In addition to the expected geometric scaling ratios, reduced temperature, and thermal expansion
factor, these include the unsteady Reynolds, Eckert, Mach, Nusselt, Prandtl, Grashof, and Strouhal numbers, with the
latter returning the longitudinal mode number. We also come across two additional parameters: the first, 𝑘0𝑇

′/(𝑝′𝑢′𝐷),
gauges the relative importance of unsteady heat conduction to the energy flux vector modulus. The second grouping
corresponds to a thermoacoustic energy conversion factor consisting of the ratio of the fluctuating heat release and the
energy flux vector modulus. It is given by

Rj =
(𝑞′/𝐷2)
𝑝′𝑢′

. (57)

Theoretically, this parameter represents a key characteristic of the acoustic motion in a Rijke tube and, possibly, other
thermoacoustic devices incorporating flame dynamics. In Noiray et al. [76], it is shown that oscillations occur in
different state-space trajectories in the presence of nonlinear thermoacoustic feedback. Therein, triggering occurs for
the type of oscillations that are modulated by a similar non-dimensional parameter. In this work, the significance of
this parameter is ascertained both numerically and experimentally.

In addition to the dimensional analysis, the experimental effort that we describe serves to provide an independent
verification of the unsteady flow attributes. For example, one is able to confirm that proper positioning of the heat
source is crucial for effective thermoacoustic coupling. When the heat source is moved to either pressure or acoustic
nodes, no acoustic amplification may be observed. The same occurs when the acoustic velocity and pressure become
out of phase at the heater location. Conversely, when the heat source is positioned at one-fourth the distance from
the tube’s inlet station, the sound emitted by the pressure waves is maximized. This optimal position corresponds to
the peak product of acoustic pressure and velocity which, algebraically, translates into the largest energy-flux vector
modulus, | |𝑝′𝒖′ | |max. When gravitating away from this particular station, a reduction in the acoustic amplitude is
realized. The experimental investigation also confirms the role of the air’s mean convection currents in promoting the
coupling between acoustic variables. Practically, unless the air’s mean flow is appreciable, no acoustic amplification can
occur. In fact, when forced convection currents are induced using external means, such as air blowers or displacement
fans, acoustic amplification may be achieved in any flow orientation, be it vertical, oblique, or horizontal. Forced air
currents can thus compensate for the lack of buoyancy in a horizontal tube configuration. Unsurprisingly, we find
that sealing the top section of the tube drastically alters the wave character to the extent of suppressing any chance for
acoustic excitation when the heat source is placed at a quarter-distance from the inlet section.

In this investigation, the optimal position of the heat source is reaffirmed using both laboratory and numerical
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experiments. Particularly, our observations suggest that i) a minimum heat input is needed to trigger acoustic growth,
ii) a critical heat input can lead to resonance, iii) a 45o phase difference exists between the acoustic pressure and the
fluctuating heat release, and iv) the maximum acoustic amplification occurs when the product of acoustic velocity and
pressure is largest. These conclusions seem consistent with other observations made in the literature.

Following this three-pronged analysis of the Rijke tube’s flowfield, two modern techniques are examined, and these
are primarily due to Matveev [51] as well as Heckl [54]. On the one hand, Heckl’s approach takes into perspective the
notion that a Green’s function, defined as the acoustic potential field generated by an impulsive point source, can be
used to model the sudden heat source and thermal jump across a heater element[53]. Using a one-dimensional velocity
potential formulation with a fluctuating heat release, this approach leads to an effective model for the fluctuating
velocity at the heater location. Moreover, its solution captures the feedback loop between the fluctuating heat release
and the acoustic velocity; this nonlinear feedback can serve to alter the eigenvalues’ real Hertzian frequencies as well
as their imaginary growth rate coefficients. In this work, we confirm that Heckl’s predicted frequency tends to be quite
precise, resulting in compelling agreement with Rijke tube measurements and computations.

On the other hand, Matveev[51] introduces the notion of complex mode shapes while transforming the pressure wave
equation with various sources, such as the fluctuating heat release and boundary-layer losses, into an ordinary differential
equation. By leveraging proper matching conditions around the heat source, his formulation is capable of correctly
accounting for both the temperature gradient and the fluctuating heat release within the tube. In practice, his resulting
equation can be iteratively solved using finite differences in concert with a shooting method that converges on the
particular eigenfrequencies that satisfy the problem’s imposed boundary conditions. Although Matveev’s formulation
is designed to handle a continuous temperature distribution along the Rijke tube, his approach is reconstructed here
using a piecewise function. This is accomplished by specifying two distinct temperature zones above and below the heat
source. In this manner, by dividing the solution domain into two segments with dissimilar thermal profiles, the iterative
solution procedure is superseded by a strictly analytical formulation for the complex mode shapes and frequencies.
Specifically, by leveraging the Green’s function formulation pioneered in this context by Heckl and coworkers, one
is able to retrieve accurate solutions for the pressure, velocity, and heat release. Here too, Matveev’s reconstructed
solution proves to be quite dependable when compared to numerical simulations.

Guided by the foregoing models, a new asymptotic formulation is developed and evaluated for several representative
thermal profiles; these include uniform, linear, quadratic, exponential, and sinusoidal functions as well as constant-
constant and constant-decaying exponential temperature distributions. This perturbation approach is shown to be quite
effective at reproducing the acoustic pressure mode shapes, peak values, and frequencies for an arbitrary thermal
profile, be it continuous or piecewise. Moreover, the perturbative analysis helps to identify the orders at which the
specified temperature and heat release oscillations affect the pressure mode shapes. On the one hand, the mean flow
temperature is found to occupy the most essential role in prescribing the acoustic pressure’s modal structure. More
specifically, the temperature gradient is found to be the most essential factor affecting the mode shape structure [91].
This includes the acoustic pressure’s peak loci which appear to be mainly controlled by the thermal gain irrespective
of the actual temperature distribution. The latter seems to have a greater impact on the frequency evaluation, which
remains dependent on a spatial integration of the mean thermal profile. On the other hand, the same perturbation
expansion shows that the fluctuating heat release plays a secondary role in the sense that its contribution appears at the
first order in 𝜀. Although the expansion approach remains linear and insufficient to predict limit-cycle amplitudes, its
application is rather straightforward at successive orders. In fact, its simplicity helps to unravel the defining equations
for the acoustic velocity and fluctuating heat release at successive orders. In this work, the perturbative approach is
leveraged to derive the acoustic mode shapes, pressure peaks, and frequencies, albeit at leading order only. These are
then validated and verified through comparisons to both experimental measurements and numerical estimates obtained
from other available formulations.

In future work, we hope to refine and extend the perturbation model to higher asymptotic orders in a manner to
resolve not only the acoustic pressure waveforms, but also those prescribing the velocity and heat release. We also hope
to enhance its capabilities by incorporating the effects of diverse boundary conditions, a finite mean flow, complex
frequencies, and viscous losses.

Acknowledgments. This work was supported partly by Sierra Space Corporation, through contract� G460817, and
partly by the National Science Foundation, through grant � CMMI-1761675. The senior author is appreciative of
the supplemental support received internally from Auburn University, Department of Aerospace Engineering, through
the Hugh and Loeda Francis Chair of Excellence. Both authors are deeply indebted to Martin J. Chiaverini, Donald
Benner, Brian Pomeroy, and Arthur Sauer, for numerous technical exchanges.

35
American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

ub
ur

n 
U

ni
ve

rs
ity

 o
n 

M
ar

ch
 2

0,
 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
23

-0
76

8 



References

[1] Carrier, G. F., “The Mechanics of Rijke Tube,” Quarterly of Applied Mathematics, Vol. 12, No. 4, 1955, pp. 383–395.
doi:10.1090/qam/69698.

[2] Chu, B.-T., “Stability of Systems Containing a Heat Source - The Rayleigh Criterion,” Research Memorandum 56D27, 1956.

[3] Miller, J. and Carvalho, J. A., “Comments on Rijke Tube,” Scientific American, Vol. 204, No. 3, 1961, pp. 180–182.

[4] Maling, G. C., “Simplified Analysis of the Rijke Phenomenon,” Journal of the Acoustical Society of America, Vol. 35, 1963,
pp. 1058–1060. doi:10.1121/1.1918658.

[5] Zinn, B. T., “State of the Art Research Needs of Pulsating Combustion,” Noise Control and Acoustics, Vol. 84-WA NCA-19,
1984.

[6] Raun, R. L., Beckstead, M. W., Finlinson, J. C., and Brooks, K. P., “Review of Rijke Tubes, Rijke Burners and Related
Devices,” Progress in Energy and Combustion Science, Vol. 19, No. 4, 1993, pp. 313–364. doi:10.1016/0360-1285(93)90007-
2.

[7] Entezam, B., Van Moorhem, W. K., and Majdalani, J., “Two-Dimensional Numerical Verification of the Unsteady
Thermoacoustic Field Inside a Rijke-Type Pulse Combustor,” Numerical Heat Transfer, Part A: Applications, Vol. 41,
No. 3, 2002, pp. 245–262. doi:10.1080/10407780252780153.

[8] Feldman, K. T., “Review of the Literature on Rijke Thermoacoustic Phenomena,” Journal of Sound and Vibration, Vol. 7,
1968, pp. 83–89. doi:10.1016/0022-460X(68)90159-4.

[9] Feldman, K. T., “Review of the Literature on Soundhauss Thermoacoustic Phenomena,” Journal of Sound and Vibration,
Vol. 7, 1968, pp. 71–82. doi:10.1016/0022-460X(68)90158-2.

[10] Bai, T., Cheng, X. C., Daniel, B. R., Jagoda, J. I., and Zinn, B. T., “Performance of a Gas Burning Rijke Pulse
Combustor with Tangential Reactants Injection,” Combustion Science and Technology, Vol. 94, No. 1-6, 1993, pp. 1–
10. doi:10.1080/00102209308935300.

[11] Wall, T. F., Bhattacharya, S. P., Baxter, L. L., Richards, G., and Harb, J. N., “Character of Ash Deposits and the Thermal
Performance of Furnaces,” Fuel Processing Technology, Vol. 44, No. 1-3, 1995, pp. 143–153. doi:10.1016/0378-
3820(94)00112-7.

[12] Reiner, D., Xu, Z. X., Su, A., Bai, T., Daniel, B. R., and Zinn, B. T., “Combustion of Heavy Liquid Fuels in a Rijke Type
Pulse Combustor,” Combustion Instabilities Driven by Thermo-Chemical Acoustic Sources, Vol. NCA 4, 1989, pp. 1–9.

[13] Meng, X., de Jong, W., and Kudra, T., “A state-of-the-art review of pulse combustion: Principles, modeling, applications
and R&D issues,” Vol. 55, mar 2016, pp. 73–114. doi:10.1016/j.rser.2015.10.110.

[14] Yavuzkurt, S., Ha, M. Y., Koopmann, G., and Scaroni, A. W., “Model of the Enhancement of Coal Combustion using
High-Intensity Acoustic Fields,” Journal of Energy Resources Technology-Transactions of the ASME, Vol. 113, No. 4, 1991,
pp. 277–285. doi:10.1115/1.2905912.

[15] Stewart, C. R., Lemieux, P. M., and Zinn, B. T., “Application of Pulse Combustion to Solid and Hazardous Waste Incineration,”
Combustion Science and Technology, Vol. 94, No. 1-6, 1993, pp. 427–446. doi:10.1080/00102209308935322.

[16] Richards, George A., W. M. J. M. G. J., “Pulse Combustor with Controllable Oscillations,” June 1992.

[17] Hoffman, T. L. and Koopmann, G. H., “Visualization of Acoustic Particle Interaction and Agglomeration: Theory Evaluation,”
Journal of the Acoustical Society of America, Vol. 101, No. 6, 1997, pp. 3421–3429. doi:10.1121/1.418352.

[18] Hoffmann, T. L., Chen, W., Koopmann, G. H., Scaroni, A. W., and Song, L., “Experimental and Numerical Analysis of
Bimodal Acoustic Agglomeration,” Vol. 115, No. 3, July 1993, pp. 232–240. doi:10.1115/1.2930338.

[19] Hoffmann, T. L. and Koopmann, G. H., “New Technique for Visualization of Acoustic Particle Agglomeration,” Review of
Scientific Instruments, Vol. 65, No. 5, 1994, pp. 1527–1536. doi:10.1063/1.1144887.

[20] Miller, N., Powell, E. A., Chen, F., and Zinn, B. T., “Use of Air Staging to Reduce the NOx Emissions from
Coal Burning Rijke Pulse Combustors,” Combustion Science and Technology, Vol. 94, No. 1-6, 1993, pp. 411–426.
doi:10.1080/00102209308935321.

36
American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

ub
ur

n 
U

ni
ve

rs
ity

 o
n 

M
ar

ch
 2

0,
 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
23

-0
76

8 

http://dx.doi.org/10.1090/qam/69698
http://dx.doi.org/10.1121/1.1918658
http://dx.doi.org/10.1016/0360-1285(93)90007-2
http://dx.doi.org/10.1016/0360-1285(93)90007-2
http://dx.doi.org/10.1080/10407780252780153
http://dx.doi.org/10.1016/0022-460X(68)90159-4
http://dx.doi.org/10.1016/0022-460X(68)90158-2
http://dx.doi.org/10.1080/00102209308935300
http://dx.doi.org/10.1016/0378-3820(94)00112-7
http://dx.doi.org/10.1016/0378-3820(94)00112-7
http://dx.doi.org/10.1016/j.rser.2015.10.110
http://dx.doi.org/10.1115/1.2905912
http://dx.doi.org/10.1080/00102209308935322
http://dx.doi.org/10.1121/1.418352
http://dx.doi.org/10.1115/1.2930338
http://dx.doi.org/10.1063/1.1144887
http://dx.doi.org/10.1080/00102209308935321


[21] Reethof, G., “Acoustic Agglomeration of Power Plant Fly Ash for Environmental and Hot Gas Clean-up,” Journal of Vibration
and Acoustics-Transactions of the ASME, Vol. 110, No. 4, 1988, pp. 552–557. doi:10.1115/1.3269565.

[22] Reethof, G., Song, L., and Koopmann, G., “Experimental and theoretical results of acoustic agglomeration at high pressures
and high temperatures,” Vol. 87, No. S1, May 1990, pp. S21–S22. doi:10.1121/1.2028126.

[23] Sharifi, R., Miller, S. F., Scaroni, A. W., Koopmann, G. H., and Chen, W., “In Situ Monitoring of the Acoustic Agglomeration
of Fly Ash Particles,” ASME, International Gas Turbine Institute, Vol. 9, 1994, pp. 549–555.

[24] Song, L., Koopmann, G. H., and Hoffmann, T. L., “An Improved Theoretical Model of Acoustic Agglomeration,” Journal of
Vibration and Acoustics-Transactions of the ASME, Vol. 116, No. 2, 1994, pp. 208–214. doi:10.1115/1.2930414.

[25] Tiwary, R. and Reethof, G., “Effect of Hydrodynamic Interaction between Small Particles on Fillup of Agglomeration Volume
in Acoustic Agglomeration of Aerosols,” ASME Winter Annual Meeting, Vol. 87-WA/NCA-4, 1987, pp. 1–7.

[26] Tiwary, R. and Reethof, G., “Numerical Simulation of Acoustic Agglomeration and Experimental Verification,” Journal of
Vibration and Acoustics-Transactions of the ASME, Vol. 109, No. 2, 1987, pp. 185–191. doi:10.1115/1.3269412.

[27] Bai, T., Cheng, X. C., Daniel, B. R., Jagoda, J. I., and Zinn, B. T., “Vortex Shedding and Periodic Combustion
Processes in a Rijke Type Pulse Combustor,” Combustion Science and Technology, Vol. 94, No. 1-6, 1993, pp. 245–258.
doi:10.1080/00102209308935313.

[28] Carvalho, J. A., Miller, N., Daniel, B. R., and Zinn, B. T., “Combustion Characteristics of Unpulverized Coal Under Pulsating
and Non-Pulsating Conditions,” Fuel, Vol. 66, No. 1, 1987, pp. 4–8. doi:10.1016/0016-2361(87)90202-X.

[29] George, W. and Reethof, G., “On the Fragility of Acoustically Agglomerated Submicron Fly Ash Particles,” Journal of
Vibration, Acoustics, Stress, and Reliability in Design, Vol. 108, 1986, pp. 332–329. doi:10.1115/1.3269346.

[30] Chen, T. Y., Hegde, U. G., Daniel, B. R., and Zinn, B. T., “Flame Radiation and Acoustic Intensity Measurements
in Acoustically Excited Diffusion Flames,” Journal of Propulsion and Power, Vol. 9, No. 2, 1993, pp. 210–216.
doi:10.2514/3.23611.

[31] Carvalho, J., Wang, M., Miller, N., Daniel, B., and Zinn, B., “Controlling mechanisms and performance of coal burning rijke
type pulsating combustors,” Vol. 20, No. 1, January 1985, pp. 2011–2017. doi:10.1016/s0082-0784(85)80701-3.

[32] Zinn, B. T., “Pulse Combustion: Recent Applications and Research Issues,” Proceedings of the 24th International Symposium
on Combustion, Vol. 19626, Combustion Institute, 1992, pp. 1297–1305. doi:10.1016/S0082-0784(06)80151-7.

[33] Reuter, D., Daniel, B. R., Jagoda, J., and Zinn, B. T., “Periodic Mixing and Combustion Processes in Gas Fired Pulsating
Combustors,” Combustion and Flame, Vol. 65, No. 3, 1986, pp. 281–290. doi:10.1016/0010-2180(86)90042-8.

[34] Xu, Z. X., Reiner, D., Su, A., Bai, T., Daniel, B. R., and Zinn, B. T., “Flame Stabilization and Combustion of Heavy Liquid
Fuels in a Rijke Type Pulse Combustor,” Fossil Fuel Combustion, Vol. PD 33, ASME, Petroleum Division, 1991, pp. 17–26.

[35] Richards, G. A., Logan, R. G., Meyer, C. T., and Anderson, R. J., “Ash Deposition at Coal-Fired Gas Turbine Conditions:
Surface and Combustion Temperature Effects,” Journal of Engineering for Gas Turbines and Power-Transactions of the
ASME, Vol. 114, No. 1, 1992, pp. 132–138. doi:10.1115/1.2906295.

[36] Richards, G. A., Morris, G. J., Shaw, D. W., Keeley, S. A., and Welter, M. J., “Thermal Pulse Combustion,” Combustion
Science and Technology, Vol. 94, No. 16, 1993, pp. 57–85. doi:10.1080/00102209308935304.

[37] Yavuzkurt, S., Ha, M. Y., Reethof, G., Koopmann, G., and Scaroni, A. W., “Effect of an Acoustic Field on the Combustion of
Coal Particles in a Flat Flame Burner,” Journal of Energy Resources Technology-Transactions of the ASME, Vol. 113, No. 4,
1991, pp. 286–293. doi:10.1115/1.2905913.

[38] Lieuwen, T. and Zinn, B., “The Role of Equivalence Ratio Oscillations in Driving Combustion Instabilities in Low NOx
Gas Turbines,” Proceedings of the 27th International Symposium on Combustion, Vol. 27, No. 2, 1998, pp. 1809–1816.
doi:10.1016/S0082-0784(98)80022-2.

[39] Tiwary, R. and Reethof, G., “Hydrodynamic Interaction of Spherical Aerosol Particles in a High Intensity Acoustic Field,”
Journal of Sound and Vibration, Vol. 108, 1986, pp. 33–49. doi:10.1016/S0022-460X(86)80309-1.

[40] Hedge, U. G. and Zinn, B. T., “Theoretical Investigation of Reactive Acoustic Boundary Layers in Porous Walled Ducts,”
Chemical and Physical Processes in Combustion, Vol. 60, No. 4, 1984, pp. 1–60.

37
American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

ub
ur

n 
U

ni
ve

rs
ity

 o
n 

M
ar

ch
 2

0,
 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
23

-0
76

8 

http://dx.doi.org/10.1115/1.3269565
http://dx.doi.org/10.1121/1.2028126
http://dx.doi.org/10.1115/1.2930414
http://dx.doi.org/10.1115/1.3269412
http://dx.doi.org/10.1080/00102209308935313
http://dx.doi.org/10.1016/0016-2361(87)90202-X
http://dx.doi.org/10.1115/1.3269346
http://dx.doi.org/10.2514/3.23611
http://dx.doi.org/10.1016/s0082-0784(85)80701-3
http://dx.doi.org/10.1016/S0082-0784(06)80151-7
http://dx.doi.org/10.1016/0010-2180(86)90042-8
http://dx.doi.org/10.1115/1.2906295
http://dx.doi.org/10.1080/00102209308935304
http://dx.doi.org/10.1115/1.2905913
http://dx.doi.org/10.1016/S0082-0784(98)80022-2
http://dx.doi.org/10.1016/S0022-460X(86)80309-1


[41] Fabignon, Y., Dupays, J., Avalon, G., Vuillot, F., Lupoglazoff, N., Casalis, G., and Prévost, M., “Instabilities and pressure
oscillations in solid rocket motors,” Journal of Aerospace Science and Technology, Vol. 7, No. 3, April 2003, pp. 191–200.
doi:10.1016/S1270-9638(02)01194-X.

[42] Price, E. W., “Review of Combustion Instability Characteristics of Solid Propellants,” AGARD Conference Proceedings,
Vol. 1 of Advances in Tactical Rocket Propulsion, Technivision Services, 1968, pp. 141–194.

[43] Majdalani, J., Flandro, G. A., and Fischbach, S. R., “Some Rotational Corrections to the Acoustic Energy Equation in
Injection-Driven Enclosures,” Physics of Fluids, Vol. 17, No. 7, 2005, pp. 0741021–20. doi:10.1063/1.1920647.

[44] Flandro, G. A., Fischbach, S. R., and Majdalani, J., “Nonlinear rocket motor stability prediction: Limit amplitude, triggering,
and mean pressure shift,” Physics of Fluids, Vol. 19, No. 9, 2007, pp. 094101–16. doi:10.1063/1.2746042.

[45] Fischbach, S. and Majdalani, J., “Volume-to-Surface Reduction of Vorticoacoustic Stability Integrals,” Journal of Sound and
Vibration, Vol. 321, No. 3-5, 2009, pp. 1007–1025. doi:10.1016/j.jsv.2008.10.001.

[46] Fischbach, S. R., Flandro, G. A., and Majdalani, J., “Acoustic Streaming in Simplified Liquid Rocket Engines with Transverse
Mode Oscillations,” Physics of Fluids, Vol. 22, No. 6, jun 2010, pp. 063602–21. doi:10.1063/1.3407663.

[47] Nicoli, C. and Pelce, P., “One-Dimensional Model for the Rijke Tube,” Journal of Fluid Mechanics, Vol. 202, 1989, pp. 83–96.
doi:10.1017/s0022112089001102.

[48] Hantschk, C. C. and Vortmeyer, D., “Numerical Simulation of Self-Excited Thermoacoustic Instabilities in a Rijke Tube,”
Journal of Sound and Vibration, Vol. 227, No. 3, 1999, pp. 511–522. doi:10.1006/jsvi.1999.2296.

[49] Matveev, K. I. and Culick, F. E. C., “A model for combustion instability involving vortex shedding,” Combustion Science
and Technology, Vol. 175, No. 6, jun 2003, pp. 1059–1083. doi:10.1080/00102200302349.

[50] Matveev, K. I. and Culick, F. E. C., “A Study of the Transition to Instability in a Rijke Tube with Axial Temperature Gradient,”
Journal of Sound and Vibration, Vol. 264, No. 3, 2003, pp. 689–706. doi:10.1016/s0022-460x(02)01217-8.

[51] Matveev, K. I., Thermoacoustic Instabilities in the Rijke Tube: Experiments and Modeling, Thesis, California Institute of
Technology, 2003.

[52] Bigongiari, A. and Heckl, M., “A Green’s Function Approach to the Study of Hysteresis in a Rijke Tube,” Proceedings of the
22nd International Congress of Sound and Vibration, Florence, Italy, 2015.

[53] Bigongiari, A. and Heckl, M. A., “A Green’s Function Approach to the Rapid Prediction of Thermoacoustic Instabilities in
Combustors,” Journal of Fluid Mechanics, Vol. 798, 2016, pp. 970–996. doi:10.1017/jfm.2016.332.

[54] Heckl, M. A. and Howe, M. S., “Stability Analysis of the Rijke Tube with a Green’s Function Approach,” Journal of Sound
and Vibration, Vol. 305, No. 4-5, 2007, pp. 672–688. doi:10.1016/j.jsv.2007.04.027.

[55] Heckl, M. A., “The Rijke Tube: A Green’s Function Approach in the Frequency Domain,” Acta Acustica United with Acustica,
Vol. 96, No. 4, 2010, pp. 743–752. doi:10.3813/aaa.918328.

[56] Juniper, M. P., “Triggering in the Horizontal Rijke Tube: Non-Normality, Transient Growth and Bypass Transition,” Journal
of Fluid Mechanics, Vol. 667, 2011, pp. 272–308. doi:10.1017/s0022112010004453.

[57] Magri, L. and Juniper, M. P., “Sensitivity Analysis of a Time-Delayed Thermo-Acoustic System via an Adjoint-Based
Approach,” Journal of Fluid Mechanics, Vol. 719, 2013, pp. 183–202. doi:10.1017/jfm.2012.639.

[58] Juniper, M. P. and Sujith, R. I., “Sensitivity and Nonlinearity of Thermoacoustic Oscillations,” Vol. 50, 2018, pp. 661–689.
doi:10.1146/annurev-fluid-122316-045125.

[59] Balasubramanian, K. and Sujith, R. I., “Thermoacoustic Instability in a Rijke Tube: Non-Normality and Nonlinearity,”
Physics of Fluids, Vol. 20, No. 4, 2008, pp. 044103–11. doi:10.1063/1.2895634.

[60] Zhao, D. and Chow, Z. H., “Thermoacoustic Instability of a Laminar Premixed Flame in Rijke Tube with a Hydrodynamic
Region,” Journal of Sound and Vibration, Vol. 332, No. 14, 2013, pp. 3419–3437. doi:10.1016/j.jsv.2013.01.031.

[61] Reynst, F. H., Pulsating Combustion - The Collected Works of F. H. Reynst, Pergamom Press, New York, 1961.

[62] Zinn, B. T., Miller, N., Carvalho, J. A., and Daniel, B. R., “Pulsating Combustion of Coal in a Rijke Type Combustor,”
Proceedings of the 19th International Symposium on Combustion, Vol. 19, 1982, pp. 1197–1203.

38
American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

ub
ur

n 
U

ni
ve

rs
ity

 o
n 

M
ar

ch
 2

0,
 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
23

-0
76

8 

http://dx.doi.org/10.1016/S1270-9638(02)01194-X
http://dx.doi.org/10.1063/1.1920647
http://dx.doi.org/10.1063/1.2746042
http://dx.doi.org/10.1016/j.jsv.2008.10.001
http://dx.doi.org/10.1063/1.3407663
http://dx.doi.org/10.1017/s0022112089001102
http://dx.doi.org/10.1006/jsvi.1999.2296
http://dx.doi.org/10.1080/00102200302349
http://dx.doi.org/10.1016/s0022-460x(02)01217-8
http://dx.doi.org/10.1017/jfm.2016.332
http://dx.doi.org/10.1016/j.jsv.2007.04.027
http://dx.doi.org/10.3813/aaa.918328
http://dx.doi.org/10.1017/s0022112010004453
http://dx.doi.org/10.1017/jfm.2012.639
http://dx.doi.org/10.1146/annurev-fluid-122316-045125
http://dx.doi.org/10.1063/1.2895634
http://dx.doi.org/10.1016/j.jsv.2013.01.031


[63] McIntosh, A., “Pressure Disturbances of Different Length Scales Interacting with Conventional Flames,” Combustion Science
and Technology, Vol. 75, No. 4-6, 1991, pp. 287–309. doi:10.1080/00102209108924093.

[64] Majdalani, J., Entezam, B., and Van Moorhem, W. K., “The Rijke Tube Revisited Via Laboratory and Numerical Experiments,”
35th AIAA Thermophysics Conference, AIAA Paper 2001-2961, Anaheim, CA, June 2001. doi:10.2514/6.2001-2961.

[65] Yoon, M., “The Entropy Wave Generation in a Heated One-Dimensional Duct,” Journal of Fluid Mechanics, Vol. 883, 2020,
pp. A44–24. doi:10.1017/jfm.2019.901.

[66] Sugimoto, N. and Yoshida, M., “Marginal Condition for the Onset of Thermoacoustic Oscillations of a Gas in a Tube,”
Physics of Fluids, Vol. 19, No. 7, 2007, pp. 074101–13. doi:10.1063/1.2742422.

[67] Sugimoto, N., Shimizu, D., and Kimura, Y., “Evaluation of Mean Energy Fluxes in Thermoacoustic Oscillations of a Gas in
a Tube,” Physics of Fluids, Vol. 20, No. 2, 2008, pp. 024103–13. doi:10.1063/1.2837176.

[68] Biwa, T., Sobata, K., Otake, S., and Yazaki, T., “Observation of thermoacoustic shock waves in a resonance tube,” The
Journal of the Acoustical Society of America, Vol. 136, No. 3, sep 2014, pp. 965–968. doi:10.1121/1.4892782.

[69] White, F. M. and Majdalani, J., Viscous Fluid Flow, McGraw-Hill, 2021.

[70] Farouk, B., Oran, E. S., and Fusegi, T., “Numerical Study of Thermoacoustic Waves in an Enclosure,” Physics of Fluids,
Vol. 12, No. 5, 2000/05/01 2000, pp. 1052–1061. doi:10.1063/1.870360.

[71] Hirt, C. W. and Nichols, B. D., “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Journal of
Computational Physics, Vol. 39, 1981, pp. 201–225. doi:10.1016/0021-9991(81)90145-5.

[72] Flow-3D, “Flow Science Incorporated,” 2001.

[73] Carvalho, J. A., Ferreira, C., Bressan, C., and Ferreira, G., “Definition of Heater Location to Drive Maximum Amplitude
Acoustic Oscillations in a Rijke Tube,” Combustion and Flame, Vol. 76, No. 1, 1989, pp. 17–27. doi:10.1016/0010-
2180(89)90073-4.

[74] Entezam, B., Van Moorhem, W. K., and Majdalani, J., “Modeling of a Rijke-Tube Pulse Combustor using Computational Fluid
Dynamics,” 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 97-2718, 1997. doi:10.2514/6.1997-
2718.

[75] Rijke, P. L., “LXXI. Notice of a New Method of Causing a Vibration of the Air Contained in a Tube Open at Both Ends,”
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 17, No. 116, 1859, pp. 419–422.
doi:10.1080/14786445908642701.

[76] Noiray, N., Durox, D., Schuller, T., and Candel, S., “A Unified Framework for Nonlinear Combustion Instability
Analysis Based on the Flame Describing Function,” Journal of Fluid Mechanics, Vol. 615, nov 2008, pp. 139.
doi:10.1017/s0022112008003613.

[77] Noble, A. C., King, G. B., Laurendeau, N. M., Gord, J. R., and Roy, S., “Nonlinear Thermoacoustic Instability
Dynamics in a Rijke Tube,” Combustion Science and Technology, Vol. 184, No. 3, March 2012, pp. 293–322.
doi:10.1080/00102202.2011.635614.

[78] Sujith, R. I., Juniper, M. P., and Schmid, P. J., “Non-Normality and Nonlinearity in Thermoacoustic Instabilities,” International
Journal of Spray and Combustion Dynamics, Vol. 8, No. 2, jun 2016, pp. 119–146. doi:10.1177/1756827716651571.

[79] Sujith, R. I., Waldherr, G. A., and Zinn, B. T., “An Exact Solution for One-Dimensional Acoustic Fields in Ducts with an Axial
Temperature-Gradient,” Journal of Sound and Vibration, Vol. 184, No. 3, 1995, pp. 389–402. doi:10.1006/jsvi.1995.0323.

[80] Sujith, R. I., “Exact Solutions for Modeling Sound Propagation Through a Combustion Zone,” Journal of the Acoustical
Society of America, Vol. 110, No. 4, 2001, pp. 1839–1844. doi:10.1121/1.1396332.

[81] Bednarik, M., Cervenka, M., Lotton, P., and Penelet, G., “Behavior of Plane Waves Propagating through a Temperature-
Inhomogeneous Region,” Journal of Sound and Vibration, Vol. 362, 2016, pp. 292–304. doi:10.1016/j.jsv.2015.10.010.

[82] Kumar, B. M. and Sujith, R. I., “Exact Solution for One-Dimensional Acoustic Fields in Ducts with a Quadratic
Mean Temperature Profile,” Journal of the Acoustical Society of America, Vol. 101, No. 6, 1997, pp. 3798–3799.
doi:10.1121/1.418385.

39
American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

ub
ur

n 
U

ni
ve

rs
ity

 o
n 

M
ar

ch
 2

0,
 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
23

-0
76

8 

http://dx.doi.org/{10.1080/00102209108924093}
http://dx.doi.org/10.2514/6.2001-2961
http://dx.doi.org/10.1017/jfm.2019.901
http://dx.doi.org/10.1063/1.2742422
http://dx.doi.org/10.1063/1.2837176
http://dx.doi.org/10.1121/1.4892782
http://dx.doi.org/10.1063/1.870360
http://dx.doi.org/10.1016/0021-9991(81)90145-5
http://dx.doi.org/10.1016/0010-2180(89)90073-4
http://dx.doi.org/10.1016/0010-2180(89)90073-4
http://dx.doi.org/10.2514/6.1997-2718
http://dx.doi.org/10.2514/6.1997-2718
http://dx.doi.org/10.1080/14786445908642701
http://dx.doi.org/10.1017/s0022112008003613
http://dx.doi.org/10.1080/00102202.2011.635614
http://dx.doi.org/10.1177/1756827716651571
http://dx.doi.org/10.1006/jsvi.1995.0323
http://dx.doi.org/10.1121/1.1396332
http://dx.doi.org/10.1016/j.jsv.2015.10.010
http://dx.doi.org/10.1121/1.418385


[83] Kumar, B. M. and Sujith, R. I., “Exact Solution for One-Dimensional Acoustic Fields in Ducts with Polynomial Mean
Temperature Profiles,” Journal of Vibration and Acoustics-Transactions of the ASME, Vol. 120, No. 4, 1998, pp. 965–969.
doi:10.1115/1.2893927.

[84] Munjal, M. L. and Prasad, M. G., “On Plane-Wave Propagation in a Uniform Pipe in the Presence of a Mean Flow
and a Temperature Gradient,” The Journal of the Acoustical Society of America, Vol. 80, No. 5, 1986, pp. 1501–1506.
doi:10.1121/1.394406.

[85] Cummings, A., “Ducts with Axial Temperature Gradients: An Approximate Solution for Sound Transmission and
Generation,” Journal of Sound and Vibration, Vol. 51, No. 1, 1977, pp. 55–67. doi:10.1016/S0022-460X(77)80112-0.

[86] Li, J. and Morgans, A. S., “The One-Dimensional Acoustic Field in a Duct with Arbitrary Mean Axial Temperature Gradient
and Mean Flow,” Journal of Sound and Vibration, Vol. 400, 2017, pp. 248–269. doi:10.1016/j.jsv.2017.03.047.

[87] Kovasznay, L. S. G., “Turbulence in Supersonic Flow,” Journal of the Aeronautical Sciences, Vol. 20, No. 10, oct 1953,
pp. 657–674. doi:10.2514/8.2793.

[88] Dowling, A. P., “The Calculation of Thermoacoustic Oscillations,” Journal of Sound and Vibration, Vol. 180, No. 4, 1995,
pp. 557–581. doi:10.1006/jsvi.1995.0100.

[89] Philip M. Morse, K. U. I., Theoretical Acoustics, Princeton University Press, Jan. 1987.

[90] Polyanin, A. D., Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman and Hall/ CRC,
2002.

[91] Kosztin, B., Heckl, M., Muller, R., and Hermann, J., “Thermo-Acoustic Properties of a Burner with Axial Temperature
Gradient: Theory and Experiment,” International Journal of Spray and Combustion Dynamics, Vol. 5, No. 1, 2013, pp. 67–
84. doi:10.1260/1756-8315.5.1.67.

[92] Lieuwen, T. C., Unsteady Combustor Physics, Cambridge University Press, 2012.

[93] Ledoux, V. and Van Daele, M., “Matslise 2.0: A Matlab Toolbox for Sturm–Liouville Computations,” ACM Transactions on
Mathematical Software, Vol. 42, No. 4, 2016, pp. 1–18. doi:10.1145/2839299.

40
American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

ub
ur

n 
U

ni
ve

rs
ity

 o
n 

M
ar

ch
 2

0,
 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
23

-0
76

8 

http://dx.doi.org/10.1115/1.2893927
http://dx.doi.org/10.1121/1.394406
http://dx.doi.org/10.1016/S0022-460X(77)80112-0
http://dx.doi.org/10.1016/j.jsv.2017.03.047
http://dx.doi.org/10.2514/8.2793
http://dx.doi.org/10.1006/jsvi.1995.0100
http://dx.doi.org/10.1260/1756-8315.5.1.67
http://dx.doi.org/10.1145/2839299

	I Introduction
	II On the Rijke tube and pulse combustion
	A Fundamental wave equations
	B  Pressure coupling relation
	C Velocity coupling relation
	D Energy coupling relation

	III Scaling analysis
	A Theoretical considerations
	B Scaling considerations

	IV  Experimental setup
	V Computational model
	A  Heat transfer coefficients
	B  Numerical strategy

	VI  Results and discussion
	A  Experimental results
	B  Computational results

	VII A perturbative approach
	A Basic assumptions and normalization
	B Leading-order perturbation expansion
	1 Leading-order equation type
	2 Leading-order fluctuating pressure approximation

	C Acoustic pressure for a prescribed temperature distribution
	1 Effects of uniform, linear, and quadratic temperature distributions
	2 Effects of exponential and harmonic temperature distributions
	3 Effects of piecewise temperature distributions
	4 Verification and validation of predicted modal frequencies
	5 Locus of acoustic pressure peaks


	VIII Summary

