Earth and Space Science

RESEARCH ARTICLE
10.1029/2022EA002385

Key Points:

o A fully automated end-to-end flood
stage image detection system is
developed using two US Geological
Survey gauging data

e Compared to other models, Long
Short-Term Memory predicted the
flood stage more accurately during
both historical and real-time events

e A longer lead time flood stage forecast
requires more physics-based features
to be incorporated into the Deep
Neural Network models

Correspondence to:

S. Samadi,
samadi@clemson.edu

Citation:

Windheuser, L., Karanjit, R., Pally, R.,
Samadi, S., & Hubig, N. C. (2023). An
end-to-end flood stage prediction system
using deep neural networks. Earth and
Space Science, 10, €2022EA002385.
https://doi.org/10.1029/2022EA002385

Received 18 APR 2022
Accepted 6 DEC 2022

Author Contributions:

Conceptualization: S. Samadi

Data curation: L. Windheuser, R. Pally,
S. Samadi

Funding acquisition: S. Samadi
Methodology: S. Samadi, N. C. Hubig
Software: L. Windheuser, R. Karanjit,

S. Samadi

Supervision: N. C. Hubig

Validation: L. Windheuser, R. Karanjit,
R. Pally

Writing — original draft: L. Windheuser,
S. Samadi

Writing — review & editing: R. Karanjit,
S. Samadi

© 2023 The Authors. Earth and Space
Science published by Wiley Periodicals
LLC on behalf of American Geophysical
Union.

This is an open access article under

the terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and
distribution in any medium, provided the
original work is properly cited, the use is
non-commercial and no modifications or
adaptations are made.

'.) Check for updates

V od |
LG

l ADVANCING
EARTHAND
> SPACE SCIENCE

ok

An End-To-End Flood Stage Prediction System Using Deep
Neural Networks
L. Windheuser!, R. Karanjit?, R. Pally?, S. Samadi® (*/, and N. C. Hubig?

'Department of Informatics, Technical University of Munich, Munich, Germany, School of Computing, Clemson University,
Clemson, SC, USA, 3Department of Agricultural Sciences, Clemson University, Clemson, SC, USA

Abstract The use of automated methods for detecting and classifying different types of labels in flood
images have important applications in hydrologic prediction. In this research, we propose a fully automated
end-to-end image detection system to predict flood stage data using deep neural networks across two US
Geological Survey (USGS) gauging stations, that is, the Columbus and the Sweetwater Creek, Georgia, USA.
The images were driven from the USGS live river web cameras, which were strategically located nearby the
monitoring stations and refreshed roughly every 30 s. To estimate the flood stage, a U-Net Convolutional
Neural Network (U-Net CNN) was first stacked on top of a segmentation model for noise and feature reduction
that diminished the number of images needed for training. A Long Short-Term Memory (LSTM), a dense
model, and a CNN were then trained to predict the flood stage time series data in near real-time (6, 12, 24, and
48 hr). The results revealed that the U-Net CNN has a higher accuracy for image segmentation if the algorithm
is stacked in front of the network. The absolute error with the U-Net was 0.0654 feet at the Columbus while

it was 0.0035 feet at the Sweetwater Creek, which were practically low for flood stage estimation. For time
series prediction, among three models, the LSTM predicted the flood stage values more accurately during both
historical (2015-2022) as well as real-time forecasts, particularly for 24 and 48 hr timescales. We extensively
evaluated the proposed flood stage prediction system against current state-of-the-art methodologies partly
crowd-sourced and mined in real-time.

Plain Language Summary In the past few years, image processing techniques are used for image
labeling tasks given their capacity to learn rich features. Real-time river stage prediction is the subject of
numerous studies of a similar nature. Still, they have yet to combine multiple datasets (such as time series and
image data) for flood stage prediction. Here, we examined how Convolutional Neural Network, Long Short-
Term Memory, and a dense model can be applied to stream live images from the US Geological Survey (USGS)
web cameras and label the features for real-time flood gauge estimation. The preliminary motivation for using
these models was to explore the strength of different types of representations for predicting class labels and
estimating flood stages in real-time. We evaluated our models on a new image data set that was collected from
multiple rivers scraped from the USGS live webcams with their associated annotated labels. Compared to other
techniques, the proposed end-to-end flood stage estimation approaches produced state-of-the-art results for the
two USGS stations, and also demonstrated the capability of using data intelligence tied to different sources of
labeling in improving flood stage estimation.

1. Introduction

Floods are on the rise globally with the frequent record-breaking events occurring during the past few years in
the US alone. These extreme events pose a considerable threat to human life and result in destructive damage
to property, communities, and the built environment (e.g., Phillips et al., 2018). The south and the southeast US
have experienced frequent storms with annually, on average, more than 85 named and unnamed thunderstorms
(NWS, 2020). These events happened in quick succession (~2 weeks apart) and produced catastrophic flooding
in wide geographic areas (~1,000 km swath) and within short timespans (less than a 48-hr period; Donratanapat
et al., 2020). Successive flood events can even lead to higher costs in terms of repairing and rebuilding destroyed
buildings and critical infrastructures (CIs) due to a lack of early warning systems (e.g., Donratanapat et al., 2020;
Field et al., 2012; Hinkel et al., 2014). This necessitates the importance of detecting flood magnitudes ahead of
the event to protect communities and CIs. The flood stage is the height of the water surface in a stream gaging
station, not the height throughout the stream. A vast amount of research has been conducted to develop different
tools and test their reliability in predicting near real-time flood stage estimation (Krzysztofowicz et al., 1994).

WINDHEUSER ET AL.

1 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0003-1494-6481
https://orcid.org/0000-0002-8911-7832
https://doi.org/10.1029/2022EA002385
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022EA002385&domain=pdf&date_stamp=2023-01-27

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science 10.1029/2022EA002385

However, these tools require high computational time and effort as well as different sources of spatial and
physics-based data to be trained and validated which is time-consuming and not practical for real-time application
(e.g., Bermidez et al., 2018; Hubig et al., 2017; Ivanov et al., 2021; Zahura et al., 2020).

Time-lapse images and videos driven from surveillance cameras can provide a vast amount of big data that can
be used to constrain intelligent techniques and provide valuable insights into flood risk and severity. These real-
time surveillance cameras have been strategically installed by several federal agencies, such as the US Geological
Survey (USGS) across numerous river networks to meet the need for timely assessment of riverine flood situa-
tions (Dazzi et al., 2021). The real-time videos and images can be used to track the increasing flood stage during
a storm and continuously monitor the potential impacts of flooding on nearby communities and CIs (see Bhola
et al., 2019; Moy et al., 2019). Videos and time-lapse images can also be processed to extract image frames and
related information and measure a range of flood characteristics such as flood stage and inundation areas. Using
the webcam images as well as historical weather data, one can develop an intelligent flood image label detection
system to monitor and evaluate riverine flood conditions in near real-time.

Deep learning algorithms are exceptionally valuable tools for collecting and analyzing catastrophe readiness and
countless flood image data. Convolutional Neural Networks (CNNs) are one form of deep learning algorithm
widely used in computer vision that can be utilized to study flood images and assign learnable labels to vari-
ous objects in the images (e.g., Pally & Samadi, 2022). Additionally, Recurrent Neural Networks architectures
such as Long Short-Term Memory (LSTM) have demonstrated great success in sequential label simulation and
time series prediction tasks (Kratzert et al., 2018; Tabas & Samadi, 2022; Shen, 2018). Despite the widespread
use of these intelligent techniques, very few studies have focused on using them in flood assessment. Paul and
Das (2014) were among the first scholars who used CNN for the Manu River level prediction in India. They
forecasted the river level in advance (up to 72 hr) using precipitation and observed flood stage as input features.
They also used a Feed Forward Neural Network and reached a mean absolute percentage error (MAPE) of 6.5%
for 24 hr, 23.7% for 48 hr, and 47.4% for 72 hr forecasts. Moy et al. (2019) used a deep CNN (DCNN) to detect
floodwater in surveillance footage and a static observer flooding index (SOFI) as a proxy to estimate flood
stage fluctuations visible from a surveillance camera's viewpoint. Their results revealed that DCNN and SOFI
have the potential to be applied to a variety of surveillance camera models and flooding situations without the
need for on-site camera calibration. Bhola et al. (2019) employed deep learning and edge detection techniques
to identify the water surface in an image. They showed that deep learning and edge detection techniques can be
used as additional point source validation information to substantially improve flood inundation forecasting.
Jiang et al. (2019) used a CNN approach for waterlogging depth estimation from video images based on refer-
ence objects. They achieved a MAPE of 19.97% in the testing period. Other water depth estimation studies used
LiDAR data with high accuracy. Two excellent applications of CNN-LiDAR image label detection approaches
are given by Hilldale and Raff (2008) and Tonina et al. (2019).

Recently, Baek et al. (2020) used a CNN to predict flood stage across the Nakdong River Basin in South Korea.
They achieved a high precision score with the mean square error (MSE) of 0.001 m for stage prediction. Faruq
et al. (2020) employed the LSTM and Radial Basis Function Neural Network to simulate the flood stage for the
Klang River in Malaysia. Their training data consisted of historical flood stage only, disregarding any further
weather features. In their study, the LSTM-RBFNN model performed a root mean square error (RMSE) value of
0.02 and a coefficient of determination (R?) value of 0.98. Their results verified that the LSTM network with a
specified training set provided a promising alternative technique to the solution of flood modeling and forecasting
problems. In a sequence, Dazzi et al. (2021) evaluated the accuracy of machine learning models to predict the
gauge height data of the Parma River at the Colorno gauging station in Italy. They applied upstream stage obser-
vation along with downstream gauging data for possible backwater to feed into machine learning models. They
tested a Support Vector Regression (SVR), a Multi-Layer Perceptron, and an LSTM network. More recently,
Al-Fawa’Reh et al. (2021) used Random Forest, Decision Tree (DT), Linear Regression, SVR, and the K-Nearest
Neighbor models to predict the flood stage for the Jordan River in Jordan. They fed the relative humidity, daily
rainfall, wind speed, and air temperature into the models to predict the flood stage data. A large data set was
incorporated into these models that were collected from the past 38 years across 13 stations in the region. Their
analysis revealed that the DT model is the most skillful approach, which was able to forecast up to 24 hr in
advance accurately with a low mean absolute error (MAE) of 0.021 m.

Despite these studies, the development of neural network algorithms for real-time implementation that support
multiple modeling hypotheses is, however, still in its nascence, and yet has not provided the systematic approach

WINDHEUSER ET AL.

2 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science 10.1029/2022EA002385

that is needed to combine multiple datasets, that is, time series and image data. In this research, we developed
multiple neural networks for real-time flood stage prediction and segmentation using both image and time series
data from two USGS gauging stations that is, the Columbus and the Sweetwater Creek, Georgia (GA), USA.
Here, we presented a novel and practical method that exploits flood stage images and treats flood stage forecast-
ing as regression problems with appropriate loss functions and metrics for result inspection. By developing and
testing multiple neural network algorithms for real-time flood stage prediction, this research hopes to provide an
end-to-end system designed for deployment in large, gauged rivers, implying flood stage data as well as river
webcam images. Using proposed approaches, this study addresses three research questions notably; (a) How can a
combined image and time series data provide the intelligence for historical and near real-time flood stage predic-
tion? (b) What forecast lead time (6, 12, 24, and 48 hr) can be predicted in advance with high accuracy compared
with others? And (c) what type of neural network algorithm can accurately simulate both short- and long-term
fluctuations in the data? By answering these questions, we aim to provide a tool that can use time series data and
exploit existing surveillance infrastructure to address flooding issues in at-risk areas and support flood modelers
and decision-makers. The main contributions of this paper include the following:

¢ Developing a novel approach for estimating flood stage data by stacking a CNN on top of a segmentation
model as a pre-processing step for noise and feature reduction. The stacked segmentation model was designed
to consistently deliver the most accurate and stable predictions by combining different individual strengths of
CNN and LSTM.

e Developing a three-layer stacked dense neural network connected by an encoder-decoder architecture as a
fully connected feedforward neural network for flood stage forecast.

e Predicting flood stage based on historical weather data using different architectures for up to 12 hr in advance.

e Creating a custom flood image data set scraped in real-time from the USGS live river webcams and their
respective gauge height data as labels. This data set was used for real-time gauge height estimation and
segmentation.

The remainder of this paper is structured as follows: Section 2 includes the case studies of the chosen rivers as
well as includes a description of the data set used in this research. Section 3 presents the methodology and algo-
rithms as well as performance metrics to compare the results and the accuracy of prediction. Section 4 presents
the results of multiple experiments for different datasets. Lastly, the conclusion of this study is presented in
Section 5.

2. Case Studies and Data
2.1. Case Study 1: Chattahoochee River at Columbus, GA

The Chattahoochee River at Columbus, GA (USGS02341460) is 4,630 square miles (Hydrologic Unit Code
03130003). It formed in the lower half of the border of GA and Alabama (AL), USA. This gauge is equipped
with both river and climate stations instrumented by the USGS. Different datasets such as water temperature,
air temperature, air pressure, wind speed, wind direction, precipitation, relative humidity, discharge, and gauge
height are also monitored at this gauging station. For most measurements, however, the collection started just
recently, and gauge height data were long enough to train models. We used the precipitation data of this station
as an input variable for neural network algorithms. The precipitation data has been monitored since 31 July 2013,
with a 15-min time interval which was used as an input variable for constructing neural networks. In addition, the
flood stage images were gathered from a USGS live river webcam that is located on the Chattahoochee River at
Columbus (02341460) in proximity to the flood stage gauging station.

2.2. Case Study 2: Sweetwater Creek Near Austell, GA

The Sweetwater Creek is a stream with a length of 73.4 km in GA near Atlanta and is a tributary of the Chatta-
hoochee River. The Sweetwater Creek has a stream gauge near Austell, GA (USGS 02337000), where the USGS
has regularly monitored precipitation, discharge, and gauge height data since 2010 in 15 min increments. A river
webcam is also located, at Sweetwater Creek near Austell water-monitoring site (02336910). Only the gauge
height data was used as input data because precipitation data for this station was recorded from October 2012 to
2017 with significant missing values that were too short to incorporate into the models for flood stage simulation
during 2015-2022. We comparably selected the same time period as the Chattahoochee River with >240,000
rows of data.

WINDHEUSER ET AL.

3 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

V ad |
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science 10.1029/2022EA002385

6000
30000

20000 4000

Count
Count

10000 20001

(0] = I
20 30 O- =
. 5 10 15
Helght{[teet] Height [feet]

Chattahoochee River at Columbus, GA Sweetwater Creek near Austell, GA

Figure 1. The location of US Geological Survey (USGS) live river webcams and their associated gauging stations (photos
are taken on 26 August 2021). Distribution plots of the observed gauge heights (in 15 min increments) are displayed for each
station from 1 January 2015 to 2 September 2022.

To fill the missing values in the data, we used a linear interpolation technique (spline interpolation method)
using the Python pandas DataFrame.interpolate() method. We applied this method to time series data, although
the missing values were insignificant (less than 1%). Using the USGS live river webcam images, we were
able to scrape around 300 pictures and their respective gauge heights for training and flood stage estimation.
Since the webcams provided images with different resolutions, the images were resized with padding to a size
of 512 X 512 x 3 making them compatible with the models. For the segmentation model training, two additional
datasets were provided by Kaggle Water Segmentation Dataset (see Liang et al., 2020) as well as Flood Segmen-
tation Dataset (Pally et al., 2022) was used. Liang et al. (2020) and Pally et al. (2022) contain, respectively a total
of 2,320 and >9,000 images of annotated segmentation for flooded areas and water bodies with a great variance
in the features. Figure 1 shows the location of two USGS gauging stations along with their respective flood stage
time series data distribution plots.

2.3. Image Data Normalization

The neural networks trained on numerical data are unlikely to forecast any values outside the numerical range of
the training set. It is therefore recommended to normalize the data set and remove linear trends before training, as
the forecasts may poorly perform otherwise. Normalization and trends removal also help reduce the sensitivity of
networks to hyperparameters, reduce training time, and lead to forecasts that resemble the behavior of the histor-
ical data more faithfully. To improve convergence and reduce training times, the datasets of this research were
normalized using loffe and Szegedy (2015) approach. Let # be mean and o the standard deviation of the training
data set. Then the training and testing datasets were normalized by

Every data set uses a k-fold cross validation for splitting the training and testing data set (we set to the standard
value of 10). The k-fold cross-validation procedure is a standard approach for estimating the performance of
configuration on a data set. The k-fold cross-validation procedure divides a limited data set into k non-overlapping
folds. We used repeated k-fold cross-validation, by randomly shuffling the data, as a way to improve the perfor-
mance. This involved repeating the cross-validation procedure multiple times and reporting the mean result

WINDHEUSER ET AL.

4 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science 10.1029/2022EA002385

across all folds from all runs. This means the result is expected to be a more accurate estimate of the true unknown
underlying mean performance of the model on the data set, as calculated using the standard error. Each of the k&
folds (10 folds here) was given an opportunity to be used as a held back test set, whilst all other folds collectively
are used as a training data set. A total of k£ models was fit and evaluated on the & hold-out test sets and the mean
performance was reported. 80% of the data was used for training and 20% for testing.

3. Methodology
3.1. Neural Networks Algorithms for Image Data

This section explains the workflow and algorithms that were developed for flood stage estimation using the
USGS live web camera images. It should be noted that we used CNNs for both image data as well as time series
data but with different setups and structures.

3.1.1. CNNs

CNNs are the most well-known neural networks for image segmentation. These algorithms showed enormous
success in a variety of deep learning problems (LeCun et al., 2015; Pally & Samadi, 2022). CNNs are based on
convolutional operations, which use filters iterating over the images to extract features from the pixels. Since the
filters lay over multiple pixels, they are able to extract wider patterns and structures in the images (see Appen-
dix A for the CNN structure). When filtering the size of images, a CNN is not only able to take into account
surrounding pixels from images but also surrounding data (timewise) from a time series data set.

Details of the CNN workflow for flood stage prediction using image data are shown in Figure 2. As illustrated,
the CNN model used for the USGS images was based on three 2D-convolutional layers with 32, 64, and 64 filters,
respectively. Each filter has a size of 3 X 3, and the layers are connected with 2Dmax-pooling layers with a size
of 2 x 2. After the convolutional layers, the model is flattened and followed by three-dense layers with 128, 64,
and 1 output neurons for the regression task. All layers except the last one used the Rectified Linear Unit (ReLu)
activation function as follows whereas the last dense layer uses the identity as its activation function (id(x) = x).

ReLu(x) = max(0, x) 2

3.1.2. Segmentation Model

We used a CNN (U-Net) for semantic segmentation of flood images driven from the USGS river cameras.
Segmentation is an approach to identifying and labeling objects in images. In our study, a segmentation model
is used to identify and label the waterbody of a given image. This approach drastically reduced the size of an
image by a factor of 3 from 512 X 512 x 3 to 512 x 512 x 1. It also decreased features from the image, which
were irrelevant for the flood stage estimation, and also de-noised flood images. For example, the waterbody was
slightly invisible if the weather was cloudy or foggy. We used the U-Net approach proposed by Ronneberger
et al. (2015), which is a convolutional network architecture for fast and precise segmentation of images using an
encoder-decoder approach. The U-Net aims to efficiently generate accurate segmentation with minimum training
data. The workflow that we developed to implement the segmentation model is illustrated in Figure 3. As a novel
approach for the flood stage estimation, the U-Net is stacked in front of the CNN as a pre-processing step for
image data with the goal of simplifying the task for the CNN implementation. As illustrated, the network's inputs
are 572 x 572, 570 x 570, and 568 X 568, and the outputs are 392 x 392, 390 x 390, and 388 x 388. The network
uses a skip connection to connect the upsampling result to the output of the submodule with the same resolution
in the encoder as the input of the next submodule in the decoder.

3.2. Neural Networks Algorithms for Time Series Data

Multiple neural network algorithms were tested and compared to simulate the USGS flood stage data. The data
set contains the flood stage of respective rivers and its corresponding time steps. The data starts on 1 January
2015 and ends on 2 September 2022. The data were formatted and preprocessed to remove trends using loffe and
Szegedy (2015) approach explained in Section 2.3. We used the first 5 years of the >7-year calibration period
as training data (1 January 2015 to 31 December 2019) while the last 2 years for validation and hyperparameter
tuning (1 January 2020 to 9 February 2022). The first two subsets are used to derive the network's parametrization

WINDHEUSER ET AL.

5 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science 10.1029/2022EA002385

Conv2d: Input Layer

Input: [(None, 512,512, 1)]
Output: | [(None, 512, 512, 1)]

v

Conv2d: Conv2d Layer

Input: [(None, 512, 512, 1)]
Output: | [(None, 170, 170, 32)]

Max_Pooling2d: Max Pooling2D

Input: [(None, 170, 170, 32)]
Output: | [(None, 85, 85, 32)]

v

Conv2d: Conv2d Layer

Input: [(None, 85, 85, 32)]
Output: | [(None, 28, 28, 64)]

Max_Pooling2d: Max Pooling2D

Input: [(None, 28, 28, 64)]
Output: | [(None, 14, 14, 64)]

Conv2d: Conv2d Layer

Input: [(None, 14, 14, 64)]
Output: | [(None, 4, 4, 64)]

flatten: Flatten

Input: | [(None, 4, 4, 64)]
Output: | [(None, 1024)]

A 4

dense: Dense Layer

Input: [(None, 1024)]
Output: | [(None, 128)]

A

dense: Dense Layer

Input: | [(None, 128)]
Output: | [(None, 64)]

v

dense: Dense Layer

Input: [(None, 64)]
Output: | [(None, 1)]

Figure 2. The workflow of Convolutional Neural Network architecture for the estimation of flood stage with an image size of 512 X 512 X 1 and flood stage output.

(calibration in the context of hydrologic simulation) and the remainder of the data to diagnose the actual perfor-
mance (validation in the context of hydrologic simulation).

We performed a trial-and-error process to tune the hyperparameters and derive the best values. The hyperparam-
eters include sequence length of rainfall data map series (for the Columbus station only), batch size of 32, and the
optimizer that compared with the learning curve. In the traditional hydrologic modeling approach, the number of
iteration steps defines the total number of model evaluations performed during calibration (given an optimization
algorithm without a convergence criterion; see Tabas & Samadi, 2022). The corresponding term for the neural
network is the so-called epoch. One epoch is defined as the period in which each training sample is used once to
update the model parameters (e.g., if the data set contains 1,000 training samples and the batch size is 10, one
epoch would equal 100 iterations; the number of training samples divided by the number of samples per batch).
In each iteration, 10 of the 1,000 samples were taken without replacement until all 1,000 samples were used once.
This makes, each time-step of the flood stage data be simulated exactly once. This is similar to one iteration in
traditional hydrologic model calibration, with a significant difference in generating every sample independently
(see Kratzert et al., 2018).

The neural network models used for flood stage time series simulation are introduced in the following sections.
To simplify the notation in this section, we denote x to be the number of time steps, which each model has the
objective to predict in advance. We used a dynamic sliding window method on each output (see Girihagama

WINDHEUSER ET AL.

6 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science 10.1029/2022EA002385

64 64
input
image (|
tile
| Off ©
N~ [To}
w|wjw
x > x
N| Off ©
N~ ©
w|ngw

128 64 64 2
ol] OutpUL
segmentation
off of of map
dl S A o
256 128
<35 512 256 t
& l*l*ﬂ =» conv 3x3, RelL.U
Lo g d
S - copy and cro
' 512 512 1024 512 t py p
-l — i - ¥ max pool 2x2
S o¥ 1o: g & 4 up-conv 2x2
I
. % = conv 1x1
o™ N

Figure 3. The architecture of U-Net with input as image and output as segmentation map was implemented in this study (partially adapted from Ronneberger

etal. (2015)).

et al., 2022). When a neural network produces an output then this output was appended to the end of the input and
the first value of the input is removed.

3.2.1. Dense Model

Our proposed dense model is an eight-layer stacked dense neural network connected by 128, 64, 32, and 4
neurons in the first four dense hidden layers and 1 neuron in the last output layer with the ReLu activation
function (see Appendix A for the dense structure). After the third and the fourth dense hidden layers, the neural
network contains dropouts with the rate of 0.5 which means half of the neurons in the previous layer would be
ignored. Although, the dense model was tested using multiple dropouts lower than 0.5 to reduce independent
learning among the neurons all values resulted in overfitting. ReLU is a piecewise linear function that outputs the
input directly if it is positive, otherwise, it outputs zero. ReLU eases the training process and often achieves better
performance. The derivative of ReLU is also easy to calculate when updating the weights of a node as part of
the backpropagation error. Since the dense model only has a feed-forward connection, the network was unable to
take previous data into account and only used the current events. In the background, the dense layer performed a
matrix-vector multiplication. The values used in the matrix were some parameters that were trained and updated
during the backpropagation process. The workflow of an eight layers deep dense model used in this study is
shown in Figure 4.

3.2.2. CNNs

The next model that we used was a CNN that was trained on time series data. Due to the success of CNNs on
image data, these networks were adopted and used for various simulation problems including time series data
analysis, as well (Gamboa, 2017). The implemented model consists of a 1D convolutional layer with 64 filters as
a first hidden layer and a kernel size of two using ReLu activation function. The second hidden layer consists of a
1D MaxPooling layer followed by a flattened layer in the third hidden layer. The output layer is a dense layer with
one neuron. The CNN contained 64 filters with two kernels. The workflow of CNN implementation is shown in
Figure 5.

WINDHEUSER ET AL.

7of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science 10.1029/2022EA002385

Input: [(None, 100)]
Output: | [(None, 100)]

Dense: Input Layer

Input: [(None, 100)]
Output: | [(None, 128)]

Dense: Dense Layer

Input: [(None, 128)]
Output: | [(None, 64)]

Dense: Dense Layer

Input: [(None, 64)]
Output: | [(None, 32)]

Dense: Dense Layer

Input: [(None, 32)]
Output: | [(None, 32)]

Dropout: Dropout Layer

Input: [(None, 32)]
Output: | [(None, 4)]

Dense: Dense Layer

Input: [(None, 4)]
Output: | [(None, 4)]

Dropout: Dropout Layer

Input: [(None, 4)]
Output: | [(None, 1)]

Dense: Dense Layer

Figure 4. The architecture of a five layers deep dense model with historical gauge heights value input and predicted gauge height output for flood stage prediction.

3.2.3. LSTM

We used LSTM (developed by Hochreiter and Schmidhuber (1997)) which consists of multiple cells and each cell
has a feedback connection to its neighbor cell, enabling the network to learn greater consecutive sequences (see
Figure 6). The LSTM cell consists of a forget gate f,, an input gate i, and an output gate o, and has a cell state c,.
At every time step 7, the cell gets the data point x, with the output of the previous cell &,_,. The forget gate then
defines if the information is removed from the cell state, while the input gate evaluates if the information should
be added to the cell state and the output gate specifies which information from the cell state can be used for the
next cells. We used four LSTM layers with 264, 132, 64, and 32 cells in the first four hidden layers, which were

Input: | [(None, 100, 1)]
Output: | [(None, 100, 1)]

Convld: Input Layer

Input: | [(None, 100, 1)]
Output: | [(None, 99, 64)]

Convld: Convld Layer

Input: [(None, 99, 64)]
Output: | [(None, 49, 64)]

Max_Pooling1ld: Max PoolinglD

Input: | [(None, 49, 64)]
Output: | [(None, 3136)]

flatten: Flatten

Input: [(None, 3136)]
Output: | [(None, 1)]

Dense: Dense Layer

Figure 5. The architecture of Convolutional Neural Network with gauge heights values as input and predicted gauge height
data as output.

WINDHEUSER ET AL.

8 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science 10.1029/2022EA002385

LSTM: Input Layer Iggtuptlzjt: {:EZ:Z 1882 3}
LSTM: LSTM Layer gftu:l;t: {EEZ:E 188: 3)5]4)]
LSTM: LSTM Layer g]l?tu[:;ttit: E:EZ:Z 188: ig;g
isTvELsTMLaver R None. 100, 641
LSTM: LSTM Layer I(;]Stuptl:t: {:mg:: 2(2);)]' =
Dense: Dense Layer I(;Etu;;t: {EES:Z ;(2);}
Dense: Dense Layer gStuptL:Jt: E:EZ:: i;)]

Figure 6. Proposed architecture for the Long Short-Term Memory (LSTM)-dense model, with gauge heights values as input and predicted gauge height data as output,
used in this study for flood stage prediction. The model is a four-layer deep LSTM with a two-layer deep dense model.

then connected to two dense layers with 30 neurons followed by one neuron output layer (see Appendix A for the
LSTM structure). The LSTM simulation was performed with these input layers along with Adam optimizer, ReLu
activation, and a single lagged dependent-variable value to train with a learning rate of 0.00001 and no dropout.
The architecture of our proposed LSTM-dense model is illustrated in Figure 6.

3.3. Performance Metrics

Several key performance metrics are used to evaluate the performance of the neural networks. For image data
performance, we used the Sgrensen-Dice coefficient (Sorensen, 1948) which is one of the most well-known
statistical measurements for evaluating the similarity between the true segmentation y and the predicted segmen-
tation J of an image. We defined y as the ground truth and § as the predicted value by the models. We also defined
y as the mean of ground truth value. The Dice loss is used for the training of the U-Net that is defined as follows:

2|yu |

DICE=1 - 4
[yl + 19

3)
y; is the ground truth value at a given time i and similarly ¥, is the predicted value at a given time i. Since both the
gauge height estimations of an image and the future flood stage predictions are regression problems, the same

loss function and metrics were used for performance assessment. So, MSE (Equation 4) was used as an objective
function or loss function for all models.

_1 . P
MSE—nZ,(y,))

For further performance assessment, the MAE, RMSE, MAPE, and the Weighted Average Percentage Error
(WAPE) were also used as additional metrics that are defined as follows:

1 n
MAE=— ,'—Ai
w23 ®)

WINDHEUSER ET AL.

9 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science 10.1029/2022EA002385

RMSE = Vi (6)
MSE

1 % Yi — Vi
MAPE = 100 - ’—‘ 7
. Zl, " ©)

MAPE is the most used relative percentage error metric that was used in this research to compare different data
sets.

. o 1 o |y — i
hmMAPE_ll_g(l)lOOn;‘—i ‘ ®)

y—=0 y R

The WAPE was used as a sum in the denominator to improve numerical stability while still being a relative
percentage error metric.

WAPE = 100 i =3l)

Z?:l il

We used MSE, MAE, RMSE, and MAPE for image data performance assessment while the Nash-Sutcliffe effi-
ciency (NSE; Equation 10, Nash & Sutcliffe, 1970) was also used for time series performance assessment.

2;;1(}/:' - }71)

e (y; - y)

10)

4. Results

The experiments were benchmarked on a server running Arch Linux with 256 GB RAM and an NVIDIA Tesla
P100 GPU with 16 GB Memory. The code is implemented in Python 3.9 using TensorFlow 2.6. We first present
flood stage simulation using USGS images and then discuss flood stage time series prediction. This is followed
by the analysis of the results, demonstrated in the following sections.

4.1. Flood Stage Estimation Using USGS Images

The CNN was first implemented with and without the U-Net as a pre-processing step to evaluate its robustness in
flood stage estimation. The CNNs with and without U-Net were trained up to 150 and 100 epochs, respectively.
After the training, the U-Net generated a precise segmentation of the body of the water. This removed unneces-
sary features like the riverbank's environment, colors, noise, etc., from the images as they were not important for
the water depth estimation.

As noted in Figure 7, the relative error decreased from 3.6% to 0.69% at the Columbus station which is a relative

improvement of 1 — % ~ 80.9%. The same result was observed with the MAE reduction from 0.33 to 0.065

feet using the U-Net for the pre-processing. This is a similar improvement of 1 — % ~ 80.2%. At the Sweetwa-

ter Creek station where we observed a minimal absolute reduction due to a low average gauge height, the impact
of the U-Net still exists with a relative improvement of 1 — g:ggi; ~ 28.6% for the MAE and 1 — % ~ 33.84% for
the MAPE metrics. Results of the U-Net simulation are illustrated in Figure 8. Figure 8c was streamed directly
from the USGS river cams which looks a little foggy (low resolution) and could add noise to the simulation.

However, the U-Net was able to dismiss and ignore unnecessary features in the images (see Figure 8d for exam-

ple) and estimate the segmentation area. This approach improved the performance of the CNN by requiring fewer
data and speeding up the convergence of the model (Figure 9).

Table 1 summarizes the modeling performances on the testing data set. These results reveal that CNN has higher
accuracy if the U-Net is stacked in front of the network. The absolute error with the U-Net is 0.0654 feet ~2 cm
at the Columbus Station while it is 0.0035 feet ~0.108 cm at the Sweetwater Creek station, which are practically
low errors for flood stage estimations.

WINDHEUSER ET AL.

10 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

AP~ .
M\\JI Earth and Space Science 10.1029/2022EA002385
AND SPACE SCIENCE
S 3.6228 Gt
o i B with U-Net = B with U-Net
> - without U-Net E 033 S8 without U-Net
230 00.30
: £
525 <0.25
Y s
‘2 2.0 w5 0.20
b 2
g 1.5 Lo % 0.15
o »
g 1.0 P <0.10 0.0654
[~} c .
%] ©
2 o 0.05
pe 05 = 0.0035 0.0049
< T
2 0.0 0.00 Columbus Sweetwater Creek

Columbus

Sweetwater Creek

(a) MAPE values with and without the U-Net. (b) MAE values with and without the U-Net.

Figure 7. Comparison of performance metrics for flood stage estimation with and without the U-Net at the Sweetwater Creek (left) and the Columbus (right) gauging
stations. (a) Mean absolute percentage error values with and without the U-Net. (b) Mean absolute error values with and without the U-Net.

d

4.2. Flood Stage Prediction Using Time Series Data

LSTM, CNN, and dense models were implemented to simulate historical flood stage data from 1 January 2015 to
2 September 2022 for the Columbus and Sweetwater stations. We used precipitation data as an input variable for
the Columbus simulation while the Sweetwater flood stage simulation was performed using flood stage data only.
The pre-trained models were then used to forecast flood stage data in advance for multiple timescales (i.e., 6, 12,
24, and 48 hr). Each forecast had access to the last 100 data points as its time-series data set, which corresponds
to the last % = 25 hr. Each model was trained using 50 epochs. A complete overview of all metrics for each
experiment during the training period can be found in Table 2. As shown, the LSTM algorithm performed the
best for both stations, although Sweetwater Creek simulation is slightly better than Columbus. LSTM has special
inner gates that allow the algorithm to learn which data in each sequence should be kept and correspondingly
which data can be forgotten (remembering information for a longer time) or ignored. This led to consistently
better performance in time series prediction. Furthermore, the structure of LSTM makes it an excellent network
for solving high dimensionality problems in data prediction because it enables gradients to flow through time
readily. It is interesting to note that most networks showed deficiencies in predicting low flood stage values. This
might be related to the fact that like conceptual hydrologic models, neural networks don't deal with the physical
processes (hydraulic conductivity, soil storage capacity, etc.) of the catchment system. It seems that computing
low flood stage values when a shallow aquifer/groundwater system is the primary contributor to river gauge data
(see Samadi et al., 2018) is particularly difficult for neural network models (Figure 10).

C d

Figure 8. U-Net segmentation results on example images. (a) Convolutional Neural Network (CNN) input data of the Columbus station without the U-Net. (b) CNN
input data of the Columbus station with the U-Net as a pre-processing step. (c) CNN input data of the Sweetwater Creek with noise in front of the camera. (d) U-Net
result of the Sweetwater Creek that was able to remove the noise in front of the camera.

WINDHEUSER ET AL.

11 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

V ad |
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science

10.1029/2022EA002385

40

30

Z 20
=
d=
=2
(<%
=
@
f=2
©
(G

10

0

-10

Gage height (ft)

Historical Forecast

U

SRR

2
©
L (| e l.——-"(:"-’—";?-—’—"-——
——— e — — S~—
g
AT > S > S o S Sl °) >
iydﬁg e e e e A B
S v v v v v v v v v v
Date
—— Precipitation
—— Observation
—:— LSTM Prediction
Dense Prediction
CNN Prediction
S S S 57 S S
Date

2
1%
,-19

(=)

i

o

4

L2

1.6

2.0

Precipitation

Figure 9. Historical flood stage simulation using the Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and dense models for the Columbus
station. Rainfall data was used to simulate flood stage at this station only.

WINDHEUSER ET AL.

12 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science 10.1029/2022EA002385

Table 2

Performance Metrics for All Experiments During the Training Period

Table 1
Flood Stage Estimation Results Using the Testing Data Set for the Two US Geological Survey Gauging Stations

Performance results with U-Net Performance results without U-Net

Station name MSE MAE RMSE MAPE MSE MAE RMSE MAPE

Columbus 0.0066 0.0654 0.0814 0.342 0.2533 0.331 0.5033 1.7537
Sweetwater 0.000198 0.0035 0.044 0.2634 0.00038 0.0049 0.0062 0.3807

Note. Units are in feet.

Flood stage forecasts for different timescales are presented in Table 3. Among all models, the LSTM was more
proficient in forecasting flood stage, particularly for longer periods (24 and 48 hr) with respect to the WAPE
index. For the LSTM with a 6 hr lead time, the NSE was 85% for the Columbus gauging station whereas it was
83% for the Sweetwater Creek. For the 12 hr forecast, the LSTM model at the Columbus station achieved an NSE
of 96% and a WAPE around 0.25. For a 24 hr forecast, however, the LSTM performance remained consistent with
an NSE of ~96% at the Columbus gauging station. Again, for the 48 hr forecast, the LSTM performance remained
consistent with an NSE of ~95%. The LSTM performance at the Columbus station is comparable with a case
study of flood stage forecast in Italy (see Dazzi et al., 2021). Unlike Dazzi et al. (2021), we incorporated weather
features and precipitation data into the networks during the training period for this station which improved the
simulation results significantly.

Additionally, all models performed better and remained consistent for long lead time forecasts (12, 24, and 48 hr)
than short-term forecasts. This is probably due to the fact that the neural networks learned the long-term fluctu-
ations in flood stage data more precisely compared to short-term fluctuations. This may also reveal the fact that
the models learned the long-term seasonality and trends in the data fairly well. The dense and CNN performed
a few negative NSE values. This is because the error variance estimation of both models was significantly larger
than the variance of the observations. Among all models, CNN performed more negative NSE values because
this network learns spatial hierarchies of features through backpropagation by using multiple building blocks,
such as convolution layers, and pooling layers while it fails to consider temporal variability or sequences in the
data. Overall, the CNN model provided very good results for 12 and 24 hr as well as 48 hr forecasts, however,
its performance slightly diminished during shorter forecasts. Our designed CNN contained a convolutional layer
with 64 filters in the first layer and a pooling layer where we used max pooling in the second layer. In the max
pooling layer, N number of data was maxed into a single data and then scaled down the number of available
data. The pooling layer, as it scaled the data down, showed great advantages in the image data set, although
this approach revealed some deficiencies and drawbacks for time-series simulation. Finally, the output layer
contained one neuron. The dense model, on the other hand, was constructed using 128 cells in the first layer, 64
cells in the second layer, 32 cells in the third layer, 4 cells in the fourth layer, and lasting 1 cell in the fifth layer
which was the output layer of the network. The dense layer also contained
1 dropout in the third and the fourth layers. These dropouts varied consid-
erably between 0.2 and 0.5 which means the third and the fourth layers of

Station name MAE

the dense neural network ignored 20%—50% of the neurons in the cells. This

MAPE WAPE approach prevented all the neurons in the third and the fourth layers from

Dense

Columbus 0.0225
Sweetwater creek 0.0312
CNN

Columbus 0.0065
Sweetwater creek 0.0551
LSTM

Columbus 0.0022
Sweetwater creek 0.0017

Performance metrics synchronously optimizing their weights. As we monitored the dense network
10.2111 8.1885 performance, we found that ignoring some of the neurons had no degradation

5974.6763 157255 ~ on the performance.

Performance metrics One can also note the difficulties of the models in flood stage simulation at
651.2095 2.3637 the Sweetwater Creek station. The modeling results at the Sweetwater Creek

1.9092 1.9974 station appear to be less proficient compared to the Columbus station. One

possible explanation is that Sweetwater Creek is a tributary of the Chattahoo-
chee River and significantly a larger river. This concludes a major depend-
ency on the Chattahoochee River and makes the forecast more challenging
due to additional influences on gauge height values from non-supervised

Performance metrics
15.4133 0.8065
0.9897 0.8535

Note. The mean absolute error (MAE) values are normalized as described in ~ features such as shallow aquifer system contribution to the river system,
Section 2.3. Best modeling performances are exhibited in bold. extensive alluvial and non-alluvial forested wetlands, and wide floodplains

WINDHEUSER ET AL.

13 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

Arvi .
M\\JI Earth and Space Science 10.1029/2022EA002385
AND SPACE SCIENCE
. Historical Forecast
=
=5
&
5= /———“—4_-——_-_—
2 o l
S
<
12 DS AP S AP S D S S 1
;- DT Q& Qa7 o5 &7 St
1 1 Date !
i 1 r
10 i F
] & 4 i L] - -
! 5] 1 i
a E ;
1 : o
I3 L -
- 1! : | Ui b
= i I £ \ :
S . n
g = B ! 1 '- ! :
S A B 1 | 1 :
§ k ' i . ! !
. ; O IE 1l |
= I | | ‘ [; |
i i ; | i
R nel |)
| , R 1 o NI i
5 " - .-. | - ' L - 18! | i 1
Wl ; 2 . : . i | B 1] r
2> il
3 d <) - "_ B A“-“..] -L—', L =
Ut L Ly S “\\ ' —— Obsevervation
° A2 v LSTM Prediction
Dense Prediction
CNN Prediction
'\9\?’ '\9{0 ,\9‘\'-\ ’_\9‘»% e '\,6\9 '1,6‘} "9’0'

Figure 10. Historical flood stage simulation using the Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and dense models for the

Sweetwater Creek station.

as stated elsewhere (see Amatya & Jha, 2011; Samadi et al., 2018). These non-supervised features also cause
substantial fluctuations (noise) in gauge height values in which all deep neural network models were tempered to
learn by this heterogeneity, particularly over the long-term forecasts.

Prediction results on two example batches of datasets are visualized in Figures 11 and 12. As shown in Figure 11,
the LSTM was able to accurately predict a quick rise and fall of the flood stage data (quick noise and fluctuation)
at the Columbus station, while the peak and minimum data were not predicted correctly. Although the slope and
behavior of the curves are well predicted for rapid-changing flood stage data. The other models either predicted
only a rise of the flood stage (the first batch) or predicted no changes at all (the second and the third batches).

For the Sweetwater Creek station (see Figure 12), all models correctly predicted a continuous decrease in the
gauge level. The LSTM provided great results for the first and the second baches while for the third batch none of
the models showed good prediction. The CNN also performed well on the first batch and predicted the rise and
fall of flood stage data well. As shown, the LSTM revealed a great advantage over the other models, especially at
the Columbus station where the flood stage fluctuates were more frequent across a 12-hr lead time. This might
be related to incorporating weather features (precipitation data) into the network in this station which made the

WINDHEUSER ET AL.

14 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science

10.1029/2022EA002385

Table 3

Flood Stage Forecasting Performances Across Short to Long Lead Times for Each Algorithm

Station name

MSE MAE NSE WAPE

MSE MAE NSE WAPE

Dense model
Columbus
Sweetwater
Dense Model
Columbus
Sweetwater
CNN Model
Columbus
Sweetwater
CNN Model
Columbus
Sweetwater
LSTM
Columbus
Sweetwater

LSTM

Performance results for 6 hr forecasting
0.0354 0.1585 0.6022 0.6607
0.0127 0.1068 —-0.6614 3.3465

Performance results for 24 hr forecasting
0.0177 0.1209 0.8938 0.5116
0.0074 0.0728 0.5745 2.3644

Performance results for 6 hr forecasting
0.0503 0.1052 0.4350 0.4388
0.0450 0.1839 —4.8746 5.7578

Performance results for 24 hr forecasting
0.0080 0.0530 0.9520 0.2243
0.0237 0.1126 —0.3478 3.6536

Performance results for 6 hr forecasting

0.012 0.0646 0.8541 0.2694
0.0012 0.0271 0.8349 0.8489

Performance results for 24 hr forecasting

Performance results for 12 hr forecasting
0.0152 0.1066 0.9434 0.4547
0.0074 0.0728 0.5745 2.3641

Performance results for 48 hr forecasting
0.0227 0.1328 0.8768 0.5584
0.0105 0.0923 0.7879 3.3427

Performance results for 12 hr forecasting
0.0142 0.0711 0.9472 0.3032
0.0237 0.1126 —0.3478 3.6536

Performance results for 48 hr forecasting
0.0261 0.0865 0.8585 0.3637
0.0071 0.0551 0.8557 1.9974

Performance results for 12 hr forecasting
0.0091 0.0597 0.9662 0.2547
0.0022 0.0368 0.8693 1.1950

Performance results for 48 hr forecasting

Columbus 0.0055 0.0469 0.9670 0.1987 0.0087 0.0586 0.9529 0.2466
Sweetwater 0.0036 0.0469 0.8809 1.5967 0.0035 0.0441 0.9286 1.6002

Note. The best performances are shown in bold.

patterns in flood stage data more learnable for the network. Among all models, only the LSTM was able to predict
the slope and patterns of the flood stage while the other two models struggled to capture such complex behavior.

5. Discussion and Conclusions

This research consisted of two different systems that were integrated together to create an end-to-end automated
flood detection and gauge height prediction system. The proposed system was designed and developed to accu-
rately estimate and predict flood stage values using image data driven in real-time from the USGS river web
cameras as well as time series data. We selected two USGS gauging stations where river cam images and flood
stage data were available for validation at both stations. We first predicted the historical period (starting on 1
January 2015 and ending on 2 September 2022) and then we used the pre-train models for near real-time flood
stage forecast. The pre-trained models were able to skillfully forecast flood stage up to 48 hr ahead of time. To
perform the image-based prediction, the system used a novel approach of a CNN stacked on top of a segmen-
tation model as a pre-processing step to reduce unnecessary features and noise from the images. Using this
approach, the performance and the accuracy were relatively improved up to 80% (MAPE of 0.69% vs. 3.62%).
This provided more reliable flood stage estimation using live images and removed the burden of using a large
number of images for a precise prediction. The results on the testing datasets were accurate enough for any prac-
tical application. Compared to the dense model and the CNN, the LSTM algorithm, despite requiring the longest
training time, quickly forecasted near real-time gauge heights values in a fraction of time (a few seconds). For the
Columbus station, the LSTM forecasted historical gauge height data with an NSE of 85% for 6 hr, 96% for 12 hr,
96% for 24 hr, and 95% for 48 hr. This network also provided NSE values of 83%-92% respectively, for shorter
to longer-term predictions at the Sweetwater Creek station. Among all models, the training time of CNN was
lengthy (>4 hr) that required a large recognition computing; however, the CNN network performed the testing
task relatively in a short amount of time ranging from a few seconds to 3 min.

Other studies received similar accuracy, for example, a relative error of 5% for 9 hr forecast was reported by
Dazzi et al. (2021), however, they used catchment physical features in the model in addition to the discharge data

WINDHEUSER ET AL.

15 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

A7t |
NI
ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science

10.1029/2022EA002385

24.2

24.0

~N
w
Los]

Gage height (ft)
o
o

6Hrs Forecast

%

=m= Obsevervation

23.4
== |STM Prediction
23.2 Dense Prediction
CNN Prediction
23.0
5 o A el O S
S Q Q Q Q ~
S s 3 < s <
v v & v ¥
Date
12Hrs Forecast
24.2
E 240 P &
5 238 e DT e i~ S > W
226 //
8,234 == Obsevervation
g *" we= LSTM Prediction
23.2 Dense Prediction
CNN Prediction
23.0
© o o
&0 09"» INg
N & v &
Date
24Hrs Forecast
250 / VA
g
= 245
2
o))
2240 j‘\ :
: [y P00y g B N N ST S o
g == Obsevervation can) _""}..’ “‘h‘“ AR LT N S S gt oy
8 235 == LSTM Prediction Pl
Dense Prediction
CNN Prediction
23.0
%Qb Q;O %\? >
9 S S s 9
& & Y < &
Date
48Hrs Forecast
25.0 2 o
& o £\
3 \k
24.5 e A
B) =~ = -
g &7 o A T
5 pate
o My iy
& i
235
230
L
—=— Obsevervation ‘
—=— LSTM Prediction . >
Dense Prediction l.‘.‘sﬁ_nu
o NN Prediction
. —=— Random Data input
& = o i 6,,9'\4 @9"~'% 6“9“&6 ,‘:Q“’Qh éuc“’N’L 6‘:@’4& §mgg°°
Date

Figure 11. Flood stage forecasting for different time scales ranging from 6, 12, 24 to 48 hr in the Columbus station.

WINDHEUSER E

T AL.

16 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science

10.1029/2022EA002385

6Hrs Forecast

== Obsevervation
3.2 =e= LSTM Prediction

3.1 Dense Prediction
CNN Prediction

3.0
& ,\csh ,\6\ & P
S S S S S
Qv N4 ¥ N ¥
Date
12Hrs Forecast

3.6
g
34
2
[
<32
g =a= Obsevervation
© =e= LSTM Prediction

3.0 2
S Dense Prediction “‘M‘\ A

CNN Prediction -
2.8 ~/
© ®) & >
$° $° g & §”
N v ¥ v ¥
Date
24Hrs Forecast
3.6

)
S

Obsevervation
LSTM Prediction
Dense Prediction

R

Gage height (ft)

w=e

\.Q"‘\.‘,“."f‘zq" {"_ ol Ei{ .f’.A 738

2.8 CNN Prediction
=== Random Data input
? * N4 L4t o W N &
S I < S\ N ; S IS s
¥ ¥ ¥ ¥ & & & & &
Date
48Hrs Forecast
&
S
>
3.6 AP
g
e »
= 2
2 @ x
s o A 3
2.4 & aF |
&
~°
3.2
=
=
=
T
2
@
§' 3.0
2.8
2.6

—=— Obsevervation

—— LSTM Prediction
Dense Prediction
CNN Prediction

2.4 —=— Random Data input

o
»°
oV

2
Q"‘p

&

Figure 12. Flood stage forecasting for different time scales ranging from 6, 12, 24 to 48 hr in the Sweetwater Creek station.

WINDHEUSER ET AL.

17 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science 10.1029/2022EA002385

which helped improve prediction results across the larger catchment. Since the CNN and the LSTM were the most
robust and accurate models in predicting flood stage data, these networks should be preferred for setting up an
operational forecasting system using both images and time series data. These two algorithms can be embedded in
the USGS live camera as a real-time image-time series data-based early warning system. LSTM results can also
be integrated with the current flood forecasting model such as the National Water Model (NWM) to complement
and speed up real-time forecasts (a hybrid NWM-LSTM emulator) in any region where the timely and accurate
warning is vital for flood emergency management and response.

This study only used the precipitation data as an input feature for the Columbus station that was aggregated for
different time scales (6, 12, 24, and 48 hr). Our results showed that incorporating rainfall features are adequate
for small to medium lead time forecasts while longer lead time requires more physics-based features to be incor-
porated into the LSTM architecture, particularly for large-scale catchment systems. Since deep neural networks
do not deal with physical processes (shallow aquifer parametrization, complexities in floodplain storage capacity,
flow resistance factor, hydraulic conductivity, etc.) of the catchment system, it appears forecasting flood stage
data across large catchments is especially challenging for these algorithms. Deep neural networks are only as
good as the training, and it is much harder to model a “proxy-truth” to train networks on. One possible way to
improve deep neural network forecasting would be using a proper transform scheme such as the Fourier transform
that can transform a data signal from its time domain to its frequency domain. The peak values in the frequency
spectrum indicate the most occurring frequencies in the signal. The larger and sharper a peak is, the more prev-
alent a frequency is in a signal. The location (frequency-value) and height (amplitude) of the peaks (extreme
gauge height values here) in the frequency spectrum can then be used as input (learnable weights) for deep neural
networks training.

As the result of this study, we also included images from the Columbus and the Sweetwater Rivers to Flood
Segmentation Dataset (Pally & Samadi, 2022) with their associated annotated labels. We hope this data set
will encourage good practice and provide a foundation for others to build on. To improve the use of image
data in hydrological simulation, more research is still needed to understand the accuracy of image-based esti-
mation. Furthermore, poor resolution images can increase errors and uncertainty in simulation. Some image
enhancement techniques such as power-law and logarithmic transformation (Maini & Aggarwal, 2010) can be
particularly helpful to deal with the issue of poor lighting conditions in an image. Other techniques such as
histogram equalization (Wang et al., 1999) and image thresholding transformation (Perez-Sanz et al., 2017)
can also be effective in improving the resolution of live images. These methods are particularly useful in image
segmentation to isolate an image of interest from the background. Although, based on the type of image and
type of noise with which it is corrupted, a combination of image enhancement methods can be used to improve
visual quality.

To summarize, the presented results are promising for both time series data as well as image applications.
As we make progress in neural network simulation, we expect to gain a new understanding of the relative
importance of the choice of neural network architecture, hyperparameter tuning, and parameter values for
different flood stage case studies, a new understanding of how to capture short-term, extreme fluctuations in
the data, and a new understanding of the limitations of neural networks in effectively discriminating among
competing modeling structures. The analyses presented herein are intended to provide a basis for both image
and time series data applications in flood stage prediction across complex environmental settings. However,
subsequent in-depth studies are needed to examine the individual algorithms in different case studies and check
emergent behavior of the network (in more detail) over time using carefully designed experiments to expose
key network parameters and limitations, and accounting for error and uncertainty in both models forcing and
input data. Acknowledging a growing enthusiasm for neural network modeling in hydrology community, we
expect progress on multiple fronts: a better hybrid model to simulate/forecast flood stage using both image
and time series data, better benchmarking and more accuracy in short term forecast, better accuracy metrics,
and better preprocessing, error estimation, and noise reduction approaches. As always, we invite dialogue with
water resources communities interested in this and other related deep learning applications for flood simula-
tion problems.

WINDHEUSER ET AL.

18 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

AP~ .
M\\JI Earth and Space Science 10.1029/2022EA002385
AND SPACE SCIENCE
Appendix A: A Summary of TensorFlow Parameter Values for Gauge Height
Prediction Models With the Number of Arguments
Dense Model’s parameter values, and trianable parameters are displayed below.
Dense Model
Layer (type) Output Shape Param f#
dense (Dense) (None, 128) 12928
dense 1 (Dense) (None, 64) 8256
dense 2 (Dense) (None, 32) 2080
dropout (Dropout) (None, 32) 0
dense_3 (Dense) (None, 4) 132
dropout 1 (Dropout) (None, 4) 0
dense 4 (Dense) (None, 1) 5
Total params: 23,401
Trainable params: 23,401
Non-trainable params: 0O
CNN’s structure, parameter values, and trianable parameters are displayed below.
CNN
Layer (type) Output Shape Param #
convld 8 (ConvlD) (None, 99, 64) 192
max poolingld 8 (MaxPooling (None, 49, 64) 0
1D)
flatten 8 (Flatten) (None, 3136) 0
dense_8 (Denseb (None, 1) 3137
Total params: 3,329
Trainable params: 3,329
Non-trainable params: 0
WINDHEUSER ET AL. 19 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

A7t |
NI
ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science 10.1029/2022EA002385

Acknowledgments

This research was supported by the US
National Science Foundation Directorate
of Engineering (Grant CBET 1901646
and CMMI 2125283). Clemson Univer-
sity (USA) and Technical University of
Munich (Germany) are acknowledged for
generous allotment of computing time on
the Palmetto cluster and Scyper Cloud,
respectively.

LSTM’s structure, parameter values, and trianable parameters. are displayed below.

LSTM
Layer (type) Output Shape Param #
lstm (LSTM) (None, 100, 264) 280896 =
Istm 1 (LSTM) (None, 100, 132) 209616
lstm 2 (LSTM) (None, 100, 64) 50432
Istm 3 (LSTM) (None, 32) 12416
dense (Dense) (None, 30) 990
dense 1 (Dense) (None, 1) 31

Total params: 554,381
Trainable params: 554,381
Non-trainable params: 0

Data Availability Statement

The USGS is acknowledged for providing free of charge live river web camera photos as well as timeseries data.
The USGS 02337000 SWEETWATER CREEK NEAR AUSTELL, GA data is available at https://waterdata.usgs.
gov/nwis/inventory/?site_no=02337000 [dataset]. The USGS 02341460 CHATTAHOOCHEE RIVER AT 14TH
ST, AT COLUMBUS, GA data is available at https://waterdata.usgs.gov/nwis/inventory/?site_no=02341460
[dataset]. The code is available on GitHub [software] https://github.com/HHRClemson/Flood-stAge-predIction-
thRough-Deep-Neural-Networks (Windheuser et al., 2022). The image data are available on Kaggle https:/www.
kaggle.com/datasets/hhrclemson/flooding-image-dataset [dataset].

References

Al-Fawa’Reh, M., Hawamdeh, A., Alrawashdeh, R., & Jafar, M. T. (2021). Intelligent methods for flood forecasting in Wadi al Wala, Jordan. In
In 2021 International Congress Of Advanced Technology and Engineering (ICOTEN) (pp. 1-9). IEEE.

Amatya, K. M., & Jha, M. K. (2011). Evaluating the SWAT model for a low-gradient forested watershed in coastal South Carolina. Transactions
of the American Society of Agricultural and Biological Engineers, 54(6), 2151-2163. https://doi.org/10.13031/2013.40671

Baek, S.-S., Pyo, J., & Chun, J. A. (2020). Prediction of water level and water quality using a CNN-LSTM combined deep learning approach.
Water, 12(12), 3399. https://doi.org/10.3390/w12123399

Bermudez, M., Ntegeka, V., Wolfs, V., & Willems, P. (2018). Development and comparison of two fast surrogate models for urban pluvial flood
simulations. Water Resources Management, 32(8), 2801-2815. https://doi.org/10.1007/s11269-018-1959-8

Bhola, P. K., Nair, B. B., Leandro, J., Rao, S. N., & Disse, M. (2019). Flood inundation forecasts using validation data generated with the assis-
tance of computer vision. Journal of Hydroinformatics, 21(2), 240-256. https://doi.org/10.2166/hydro.2018.044

Dazzi, S., Vacondio, R., & Mignosa, P. (2021). Flood stage forecasting using machine-learning methods: A case study on the Parma River (Italy).
Water, 13(12), 1612. https://doi.org/10.3390/w13121612

Donratanapat, N., Samadi, S., Vidal, M. J., & Sadeghi Tabas, S. (2020). A national-scale big data prototype for real-time flood emergency
response and management. Environmental Modelling and Software, 10, 104828. https://doi.org/10.1016/j.envsoft.2020.104828

Farug, A., Arsa, H. P, Hussein, S. F. M., Razali, C. M. C., Marto, A., & Abdullah, S. S. (2020). Deep learning based forecast and warning of
floods in Klang River, Malaysia. Ingénierie des Systemes d'Information, 25(3), 365-370.

Field, C. B., Barros, V., Stocker, T. F., & Dahe, Q. (2012). Managing the risks of extreme events and disasters to advance climate change adap-
tation: Special report of the intergovernmental panel on climate change. Cambridge University Press.

Gamboa, J. C. B. (2017). Deep learning for time-series analysis. arXiv preprint arXiv:1701.01887.

WINDHEUSER ET AL.

20 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

https://waterdata.usgs.gov/nwis/inventory/?site_no=02337000
https://waterdata.usgs.gov/nwis/inventory/?site_no=02337000
https://waterdata.usgs.gov/nwis/inventory/?site_no=02341460
https://github.com/HHRClemson/Flood-stAge-predIction-thRough-Deep-Neural-Networks
https://github.com/HHRClemson/Flood-stAge-predIction-thRough-Deep-Neural-Networks
https://www.kaggle.com/datasets/hhrclemson/flooding-image-dataset
https://www.kaggle.com/datasets/hhrclemson/flooding-image-dataset
https://doi.org/10.13031/2013.40671
https://doi.org/10.3390/w12123399
https://doi.org/10.1007/s11269-018-1959-8
https://doi.org/10.2166/hydro.2018.044
https://doi.org/10.3390/w13121612
https://doi.org/10.1016/j.envsoft.2020.104828

A7t |
NI
ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science 10.1029/2022EA002385

Girihagama, L., Naveed Khaliq, M., Lamontagne, P., Perdikaris, J., Roy, R., Sushama, L., & Elshorbagy, A. (2022). Streamflow modelling and
forecasting for Canadian watersheds using LSTM networks with attention mechanism. Neural Computing & Applications, 34(22), 19995—
20015. https://doi.org/10.1007/s00521-022-07523-8

Hilldale, R. C., & Raff, D. (2008). Assessing the ability of airborne LiDAR to map river bathymetry. Earth Surface Processes and Landforms,
33(5), 773-783. https://doi.org/10.1002/esp.1575

Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol, R. S., & Levermann, A. (2014). Coastal flood damage and adapta-
tion costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences, 111(9), 3292-3297. https://doi.org/10.1073/
pnas.1222469111

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.
9.8.1735

Hubig, N., Fengler, P., Ziifle, A., Yang, R., & Giinnemann, S. (2017). Detection and prediction of natural hazards using large-scale environmental
data. In International Symposium on Spatial and Temporal Databases (pp. 300-316). Springer, Cham.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International
Conference on Machine Learning (pp. 448-456). PMLR

Ivanov, V. Y., Xu, D., Dwelle, M. C., Sargsyan, K., Wright, D. B., Katopodes, N., et al. (2021). Breaking down the computational barri-
ers to real-time urban flood forecasting. Geophysical Research Letters, 48(20), €2021GL093585. https://doi.org/10.1029/2021g109
3585

Jiang, J., Liu, J., Cheng, C., Huang, J., & Xue, A. (2019). Automatic estimation of urban waterlogging depths from video images based on ubig-
uitous reference objects. Remote Sensing, 11(5), 587. https://doi.org/10.3390/rs11050587

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall-runoff modelling using long short-term memory (LSTM)
networks. Hydrology and Earth System Sciences, 22(11), 6005-6022. https://doi.org/10.5194/hess-22-6005-2018

Krzysztofowicz, R., Karen, S. K., & Long, D. (1994). Reliability of flood warning systems. Journal of Water Resources Planning and Manage-
ment, 120(6), 906-926. https://doi.org/10.1061/(asce)0733-9496(1994)120:6(906)

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436—444. https://doi.org/10.1038/nature 14539

Liang, Y., Jafari, N., Luo, X., Chen, Q., Cao, Y., & Li, X. (2020). WaterNet: An adaptive matching pipeline for segmenting water with volatile
appearance. Computational Visual Media, 6(1), 3—78. https://doi.org/10.1007/s41095-020-0156-x

Maini, R., & Aggarwal, H. (2010). A comprehensive review of image enhancement techniques. arXiv preprint arXiv:1003.4053.

Moy de Vitry, M., Kramer, S., Wegner, J. D., & Leitdo, J. P. (2019). Scalable flood level trend monitoring with surveillance cameras using a
deep convolutional neural network. Hydrology and Earth System Sciences, 23(11), 4621-4634. https://doi.org/10.5194/hess-23-4621-2019
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part [—A discussion of principles. Journal of Hydrology,

10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6

NWS. (2020). Annual climate report. Retrieved from https://w2.weather.gov/climate/index.php?wfo=ilm

Pally, R., Karanjit, R., & Samadi, S. (2022). FloodDBS: Flood image DataBase system. Retrieved from https://www.kaggle.com/hhrclemson/
flooding-image-dataset

Pally, R., & Samadi, S. (2022). Application of image processing and convolutional neural networks for flood image classification and semantic
segmentation. Environmental Modelling and Software, 148, 105285. https://doi.org/10.1016/j.envsoft.2021.105285

Paul, A., & Das, P. (2014). Flood prediction model using artificial neural network. International Journal of Computer Applications Technology
and Research, 3(7), 473-478. https://doi.org/10.7753/ijcatr0307.1016

Perez-Sanz, F., Navarro, P. J., & Egea-Cortines, M. (2017). Plant phenomics: An overview of image acquisition technologies and image data
analysis algorithms. GigaScience, 6(11), gix092. https://doi.org/10.1093/gigascience/gix092

Phillips, R. C., Samadi, S. Z., & Meadows, M. E. (2018). How extreme was the October 2015 flood in the Carolinas? An assessment of flood
frequency analysis and distribution tails. Journal of Hydrology, 562, 648—663. https://doi.org/10.1016/j.jhydrol.2018.05.035

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International Conference
on Medical Image Computing and Computer-Assisted Intervention (pp. 234-241). Springer.

Samadi, S., Tufford, D., & Carbone, G. (2018). Estimating hydrologic model uncertainty in the presence of complex residual error structures.
Stochastic Environmental Research and Risk Assessment, 32, 1259—1281. https://doi.org/10.1007/s00477-017-1489-6

Shen, C. (2018). A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resources Research,
54(11), 8558-8593. https://doi.org/10.1029/2018wr022643

Sorensen, T. A. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its
application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter, 5, 1-34.

Tabas, S. S., & Samadi, S. (2022). Variational bayesian dropout with a Gaussian prior for recurrent neural networks application in rainfall-
runoff modeling. Environmental Research Letters, 17(6), 065012. https://doi.org/10.1088/1748-9326/ac7247

Tonina, D., McKean, J. A., Benjankar, R. M., Wright, C. W., Goode, J. R., Chen, Q., et al. (2019). Mapping River bathymetries: Evaluating topo-
bathymetric LiDAR survey. Earth Surface Processes and Landforms, 44(2), 507-520. https://doi.org/10.1002/esp.4513

Wang, Y., Chen, Q., & Zhang, B. (1999). Image enhancement based on equal area dualistic sub-image histogram equalization method. /IEEE
Transactions on Consumer Electronics, 45(1), 68-75. https://doi.org/10.1109/30.754419

Windheuser, L., Karanjit, R., Pally, R., Samadi, S., & Hubig, N. C. (2022). An end-to-end flood stage prediction system using deep neural networks.
Retrieved from https://zenodo.org/account/settings/github/repository/HHRClemson/Flood-stAge-predIction-thRough-Deep-Neural-Networks

Zahura, F. T., Goodall, J. L., Sadler, J. M., Shen, Y., Morsy, M. M., & Behl, M. (2020). Training machine learning surrogate models from a
high-fidelity physics-based model: Application for real-time street-scale flood prediction in an urban coastal community. Water Resources
Research, 56(10), e2019WR027038. https://doi.org/10.1029/2019wr027038

WINDHEUSER ET AL.

21 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[Im ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [Y1 39S *[£207/20/€0] uo Areiqry aurjuQ A9[IM ‘S8ETO0VATT0T/6T01 01/10p/wod Kofim AreiqijourjuosqndnSe//:sdyy woiy papeojumod ‘1 ‘€707 ‘v80SEEET

https://doi.org/10.1007/s00521-022-07523-8
https://doi.org/10.1002/esp.1575
https://doi.org/10.1073/pnas.1222469111
https://doi.org/10.1073/pnas.1222469111
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1029/2021gl093585
https://doi.org/10.1029/2021gl093585
https://doi.org/10.3390/rs11050587
https://doi.org/10.5194/hess-22-6005-2018
https://doi.org/10.1061/(asce)0733-9496(1994)120:6(906)
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s41095-020-0156-x
https://doi.org/10.5194/hess-23-4621-2019
https://doi.org/10.1016/0022-1694(70)90255-6
https://w2.weather.gov/climate/index.php?wfo=ilm
https://www.kaggle.com/hhrclemson/flooding-image-dataset
https://www.kaggle.com/hhrclemson/flooding-image-dataset
https://doi.org/10.1016/j.envsoft.2021.105285
https://doi.org/10.7753/ijcatr0307.1016
https://doi.org/10.1093/gigascience/gix092
https://doi.org/10.1016/j.jhydrol.2018.05.035
https://doi.org/10.1007/s00477-017-1489-6
https://doi.org/10.1029/2018wr022643
https://doi.org/10.1088/1748-9326/ac7247
https://doi.org/10.1002/esp.4513
https://doi.org/10.1109/30.754419
https://zenodo.org/account/settings/github/repository/HHRClemson/Flood-stAge-predIction-thRough-Deep-Neural-Networks
https://doi.org/10.1029/2019wr027038

	An End-To-End Flood Stage Prediction System Using Deep Neural Networks
	Abstract
	Plain Language Summary
	1. Introduction
	2. Case Studies and Data
	2.1. Case Study 1: Chattahoochee River at Columbus, GA
	2.2. Case Study 2: Sweetwater Creek Near Austell, GA
	2.3. Image Data Normalization

	3. Methodology
	3.1. Neural Networks Algorithms for Image Data
	3.1.1. CNNs
	3.1.2. Segmentation Model

	3.2. Neural Networks Algorithms for Time Series Data
	3.2.1. Dense Model
	3.2.2. CNNs
	3.2.3. LSTM

	3.3. Performance Metrics

	4. Results
	4.1. Flood Stage Estimation Using USGS Images
	4.2. Flood Stage Prediction Using Time Series Data

	5. Discussion and Conclusions
	Appendix A: A Summary of TensorFlow Parameter Values for Gauge Height Prediction Models With the Number of Arguments
	Data Availability Statement
	References

