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ABSTRACT
In this study, we propose to investigate triplet loss for the
purpose of an alternative feature representation for ASR. We
consider a general non-semantic speech representation, which
is trained with a self-supervised criteria based on triplet loss
called TRILL, for acoustic modeling to represent the acous-
tic characteristics of each audio. This strategy is then ap-
plied to the CHiME-4 corpus and CRSS-UTDallas Fearless
Steps Corpus, with emphasis on the 100-hour challenge cor-
pus which consists of 5 selected NASA Apollo-11 channels.
An analysis of the extracted embeddings provides the foun-
dation needed to characterize training utterances into distinct
groups based on acoustic distinguishing properties. More-
over, we also demonstrate that triplet-loss based embedding
performs better than i-Vector in acoustic modeling, confirm-
ing that the triplet loss is more effective than a speaker feature.
With additional techniques such as pronunciation and silence
probability modeling, plus multi-style training, we achieve a
+5.42% and +3.18% relative WER improvement for the de-
velopment and evaluation sets of the Fearless Steps Corpus.
To explore generalization, we further test the same technique
on the 1 channel track of CHiME-4 and observe a +11.90%
relative WER improvement for real test data.

Index Terms— speech recognition, scenario aware,
speech representation

1. INTRODUCTION

Significant progresses in automatic speech recognition (ASR)
have taken place in recent years. Today, ASR systems are
utilized in our daily lives, where a diverse range of recogni-
tion scenarios that contain distinct background acoustic con-
ditions are observed. However, modern ASR systems are
still struggling to effectively overcome noise levels and ad-
verse background conditions, leading to unsatisfactory recog-
nition results in daily use. It is suggested that this could
be caused by less effective ASR acoustic modeling based on
Mel-Frequency Cepstral Coefficients (MFCC) or log-mel fil-
terbanks (FBANK) energies. Such features are sensitive to
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noise [1], and these systems are generally trained for a spe-
cific use case and sensitive to test mismatch. Performance
can further degrade for distant talking situations, where sig-
nal energy is lower, reverberation is possible, and environ-
ment signal-to-noise ratio (SNR) is lower. As a result, it is
necessary to create a solution to minimize the influences from
changing background acoustic conditions.

In the past, methods have been proposed to address the
problem of noisy speech recognition [2]. Most focus on
feature enhancement [3], or model adaptation [4]. One pro-
posed method is based on factor-aware training. Such a
technique introduces factors including noise [5], speaker [6],
and/or room characteristics [7] into the training of deep neu-
ral networks (DNN) as auxiliary information. This added
supporting information serves as a factor-dependent bias to
the DNN which causes the output of the DNN to depend on
the individual factor values. The most well-known example
is the i-Vector that was originally proposed for speaker recog-
nition [8]. Here, it is possible for us to apply it as speaker and
channel representations in factor aware training.

To address diversity in acoustic characteristics, we pro-
pose adding a feature to model the acoustic characteristics,
such as channel distortions and environmental noise types, in
the audio. The goal here is to make the acoustic model aware
of this available information, which can be summarized as
a ”scenario” that exists in the audio. This idea needs either
several good representations for each classifiable factor, or an
exceptional representation that can suitably distinguish a spe-
cific acoustic context.

Past studies have explored triplet loss as a means for im-
proving speech technology, specially for speaker ID [9, 10].
However, to the best of our knowledge, triplet loss studies
have not been explored in acoustic modeling for ASR. In this
study, as motivated by past efforts in speaker recognition [9,
10], we employ a triplet-loss based representation generated
by TRIpLet Loss network (TRILL) [11] for speech recogni-
tion. In that network, a subset of the AudioSet [12] that pos-
sesses the speech label is used for training in a self-supervised
manner. Since the AudioSet corpus is a large dataset for gen-
eral audio machine learning with general audio speech tags,
it is useful due to size and scope. As a result, the triplet-loss
based representation is expected to learn generalization for
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audio. The technique developed in [13] was used to allow
the network the ability to represent segments in audio that are
closer in time to be closer in the embedding space. Details are
presented in Sec.3.2.

The proposed method is assessed using two datasets,
the 100-hour challenge corpus of the CRSS-UTDallas Fear-
less Steps Corpus (Sec.4.1) and CHiME-4 corpus (Sec.4.2).
Systems development employs the Kaldi speech recognition
toolkit [14], and uses the same feature extraction pipeline
shown in Fig.1. For the CRSS-UTDallas Fearless Steps task,
we utilize a factorized time delay neural network (TDNN-f)
[15] for acoustic modeling while for CHiME-4, we focus on
the 1 channel track task as they employed in [16].

2. RELATED WORK

Historically, many approaches have been proposed to address
noise robustness in ASR systems [17, 18]. In [5], an approach
based on noise-aware training which incorporates information
about the environment was introduced into DNN training. In
[19], three extraction models for speaker, phone, and envi-
ronment were considered, along with a multi-task joint train-
ing architecture. In [20], the invariant representation learn-
ing technique was proposed, which demonstrated significant
reduction in character error rate and robustness for out-of-
domain noise settings. In [21], a simple method was consid-
ered to extract a noise vector for acoustic model training. It
is suggested that the technique could also be applied in online
ASR by estimating the mean vector with frame-level maxi-
mum likelihood.

Fig. 1: Feature generation flow chart

3. PROPOSED SYSTEM

Given the challenges in robustness for ASR with CRSS-
UTDallas Fearless Steps and CHiME-4, this section presents
the formulation of our scenario aware based acoustic model-
ing to address environmental variability.

3.1. Scenario Aware

Factor aware training has been shown to be effective in ASR
system development [5, 19, 21]. This training strategy pro-
duces a system that is more robust to factors such as noise,
speaker, and room characteristics. Most earlier studies have
used a representation for each specific distortion factor, where
the extracted representations are either fed into the input layer,
the hidden layer, or the output layer. In our study, we use a
single representation to characterize all factors/acoustic info
within an audio, including speech, which leads to a scenario
aware training for the resulting acoustic model.

The input feature for our acoustic model contains two
types of vectors, the first is the commonly used MFCC, along
with the i-Vector which we denote as m ∈ R1×M . The sec-
ond feature is the triplet-loss vector from TRILL, which we
denote as n ∈ R1×N . This total input vector V is represented
as the concatenation of M dimensional vector m and N di-
mensional vector n:

V = [m;n] ∈ R1×(M+N) (1)

Note that we average the triplet-loss embeddings over time for
an audio input to form a triplet-loss vector, that is one vector
for the entire audio. A flow diagram is shown in Fig 1.

3.2. Triplet-loss based Representation

Previously, the triplet-loss based representation generated by
TRILL model was introduced in [11] and originally used for
non-semantic downstream tasks. The pre-trained model1 we
used was trained on a subset of AudioSet [12] training set
clips that own the speech label and with the ResNet-50 ar-
chitecture discussed in [22], followed by a 512-dimensional
embedding layer. Next, the temporal proximity is used as a
self-supervision signal [13]. The idea behind using the tem-
poral proximity is that sounds in a given environment are usu-
ally restricted to a subset of sound creating objects that are of-
ten closely related. Hence, a pair of events in the same audio
should have a higher probability of being the same, or at least
related in a certain level than any two audio clips randomly
chosen from a large audio collection.

The collection of audio for training the triplet-loss model
such as TRILL, can be depicted as a sequence of spectrogram
context windows X = [x1, x2, . . . , xN ], where xi ∈ RF×T

with F and T represent frequency and time window. The goal
for this model is to learn a map g : RF×T → RD that trans-
form xi into d-dimensional space such that ||g(xi)−g(xj)|| ≤
||g(xi)− g(xk)|| when |i− j| ≤ |i− k|. This is achieved by
first sampling in X a great amount of triplets s = [xi, xj , xk],
which are known as the anchor, positive, and negative respec-
tively, where |i − j| ≤ τ and |i − k| > τ with a reasonable

1https://tfhub.dev/google/nonsemantic-speech-benchmark/trill/3
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time scale τ . Next, we train the model with the triplet loss:

L(s) =
N∑
i=1

[||g(xi)−g(xj)||22−||g(xi)−g(xk)||22+δ]+ (2)

where ||.|| is the L2 norm, δ is a non-negative margin hyper-
parameter, and [.]+ is the hinge loss. It is clear the loss will be
exactly zero if all the training triplets satisfy the inequality:

||g(xi)− g(xj)||22 + δ ≤ ||g(xi)− g(xk)||22 (3)

In [11], the training task is based on a pair-wise data set
with the same clip (xi, xj)/different clip (xi, xk) discrimi-
nation achieved by setting the utterance value τ to 10 sec-
onds, which is the maximum duration of the clips in Au-
dioSet. This makes the triplet-loss model capable of map-
ping audio clips with close acoustic information into similar
embeddings. With the enormous size and scope of labels in
AudioSet, we employed triplet-loss based representation to
model the environment scenario in the audio.

4. EXPERIMENTS

The method for extracting the input features for the follow-
ing experiments are all the same. Firstly, we extract 512 di-
mensional embeddings through the TRILL model and aver-
age these embeddings over time to form a triplet-loss vec-
tor. Next, the vector is combined with 40 dimensional MFCC
features and 100 dimensional i-Vector as the input vector for
acoustic model training. The feature generation pipeline is
also shown in the Fig 1.

4.1. Fearless Steps Corpus Experiments

4.1.1. Data

The Fearless Steps Corpus [23] consists of 19,000 hours
of actual Apollo conversational speech across 30 time-
synchronized channels, with Channel#1 representing the time
synchronized IRIG timecode. The audio represents actual
communications from the Apollo-11 mission including all
Mission Specialists, Astronauts, and support staff over the
7-day mission to the moon. These communication channel
loops have distinct acoustic characteristics (e.g., noise, dis-
tortion, background interference, etc.) from NASA analog
cables to the SoundScriber recording platform with channel
and system noise that contributes to loss in ASR system per-
formance. The variability across channel loops is due to the
extensive cabling, headsets, relays, etc. necessary to bridge
600 NASA specialists in different locations to allow them
to communicate and work collaboratively to achieve a suc-
cessful mission. All audio was recorded on 30-track analog 1
inch reel-to-reel recording tapes, and then digitized by CRSS-
UTDallas initially at a 44.1kHz and later down-sampled to
8kHz, with 30 min. per data chunk for speech analysis.

For this study, we employ only the 100-hour Fearless
Steps challenge corpus [24] that consists of 5 selected chan-
nels with labeled data. This includes Network Controller
(NTWK), Electrical, Environmental and Consumables Man-
ager (EECOM), Guidance Navigation and Control (GNC),
Flight Director (FD), Mission Operations Control Room
(MOCR). Here, we use the ASR track2 in the challenge cor-
pus where the audio is already segmented with utterance level
transcriptions. The training set is roughly 28 hours, with de-
velopment set being 7.6 hours, and the evaluation set being
10.6 hours. The training set is used for both the acoustic and
language model. We use the development set for computing
the perplexity in language model training, and the evaluation
set is used only for test.

4.1.2. Baseline System

For lexicon model, we employ the CMU dictionary2 as a ba-
sic pronunciation dictionary. However, since many words in
the Fearless Steps Corpus are NASA space related and not
present in the CMU dictionary, we use the Phonetisaurus G2P
[25] to generate pronunciations for these out-of-vocabulary
words. A speaker adapted HMM-GMM is first trained on
the training set to generate phoneme to audio alignments for
DNN training. The TDNN-f [15] with 15 1024-dimensional
layers factorized with 160-dimensional linear bottlenecks is
used for acoustic modeling on the same dataset. For the lan-
guage model, a basic 3-gram model was used, with pronunci-
ation and silence probability modeling as described in [26].

4.1.3. Results and Analysis

The purpose of using a triplet-loss based representation, is to
model the acoustic condition of each audio context. As shown
in Fig.2, the extracted triplet-loss vectors from training data
are categorized into a few different blocks. Each block can
be treated as a distinct acoustic characteristic. Since we as-
sume that the channel number corresponds to each utterance
is not known, the speaker information is used instead as the
label. Most speakers have utterances spread out across mul-
tiple blocks, but they do not necessarily cover every block.
The triplet-loss based representation allowed for the analy-
sis of environment scenario as shown in Fig.3, which shows
selected channels that have different characteristics. This fig-
ure used a randomly selected 360-hour subset of the complete
9,000-hour Fearless Steps Corpus that contains channel num-
ber information for each audio stream. Each point represents
a triplet-loss vector extracted from TRILL model from a 15
second block of audio cut from the original 30 min. sequen-
tial audio chunks.

In Table 1, word error rates (WER) are shown for experi-
ments based on the Fearless Steps Corpus. The first row is the
baseline system described in Sec.4.1.2. We found that by in-
creasing the layer dimension of the TDNN-f to 1536 (No.2),

2http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Fig. 2: t-SNE of triplet-loss vectors based on TRILL model
from Fearless Steps 100-hour challenge Corpus training set.
The plot includes 35k utterances (points) with each color cor-
responding to one of 256 Apollo-11 speakers.

Table 1: WER of Fearless Steps Corpus experiments. T-REP
stands for triplet-loss based representation. Dim is the layer
dimension of TDNN-f.

(No.) Model i-vector Dim Dev (%) Eval (%)

(1) Baseline yes 1024 27.66 29.89
(2) Baseline 1536 yes 1536 27.28 29.48
(3) + T-REP matrix* yes 1536 27.07 29.64
(4) + T-REP no 1536 26.68 29.30
(5) + T-REP yes 1536 26.49 29.17
(6) + T-REP & multi-style yes 1536 26.16 28.94

Gorin et al.[27] yes 1024 28.60 31.4

*This means we do not average over time on the embeddings.

can further reduce WER, but increasing to larger dimensions
such as 2136 (not shown here), caused a loss in performance.
After adding the triplet-loss based representation, we observe
a 2.9% and 1.1% relative WER improvement in development
and evaluation set (No.5 vs. No.2). Another discovery is that
using an average over time with triplet-loss embeddings ad-
vances the WER (No.5 vs. No.3). No.4 is the only experi-
ment without the i-Vector. This shows that MFCC with the
triplet-loss based representation (No.4) is better than MFCC
with i-Vector (No.2). In all, our best system (No.6) with
the triplet-loss based representation and multi-style training
achieves 5.42% and 3.18% relative improvement on WER in
development and evaluation set respectively. The multi-style
training is accomplished by adding data augmented with the
room impulse response (RIR) and MUSAN corpus (music,
speech, and noise). With the original data included, we are
able to expand the training set size by 5x vs. the original
data. Note that simply adding triplet-loss based representation
provides more improvement than multi-style training (No.5 -
No.2 vs. No.6 - No.5). We include the last row as a com-
parison to the best system in Fearless Steps Challenge Phase

Fig. 3: t-SNE of triplet-loss vectors based on TRILL model
from a randomly selected 360-hour subset of Fearless Steps
Apollo-11 corpus, with 5 of 30 possible channels analyzed
with data being: NTWK:66hrs, EECOM:66hrs, GNC:66hrs,
FD:81hrs, MOCR:81hrs.

II, with the matched condition in both acoustic and language
model and training data used in our system.

4.2. CHiME-4 corpus Experiments

4.2.1. Data

The CHiME-4 data [28] includes real data recorded in real-
world noisy environments, and simulated data, that is artifi-
cially created using clean speech data mixed with noisy back-
ground data. Five locations (i.e. booth (BTH), on the bus
(BUS), cafe (CAF), pedestrian area (PED), and street junction
(STR)) are chosen for real data recording. The BTH record-
ings are used for generating the simulated data, while all the
rest are for ASR evaluation.

4.2.2. Baseline System

For a fair comparison, we only focus on the single channel
track in the CHiME-4 challenge. The baseline system follows
the work in [16], which uses a TDNN LF-MMI training on all
6 channels data and a LSTMLM trained with Kaldi-RNNLM
[29] on a 3-fold texts of training data. The pronunciation dic-
tionary was also based on the CMU dictionary.

Table 2: WER of CHiME-4 1 channel track experiments. T-
REP stands for triplet-loss based representation.

Model Dev (%) Test (%)
real simu real simu

Baseline 5.28 6.52 11.68 11.98
+ T-REP 4.43 6.55 10.29 12.03
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Table 3: WER by location of the test set in CHiME-4 1 channel track experiments. T-REP stands for triplet-loss representation.

Model real (%) simu (%)
BUS CAFE PED STR BUS CAFE PED STR

Baseline 18.81 11.88 8.46 7.56 8.72 13.80 11.49 13.90
+ T-REP 15.40 11.3 8.09 6.37 8.44 14.66 11.56 13.45
relative improvement 18.13 4.88 4.37 15.74 3.21 -6.23 -0.61 3.24

Fig. 4: t-SNE of triplet-loss vectors based on TRILL model
from CHiME-4 Corpus training set. The plot includes 8738
utterances (points).

4.2.3. Results and Analysis

In Table 2, we demonstrate the effect of adding the triplet-
loss based representation. We observe a 16.10% and 11.90%
relative WER improvement in real development and real test
data by adding the triplet-loss based representation with only
a small loss in simulation data.

The Fig.4 shows the t-SNE plot of triplet-loss vectors
extracted from training set of CHiME-4 corpus. We can
see a clear separation of each location, where only the CAF
and PED are more overlapped than others. This observation
matches the WER improvement. Also, it is suggested that
this is one of the reasons why CHiME-4 benefits more from
triplet-loss based representation versus the Fearless Steps
Corpus.

We further investigate the effectiveness of triplet-loss
based representation using the environment difference in the
test set. In Table 3, we show a greater improvement for real
data versus simulation data. With the observation in Fig.4 in
mind, it is shown that BUS and STR environment locations
have greater improvement than CAFE and PED environment
locations. This leads to the conclusion that the more distinct
the acoustic context is in the audio from others, the more
beneficial triplet-loss based representation will help.

4.3. Analysis on Triplet-loss Representation Performance

We note that there is a wide gap in performance of triplet-loss
based representation between Fearless Steps and CHiME-4

corpora ( i.e. 1.1% compared to 11.90% relative improve-
ments on WER). It is suggested that this is based on the dis-
similar in formation of the acoustics for the difference in sys-
tem improvements. As mentioned in Sec.4.1.1, the audio
for Fearless Steps are all analog recordings, where audio ca-
ble routing and channel recording conditions cause additional
background noise that become a distinct characteristic of each
channel. However, the specific distortion of these channels,
such as strong low frequency harmonics, are highly unsophis-
ticated, compared to the diverse general background noises
in CHiME-4 data. Another possible reason is that the au-
dio conversational-turn duration in Fearless Steps Corpus are
commonly short, with a mean of 1.93 sec, and standard devi-
ation of 3.28; while audio duration in CHiME-4 has a mean
of 7.44 sec and standard deviation of 2.86. Here, 22% of the
training set consists of audio turns which are less than 1 sec.
These short duration make it hard for triplet-loss based repre-
sentation to be as meaningful or effective.

5. CONCLUSION

This study has considered a triplet-loss approach as our pro-
posed method for scenario aware speech recognition. To em-
ploy triplet-loss based representation, we utilize the TRILL
model (Sec.3.2) to model all factors/acoustic info within an
utterance, leading to a scenario aware ASR system. This
technique is especially beneficial for real data when com-
pared to simulation data. Furthermore, the more distinct the
background acoustic structure is from each other, the greater
the improvement possible. The system achieved 5.42% and
3.18% relative WER improvement on the development and
evaluation test sets of the Fearless Steps Corpus, and 11.90%
relative WER improvement on real test data of CHiME-4 cor-
pus.

Our future work will explore alternative representations
trained for different architectures and data. Also, we will fur-
ther explore the integration between neural embeddings and
the resulting acoustic model.
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