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Abstract—With large-scale integration of renewable generation
and distributed energy resources, modern power systems are
confronted with new operational challenges, such as growing
complexity, increasing uncertainty, and aggravating volatility.
Meanwhile, more and more data are becoming available owing
to the widespread deployment of smart meters, smart sensors,
and upgraded communication networks. As a result, data-driven
control techniques, especially reinforcement learning (RL), have
attracted surging attention in recent years. This paper provides
a comprehensive review of various RL techniques and how they
can be applied to decision-making and control in power systems.
In particular, we select three key applications, i.e., frequency
regulation, voltage control, and energy management, as examples
to illustrate RL-based models and solutions. We then present the
critical issues in the application of RL, i.e., safety, robustness,
scalability, and data. Several potential future directions are
discussed as well.

Index Terms—Frequency regulation, voltage control, energy
management, reinforcement learning, smart grid.

NOMENCLATURE
A. Notations

A, a Action space, action.

£ C N x N, the set of lines connecting buses.

J Expected total discounted reward.

N := {1,---, N}, the set of buses in a power
network or the set of agents.

NN(z;w) Neural network with input 2 and parameter w.

0 Observation.

P Transition probability.

Qr Q-function (or @-value) under policy .

r Reward.

S, s State space, state.

T :={0,1,---,T}, the discrete time horizon.

5y Discounting factor.

A(A) The set of probability distributions over set .A.
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At The time interval in 7.
* Policy, optimal policy.

™, T

B. Abbreviations

A3C Asynchronous Advantaged Actor Critic.
ACE Area Control Error.

AMI Advanced Metering Infrastructure.

ANN Artificial Neural Network.

DDPG Deep Deterministic Policy Gradient.

DER Distributed Energy Resource.

DP Dynamic Programming.

(D)RL (Deep) Reinforcement Learning.

DQN Deep Q Network.

EMS Energy Management System.

EV Electric Vehicle.

FR Frequency Regulation.

HVAC Heating, Ventilation, and Air Conditioning.
IES Integrated Energy System.

LSPI Least-Squares Policy Iteration.

LSTM Long-Short Term Memory.

MDP Markov Decision Process.

OLTC On-Load Tap Changing Transformer.

OPF Optimal Power Flow.

PMU Phasor Measurement Unit.

PV Photovoltaic.

SAC Soft Actor Critic.

SCADA Supervisory Control and Data Acquisition.
SvC Static Var (Reactive Power) Compensator.
TD Temporal Difference.

UCRL Upper Confidence Reinforcement Learning.

I. INTRODUCTION

LECTRIC power systems are undergoing an architectural
E transformation to become more sustainable, distributed,
dynamic, intelligent, and open. On the one hand, the prolifera-
tion of renewable generation and distributed energy resources
(DERs), including solar energy, wind power, energy storage,
responsive demands, electric vehicles (EVs), etc., creates se-
vere operational challenges. On the other hand, the deployment
of information, communication, and computing technologies
throughout the electric system, such as phasor measurement
units (PMUs), advanced metering infrastructures (AMIs), and
wide area monitoring systems (WAMS) [1], has been growing
rapidly in recent decades. It evolves traditional power systems
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towards smart grids and offers an unprecedented opportunity to
overcome these challenges through real-time data-driven mon-
itoring and control at scale. This will require new advanced
decision-making and control techniques to manage

1) Growing complexity. The deployment of massive DERs
and the interconnection of regional power grids dramat-
ically increase system operation complexity and make it
difficult to obtain accurate system (dynamical) models.

2) Increasing uncertainty. The rapid growth of renewable
generation and responsive loads significantly increases
uncertainty, especially when human users are involved,
jeopardizing predictions and system reliability.

3) Aggravating volatility. The high penetration of power
electronics converter-interfaced devices reduces system
inertia, which leads to faster dynamics and necessitates
advanced controllers with online adaptivity.

In particular, reinforcement learning (RL) [2], a prominent
machine learning paradigm concerned with how agents take
sequential actions in an uncertain interactive environment and
learn from the feedback to optimize a specific performance,
can play an important role in overcoming these challenges.
Leveraging artificial neural networks (ANNs) for function ap-
proximation, deep RL (DRL) [3] is further developed to solve
large-scale online decision problems. The most appealing
virtue of (D)RL is its model-free nature, i.e., it makes decisions
without explicitly estimating the underlying models. Hence,
(D)RL has the potential to capture hard-to-model dynamics
and could outperform model-based methods in highly complex
tasks. Moreover, the data-driven nature of (D)RL allows it to
adapt to real-time observations and perform well in uncertain
dynamical environments. Over the past decade, (D)RL has
achieved great success in a broad spectrum of applications,
such as playing games [4], robotics [5], autonomous driving
[6], clinical trials [7], etc.

Meanwhile, the application of RL in power system operation
and control has attracted surging attention [8]-[11]. RL-based
decision-making mechanisms are envisioned to compensate for
the limitations of existing model-based approaches and thus
are promising to address the emerging challenges described
above. This paper provides a review and survey on RL-based
decision-making in smart grids. We will introduce various RL
terminologies, exemplify how to apply RL to power systems,
and discuss critical issues in their application. Compared with
recent review articles [8]—[11] on this subject, the main merits
of this paper include

1) We present a comprehensive and structural overview of
the RL methodology, from basic concepts and theoretical
fundamentals to state-of-the-art RL techniques.

2) Three key applications are selected as examples to illus-
trate the overall procedure of applying RL to the control
and decision-making in power systems, from modeling,
solution, to numerical implementation.

3) We discuss the critical challenges and future directions
for applying RL to power system problems in depth.

In the rest of this paper, Section II presents a comprehensive
overview of the RL fundamentals and the state-of-the-art RL
techniques. Section III describes the application of RL to three
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critical power system problems, i.e., frequency regulation,
voltage control, and energy management, where paradigmatic
mathematical models are provided for illustration. Section IV
summarizes the key issues of safety, robustness, scalability,
and data, and then discusses several potential future directions.
Lastly, we conclude in Section V.

II. PRELIMINARIES ON REINFORCEMENT LEARNING

This section provides a comprehensive overview of the RL
methodology. First, we set up the RL problem formulation and
key concepts, such as @-function and Bellman (Optimality)
Equation. Then two categories of classical RL algorithms,
i.e., value-based and policy-based, are introduced. With these
fundamentals in place, we next present several state-of-the-art
RL techniques, including DRL, deterministic policy gradient,
modern actor-critic methods, multi-agent RL, etc. The overall
structure of RL methodology with related literature is illus-
trated in Fig. 1.

A. Fundamentals of Reinforcement Learning

RL is a branch of machine learning concerned with how
an agent makes sequential decisions in an uncertain environ-
ment to maximize the cumulative reward. Mathematically, the
decision-making problem is modeled as a Markov Decision
Process (MDP), which is defined by state space S, action
space A, the transition probability function P(:|s,a) : S x
A — A(S) that maps a state-action pair (s,a) € S X A to a
distribution on the state space, and lastly the reward function
r(s,a)! : & x A — R. The state space S and action space A
can be either discrete or continuous. To simplify discussion,
we focus on the discrete case below.

As illustrated in Fig. 2, in an MDP setting, the environment
starts with an initial state s € S. At each time t={0,1,---},
given current state s, € S, the agent chooses action a; € A
and receives reward (s, a;) that depends on the current state-
action pair (sy, a;), after which the next state s, is randomly
generated from the transition probability P(s;y1|s¢, ar). A
policy 7w(als) € A(A) for the agent is a map from the state
s to a distribution on the action space .4, which rules what
action to take given a certain state s.> The agent aims to find
an optimal policy 7* (may not be unique) that maximizes the
expected infinite horizon discounted reward J(r):

o0
LS arg mﬂfaX ‘](ﬂ-) = E’SONMOEW Zf}/tr(su at)a (1)
t=0
where the first expectation means that sg is drawn from an
initial state distribution pg, and the second expectation means
that the action a; is taken according to the policy 7(-|s¢).
Parameter v € (0,1) is the discounting factor that penalizes
the rewards in the future.

'A generic reward function is given by r(s, a, s’) where the next state s’
is also included as an argument, but there is no essential difference between
the case with r(s,a) and the case with r(s, a, s’) in algorithms and results.
By marginalizing over next states s’ according to the transition function
P(s’|s,a), one can simply convert r(s, a,s’) to r(s,a) [2].

2a ~ m(+|s) is a stochastic policy, and it becomes a deterministic policy
a = 7(s) when the probability distribution 7(+|s) is a singleton for all s.
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Fig. 1. The structure of the RL methodology with related literature.
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Fig. 2. Illustration of a Markov Decision Process.

In the MDP framework, the so-called “model” specifically
refers to the reward function r and the transition probability
P. Accordingly, it leads to two different problem settings:

o When the model is known, one can directly solve for an
optimal policy 7* by Dynamic Programming (DP) [12].
o When the model is unknown, the agent learns an optimal
policy 7* based on the past observations from interacting
with the environment, which is the problem of RL.
Since DP lays the foundation for RL algorithms, we first
consider the case with a known model and introduce the basic
ideas of finding an optimal policy 7* with respect to (1). The
crux is the concept of Q-function together with the Bellman
Equation. The Q-function @, : S x A — R for a given policy
7 is defined as

Qr(s,a) = E; [thT(St,at)ISO =s,a0=al, (2
t=0
which is the expected cumulative reward when the initial state
is s, the initial action is a, and all the subsequent actions are
chosen according to policy 7. The Q-function @), satisfies the
following Bellman Equation: V(s,a) € S x A,

Qﬂ'(sa a) = T(57 a) + FYES’NIP(-\s,a),a’Nﬂ'(-\s’)Qﬂ'(S/a a/)a 3

where the expectation denotes that the next state s’ is drawn
from P(-|s,a), and the next action a’ is drawn from 7(-|s’).
Here, it is helpful to think of the @)-function as a large table or
vector filled with @Q-values Q(s,a). The Bellman Equation
(3) indicates a recursive relation that each -value equals the
immediate reward plus the discounted future value. Computing
the )-function for a given policy = is called policy evaluation,
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which can be done by simply solving a set of linear equations
when the model, i.e., P and r, is known.

The Q-function associated with an optimal policy 7* for (1)
is called an optimal Q-function and denoted as QQ*. The key
to find 7* is that the optimal @-function must be the unique
solution to the Bellman Optimality Equation (4): V(s,a) €
Sx A,

Q" (5,0) = 1(5,0) +1Eqrp(fo max Q° (s, ). (4

Interested readers are referred to textbook [12, Sec. 1.2] on
why this is true. Based on the Bellman Optimality Equation
(4), the optimal @-function Q* and an optimal policy 77* can
be solved using DP or linear programming [12, Sec. 2.4]. In
particular, policy iteration and value iteration are two classic
DP algorithms. See [2, Chapter 4] for details.

Remark 1. (Modeling Issues with MDP). MDP is a generic
framework to model sequential decision-making problems and
is the basis for RL algorithms. However, several issues deserve
attention when modeling power system control problems in the
MDP framework.

1) At the heart of MDP is the Markov property that the

distribution of future states depends only on the present
state and action, i.e., P(s;41|s¢, a;). In other words, given
the present, the future does not depend on the past.
Then for a specific control problem, one needs to check
whether the choices of state and action satisfy the Markov
property. A general guideline is to include all necessary
known information in the enlarged state, known as state
augmentation [12], to maintain the Markov property,
however, at the cost of complexity.
Most classical MDP theories and RL algorithms are based
on discrete-time transitions, but many power system
control problems follow continuous-time dynamics, such
as frequency regulation. To fit the MDP framework,
continuous-time dynamics are generally discretized with
a proper temporal resolution, which is a common issue
for digital control systems, and there are well-established
frameworks to deal with it. Besides, there are RL variants
that are built directly on continuous-time dynamics, such
as integral RL [13].

2)
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3) Many MDP/RL methods assume time-homogeneous state
transitions and rewards. But in power systems, there are
various time-varying exogenous inputs and disturbances,
making the state transitions not time-homogeneous. This
is an important problem that has not been adequately
explored in the existing power literature and needs further
study. Nonstationary MDP [14] and related RL algo-
rithms [15] could be the potential directions.

In addition, the issues of continuous state/action spaces and
partial observability for MDP modeling will be discussed later.

B. Classical Reinforcement Learning Algorithms

This subsection considers the RL setting when the environ-
ment model is unknown, and presents classical RL algorithms
for finding the optimal policy 7*. As shown in Fig. 1, RL al-
gorithms can be divided into two categories, i.e., model-based
and model-free. “Model-based” refers to the RL algorithms
that explicitly estimate and online update an environment
model from past observations and make decisions based on
this model [16], such as upper confidence RL (UCRL) [17] and
Thompson sampling [18]. In contrast, “model-free” means that
the RL algorithms directly search for optimal policies without
estimating the environment model. Model-free RL algorithms
are mainly categorized into two types, i.e., value-based and
policy-based. Generally, value-based methods are preferred for
modest-scale RL problems with finite state/action space as
they do not assume a policy class and have a strong conver-
gence guarantee. The convergence of value-based methods to
an optimal (Q)-function in the tabular setting (without function
approximation) was proven back in the 1990s [19]. In contrast,
policy-based methods are more efficient for problems with
high dimensions or continuous action/state space. But they are
known to suffer from various convergence issues, e.g., local
optimum, high variance, etc. The convergence of policy-based
methods with restricted policy classes to the global optimum
has been shown in a recent work [20] under the tabular policy
parameterization.

Remark 2. (Exploration vs. Exploitation). A fundamental
problem faced by RL algorithms is the dilemma between ex-
ploration and exploitation. Good performance requires taking
actions adaptively to strike an effective balance between 1)
exploring poorly-understood actions to gather new information
that may improve future reward, and 2) exploiting what is
known for decision-making to maximize immediate reward.
Generally, it is natural to achieve exploitation with the goal of
reward maximization, while different RL algorithms encourage
exploration in different ways. For value-based RL algorithms,
e-greedy is commonly used with a probability of e to explore
random actions. In policy-based methods, exploration is usu-
ally achieved by injecting random perturbation to the actions,
adopting a stochastic policy, or adding an entropy term to the
objective, etc.

Before presenting classical RL methods, we introduce a
key algorithm, Temporal-Difference (TD) learning [21], for
policy evaluation when the model is unknown. TD learning is
central to both value-based and policy-based RL algorithms. It
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learns the @-function @), for a given policy 7 from episodes
of experience. Here, an “episode” refers to a state-action-
reward trajectory over time (sg,ag,70,S1,a1,71, ) until
terminated. Specifically, TD learning maintains a ()-function
Q(s,a) for all state-action pairs (s,a) € S x A and updates
it upon a new observation (ry, s¢11,a:41) by

Q(st,at) + Q(st,ar)
+a(ry +7Q(st41, ar1) — Q(s¢, a)),

where « is the step size. Readers might observe that the second
term in (5) is very similar to the Bellman Equation (3), which
is exactly the rationale behind TD learning. Essentially, TD
learning (5) is a stochastic approximation scheme for solving
the Bellman Equation (3) [22], and can be shown to converge
to the true (), under mild assumptions [21], [23].

1) Value-based RL algorithms directly learn the optimal
@-function Q*, and the optimal (deterministic) policy 7* is
a byproduct that can be retrieved by acting greedily, i.e.,
m*(s) = argmax,c4 @*(s,a). Among many, Q-learning
[19], [24] is perhaps the most popular value-based RL al-
gorithm. Similar to TD-learning, ()-learning maintains a Q-
function and updates it towards the optimal )-function based
on episodes of experience. Specifically, at each time ¢, given
current state s;, the agent chooses action a, according to a cer-
tain behavior policy.> Upon observing the outcome (7, s¢11),
(2-learning updates the (Q-function by

Q(Sta at) <~ Q(St7 at)
+a(re +ymax Q(se+1, a’) = Q(st, ar)).

(&)

(6)

The rationale behind (6) is that the ()-learning algorithm (6)
is essentially a stochastic approximation scheme for solving
the Bellman Optimality Equation (4), and one can show the
convergence to Q* under mild assumptions [19], [25].

SARSA* [26] is another classical value-based RL algo-
rithm, whose name comes from the experience sequence
(s,a,r,s',a’). SARSA is actually an on-policy variant of Q-
learning. The major difference is that SARSA takes actions
according to the target policy (typically e-greedy based on the
current (Q-function) rather than any arbitrary behavior policy in
-learning. The following remark distinguishes and compares
“on-policy” and “off-policy” RL algorithms.

Remark 3. (On-Policy vs. Off-Policy). On-policy RL methods
continuously improve a policy (called target policy) and im-
plement this policy to generate episodes for algorithm training.
In contrast, off-policy RL methods learn a target policy based
on the episodes that are generated by following a different
policy (called behavior policy) rather than the target policy
itself. In short, “on” and “off” indicate whether the training
samples are generated by following the target policy or not.
For example, -learning is an off-policy RL method as the
episodes used in training can be produced by any policies, and
the actor-critic algorithm described below is on-policy.> For

3Such a behavior policy, also called exploratory policy, can be arbitrary as
long as it visits all the states and actions sufficiently often.

4In some literature, SARSA is also called Q-learning.

S5There are also off-policy variants of the actor-critic algorithm, e.g., [27].
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power system applications, control policies that are not well-
trained are generally not allowed to be implemented in real-
world power grids for the sake of safety. Thus off-policy RL is
preferred when high-fidelity simulators are unavailable since it
can learn from the vast amount of operational data generated
by incumbent controllers. Off-policy RL is also relatively easy
to provide a safety guarantee due to the flexibility in choosing
the behavior policies, but it is known to suffer from slower
convergence and higher sample complexity.

2) Policy-based RL algorithms restrict the optimal policy
search to a policy class that is parameterized as mp with the
parameter § € © C RX. With this parameterization, the
objective (1) can be rewritten as a function of the policy
parameter, i.e., J(6), and the RL problem is reformulated as
an optimization problem (7) that aims to find the optimal 6*:

0 9). 7
€ argmax J(6) (7)

To solve (7), a straightforward idea is to employ the gradient
ascent method, i.e., § < 04+nVJ(0), where 1) is the step size.
However, computing the gradient V.J(6) was supposed to be
intrinsically hard as the environment model is unknown. Policy
Gradient Theorem [28] is a big breakthrough in addressing the
gradient computation issue. This theorem shows that the policy
gradient VJ(6) can be simply expressed as

VJ6) = Z o (s) Z 7o (al$)Qn, (s,a)VoInmg(als). (8)
sES acA

Here, p9(s) € A(S) is the on-policy state distribution [2,
Chapter 9.2], which denotes the fraction of time steps spent
in each state s € S. Equation (8) is for a stochastic policy
a ~ 7y(-|s), while the version of policy gradient theorem for
a deterministic policy a = my(s) [29] will be discussed later.

The policy gradient theorem provides a highway to estimate
the gradient V.J(6), which lays the foundation for policy-
based RL algorithms. In particular, the actor-critic algorithm
is a prominent and widely used architecture based on policy
gradient. It comprises two eponymous components: 1) the
“critic” is to estimate the Q-function Qr,(s,a), and 2) the
“actor” conducts the gradient ascent based on (8). The fol-
lowing iterative scheme is an illustrative actor-critic example:

1) Given state s, take action a ~ my(als), then observe the

reward r and next state s’;
2) (Critic) Update @-function Q,(s,a) by TD learning;
3) (Actor) Update policy parameter 6 by

0+ 0+nQxr,(s,a)Vglnmg(als); 9)

4) s+ s'. Go to step 1) and repeat.
There are many actor-critic variants with different implemen-
tation manners, e.g., how s is sampled from py(s), how Q-
function is updated, etc. See [2, Chapter 13] for more details.

We emphasize that the algorithms introduced above are far
from complete. In the next subsections, we will introduce the
state-of-the-art modern (D)RL techniques that are widely used
in complex control tasks, especially for power system appli-
cations. At last, we close this subsection with the following
two remarks on different RL settings.
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Remark 4. (Online RL vs. Batch RL). The algorithms intro-
duced above are referred to as “online RL” that takes actions
and updates the policies simultaneously. In contrast, there is
another type of RL called “batch RL” [30], which decouples
the sample data collection and policy training. Precisely, given
a set of experience episodes generated by following any arbi-
trary behavior policies, batch RL fits the optimal @Q-function
or optimizes the target policy entirely based on this fixed
sample dataset. Some classical batch RL algorithms include
Fitted Q-Iteration [31], Least-Squares Policy Iteration (LSPI)
[32], etc. For example, given a batch of transition experiences
D := {(s4,a;,7i,8;)"_ }, Fitted Q-Iteration, which is seen as
the batch version of ()-learning, aims to fit a parameterized
Q-function Qg (s, a) by iterating the following two steps:

1) Create the target (Q-value ¢; for each sample in D by
gi = ri +ymax Qg(s}, a’).

2) Apply regression approaches to fit a new Qg (s, a) based
on the training dataset (s;, a;; q;)" ;.

The crucial advantages of batch RL lie in the stability and data-
efficiency of the learning process by making the best use of the
available sample datasets. However, because of relying entirely
on a given dataset, the lack of exploration is one of the major
problems of batch RL. To encourage exploration, batch RL
typically iterates between exploratory sample collection and
policy learning prior to application. Besides, pure batch RL,
also referred to as “offline RL” [33], has attracted increasing
recent attention, which completely ignores the exploration
issue and aims to learn policies fully based on a static dataset
with no online interaction. Offline RL assumes a sufficiently
large and diverse dataset that adequately covers high-reward
transitions for learning good policies and turns the RL problem
into a supervised machine learning problem. See [34] for a
tutorial of offline RL.

Remark 5. (Passive RL, Active RL, and Inverse RL). The
terminology “passive RL” typically refers to the RL setting
where the agent acts by following a fixed policy 7 and aims to
learn how good this policy is from observations. It is analogous
to the policy evaluation task, and TD learning is one of the
representative algorithms of passive RL. In contrast, “active
RL” allows the agent to update policies with the goal of finding
an optimal policy, which is basically the standard RL setting
that we described above. However, in some references, e.g.,
[35], [36], “active RL” has a completely different meaning and
refers to the RL variant where the agent does not observe the
reward unless it pays a query cost to account for the difficulty
of collecting reward feedback. Thus, the agent chooses both
an action and whether to observe the reward at each time.
Another interesting RL variant is “inverse RL” [37], [38],
in which the state-action sequence of an (expert) agent is
given, and the task is to infer the reward function that this
agent seeks to maximize. Inverse RL is motivated by various
practical applications where the reward engineering is complex
or expensive and one can observe an expert demonstrating the
task to learn how to perform, e.g., autonomous driving.
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Fig. 3. Illustration of a regular four-layer feed-forward ANN [43].

C. Fundamentals of Deep Learning

This subsection presents the fundamentals of deep learning
to set the stage for the introduction of DRL. Deep learning
refers to the machine learning technique that models with
multi-layer ANNs. The history of ANNs dates back to 1940s
[39], and it has received tremendous interests in the recent
decade due to the booming of data technology and computing
power, which allows efficient training of wider and deeper
ANNSs. Essentially, an ANN is an universal parameterized
mapping y = NN(z;w) from the input features z to the
outputs y with the parameters w. As illustrated in Fig. 3, an
input feature vector x is taken in by the input layer, then is
processed through a series of hidden layers, and results in the
output vector y. Each hidden layer consists of a number of
neurons that are the activation functions, e.g. linear, ReLU,
or sigmoid [40]. Based on a sample dataset (2%, y%);—1 ... n,
the parameter w can be optimized via regression. A landmark
in training ANNSs is the discovery of the back-propagation
method, which offers an efficient way to compute the gradient
of the loss function over w [41]. Nevertheless, it is pretty tricky
to train large-scale ANNs in practice, and article [41] provides
an overview of the optimization algorithms and theory for
training ANNs. Three typical classes of ANNs with different
architectures are introduced below. See book [42] for details.

1) Convolutional Neural Networks (CNNs) are in the ar-
chitecture of feed-forward neural networks (as shown in Fig.
3) and specialize in pattern detection, which are powerful for
image analysis and computer vision tasks. The convolutional
hidden layers are the basis at the heart of a CNN. Each neuron
k=1,2,--- in a convolutional layer defines a small filter (or
kernel) matrix Fj, of low dimension (e.g., 3 x 3) and convolves
with the input matrix X of relatively high dimension, which
leads to the output matrix U, = Fj, ® X. Here, ® denotes the
convolution 0perat0r6, and the output (Uy) k=1,2,... is referred
to as the feature map that is passed to the next layer. Besides,
pooling layers are commonly used to reduce the dimension of
the representation with the max or average pooling.

2) Recurrent Neural Networks (RNNs) specialize in pro-
cessing long sequential inputs and tackling tasks with context
spreading over time by leveraging a recurrent structure. Hence,
RNNSs achieve great success in the applications such as speech
recognition and machine translation. RNNs process an input
sequence one element at a time, and maintain in their hidden
units a state vector s that implicitly contains historical infor-

6Specifically, the convolution operation is performed by sliding the filter
matrix F} across the input matrix X and computing the corresponding
element-wise multiplications, so that each element in matrix Uy, is the sum of
the element-wise multiplications between F}, and the associated sub-matrix
of X. See [42, Chapter 9] for a detailed definition of convolution.
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Fig. 4. Illustration of a simple autoencoder network [46].

mation about the past elements. Interestingly, the recurrence
of RNNs is analogous to a dynamical system [42] and can be
expressed as

s¢ = f(st—1,2450), yr = g(s45u), (10)

where z; and y, are the input and output of the neural network
at time step ¢, and w := (v, u) is the parameter for training. s;
denotes the state stored in the hidden units at step ¢ and will be
passed to the processing at step £+ 1. In this way, s; implicitly
covers all historical input information (xy,---,x:). Among
many variants, long-short term memory (LSTM) network [44]
is a special type of RNNs that excels at handling long-term
dependencies and outperforms conventional RNNs by using
special memory cells and gates.

3) Autoencoders [45] are used to obtain a low-dimensional
representation of high-dimensional inputs, which is similar to,
but more general than, principal components analysis (PCA).
As illustrated in Fig. 4, an autoencoder is in an hourglass-
shape feed-forward network structure and consists of a encoder
function v = f(x) and a decoder function y = ¢g(u). In
particular, an autoencoder is trained to learn an approximation
function y = NN(z; w) = g(f(z)) ~ = with the loss function
L(z,g(f(z))) that penalizes the dissimilarity between the
input = and output y. The bottleneck layer has a much smaller
amount of neurons, and thus it is forced to form a compressed
representation of the input x.

D. Deep Reinforcement Learning

For many practical problems, the state and action spaces are
large or continuous, together with complex system dynamics.
As a result, it is intractable for value-based RL to compute or
store a gigantic ()-value table for all state-action pairs. To deal
with this issue, function approximation methods are developed
to approximate the (Q-function with some parameterized func-
tion classes, such as linear function or polynomial function.
As for policy-based RL, finding a capable policy class to
achieve optimal control is also nontrivial in high-dimensional
complex tasks. Driven by the advances of deep learning, DRL
that leverages ANNs for function approximation or policy
parameterization is becoming increasingly popular. Precisely,
DRL can use ANNSs to 1) approximate the Q-function with a
Q-network Qw(s, a) := NN(s, a;w), and 2) parameterize the
policy with the policy network 7y (als) := NN(als;0).

1) Q-Function Approximation. (Q-network can be used to
approximate the Q-function in TD learning (5) and Q-learning
(6). For TD learning, the parameter w is updated by

w4 w~+ a|ry + v Qu(Sia1, ars1)

. . (11)
- Qw(staat)] Vwa(Stvat)v
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where the gradient Vwa(st, at) can be calculated efficiently
using the back-propagation method. As for )-learning, it is
known that adopting a nonlinear function, such as an ANN,
for approximation may cause instability and divergence issues
in the training process. To this end, Deep Q-Network (DQN)
[47] is developed and greatly improves the training stability
of @Q-learning with the following two tricks:

e Experience Replay. Instead of performing on consecutive
episodes, a widely used trick is to store all transition experi-
ences e := (s,a,r,s’) in a database D called “replay buffer”.
At each step, a batch of transition experiences is randomly
sampled from the replay buffer D for @Q-learning update.
This can enhance the data efficiency by recycling previous
experiences and reduce the variance of learning updates. More
importantly, sampling uniformly from the replay buffer breaks
the temporal correlations that jeopardize the training process,
and thus improves the stability and convergence of ()-learning.

e Target Network. The other trick is the introduction of the
target network Qg (s,a) with parameter @, which is a clone
of the Q-network Q. (s,a). Its parameter @ is kept frozen
and is only updated periodically. Specifically, with a batch
of transition experiences (s;,a;,7;,s;)j; sampled from the
replay buffer, the Q-network Qw(s a) is updated by solving

W 4—arg mui)nz (ri +7 max Qﬁ,(s;, a

i=1

The optimization (12) can be viewed as finding an optimal
Q-network Q. (s,a) that approximately solves the Bellman
Optimality Equation (4). The critical difference is that the
target network Qw with parameter w instead of Qw is used
to compute the maximization over a’ in (12). After a fixed
number of updates above, the target network Qg (s,a) is
renewed by replacing w with the latest learned w. This
trick can mitigate the training instability as the short-term
oscillations are circumvented. See [48] for more details.

In addition, there are several notable variants of DQN that
further improve the performance, such as double DQN [49]
and dueling DQN [50]. Particularly, double DQN is proposed
to tackle the overestimation issue of the action values in DQN
by learning two sets of @)-functions; one @Q-function is used
to select the action, and the other is used to determine its
value. Dueling DQN proposes a dueling network architecture
that separately estimates the state value function V' (s) and the
state-dependent action advantage function A(s,a), which are
then combined to determine the (Q-value. The main benefit of
this factoring is to generalize learning across actions without
imposing any change to the underlying RL algorithm [50].

2) Policy Parameterization. Due to the powerful gener-
alization capability, ANNs are widely used to parameterize
control policies, especially when the state and action spaces
are continuous. The resultant policy network NN(a|s; ) takes
states as the input and outputs the probability of action
selection. In actor-critic methods, it is common to adopt both
the @-network NN(s, a; w) and the policy network NN(als; )
simultaneously, where the “actor” updates 6 according to
(9) and the “critic” updates w according to (11). The back-
propagation method [41] can be applied to efficiently compute
the gradient of ANNs.

)= Qulsiai))’. (12)
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When function approximation is adopted, the theoretical
analysis on both value-based and policy-based RL methods is
little and generally limited to the linear function approxima-
tion. Besides, one problem that hinders the use of value-based
methods for large or continuous action space is the difficulty
of performing the maximization step. For example, when deep
ANNs are used to approximate the @Q-function, it is not easy
to solve maxy Qy (s, a’) for the optimal action ' due to the
nonlinear and complex formulation of Q,, (s, a).

E. Other Modern Reinforcement Learning Techniques

This subsection summarizes several state-of-the-art modern
RL techniques that are widely used in complex tasks.

1) Deterministic Policy Gradient: The RL algorithms de-
scribed above focus on stochastic policies a ~ my(+|s), while
deterministic policies a = 7y (s) are more desirable for many
real-world control problems with continuous state and action
spaces. On the one hand, since most incumbent controllers
in physical systems, such as PID control and robust control,
are all deterministic, deterministic policies are better matched
to the practical control architectures, e.g., in power system
applications. On the other hand, a deterministic policy is more
sample-efficient as its policy gradient only integrates over the
state space. In contrast, a stochastic policy gradient integrates
over both state and action spaces [29]. Similar to the stochastic
case, there is a Deterministic Policy Gradient Theorem [29]
showing that the policy gradient with respect to a deterministic
policy mg(s) can be simply expressed as

aQﬂ'g(S a)|a 7o ( )VQTFQ( )

Correspondingly, the “actor” in the actor-critic algorithm can
update the parameter 6 by

vJ(0) = (13)

SNNS

0« 0+ nVan (87 a)|a:7r9(s)v97rt9 (S) (14)

One major issue regarding a deterministic policy is the lack
of exploration due to the determinacy of action selection.
A common way to encourage exploration is to perturb a
deterministic policy with exploratory noises, e.g., adding a
Gaussian noise £ to the policy with a = ma(s) + &.

2) Modern Actor-Critic Methods: Although achieving great
success in many complex tasks, the actor-critic methods are
known to suffer from various problems, such as high vari-
ance, slow convergence, local optimum, etc. Therefore, many
variants have been developed to improve the performance of
actor-critic, and we list some of them below.

e Advantaged Actor-Critic [2, Chapter 13.4]: The advantage
Sfunction, A(s,a)=Qx,(s,a) — baseline, i.e., the Q-function
subtracted by a baseline, is introduced to replace Qr,(s,a)
in the “actor” update, e.g., (9). One common choice for the
baseline is an estimate of the state value function V'(s). This
modification can significantly reduce the variance of the policy
gradient estimate without changing the expectation.

e Asynchronous Actor-Critic [51] presents an asynchronous
variant with parallel training to enhance sample efficiency and
training stability. In this method, multiple actors are trained
in parallel with different exploration polices, then the global
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parameters get updated based on all the learning results and
synchronized to each actor.

e Soft Actor-Critic (SAC) [52] with stochastic policies is an
off-policy deep actor-critic algorithm based on the maximum
entropy RL framework, which adds an entropy term of the
policy H(mg(-|s¢)) to objective (1) to encourage exploration.

3) Trust Region/Proximal Policy Optimization: To improve
the training stability of policy-based RL algorithms, reference
[53] proposes the Trust Region Policy Optimization (TRPO)
algorithm, which enforces a trust region constraint (15b). It
indicates that the KL-divergence Dy between the old and
new policies should not be larger than a given threshold §.
Denote p(f) := % as the probability ratio between the
new policy mp and the old policy mg,,, with p(6o1a) = 1. Then,
TRPO aims to solve the constrained optimization (15):

(15a)
(15b)

meaX J(Q) = E[p(e)AG()ld (57 a)}v

S.t. E[DKL(WOH’]TE‘OM)} < 5’

where Ay, (s,a) is an estimation of the advantage function.
However, TRPO is hard to implement. To this end, work [54]
proposes Proximal Policy Optimization (PPO) methods, which
achieve the benefits of TRPO with simpler implementation
and better empirical sample complexity. Specifically, PPO
simplifies the policy optimization as (16):

max Emin (p(6) dg,,,, clip(p(0), 1-€, 1+)Ag,,, )|, (16)

where € is a hyperparameter, e.g., € = 0.2, and the clip function
clip(p(0),1—¢,1+¢€) enforces p(f) to stay within the interval
[1—€, 1+€]. The “min” of the clipped and unclipped objectives
is taken to eliminate the incentive for moving p(6) outside of
the interval [1—¢, 1+¢| to prevent big updates of 6.

4) Multi-Agent RL: Many power system control tasks in-
volve the coordination over multiple agents. For example,
in frequency regulation, each generator can be treated as
an individual agent that makes its own generation decisions,
while the frequency dynamics are jointly determined by all
power injections. It motivates the multi-agent RL framework,
which considers a set A/ of agents interacting with the same
environment and sharing a common state s € S. At each time
t, each agent i € N takes its own action a! € A; given the
current state s; € S, and receives the reward r(s¢, (al)ien),
then the system state evolves to s;+1 based on (a});ecnr. Multi-
agent RL is an active and challenging research area with
many unsolved problems. An overview on related theories and
algorithms is provided in [55]. In particular, the decentralized
(distributed) multi-agent RL attracts a great deal of attention
for power system applications. A popular variant is that each
agent ¢ adopts a local policy a’ = 7; 9, (o) with its parameter
0,, which determines the action a’ based on local observation
o' (e.g., local voltage or frequency of bus 7). This method
allows for decentralized implementation as the policy ; ¢, for
each agent only needs local observations, but it still requires
centralized training since the system state transition relies on
all agents’ actions. Multi-agent RL methods with distributed
training are still under research and development.
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Fig. 5. RL schemes for the control and decision-making in power systems.

Remark 6. Although the RL techniques above are discussed
separately, they can be integrated for a single problem to
achieve all the benefits. For instance, one may apply the multi-
agent actor-critic framework with deterministic policies, adopt
ANNs to parameterize the @-function and the policy, and
use the advantage function for actor update. Accordingly, the
resultant algorithm is usually named after the combination of
key words, e.g., deep deterministic policy gradient (DDPG),
asynchronous advantaged actor-critic (A3C), etc.

III. SELECTIVE APPLICATIONS OF RL IN POWER SYSTEMS

Throughout the past decades, tremendous efforts have been
devoted to improving the modeling of power systems. Schemes
based on (optimal) power flow techniques and precise mod-
eling of various electric facilities are standard for the control
and optimization of power systems. However, the large-scale
integration of renewable generation and DERs significantly
aggravates the complexity, uncertainty, and volatility. It be-
comes increasingly arduous to obtain accurate system models
and power injection predictions, challenging the traditional
model-based approaches. Hence, model-free RL-based meth-
ods become an appealing complement. As illustrated in Fig.
5, the RL-based schemes relieve the need for accurate system
models and learn control policies based on data collected from
actual system operation or high-fidelity simulators, when the
underlying physical models and dynamics are regarded as the
unknown environment.

For power systems, frequency level and voltage profile
are two of the most critical indicators of system operating
conditions, and reliable and efficient energy management is
a core task. Accordingly, this section focuses on three key
applications, i.e., frequency regulation, voltage control, and
energy management. Frequency regulation is a fast-timescale
control problem with system frequency dynamics, while en-
ergy management is usually a slow-timescale decision-making
problem. Voltage control has both fast-timescale and slow-
timescale controllable devices. RL is a general method that
is applicable to both control problems (in fast timescale) and
sequential decision-making problems (in slow timescale) under
the MDP framework. In the following, we elaborate on the
overall procedure of applying RL to these key applications
from a tutorial perspective. We summarize the related literature
with a table (see Tables I, II, III) and use existing works to
exemplify how to model power system applications as RL
problems. The critical issues, future directions, and numerical
implementation of RL schemes are also discussed.

Before proceeding, a natural question is why it is necessary
to develop new RL-based approaches since traditional tools
and existing controllers mostly work “just fine” in real-world
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power systems. The answer varies from application to appli-
cation, and we explain some of the main motivations below.

1) Although traditional methods work well in the current
grid, it is envisioned that these methods may not be suf-
ficient for the future grid with high renewable penetration
and human user participation. Most existing schemes rely
heavily on sound knowledge of power system models, and
have been challenged by various emerging issues, such
as the lack of accurate distribution grid models, highly
uncertain renewable generation and user behavior, coor-
dination among massive distributed devices, the growing
deployment of EVs coupled with transportation, etc.

2) The research community has been studying various tech-
niques to tackle these challenges, e.g., adaptive control,
stochastic optimization, machine learning, zeroth-order
methods, etc. Among them, RL is a promising direction to
investigate and will play an important role in addressing
these challenges because of its data-driven and model-
free nature. RL is capable of dealing with highly complex
and hard-to-model problems and can adapt to rapid power
fluctuations and topology changes.

3) This paper does not suggest a dichotomy between RL
and conventional methods. Instead, RL can complement
existing approaches and improve them in a data-driven
way. For instance, policy-based RL algorithms can be
integrated into existing controllers to online adjust key
parameters for adaptivity and achieve hard-to-model ob-
jectives. It is necessary to identify the right application
scenarios for RL and use RL schemes appropriately. This
paper aims to throw light and stimulate such discussions
and relevant research.

A. Frequency Regulation

Frequency regulation (FR) is to maintain the power system
frequency closely around its nominal value, e.g., 60 Hz in the
U.S., through balancing power generation and load demand.
Conventionally, three generation control mechanisms in a
hierarchical structure are implemented at different timescales
to achieve fast response and economic efficiency. In bulk
power systems,’ the primary FR generally operates locally to
eliminate power imbalance at the timescale of a few seconds,
e.g., using droop control, when the governor adjusts the
mechanical power input to the generator around a setpoint
and based on the local frequency deviation. The secondary
FR, known as automatic generation control (AGC), adjusts
the setpoints of governors to bring the frequency and tie-
line power interchanges back to their nominal values, which
is performed in a centralized manner within minutes. The
tertiary FR, namely economic dispatch, reschedules the unit
commitment and restores the secondary control reserves within
tens of minutes to hours. See [56] for detailed explanations of
the three-level FR architecture. In this subsection, we focus
on the primary and secondary FR mechanisms, as the tertiary
FR does not involve frequency dynamics and is corresponding
to the power dispatch that will be discussed in Section III-C.

"There are some other types of primary FR, e.g., using autonomous cen-
tralized control mechanisms, in small-scale power grids, such as microgrids.
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There are a number of recent works [57]-[71] leveraging
model-free RL techniques for FR mechanism design, which
are summarized in Table I. The main motivations for devel-
oping RL-based FR schemes are explained as follows.

1) Although the bulk transmission systems have relatively
good models of power grids, there may not be accurate
models or predictions on the large-scale renewable gener-
ation due to the inherent uncertainty and intermittency. As
the penetration of renewable generation keeps growing,
new challenges are posed to traditional FR schemes for
maintaining nominal frequency in real-time.

2) FR in the distribution level, e.g., DER-based FR, load-
side FR, etc., has attracted a great deal of recent studies.
However, distribution grids may not have accurate system
model information, and it is too complex to model vast
heterogeneous DERs and load devices. In such situations,
RL methods can be adopted to circumvent the require-
ment of system model information and directly learn
control policies from available data.

3) With less inertia and fast power fluctuations introduced
by inverter-based renewable energy resources, power sys-
tems become more and more dynamical and volatile.
Conventional frequency controllers may not adapt well
to the time-varying operational environment [68]. In
addition, existing methods have difficulty coordinating
large-scale systems at a fast time scale due to the com-
munication and computation burdens, limiting the overall
frequency regulation performance [58]. Hence, (multi-
agent) DRL methods can be used to develop FR schemes
to improve the adaptivity and optimality.

In the following, we take multi-area AGC as the paradigm
to illustrate how to apply RL methods, as the mathematical
models of AGC have been well established and widely used
in the literature [56], [72], [73]. We will present the definitions
of environment, state and action, the reward design, and the
learning of control policies, and then discuss several key issues
in RL-based FR. Note that the models presented below are
examples for illustration, and there are other RL formulations
and models for FR depending on the specific problem setting.

1) Environment, State and Action: The frequency dynamics
in a power network can be expressed as (17):

ds
E:f(s7APMaAPL)a

where s:=((Aw;)ienr, (AP;j)ijce) denotes the system state,
including the frequency deviation Aw; at each bus i and the
power flow deviation AP;; over line ij € £ from bus 4 to
bus j (away from the nominal values). APy :=(APM),cn,
AP;, := (APF);cn capture the deviations of generator
mechanical power and other power injections, respectively.

The governor-turbine control model [56] of a generator can
be formulated as the time differential equation (18):

dAPM
dt

where PC is the generation control command. A widely used
linearized version of (17) and (18) is provided in Appendix
A. However, the real-world frequency dynamics (17) and

A7)

= gi(APM Aw;, PY), ieN, (18)
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TABLE I
LITERATURE SUMMARY ON LEARNING FOR FREQUENCY REGULATION.
Reference Problem State/Action Algorithm Policy Class Key Features
Space
Yan et al. Multi-area Continuous Multi-agent DDPG ANN 1-Offline centralized learning and decentralized
2020 [58] AGC application; 2-Multiply an auto-correlated noise to the
actor for exploration; 3-An initialization process is
used for ANN training acceleration.
Li et al. 2020 Single-area Continuous Twin delayed ANN The twin delayed DDPG method is used to improve
[59] AGC DDPG the exploration process with multiple explorers.
(actor-critic)
Khooban et Microgrid FR Continuous DDPG ANN 1-DDPG method works as a supplementary controller
al. 2020 [60] (actor-critic) for a PID-based main controller to improve the online
adaptive performance; 2-Add Ornstein-Uhlenbeck
process based noises to the actor for exploration.
Younesi et al.  Microgrid FR Discrete Q-learning e-greedy Q-learning works as a supervisory controller for PID
2020 [61] controllers to improve the online dynamic response.
Chen et al. Emergency Discrete Single/multi-agent e-greedy/ 1-Offline learning and online application; 2-The
2020 [62] FR Q-learning/DDPG greedy/ANN Q-learning/DDPG-based controller is used for
limited/multiple emergency scenarios.
Abouheaf et Multi-area Continuous Integral RL Linear feedback Continuous-time integral-Bellman optimality equation
al. 2019 [63] AGC (actor-critic) controller is considered.
Wang et al. Optimization Discrete Multi-objective RL Greedy A constrained optimization model is built to solve for
2019 [65] of activation (Q-learning) optimal participation factors, where the objective is
rules in AGC the combination of multiple Q-functions.
Singh et al. Multi-area Discrete Q-learning Stochastic policy An estimator agent is defined to estimate the
2017 [69] AGC frequency bias factor 3; and determine the ACE

signal accordingly.

generation control model (18) are highly nonlinear and com-
plex. This motivates the use of model-free RL methods, since
the underlying physical models (17) and (18), together with
operational constraints, are simply treated as the environment
in the RL setting.

When controlling generators for FR, the action is defined
as the concatenation of the generation control commands
with @ := (PX)en. The corresponding action space is
continuous in nature but could get discretized in ()-learning-
based FR schemes [62], [69]. Besides, the continuous-time
system dynamics are generally discretized with the discrete-
time horizon 7 to fit the RL framework, and the time interval
At depends on the sampling or control period.

We denote APy, in (17) as the deviations of other power
injections, such as loads (negative power injection), the outputs
of renewable energy resources, the charging/discharging power
of energy storage systems, etc. Depending on the actual
problem setting, APy, can be treated as exogenous states with
additional dynamics, or be included in the action a if these
power injections are also controlled for FR [60], [61].

2) Reward Design: The design of the reward function plays
a crucial role in successful RL applications. However, there is
no general rule to follow, but one principle is to effectively
reflect the control goal. For multi-area AGC3, it aims to restore
the frequency and tie-line power flow to the nominal values
after disturbances. Accordingly, the reward at time t € T can

8For multi-area AGC problem, each control area is generally aggregated
and characterised by a single governor-turbine model (18). Then the control
actions for an individual generator within this area are allocated based on its
participation factor. Thus each bus 7 represents an aggregate control area, and
AP;; is the deviation of tie-line power interchange from area 4 to area j.
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be defined as the minus of frequency deviation and tie-line
flow deviation, e.g., in the square sum form (19) [58]:

r(t) = At Y ((Bdwi()? + (3 APy (1)), (19)

iEN juje€

where f3; is the frequency bias factor. For single-area FR, the
goal is to restore the system frequency, thus the term related
to tie-line power flow can be removed from (19). Besides,
the exponential function [71], absolute value function [59],
and other sophisticated reward functions involving the cost of
generation change and penalty for large frequency deviation
[59], can also be used.

3) Policy Learning: Since the system states may not be
fully observable in practice, the RL control policy is generally
defined as the map a(t) = w(o(t)) from the available mea-
surement observations o(t) to the action a(t). The following
two steps are critical to learn a good control policy.

o Select Effective Observations. The selection of observa-
tions typically faces a trade-off between informativeness and
complexity. It is helpful to leverage domain knowledge to
choose effective observations. For example, multi-area AGC
conventionally operates based on the area control error (ACE)
signal, given by ACE; = 51sz‘+2j; ijee AP;;. Accordingly,
the proportional, integral, and derivative (PID) counterparts
of the ACE signal, i.e., (ACE;(t), [ ACE;(t) dt, 1)) "are
adopted as the observation in [58]. Other measurements, such
as the power injection deviations AP APL, could also be
included in the observation [59], [69]. Reference [64] applies
the stacked denoising autoencoders to extract compact and
useful features from the raw measurement data for FR.
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e Select RL Algorithm. Both valued-based and policy-based
RL algorithms have been applied to FR in power systems.
In @-learning-based FR schemes, e.g., [69], the state and
action spaces are discretized and the e-greedy policy is used.
Recent works [58], [60] employ the DDPG-based actor-critic
framework to develop the FR schemes, considering continuous
action and observation. In addition, multi-agent RL is applied
to coordinate multiple control areas or multiple generators in
[58], [67], [69], where each agent designs its own control
policy a;(t) = m;(0;(t)) with the local observation o;. In this
way, the resultant algorithms can achieve centralized learning
and decentralized implementation.

4) Simulation Results: Reference [68] conducts simulations
on an interconnected power system with four provincial con-
trol areas, and demonstrates that the proposed emotional RL
algorithm outperforms SARSA, Q-learning and PI controllers,
with much smaller frequency deviations and ACE values in all
test cases. In [58], the numerical tests on the New England 39-
bus system show that the multi-agent DDPG-based controller
improves the mean absolute control error by 60.5% over
the DQN-based controller and 50.5% over a fine-tuned PID
controller. In [59], the simulations on a provincial power
grid with ten generator units show that the proposed DCR-
TD3 method achieves the frequency deviation of 6.35 x 1073
Hz and ACE of 26.48 MW, which outperforms the DDPG-
based controller (with frequency deviation of 6.48 x 1072 Hz
and ACE of 26.97 MW) and PI controller (with frequency
deviation of 15.54 x 10~3 Hz and ACE of 60.9 MW).

5) Discussion: Based on the existing works listed above,
we discuss several key observations as follows.

e Environment Model. Most of the references build envi-
ronment models or simulators to simulate the dynamics and
responses of power systems for training and testing their
proposed algorithms. These simulators are typically high fi-
delity with realistic component models, which are too complex
to be useful for the direct development and optimization
of controllers. Moreover, it is laborious and costly to build
and maintain such environment models in practice, and thus
they may not be available for many power grids. When such
simulators are unavailable, a potential solution is to train off-
policy RL schemes using real system operation data.

e Safety. Since FR is vital for power system operation,
it necessitates safe control policies. Specifically, two require-
ments need to be met: 1) the closed-loop system dynamics are
stable when applying the RL control policies; 2) the physical
constraints, such as line thermal limits, are satisfied. However,
few existing studies consider the safety issue of applying RL
to FR. A recent work [57] proposes to explicitly engineer the
ANN structure of DRL to guarantee the frequency stability.

o [ntegration with Existing Controllers. References [60],
[61] use the DRL-based controller as a supervisory or sup-
plementary controller to existing PID-based FR controllers, to
improve the dynamical adaptivity with baseline performance
guarantee. More discussions are provided in Section IV-D.

e Load-Side Frequency Regulation. The researches men-
tioned above focus on controlling generators for FR. Besides,
various emerging power devices, e.g., inverter-based PV units,
ubiquitous controllable loads with fast response, are promising
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complements to generation-frequency control [72], [73]. These
are potential FR applications of RL in smart grids.

B. Voltage Control

Voltage control aims to keep the voltage magnitudes across
the power networks close to the nominal values or stay within
an acceptable interval. Most recent works focus on voltage
control in distribution systems and propose a variety of con-
trol mechanisms [74]-[78]. As the penetration of renewable
generation, especially solar panels and wind turbines, deepens
in distribution systems, the rapid fluctuations and significant
uncertainties of renewable generation pose new challenges
to the voltage control task. Meanwhile, unbalanced power
flow, multi-phase device integration, and the lack of accurate
network models further complicate the situation. To this end,
a number of studies [79]-[96] propose using model-free RL
for voltage control. We summarize the related work in Table II
and present below how to solve the voltage control problem
in the RL framework.

1) Environment, State and Action: In distribution systems,
the controllable devices for voltage control can be classified
into slow timescale and fast timescale. Slow timescale devices,
such as on-load tap changing transformers (OLTCs), voltage
regulators, and capacitor banks, are discretely controlled on an
hourly or daily basis. The states and control actions for them
can be defined as

Sstow = ((vi)ien, (Pij, Qij)ijee, 77, TVE,

Aglow = (ATTC, ATVR ATCB),

7B, (20a)
(20b)

where v; is the voltage magnitude of bus i, and F;j, Q;;
are the active and reactive power flows over line ij. 71C,
TVR, 7CB denote the tap positions of the OLTCs, voltage
regulators, and capacitor banks respectively, which are discrete
values. A7TC ATVR ATCB denote the discrete changes of
corresponding tap positions.

The fast timescale devices include inverter-based DERs and
static Var compensators (SVCs), whose (active/reactive) power
outputs’ can be continuously controlled within seconds. Their
states and control actions can be defined as

Stast = ((Vi)ien, (Pij, Qij)ijee) (21a)
anst = (PPN, g7, ¢°V), (21b)
where pPER_ gPER collect the continuous active and reactive

power outputs of DERs respectively, and ¢°VC denotes the
reactive power outputs of SVCs.

Since RL methods handle continuous and discrete actions
differently, most existing studies only consider either continu-
ous control actions (e.g., gPF®) [92], [95], or discrete control
actions (e.g., 7°B and/or 77€) [89], [90]. Nevertheless, the
recent works [91], [98] propose two-timescale or bi-level RL-
based voltage control algorithms, taking into account both fast
continuous devices and slow discrete devices. In the rest of this

°Due to the comparable magnitudes of line resistance and reactance in
distribution networks, the conditions for active-reactive power decoupling are
no longer met. Thus active power outputs also play a role in voltage control,
and alternating current (AC) power flow models are generally needed.
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TABLE I
LITERATURE SUMMARY ON LEARNING FOR VOLTAGE CONTROL.
Reference Control Scheme State/Action Algorithm Policy Class Key Features
Space
Shi et. al. Reactive power Continuous DDPG ANN Through monotone policy network design, a Lyapunov
2021 [79] control function-based Stable-DDPG method is proposed for
voltage control with stability guarantee.
Lee et. al. Voltage regulators, Hybrid Proximal Graph A graph neural networks (topology)-based RL method is
2021 [80] capacitors, batteries policy convolutional proposed and extensive simulations are performed to
optimization network study the properties of graph-based policies.
Liu et. al. SVCs and PV units Continuous Multi-agent ANN Multiple agents are trained in a centralized manner to
2021 [81] constrained learn the coordination control strategies and are executed
soft in a decentralized manner based on local information.
actor-critic
Yin et. al. Automatic voltage Discrete Q-learning ANN The emotional factors are added to the ANN structure
2021 [82] control and Q-learning to improve the accuracy and
performance of the control algorithm.
Gao et. al. Voltage regulator, Hybrid/ Consensus ANN 1- The maximum entropy method is used to encourage
2021 [83] capacitor banks, discrete multi-agent exploration; 2- A consensus multi-agent RL algorithm is
OLTC DRL developed, which enables distributed control and
efficient communication.
Sun et. al. PV reactive power Hybrid/ Multi-agent ANN A voltage sensitivity based DDPG method is proposed,
2021 [84] control continuous DDPG which analytically computes the gradient of value
function to action rather than using the critic ANN.
Zhang et. al. Smart inverters, Continuous/ Multi-agent e-greedy 1- Both the network loss and voltage violation are
2021 [85] voltage regulators, discrete DQN considered in the reward definition; 2- Multi-agent DQN
and capacitors is used to enhance the scalability of the algorithm.
Mukherjee et. Load shedding Continuous Hierarchical LSTM 1- A hierarchical multi-agent RL algorithm with two
al. 2021 [86] DRL levels is developed to accelerate learning; 2- Augmented
random search is used to solve for optimal policies.
Kou et. al. Reactive power Continuous DDPG ANN A safety layer is formed on top of the actor network to
2020 [87] control ensure safe exploration, which predicts the state change
and prevents the violation of constraints.
Al-Saffar et. Battery energy Discrete Monte-Carlo Greedy The proposed approach divides a network into multiple
al. 2020 [88] storage systems tree search smaller segments based on impacted regions; and it
solves the over-voltage problem via Monte-Carlo tree
search and model predictive control.
Xu et. al. Set OLTC tap Hybrid/ LSPI (batch Greedy 1- “Virtual” sample generation is used for better
2020 [90] positions discrete RL) exploration; 2- Adopt a multi-agent trick to handle
scalability and use Radial basis function as state features.
Yang et. al. On-off switch of Hybrid/ DQN Greedy Power injections are determined via traditional OPF in
2020 [91] capacitors discrete fast timescale, and the switching of capacitors is
determined via DQN in slow timescale.
Wang et. al. Generator voltage Continuous Multi-agent ANN Adopt a competitive (game) formulation with specially
2020 [92] setpoints DDPG designed reward for each agent.
Wang et. al. Set tap/on-off Hybrid/ Constrained ANN 1- Model the voltage violation as constraint using the
2020 [93] positions Discrete SAC constrained MDP framework; 2- Reward is defined as
the negative of power loss and switching cost.
Duan et. al. Generator voltage Hybrid DQN/DDPG Decaying e- 1- DQN is used for discrete action and DDPG is used
2020 [94] setpoints greedy/ANN for continuous action; 2- Decaying e-greedy policy is
employed in DQN to encourage exploration.
Cao et. al. PV reactive power Continuous Multi-agent ANN The attention neural network is used to develop the
2020 [95] control DDPG critic to enhance the algorithm scalability.
Liu et. al. Reactive power Continuous Adversarial Stochastic 1- A two-stage RL method is proposed to improve the
2020 [96] control RL [97]/SAC policy online safety and efficiency via offline pre-training; 2-

Adversarial SAC is used to make the online application
robust to the transfer gap.
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subsection, we uniformly use s and a to denote the state and
action.

Given the definitions of state and action, the system dynam-
ics that depict the environment can be formulated as

s(t+1) = j"(s(t)7 a(t), p™(t), qex(t)),

where p®, ¢°* denote the exogenous active power and reactive
power injections to the grid, including load demands and other
generations. The transition function f captures the tap position
evolution and the power flow equations, which could be very
complex or even unknown in reality. The exogenous injections
P, @** include the uncontrollable renewable generations that
are difficult to predict well. These issues motivate the RL-
based voltage control schemes as the dynamics model (22) is
not required in the RL setting.

2) Reward Design: The goal of voltage control is to
maintain the voltage magnitudes close to the nominal value
(denoted as 1 per unit (p.u.)) or within an acceptable range.
Accordingly, the reward function is typically in the form of
penalization on the voltage deviation from 1 p.u. For example,
in [90], [91], [95], the reward is defined as (23),

r(s,a) = — Z(vi —1)2

€N

(22)

(23)

An alternative is to set the reward to be negative (e.g., —1)
when the voltage is outside an acceptable range (e.g., £5%
of the nominal value), and positive (e.g., +1) when inside the
range [94]. Moreover, the reward can incorporate the operation
cost of controllable devices (e.g., switching cost of discrete
devices), power loss [93], and other sophisticated metrics [92].

3) RL Algorithms: Both value-based and policy-based RL
algorithms have been applied for voltage control:

o Value-Based RL. Several works [89]-[91], [94] adopt
value-based algorithms, such as DQN and LSPI, to learn
the optimal @Q-function with function approximation, typically
using ANNs [91], [94] or radial basis functions [90]. Based
on the learned @-function, these works use the greedy policy
as the control policy, i.e., a(t) = argmaxge4 Q(s(t),a).
Two limitations of the greedy policy include 1) the action
selection depends on the state of the entire system, which
hinders distributed implementation; 2) it is usually not suitable
for continuous action space since the maximization may be
difficult to compute, especially when complex function ap-
proximation, e.g., with ANNSs, is adopted.

e Policy-Based RL. Compared with value-based RL meth-
ods, the voltage control schemes based on actor-critic al-
gorithms, e.g., [92]-[95], are more flexible, which can ac-
commodate both continuous and discrete actions and enable
distributed implementation. Typically, a parameterized deter-
ministic policy class ¢PER = 7, o, (0PER) is employed for
each DER device ¢, which determines the reactive power
output gPER based on local observation oP?ER with parameter
0;. The policy class m; g, is often parameterized using ANNs.
Then some actor-critic methods, e.g., multi-agent DDPG, are
used to optimize parameter 8;, where a centralized critic learns
the Q-function with ANN approximation and each DER device
performs the policy gradient update as the actor.
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4) Simulation Results: In [85], the simulations on the IEEE
123-bus system show that the proposed multi-agent DQN
method converges to a stable reward level after about 4000
episodes during the training process, and it achieves an average
power loss reduction of 75.23 kW compared with a baseline
method. In [93], the tests on a 4-bus feeder system show that
the constrained SAC and DQN methods take about 1 x 10*
training samples to achieve stable performance, while the
constrained policy optimization (CPO) method requires up to
5 x 10° training samples to converge. Besides, the constrained
SAC achieves the highest return and almost zero voltage
violations for the 34-bus and 123-bus test feeders. In [90], it
takes about 30 seconds for the proposed LSPI-based algorithm
to converge in the case of IEEE 13-bus test feeder, which is
faster than the exhaustive search approach by several orders
of magnitude but maintains a similar level of reward.

5) Discussion: Some key issues of applying RL to voltage
control are discussed below:

e Scalability. As the network scale and the number of
controllable devices increase, the size of the state/action space
grows exponentially, which poses severe challenges in learning
the Q-function. Reference [90] proposes a useful trick that
defines different QQ-functions for different actions, which leads
to a scalable method under its special problem formulation.

e Data Availability. To learn the Q-function for a given
policy, on-policy RL methods, such as actor-critic, need to
implement the policy and collect sample data. This could
be problematic since the policy is not necessarily safe, and
thus the implementation on real-world power systems may
be catastrophic. One remedy is to train the policy on high-
fidelity simulators. Reference [90] proposes a novel method to
generate virtual sample data for a certain policy, based on the
data collected from implementing another safe policy. More
discussions on safety are provided in Section IV-A.

e Topology Change. The network topology, primarily for
distribution systems, is subject to changes from time to
time due to network reconfiguration, line faults, and other
operational factors. A voltage control policy trained for a
specific topology may not work well under a different network
topology. To cope with this issue, the network topology can
be included as one of the states or a parameter of the policy.
Reference [80] represents the power network topology with
graph neural networks and studies the properties of graph-
based voltage control policies. Besides, if the set of network
topologies is not large, one can train a separate control policy
offline for each possible topology and apply the corresponding
policy online. To avoid learning from scratch and enhance
efficiency, one may use transfer RL [99] to transplant the well-
trained policy for a given topology to another.

C. Energy Management

Energy management is an advanced application that utilizes
information flow to manage power flow and maintain power
balance in a reliable and efficient manner. To this end, energy
management systems (EMSs) are developed for electric power
control centers to monitor, control, and optimize the system
operation. With the assistance of the supervisory control and
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data acquisition (SCADA) system, the EMS for transmission
systems is technically mature. However, for many sub-regional
power systems, such as medium/low-voltage distribution grids
and microgrids, EMS is still under development due to the
integration of various DER facilities and the lack of metering
units. Moreover, an EMS family [100] with a hierarchical
structure is necessitated to facilitate different levels of energy
management, including grid-level EMS, EMS for coordinating
a cluster of DERs, home EMS (HEMS), etc.

In practice, there are significant uncertainties in energy man-
agement, which result from unknown models and parameters
of power networks and DER facilities, uncertain user behaviors
and weather conditions, etc. Hence, many recent studies adopt
(D)RL techniques to develop data-driven EMS. A summary
of the related literature is provided in Table III. In the rest
of this subsection, we first introduce the RL models of DERs
and adjustable loads, then review the RL-based schemes for
different levels of energy management problems.

1) State, Action, and Environment: We present the action,
state and environment models for several typical DER facili-
ties, buildings, and residential loads.

e Distributed Energy Resources: For compact expression,
we consider a bundle of several typical DERs, including a
dispatchable PV unit, a battery, an EV, and a diesel generator
(DG). The action at time t € T is defined as

aPER(t) = (p"V (1), pP(t), PV (), pPC(1)).

Here, p*V,pB2t, pPV pPG are the power outputs of the PV

unit, battery, EV, and DG respectively, which are continuous.
pBat pEV can be either positive (discharging) or negative

(charging). The DER srate at time ¢ can be defined as
sPER () = (p7V (1), BP(1), BPY(2), V(1))

(24)

PV _ Bat
) )

(25)

where p*'V is the maximal PV generation power determined
by the solar irradiance. The PV output p*V can be adjusted
within the interval [0, p*'V], and p*'V (¢) = p¥'V (¢) when the PV
unit operates in the maximum power point tracking (MPPT)
mode. EB2t, EEV denote the associated state of charge (SOC)
levels. ™V captures other related states of the EV, e.g. current
location (at home or outside), travel plan, etc.

e Building HVAC: Buildings account for a large share of
the total energy usage, about half of which is consumed by
the heating, ventilation, and air conditioning (HVAC) systems
[101]. Smartly scheduling HVAC operation has huge potential
to save energy cost, but the building climate dynamics are
intrinsically hard to model and affected by various environ-
mental factors. Generally, a building is divided into multiple
thermal zones, and the action at time ¢ is defined as

a"™VAC(t) == (Tu(t), Tu(t), (m'(t))ien),

where T, and T are the conditioned air temperature and the
supply air temperature, respectively. m’ is the supply air flow
rate at zone 7 € N. The choice of states is subtle, since many
exogenous factors may affect the indoor climate. A typical
definition of the HVAC state is

SHVAC (t) = (Tout (t)) (niTL (t)7 h7‘ (t), ei (t)) iEN) )

(26)

27
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where T,,; and T}, are the outside temperature and indoor
temperature of zone i; k' and e’ are the humidity and occu-
pancy rate of zone 7, respectively. Besides, the solar irradiance,
the carbon dioxide concentration and other environmental
factors may also be included in the state s™VAC,

e Residential Loads: Residential demand response (DR)
[102] that motivates changes in electric consumption by end-
users in response to time-varying electricity price or incentive
payments attracts considerable recent attention. The domestic
electric appliances are classified as 1) non-adjustable loads,
e.g., computers and refrigerators, which are critical and must
be satisfied; 2) adjustable loads, e.g., air conditioners and
washing machines, whose operating power or usage time can
be adjusted. The action for an adjustable load i at time t € T
can be defined as

al(t) := (2 (t), pE(t)), i € N, (28)

where binary z € {0, 1} denotes whether switching the on/off
working mode (equal to 1) or keeping unchanged (equal to
0). pX is the power consumption of load 4, which can be
adjusted either discretely or continuously depending on the
load characteristics. The operational state of load ¢ can be
defined as

sp(t) == (o (t), @y (1)), i € N, (29)

where binary o equals 0 for the off status and 1 for the on
status. az% collects other related states of load ¢. For example,
the indoor and outdoor temperatures are contained in x}* if
load 7 is an air conditioner [103]; and :c% captures the task
progress and the remaining time to the deadline for a washing
machine load.

e Other System States: In addition to the operational states

above, there are some critical system states for EMS, e.g.,

s (t) == (t, £(t — Kp i t + Ky),0(t), P(t),--+), (30)

including the current time ¢, electricity price £ (from past K,
time steps to future Ky time predictions) [104], voltage profile
v = (v;)ien, power flow P := (P;;)ijee, etc.

The state definitions in (25), (27), and (29) only contain
the present status at time ¢, which can also include the past
values and future predictions to capture the temporal patterns.
In addition, the previous actions may also be considered
as one of the states, e.g., adding aPFR(t —1) to the state
sPER(¢). For different energy management problems, their
state s and action a are determined accordingly by selecting
and combining the definitions in (but not limited to) (24)-(30).
And the environment model is given by

s(t+1) = f(s(t), a(t), u™(1)),

where u®* captures other related exogenous factors. We note
that the RL models presented above are examples for illus-
trative purposes, and one needs to build its own models to fit
specific applications.

2) Energy Management Applications: Energy management
indeed covers a broad range of sub-topics, including integrated
energy systems (IESs), grid-level power dispatch, management
of DERs, building HVAC control, and HEMS, etc. We present

&1V
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these sub-topics in a hierarchical order below, and summarize
the basic attributes and key features of representative refer-
ences in Table III.

o [ntegrated Energy Systems [105], also referred to as
multi-energy systems, incorporate the power grids with heat
networks and gas networks to accommodate renewable energy
and enhance the overall energy efficiency and flexibility [106].
Reference [107] proposes a DDPG-based real-time control
strategy to manage a residential multi-energy system, where
DERs, heat pumps, gas boilers, and thermal energy storage
are controlled to minimize the total operational cost. In [108],
the management of IESs with integrated demand response is
modeled as a Stackelberg game, and an actor-critic scheme
is developed for the energy provider to adjust pricing and
power dispatching strategies to cope with unknown private
parameters of users. Extensive case studies are conducted in
[109] to compare the performance of a twin delayed DDPG
scheme against a benchmark linear model-predictive-control
method, which empirically show that RL is a viable optimal
control technique for IES management and can outperform
conventional approaches.

e Grid-Level Power Dispatch aims to schedule the power
outputs of generators and DERs to optimize the operating cost
of the entire grid while satisfying the operational constraints.
Optimal power flow (OPF) is a fundamental tool of traditional
power dispatch schemes. Several recent works [110]-[114]
propose DRL-based methods to solve the OPF problem in
order to achieve fast solution and cope with the absence of
accurate grid models. Most existing references [115]-[120]
focus on the power dispatch in distribution grids or microgrids.
In [118], a model-based DRL algorithm is developed to online
schedule a residential microgrid, and Monte-Carlo tree search
is adopted to find the optimal decisions. Reference [120]
proposes a cooperative RL algorithm for distributed economic
dispatch in microgrids, where a diffusion strategy is used to
coordinate the actions of many DERs.

e Device-Level Energy Management focuses on the optimal
control of DER devices and adjustable loads, such as EV,
energy storage system, HVAC, and residential electric appli-
ances, which usually aims to minimize the total energy cost
under time-varying electricity price. In [121]-[123], various
RL techniques are studied to design EV charging policies
to deal with the randomness in the arrival and departure
time of an EV. See [124] for a review on RL-based EV
charging management systems. References [125]-[127] adopt
DQN and DDPG to learn the charging/discharging strategy for
controlling battery systems considering unknown degradation
models. In terms of building HVAC control, there are multiple
uncertainty factors such as random zone occupancy, unknown
thermal dynamics models, uncertain outdoor temperature and
electricity price, etc. Moreover, the thermal comfort and air
quality need to be guaranteed. To this end, a number of studies
[128]-[132] leverage DRL for HVAC system control. In [104],
[133]-[135], DRL-based HEMS is developed to optimally
schedule household electric appliances, considering resident’s
preferences, uncertain electricity price and weather conditions.

3) Simulation Results: In [136], the offline training of DQN
over 1000 episodes takes about 2 hours, and the simulations

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

show that the double DQN-based HEMS can reduce the
user’s daily electricity payment by about 50%. In [137], the
DDPG-based EMS method achieves a relatively stable reward
after 3000 episodes in the training process, and reduces the
total energy cost by 15.2% and 8.1% compared with two
baseline algorithms. In the case studies of [121], the training
of ANN converges after about 35000 epochs; the DQN-based
EV charging scheme decreases the charging cost by 77.3% in
comparison with the uncontrolled solution and performs better
than other benchmark solutions. Reference [138] compares
the training efficiency of DQN, DPG, and prioritized DDPG,
which take about 8000, 13000, and 6200 episodes to reach the
benchmark performance, respectively.

4) Discussion: Some key issues are discussed as follows.

e Challenges in Controlling DERs and Loads. Large-scale
distributed renewable generation introduces significant uncer-
tainty and intermittency to energy management, which requires
highly accurate forecasting techniques and fast adaptive con-
trollers to cope. The partial observability issue of complex
facilities and the heterogeneity of various devices lead to
further difficulties in coordinating massive loads. Moreover,
the control of HVACs and residential loads involves interaction
with human users; thus it is necessary to take into account user
comfort and learn unknown and diverse user behaviors.

e Physical Constraints. There are various physical con-
straints, e.g., the state of charge limits for batteries and EVs,
that should be satisfied when taking control actions. Reference
[120] formulates the constraint violation as a penalty term
in the reward, in the form of a logarithmic barrier function.
Reference [122] builds a constrained MDP problem to take
into account the physical constraints and solves the problem
with the constrained policy optimization method [123]. These
methods impose the constraints in a “soft” manner, and there
is still a chance to violate the constraints. More discussions
are provided in Section IV-A.

e Hybrid of Discrete and Continuous State/Action. Energy
management often involves the control of a hybrid of discrete
devices and continuous devices, yet the basic RL methods only
focus on handling either discrete or continuous actions. Some
@-learning-based work [133] discretizes the continuous action
space to fit the algorithm framework. Reference [134] proposes
an ANN-based stochastic policy to handle both discrete and
continuous actions, combining a Bernoulli policy for on/off
switch actions and a Gaussian policy for continuous actions.

D. Other Applications

In addition to the three critical applications above, other
applications of RL in power systems include electricity market
[140], [141], network reconfiguration [142], service restoration
[143], [144], emergency control [145], maximum power point
tracking [146], [147], cyber security [148], [149], maintenance
scheduling [150], protective relay control [151], electric ve-
hicle charging navigation [152], demand response customer
selection [153], power flexibility aggregation [154], etc.

E. Numerical Implementation

In this subsection, we present the overall procedure, useful
tools, and available testbeds for the numerical implementation
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TABLE III
LITERATURE SUMMARY ON LEARNING FOR ENERGY MANAGEMENT.
Reference Problem State/Action Algorithm Policy Class Key Features
Space
Ye et al. IES Hybrid DDPG Gaussian policy The prioritized experience replay method is used to
2020 [107] management (actor-critic) enhance the sampling efficiency of the experience
replay mechanism.
Xu et al. IES Discrete Q-learning Stochastic policy RL-based differential evolution algorithms are
2021 [106] management developed to solve the complex IES scheduling issue.
Yan et al. Optimal Continuous DDPG ANN Rather than using the critic network, the deterministic
2020 [110] power flow gradient of a Lagrangian-based value function is
derived analytically.
Woo et al. Optimal Continuous Twin delayed ANN The appropriate reward vector in the training process
2020 [112] power flow DDPG is set to build decision policies, considering power
system constraints.
Zhou et al. Optimal Continuous Proximal policy Gaussian policy Imitation learning is adopted to generate initial
2020 [113] power flow optimization weights for ANNs and proximal policy optimization is
used to train a DRL agent for fast OPF solution.
Hao et al. Microgrid Continuous Hierarchical RL Two knowledge 1- Hierarchical RL is used to reduce complexity and
2021 [117] power rule-based policies  improve learning efficiency; 2- Incorporated with
dispatch domain knowledge, it avoids baseline violation and
additional learning beyond feasible action space.
Lin et al. Power Continuous Soft A3C Gaussian policy The edge computing technique is employed to
2020 [115] dispatch accelerate the computation and communication in a
cloud environment.
Zhang et al. Distribution Continuous Fitted Q-iteration e-greedy The Q-function is parameterized by polynomial
2020 [116] power approximation and optimized using a regularized
dispatch recursive least square method with a forgetting factor.
Wan et al. EV charging Continuous/ Double DQN e-greedy A representation network is constructed to extract
2019 [121] scheduling discrete features from the electricity price.
Liet al. 2020  EV charging Continuous Constrained policy Gaussian policy A constrained MDP is formulated to schedule the
[122] scheduling optimization [123] charging of an EV, considering charging constraints.
Silva et al. EV charging Discrete Multi-agent e-greedy Use multi-agent multi-objective RL to mode the EV
2020 [139] scheduling Q-learning charging coordination with the W -learning method.
Bui et al. Battery Hybrid/ Double DQN e-greedy To mitigate the overestimation problem, double DQN
2020 [125] management discrete with a primary network for action selection and a
target network is used.
Cao et al. Battery Hybrid/ Double DQN Greedy A hybrid CNN and LSTM model is adopted to predict
2020 [126] management discrete the future electricity price.
Yu et al. Building Continuous Multi-actor- Stochastic Policy A scalable HVAC control algorithm is proposed to
2021 [130] HVAC attention-critic solve the Markov game based on multi-agent DRL
with attention mechanism.
Gao et al. Building Continuous DDPG ANN A feed-forward ANN with Bayesian regularization is
2020 [129] HVAC built for predicting thermal comfort.
Mocanu et al. Building Hybrid DPG and DQN ANN Both DPG and DQN are implemented for building
2019 [131] energy energy control and their performances are compared
management numerically.
Xu et al. HEMS Continuous/ Multi-agent e-greedy Use extreme learning machine based ANNs to predict
2020 [133] discrete Q-learning future PV output and electricity price.
Li et al. 2020 HEMS Hybrid Trust region policy ANNSs-based A policy network determines both discrete actions
[134] optimization stochastic policy (on/off switch with Bernoulli policy) and continuous
actions (power control with Gaussian policy).
Alfaverh et HEMS Discrete Q-learning Stochastic policy Fuzzy sets and fuzzy reasoning rules are used to
al. 2020 simplify the action-state space.
[135]
Chen et al. Residential Continuous Thompson Stochastic policy Logistic regression is employed to predict customers’
2021 [103] load control sampling opt-out behaviors in demand response and Thompson

sampling is used for online learning.
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of (D)RL in power system applications. The implementation
procedure generally comprises the following three steps:

1) Environment Setup: First, an environment simulator
specifying states, actions, observations, and internal transition
needs to be built to simulate the real system and applications.
The OpenAl Gym [155] is a prominent toolkit that provides
many simulation environments of physical systems, games,
and robots for RL research. As for power system applications,
most existing works build their own synthetic environments
to train and test RL algorithms based on standard IEEE test
systems or real power grids. In [156], a framework called Gym-
ANM is developed to establish RL environments for active
network management tasks in distribution systems. Besides,
the Gird20p framework'? is an open-source environment for
training RL agents to operate power networks, which is the
testbed for the Learning to Run a Power Network (L2RPN)
challenge [157]. Other recently developed RL environments
include RLGC [145] for power system control, gymgrid [158]
and OMG [159] for microgrid simulation and control, and
PowerGym [160] for voltage control in distribution systems,
etc. A variety of test systems and test cases are available in
these environments.

2) Agent Setup: Then, one needs to create an agent (or
agents) that specifies the reward function, RL methods, and
policies to interact with the environment, i.e., receiving ob-
servations and taking control actions. For the implementation
of DRL with ANNS, the mainstream open-source deep learn-
ing frameworks include TensorFlow [161], PyTorch [162],
Keras'!, MXNet'?, CNTK [163], etc. Building on top of these
deep learning frameworks, there are several widely-used open-
source RL libraries, such as Tensorforce'®, Stable Baselines',
RL Coach, KerasRL, TF Agents, etc., which basically cover
the implementation of all state-of-the-art RL algorithms.

3) Agent Training and Testing: With the environment and
the agent in place, the embedded functions in the RL frame-
works introduced above can be directly used to train and test
the agent, or researchers can code their own implementation
with tailored designs. Besides, there are some commercial
toolboxes available for RL implementation. For examples, the
MathWorks RL toolbox [164] can be used to build and train
agents under the environments modeled in Matlab or Simulink.

IV. CHALLENGES AND PERSPECTIVES

This section presents the critical challenges of using RL in
power system applications, i.e., safety and robustness, scala-
bility, and data. Several future directions are then discussed.

A. Safety and Robustness

Power systems are vital infrastructures of modern societies.
Hence, it is necessary to ensure that the applied controllers
are safe, in the sense that they do not drive the power system
operational states to violate critical physical constraints, or

10Grid20p package [Online]: https://github.com/rte-france/Grid2Op.
Keras library [Online]: https:/keras.io/.

12 Apache MXNet library [Online]: mxnet.apache.org.

BTensorforce library [Online]: https:/github.com/tensorforce/tensorforce.
14Stable Baselines [Online]: https://stable-baselines.readthedocs.io/.
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cause instability or reliability issues. Regarding RL-based
control schemes, there are two aspects of safety concern:

1) Guarantee that the learning process is safe (also referred
to as safe exploration). For this issue, off-policy RL methods
[90] are more desirable, where the training data are generated
from existing controllers that are known to be safe. In contrast,
it remains an open question for on-policy RL to guarantee
safe exploration. Some attempts [165]-[168] propose safe on-
policy exploration schemes based on Lyapunov criterion and
Gaussian process. The basic idea is to construct a certain safety
region, and special actions are taken to drive the state back
once approaching the boundary of this safety region. See [169]
for a comprehensive survey on safe RL. However, almost all
the existing works train their RL control policies only based on
high-fidelity power system simulators, and it is plausible that
the safe exploration problem is circumvented. Nevertheless,
one can argue that there might be a substantial gap between
the simulator and the real-world system, leading to the failure
of generalization in real implementation. A possible remedy
is to employ the robust (adversarial) RL methods [96], [97],
[170] in simulator-based policy training.

2) Guarantee that the final learned control policy is safe.
It is generally hard to verify whether a policy is safe or the
generated actions can respect physical operational constraints.
Some common methods to deal with constraints include 1)
formulating the constraint violation as a penalty term to the
reward, 2) training the control policy based on a constrained
MDP [93], [122], 3) adding a heuristic safety layer to adjust
the actions such that the constraints are respected. Specifically,
the second method aims to learn an optimal policy 7* that
maximizes the expected total return J(7) and is subject to a
budget constraint:

7" € argmax J(m), st J(m) <d, (32)

where J¢() is the expected total cost and d is the budget.
By defining the physical constraint violation as certain costs
in J¢(m), (32) imposes safety requirements to some degrees.
Typical approaches to solve the constrained MDP problem (32)
include the Lagrangian methods [93], [171], constrained policy
update rules [123], etc.

We briefly introduce three related RL variants below, i.e.,
constrained RL, adversarial RL, and robust RL.

e Constrained RL deals with the safety issue and constraints.
Two types of constraints, i.e., soft and hard constraints, are
generally considered in the literature. The common ways to
handle soft constraints include 1) using barrier functions or
penalty functions to integrate the constraints to the reward
function [172]; 2) modeling as a chance constraint (i.e., the
probability of constraint violation is no larger than a predefined
threshold) [173], [174] or a budget constraint (such as the
constraint in model (32)) [175], [176]. In terms of hard
constraints, the predominant approach is to take conservative
actions to ensure that the hard constraints are satisfied at all
times, despite the problem uncertainties [177]. However, such
schemes usually lead to conservativeness and may not work
well when the underlying system is complex.

e Adversarial RL [97], [178] adopts a two-player game
structure where the learner agent learns to take actions against
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an adversarial agent whose objective is different from or even
opposite to the learner agent. When applying adversarial RL to
the power system cyber security problem [179]-[181], one can
model the cyber attacker as the adversarial agent, whose attack
actions, attack schemes, and payoffs depend on the practical
settings. Reference [180] formulates a repeated game to mimic
the interactions between the attackers and defenders in power
systems. Reference [181] proposes an agent-specific adversary
MDP to learn an adversarial policy and uses it to improve the
robustness of RL methods via adversarial training.

e Robust RL [170], [182] employs a min-max framework
to learn robust control policies, where “min” corresponds
to the learner and “max” corresponds to the adversary. The
adversary is generally designed to choose uncertain parameters
(e.g. future renewable generation) from an uncertainty set or
select the worst-case scenarios from a predefined contingency
event set. Embedding the min-max structure in RL algorithms
has been an active research area. Early studies [183], [184]
focus on robust MDP with uncertain parameters. Recent work
[185] extends single-agent robust RL [182], [186] to deal with
parametric uncertainty in multi-agent RL. Applying robust RL
to power system applications is an important future direction to
deal with parametric uncertainties, data errors, and mismatches
between simulators and real-world systems.

B. Scalability

It is observed that most existing studies run simulations
and tests on small-scale power systems with a few decision-
making agents. To the best of our knowledge, no real-world
implementation of RL control schemes has been reported yet.
A crucial limitation for RL in large-scale multi-agent systems,
such as power systems, is the scalability issue, since the state
and action spaces expand dramatically as the number of agents
increases, known as ‘“curse of dimensionality”. Multi-agent
RL and function approximation techniques are useful for im-
proving the scalability, while they are still under development
with many limitations. For example, there are limited provable
guarantees on how well Q-function can be approximated with
ANNS, and it is unclear whether it works for real-size power
grids. Moreover, even though each agent can deploy a local
policy to determine its own action, most existing multi-agent
RL methods still need centralized learning among all the
agents because the -function depends on the global state and
all agents’ actions. One potential direction to enable distributed
learning is to leverage local dependency properties (e.g., the
fast decaying property) to find near-optimal localized policies
[187], [188]. Besides, some application-specific approximation
methods can be utilized to design scalable RL algorithms. For
instance, reference [90] develops a scalable LSPI-based volt-
age control scheme, which sequentially learns an approximate
Q-function for each component of the action, when the other
components are assumed to behave greedily according to their
own approximate ()-functions.

C. Data

1) Data Quantity, Quality, and Availability: Evaluating the
amount of data needed for training a good policy, namely
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sample complexity, is a challenging and active research area
in the RL community. For classical RL algorithms, such as
Q@-learning, the sample complexity depends on the size of
the state and action spaces; the larger the state and action
spaces are, the more data are generally needed to find a near-
optimal policy [25], [189]. For modern RL methods commonly
used in power systems, such as DQN and actor-critic, the
sample complexity also depends on the complexity of the
function class adopted to approximate the (Q-function and the
intrinsic approximation error of the function class [48], [190].
In addition, data quality is one of the critical factors affecting
learning efficiency. Real measurement and operational data
of power grids suffer from various issues, such as missing
data, outlier data, noisy data, etc., thus a pre-processing on
raw data is needed. Theoretically, larger variance in noisy
observations typically leads to higher sample complexity for
achieving a certain level of accuracy. Besides, almost all the
references reviewed above assume that high-fidelity simulators
or accurate environment models are available to simulate the
system dynamics and response, which are the sources of
sample data for training and testing RL policies. When such
simulators are unavailable, data availability becomes an issue
for the application of on-policy RL algorithms.

2) Potential Directions to Address Data Issues: Despite
successful simulation results, theoretical understanding of the
sample complexity of modern RL algorithms is limited. In
addition, many power system applications use multi-agent
training methods with partial observation and adopt ANNSs for
function approximation, further complicating the theoretical
analysis. A key solution to improve the sample complexity of
training RL policies is the use of warm starts. Empirical results
[191] validate that good initialization can significantly enhance
training efficiency. There are multiple ways to achieve a warm
start, such as 1) utilizing existing controllers for pre-training
[58], [192], 2) encoding domain knowledge into the design of
control policies [191], 3) transfer learning [99] that transplants
well-trained policies to a similar task to avoid learning from
scratch, 4) imitation learning [193] that learns from available
demonstrations or expert systems, etc.

In terms of data availability and quality, one can deal with
them from algorithmic and physical levels. At the algorithmic
level, when high-fidelity simulators are unavailable, a potential
solution is to construct training samples from existing system
operational data and employ off-policy RL methods to learn
control policies. Other training techniques such as generating
virtual samples from limited data to boost the data availability
[90] can also be adopted. There have been extensive studies
on data quality improvement in the data science field, such as
data sanity check, missing data imputation, bad data identifi-
cation, etc. At the physical level, 1) deploying more advanced
sensors and smart meters and 2) upgrading communication
infrastructure and technologies can improve data availability
and quality at the source.

3) Standardized Dataset and Testbed: Existing works in the
power literature mostly use synthetic test systems and datasets
to simulate and test the proposed RL-based algorithms, and
they may not provide many implementation details and codes.
Hence, it is necessary to develop benchmark datasets and au-
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thoritative testbeds for power system applications to standard-
ize the testing of RL algorithms and facilitate fair performance
comparison. We summarize several available RL environments
for power system applications in Section III-E.

4) Big Data Techniques: The big data in smart grids include
1) measurement data from SCADA, PMUs, AMI, and other
advanced metering facilities, 2) electricity market pricing and
bidding data, 3) equipment monitoring, control, maintenance,
and management data, 4) meteorological data, etc. They can
benefit the application of data-driven RL in various ways
[194]. For example, big data mining techniques for knowledge
discovery can be adopted to detect special events, determine
effective observations, and identify critical latent states. Pattern
extraction from massive datasets can be utilized to classify and
cluster similar events, agents and user behaviors, to improve
the data efficiency of RL algorithms.

D. Other Key Future Directions

Regarding the challenges in applying RL to power systems,
we present several potential future directions as below.

1) Integrate Model-free and Model-based Methods: Actual
power system operation is not a black box and has abundant
model information to use. Purely model-free approaches may
be too radical to exploit available information and suffer
from their own limitations, such as the safety and scalability
issues discussed above. Since existing model-based methods
have already been well studied in theory and applied in the
industry with acceptable performance, one promising future di-
rection is to combine model-based and model-free methods for
complementarity and achieve both advantages. For instance,
model-based methods can serve as warm-starts or the nominal
model, or be adopted to identify critical features for model-
free methods. Besides, model-free methods can coordinate and
adjust the parameters of incumbent model-based controllers to
improve their adaptivity with baseline performance guarantees.
Reference [195] summarizes three potential integration ways:
implementing model-based and model-free methods in serial,
in parallel, or embedding one as an inner module in the other.
Despite limited work, e.g. [192], [196], on this subject so far,
integrating model-free RL with existing model-based control
schemes is envisioned to be an important future direction.

2) Exploit Suitable RL Variants: RL is a fundamental and
vibrant research field attracting a great deal of attention.
New advances in RL algorithms appear frequently. Besides
DRL, multi-agent RL, and robust RL. mentioned above, a
wide range of branches in the RL field, such as transfer
RL [99], meta RL [197], federated RL [198], inverse RL
[37], integral RL [13], Bayesian RL [199], hierarchical RL
[200], interpretable RL [201], etc., can improve the learning
efficiency and tackle specific problems in suitable application
scenarios. For instance, transfer RL can be used to transplant
the well-trained policies for one task to another similar task,
so that it does not have to learn from scratch and thus can
enhance the training efficiency.

3) Leverage Domain Knowledge and Problem Structures:
The naive application of existing RL algorithms may encounter
many troubles in practice. In addition to algorithmic advances,
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leveraging domain knowledge and exploiting application-
specific structures to design tailored RL algorithms are nec-
essary to achieve superior performance. Specifically, domain
knowledge and empirical evidence can guide the definition
of state and reward, the initialization of the policy, and the
selection of RL algorithms. For example, the area control error
(ACE) signal is often used as the state in RL-based frequency
regulation. Besides, the specific problem structures are use-
ful in determining the policy class, approximation function
class, hyperparameters, etc., to improve training efficiency and
provide performance guarantees. For example, reference [57]
leverages two special properties of the frequency regulation
problem and designs the policy network in a particular struc-
ture to ensure the stability of the resultant RL controllers.

4) Satisfy Practical Requirements: The following concrete
requirements on RL-based methods need to be met to enable
practical implementation in power systems.

« As discussed above, the safety, scalability, and data issues
of RL-based methods need to be addressed.

« RL-based algorithms should be robust to the noises and
failures in measurement, communication, computation,
and actuation, to ensure reliable operation.

o To be used with confidence, RL-based methods need to be
interpretable and have theoretical performance guarantee.

e Since RL requires a large amount data from multi-
stakeholders, the data privacy should be preserved.

o As power systems generally operate under normal condi-
tions, it remains an unsolved problem to ensure that RL
control policies learned from real system data have suffi-
cient exploration and perform well in extreme scenarios.

« Since RL-based approaches heavily rely on information
flow, the cyber security should be guaranteed under
various malicious cyber attacks.

« Existing RL-based algorithms mostly take tens of thou-
sands of iterations to converge, which suggests that the
training efficiency needs to be improved.

« Necessary computing resources, communications infras-
tructure and technology need to be deployed and up-
graded to support the application of RL schemes. We
elaborate on this requirement below.

In many existing works, multi-agent DRL is used to develop
scalable control algorithms with centralized (offline) training
and decentralized (online) implementation. To enable central-
ized training of DRL, the coordination center needs large-
scale data storage, high-performance computers, and advanced
computing techologies, such as accelerated computing (e.g.,
GPUs), cloud and edge computing, etc. As for decentralized or
distributed implementation, although the computational burden
is lighter, each device (agent) typically requires local sensors,
meters, microchip-embedded solvers, and automated actuators.
Moreover, to support the application of DRL, advanced com-
munication infrastructures are necessary to enable the two-way
communication and real-time streaming of high-fidelity data
from massive devices. Various communication and networking
technologies, such as (optic) cable lines, power line carrier,
cellular, satellite, 5G, WiMAX, WiFi, Xbee, Zigbee, etc., can
be used for different RL applications. In short, both algorith-
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mic advances and infrastructure development are envisioned
to facilitate the practical application of RL schemes.

V. CONCLUSION

Although a number of works have been devoted to applying
RL to the power system field, many critical problems remain
unsolved, and there is still a substantial distance from practical
implementation. On the one hand, this subject is new and
still under development and needs much more studies. On the
other hand, it is time to step back and rethink the advantages
and limitations of applying RL to power systems (the world’s
most complex and vital engineered systems) and figure out
where and when to use RL. In fact, RL is not envisioned
to completely replace existing model-based methods but a
viable alternative in specific tasks. For instance, RL and other
data-driven methods are promising when the models are too
complex to be useful or when the problems are intrinsically
hard to model, such as the human-in-loop control (e.g., in
demand response). It is highly expected to identify the right
application scenarios for RL and use it appropriately.

APPENDIX A
SYSTEM FREQUENCY DYNAMICS

According to [56], [69], [72], the system frequency dynam-
ics (17) can be linearized as (33), including the generator
swing dynamics (33a) and power flow dynamics (33b).

1

Ady == (Difw; — APM + APF + 3 APy), i€ N
¢ jHjeE

(33a)

AP = Bij(Aw; — Awj), ij €€, (33b)
where M;, D;, B;; denote the generator inertia, damping coef-
ficient, and synchronization coefficient, respectively. Besides,
the governor-turbine control model (18) for a generator can be
simplified as (34), including the turbine dynamics (34a) and

the governor dynamics (34b):

: 1

APM = —W(APZ-M — APF), (34a)
: 11

APE = — v (- Awi + APF — PF), (34b)

where APE is the turbine valve position deviation, and P{ is
the generation control command. T/, T¥°" denote the turbine
and governor time constants, and R; is the droop coefficient.
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