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ABSTRACT

This study addresses the problem of single-channel Auto-
matic Speech Recognition of a target speaker within an over-
lap speech scenario. In the proposed method, the hidden rep-
resentations in the acoustic model are modulated by speaker
auxiliary information to recognize only the desired speaker.
Affine transformation layers are inserted into the acoustic
model network to integrate speaker information with the
acoustic features. The speaker conditioning process allows
the acoustic model to perform computation in the context of
target-speaker auxiliary information. The proposed speaker
conditioning method is a general approach and can be applied
to any acoustic model architecture. Here, we employ speaker
conditioning on a ResNet acoustic model. Experiments on
the WSJ corpus show that the proposed speaker condition-
ing method is an effective solution to fuse speaker auxiliary
information with acoustic features for multi-speaker speech
recognition, achieving +9% and +20% relative WER reduc-
tion for clean and overlap speech scenarios, respectively,
compared to the original ResNet acoustic model baseline.

Index Terms— Affine transformation, overlap speech
recognition, feature-wise linear modulation, multi-speaker
recognition, acoustic modeling

1. INTRODUCTION

Multi-talker speech recognition is focused on recognizing in-
dividual speech sources from overlap speech, and is one main
challenge for current ASR systems [1, 2, 3, 4, 5, 6, 7, 8].
Current solutions for multi-speaker speech recognition can be
categorized into two main approaches: (i) performing front-
end speech processing based on separation on the overlap
speech, then applying ASR to the separated speech signals
[9, 10, 11, 12, 13, 14, 15]; or (ii) skipping the explicit sep-
aration step and developing a multi-speaker speech recogni-
tion system directly using either hybrid [16, 17, 18] or end-
to-end [19, 20] ASR frameworks. Recently, an end-to-end
multi-speaker speech recognition system was proposed based
on Transformers [1]. This approach achieved considerable
improvement at the expense of more computational cost for a
reasonable temporal resolution. In another study [21], overlap

speech was considered as a mismatch condition of the clean
speech recognition scenario, and teacher-student training was
employed for transfer learning from clean to overlap speech.
The main drawback of this approach is requiring training sets
with parallel clean and overlapped speech, which is difficult
to collect in real-world applications [22]. Recently, several
studies [16, 23, 24] have used speaker-specific embeddings
to learn a frame-level mask for the target speaker which sup-
presses interfering speech. Although these approaches use the
additional speaker-specific information to guide the ASR sys-
tem, their main limitation is that they assume only one speaker
is active in each Time-Frequency bin.

To address the challenges of single-channel multi-speaker
speech recognition, in this study, we focus on speaker condi-
tioning of the Acoustic Model (AM) by performing an affine
transformation. In contrast to former approaches which em-
ploy speaker embedding to estimate speaker-specific masks,
we propose to use speaker embedding to compute parameters
of the affine transformation, allowing the acoustic model to
conduct its computation in the context of the desired speaker
auxiliary information. The proposed speaker conditioning
method is a general approach and can be applied to any AM
architecture. In this paper, we employ speaker conditioning
on a ResNet acoustic model in hybrid DNN-HMM setup. Ex-
periments are performed on WSJ corpus, achieving +9% and
+20% relative WER reduction for clean and overlap speech
scenarios, compared to the original ResNet acoustic model.
The contributions of this paper are threefold:

• Proposing speaker conditioning of the ResNet acoustic
model using an affine transformation.

• Comparing the proposed method with alternate feature-
wise acoustic model transformations such as condi-
tional biasing and middle feature-map fusion.

• Evaluating the performance of the proposed speaker
conditioned ASR trained on an alternate input feature
called Wav2Vec representation.

The remainder of this paper is organized as follows. In
Sec.2, the problem is outlined and proposed method de-
scribed. Sec.3, presents experiments and results. Finally the
conclusions are discussed in Sec.4.
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Fig. 1. The proposed speaker conditioned ResNet18 acoustic model using Affine Transformation (AT) blocks.

2. SINGLE-CHANNEL MULTI-SPEAKER ASR

Multi-speaker speech recognition can gain substantial im-
provement by deploying other sources of information such
as speaker identity in addition to acoustic features [22, 23].
However, designing an efficient method to fuse a combination
of multiple sources (i.e., acoustic features and speaker em-
beddings) to obtain higher quality and improved information
is still a challenging task. Additionally, capturing com-
plex interactions between multiple sources should maintain a
balanced compromise between model/network computational
cost and performance. A popular method to address this prob-
lem is to use a feature-wise transformation [25] which can
model the complex relation between speaker-specific char-
acteristics and acoustic features in a multi-speaker speech
scenario to identify and recognize the desired speaker in
the mixed speech recording. This transformation can be
performed in several manners such as conditional biasing,
conditional scaling, and conditional affine transformation.
In this section, we focus on a conditional affine transforma-
tion which is a more general approach. The aforementioned
conditional biasing and scaling are two specific examples of
conditional affine transformation.

2.1. Conditional affine transformation

Affine Transformation (AT) influences the output of the
acoustic model network by applying a linear modulation
to the network’s intermediate features. This modulation is
parameterized by shifts and coefficients obtained based on
speaker-specific embedding. Let x be a context-expanded
window of acoustic features for overlap speech, and ys be
a phoneme label or a senone alignment (i.e., from GMM-
HMM) for the target-speaker speech signal. DNN acoustic
models are used estimate the posterior probability as:

p(ys|x, s) = DNN(x, zs), (1)

where DNN is typically trained to maximize the log probabil-
ity of the phoneme alignment or minimize the cross-entropy

error, and s is the target speaker with an x-vector [26] embed-
ding zs. In this study, the original ResNet18 model is con-
sidered as our baseline. Next, affine transformation layers are
inserted into ResNet18 network to build the speaker condi-
tioned acoustic model. The scale and bias factors of AT are
estimated by a two-layer fully connected network h based on
x-vector zs as:

(αi,c, βi,c) = h(zs) (2)

where i and c refer to the i-th data sample in the minibatch,
and the c-th channel feature map. Once αi,c and βi,c are es-
timated, they are used to modulate the ResNet’s intermediate
activations Fi,c as:

AT (F l
i,c|αi,c, βi,c, F

l−1
i,c ) = αi,c � F l−1

i,c + βi,c (3)

whereAT and l represent the Affine Transformation, and net-
work’s layer. The proposed speaker conditioned ResNet18 is
shown in Fig.1. The speaker embedding x-vector is submit-
ted to the network h to estimate a [B, 1920] matrix which is
(αi,c, βi,c) pairs of AT layers. Each AT layer receives two in-
puts: the previous layer output, and the (αi,c, βi,c) pair. The
dimension of αi,c and βi,c is [B,C] each. In the AT layer,
each channel of the extracted feature map is scaled by αi,c

and shifted by βi,c to modulate the feature-map distribution
of activations based on the target-speaker embedding.

Table 1. Comparing our ResNet18 acoustic model baseline
with other approaches on WSJ (WER in %).

System Dev-93 Eval-92
Lee et al. 2021 [27] 12.0 9.9
Higuchi et al. 2020 [28] 15.4 12.1
Chi et al. 2020 [29] 13.7 11.4
Rouhe et al. 2020 [30] 13.2 9.3
Sabour et al. 2018 [31] - 9.3
Borgholt et al. 2020 [32] - 9.3
Park et al. 2019 [33] - 7.8
Our baseline 12.1 7.9
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Table 2. WER of the proposed speaker conditioned ResNet18 acoustic model with Affine Transformation (AT) in different
settings. Each experiment is repeated three times and the average WER is reported.

Simulated overlap speech based on Dev-93 Clean speech

Acoustic model 0dB 5dB 10dB 15dB 20dB 25dB Dev-93 Eval-92 Eval-93

ResNet18 (baseline) 65.06 58.29 47.03 34.72 24.36 17.62 12.14 7.92 10.81

ResNet18 + AT (proposed) 63.83 55.83 43.30 29.90 20.34 15.15 11.50 7.66 9.64

ResNet18 + AT (bias=0) 63.69 55.23 43.57 30.15 19.95 15.19 11.75 7.66 9.57

ResNet18 + AT (scale=1) 65.10 57.66 46.39 32.79 22.29 16.65 12.25 7.91 10.57

ResNet18 + AT (sigmoid(scale)) 64.63 56.66 45.33 31.78 21.680 16.250 11.993 7.803 10.263

ResNet18 + AT (tanh(scale)) 64.53 56.82 45.27 31.64 21.19 16.02 11.99 7.72 9.97

ResNet18 + AT (Block1) 63.68 55.33 43.31 29.44 19.51 14.67 11.56 7.49 9.85
ResNet18 + AT (Block 1-2) 63.50 55.19 43.60 29.33 19.79 14.85 11.33 7.50 9.88

ResNet18 + AT (Block 1-3) 63.51 55.29 43.35 29.65 19.87 14.88 11.49 7.55 9.93

ResNet18 + AT (Block 4) 64.66 57.66 47.28 33.86 23.27 16.54 11.64 8.19 10.47

3. EXPERIMENTS AND RESULTS

In this section, we investigate the performance of the pro-
posed speaker conditioning method presented in Fig.1 on
WSJ corpus. In order to conduct the experiments, clean tr-
si284 is used in the training phase for all acoustic models. We
partitioned tr-si284 into a training set (90%) and a held-out
cross-validation set (10%). ASR performance for different
acoustic models are reported in terms of Word-Error-Rate
(WER) on clean dev-93, eval-93, and eval-92. Additionally,
overlap speech is generated based on dev-93 by selecting
random utterances from random speakers and adding them
with Signal-to-Interference Ratio (SIR) ranging from 0 to
25dB with increments of 5dB. The baseline acoustic model
is ResNet18 with 3400 output senones. The network param-
eters are updated by the gradients of the cross entropy loss
using Stochastic Gradient Descent (SGD) optimizer with a
momentum of 0.9 and initial learning rate 0.01. The training
process is completed by performing early stopping [34]. The
maximum number of epochs is set to 100, batch size 1024
context-expanded frames; learning rate is decreased by 50%
if the cv loss improvement is less than 0.01 for 3 successive
epochs. The early stopping is performed if no improvement
is observed on the cv loss once the learning rate has decayed
6 times. 13-dim MFCC computed over a 25ms window with
10ms shift with a 20 frame context (10 frames on each side)
is used for training the acoustic model. Consistent with the
standard Kaldi recipe for WSJ, we use the trigram language
models provided by LDC for WSJ data. In order to minimize
the effect of parameter initialization on the acoustic model
and final WER, we repeat each experiment three times with
different initial parameters.

Performance of the ResNet18 baseline is compared with
recent studies in Table 1. The main purpose of this compari-
son is to ensure that our baseline achieves a competitive per-

formance compared to recent studies, and it is seen we have
a strong starting point for further developing our proposed
speaker conditioning technique. There are other approaches
that leverage transfer learning, semi supervised learning, or
more advanced language models to achieve further improve-
ment. However, since we focus on speaker conditioning of
acoustic model, we train our ResNet18 acoustic model only
on tr-si284, and use Kaldi for training the language model.
The first row of Table 2 presents performance of the baseline
on overlap speech, which is severely degraded. Therefore, we
build on the ResNet18 acoustic model baseline and apply our
Affine Transformation (AT) layers as depicted in Fig.1. The
results for speaker conditioned ResNet using AT are presented
in the second row of Table 2 which shows +2% relative im-
provement for severe overlap speech recordings (i.e., 0dB)
and an average of +5% relative improvement on clean test
sets. Since AT effectively performs speaker-adaptation, the
trained acoustic model is tuned to the target speaker, there-
fore, it achieves better performance even on the clean test sets.
The maximum relative improvement is achieved for input SIR
20% in which the level of overlap speech is neither too se-
vere nor too easy for the acoustic model; therefore, the target-
speaker auxiliary information can be very helpful in improv-
ing performance.

Moreover, the effect of α and β is studied separately by
setting α = 1 and β = 0. The result in Table 2 manifest
that the effectiveness of the conditional Affine Transforma-
tion can be mainly attributed to the scale coefficient rather
than the shift parameter. Therefore, we further investigate the
effect of α by restricting its value to (0, 1) using Sigmoid,
and (−1, 1) using tanh function. Nevertheless, the results
reported in Table 2 reveal that unrestricted α achieves better
performance which may be due to the flexibility it provides
for the network to learn the range that best suits the data. So
far, the AT layers have been applied to all ResNet18 blocks
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Table 3. WER of the proposed speaker conditioned ResNet18 based on Affine Transformation (AT) compared to other fusion
techniques. Each experiment is repeated three times and the average WER is reported.

Simulated overlap speech based on Dev-93 Clean speech

Signal-to-Interference Ratio 0dB 5dB 10dB 15dB 20dB 25dB Dev-93 Eval-92 Eval-93

ResNet18 + Conditional biasing 64.66 57.20 45.74 32.75 23.54 17.87 13.10 8.44 11.22

ResNet18 + Middle fusion 63.94 57.51 47.81 34.02 23.19 16.68 11.81 8.24 10.64

ResNet18 + AT (proposed) 63.68 55.33 43.31 29.44 19.51 14.67 11.56 7.49 9.85

Fig. 2. WER of ResNet18 baseline and proposed ResNet18 + AT trained on MFCC and Wav2Vec input features.

(each dashed rectangular in Fig. 1 is considered as a block).
To find the best network depth in which AT layers are most
effective, several experiments are conducted with AT only ap-
plied to specific individual blocks. Based on these experi-
ments, the AT layers are most effective when applied only to
the first block (block1), and least effective when only applied
to the last block (block4). However, applying AT layers to the
first two blocks (block1-2) and the first three blocks (block
1-3) did not improve ASR performance, while it differently
adds computational cost. To summarize our findings based
on the experiments, unrestricted-scale Affine Transformation
applied to the initial blocks of the ResNet18 acoustic model
achieves the best overall results while simultaneously main-
taining the lowest computational cost.

Next, the proposed method is compared with other
speaker conditioning techniques in Table 3. Conditional
biasing refers to adding speaker information (x-vector) as a
bias to the acoustic features in the first hidden layer. Mid-
dle fusion refers to adding the x-vector to the intermediate
extracted feature map after the second block. Therefore, the
intermediate feature map is conditioned before entering block
3 for extracting further higher-level features adapted to the
target speaker. As shown in Table 3, the proposed speaker
conditioning based on Affine Transformation outperforms all
other approaches in both clean and overlap speech scenarios.

So far, the focus of this study has been on designing
the acoustic model. However, performance of the acoustic
model can further improve by deploying more robust input
features other than MFCC. In the final section, we evaluate
the proposed method trained on noise-invariant Wav2Vec fea-
tures [35]. Wav2Vec representation has been trained on large
amounts of unlabeled audio data in an unsupervised man-

ner. Fig. 2 (left) shows the WER of the baseline ResNet18
trained on MFCC and Wav2Vec features, which manifests
the effectiveness of Wav2Vec in reducing the WER across
all test sets in the absence of speaker auxiliary information.
The highest improvement is achieved for overlap speech with
SIR 15dB, which is +11% absolute improvement in WER.
Fig.2 (right) depicts the WER of the proposed speaker con-
ditioned ResNet18 trained on MFCC and Wav2Vec. Similar
to the baseline, the speaker conditioned acoustic model ben-
efits from the Wav2Vec features by achieving +6% absolute
improvement in WER for SIR 15dB. However, due to the
availability of speaker information, the acoustic model is less
sensitive to the robustness of the input acoustic features, and
thus, the amount of improvement from Wav2Vec is less in
the proposed speaker conditioned ResNet18 compared to the
baseline. In conclusion, the WER across all test sets is im-
proved by using the proposed speaker conditioned acoustic
model trained on wav2Vec. For example, on the overlap
speech test set with SIR 15dB, the proposed ResNet18 with
Affine Transformation trained on Wav2Vec gains +33% rela-
tive (+11% absolute) improvement in WER compared to the
original ResNet trained on MFCC.

4. CONCLUSION

In this study, we proposed a speaker conditioning method for
acoustic modeling in multi-speaker speech recognition. In the
proposed method, Affine Transformation layers are inserted
into the acoustic model architecture to fuse speaker-specific
information with the acoustic model. The proposed speaker
conditioned acoustic model was compared with other fusion
techniques such as early fusion of speaker embedding and
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middle feature-map fusion. Additionally, the performance of
the proposed method was evaluated on alternate input features
called Wav2Vec. The results on WSJ corpus clearly demon-
strate that the proposed speaker conditioned acoustic model
based on affine transformation achieves consistent WER im-
provement for clean and overlap speech scenarios.
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