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Abstract— Model-free learning-based control methods have
seen great success recently. However, such methods typically
suffer from poor sample complexity and limited convergence
guarantees. This is in sharp contrast to classical model-based
control, which has a rich theory but typically requires strong
modeling assumptions. In this paper, we combine the two
approaches. We consider a dynamical system with both linear
and non-linear components and use the linear model to define a
warm start for a model-free, policy gradient method. We show
this hybrid approach outperforms the model-based controller
while avoiding the convergence issues associated with model-
free approaches via both numerical experiments and theoretical
analyses, in which we derive sufficient conditions on the non-
linear component such that our approach is guaranteed to
converge to the (nearly) global optimal controller.

I. INTRODUCTION

Recent years have seen great success in using learning-
based methods for the control of dynamical systems. Exam-
ples cut across a broad spectrum of applications, including
robotics [1], autonomous driving [2], energy systems [3], and
more. Many of these learning-based methods are model-free
in nature, meaning that they do not explicitly estimate the
underlying model and do not explicitly make any assumptions
on the parametric form of the underlying model [4]–[6].
Examples of such methods include policy gradient methods
[7]–[9] and approximate dynamic programming [10]–[12].
Because model-free methods do not explicitly assume a
parametric model class, they can potentially capture hard-
to-model dynamics [13], which has led to empirical success
in highly complex tasks [14]–[16]. However, the theoretic
understanding of model-free approaches is extremely limited,
and empirically they suffer from poor sample complexity and
convergence issues [17], [18].

This stands in contrast to the classical model-based control,
where one first estimates a parametric form of the model
(e.g. linear state space model) and then develops a controller
using tools from classic control theory. This approach has a
rich history, including theoretical guarantees [19], [20], and
is typically more sample efficient [18]. However, one major
drawback of model-based control is that the model class
might fail to capture complex real-world dynamics, in which
case model error makes theoretical guarantees invalid.

Given the contrasts between model-free control and model-
based control, the literature that focuses on providing a
theoretic understanding of the two approaches is largely
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distinct, with papers focusing on either model-based ap-
proaches (e.g. [20]–[23]) or model-free approaches (e.g. [7],
[8], [24]). There have been recent empirical approaches
suggesting that model-based and model-free approaches can
be combined to achieve the benefit of both, e.g., [13], [17],
[25]; however, a theoretical understanding of the interplay
between the approaches, especially when the dynamical
system is nonlinear, remains open.

Contribution. In this paper, we study how model-based
and model-free methods can be combined to achieve the
benefits of both in a particular setting where the dynamical
system’s state space representation is a sum of two parts: a
linear part, which is the most commonly used model class
in model-based control, and a non-parametric non-linear
part. This form of decomposition is widely used in practice.
For example, engineers often have good approximate linear
models for real-world dynamical systems such as energy
systems [26] and mechanical systems [27]. The difference
between the linear approximation and the real dynamics is
often nonlinear and nonparametric, though understood to be
small.

In this context, we introduce an approach for combining
model-based methods for the linear part of the system and
model-free approaches for the nonlinear part. In detail, we
first use a model-based approach to design a state-feedback
controller based on the linear part of the model. Then, we use
this controller to warm start a model-free policy search. This
warm start is similar in spirit to several empirically successful
methods in the recent literature, e.g. [17], [25], however, no
theoretical guarantees are known for existing approaches.
In contrast, we prove guarantees on the convergence of the
approach to an (almost) globally optimal state-feedback linear
controller. Our analysis shows that the approach combines
the benefits of model-based methods and model-free methods,
capturing the unmodeled dynamics ignored by the model-
based control while avoiding the convergence issues often
associated with model-free approaches.

The key technical contribution underlying our approach is
a landscape analysis of the cost as a function of the state-
feedback controller. We show that the model-based controller
obtained from the linear part of the system falls inside
a convex region of the cost function which also contains
the (almost) global minimizer. As a result, when using a
warm start from the model-based controller, our approach is
guaranteed to converge to the global minimizer. To highlight
the necessity of the warm start, we show examples in which
the landscape is non-convex and contains spurious local
minima and even has a disconnected domain. Thus, a model-



free approach that ignores model information may fail to
converge to the global minimizer.

Related Work. Our work is mostly related to the class of
model-free policy search methods for the Linear Quadratic
Regulator (LQR), which date back to the early work of [28],
[29] and have received considerable attention recently, e.g. [7]–
[9], [24], [30]–[38]. A common theme in this line of work is
that the underlying dynamical system is assumed to be linear,
under which the cost function is shown to satisfy a “gradient
dominance” property [7], which implies the model-free policy
search method will converge to the global optimal controller.
While these results provide a theoretic understanding of
model-free methods, the benefits of using model-free methods
for linear systems is not clear. For example, [18] shows that
when the dynamics is actually linear, model-based methods
are more sample efficient than model-free approaches. On
the other hand, applications where model-free approaches
have seen the most success are those involving the control
of nonlinear dynamics [39]. However, though there has been
empirical success, an understanding of model-free approaches
for nonlinear systems is lacking. Our work makes an initial
step by analyzing a model-free policy search method for
nonlinear systems with a particular structure.

Our work is also related to empirical approaches suggested
in the literature on reinforcement learning that involve
augmenting model-free reinforcement learning with model-
based approaches for various goals [40], [41], such as for
gradient computation [42], [43], generate trajectories for
model-free training [44]. Among these, the most related to
our work are [17], [25], [45], [46], which use model-based
methods as a starting point for model-free policy search.
However, these papers focus on empirical evaluation, and
to the best of our knowledge, we are the first to provide
a theoretic justification on the effectiveness of combining
model-based and model-free methods.

Beyond the above, our work is also related to a variety of
areas at the interface of learning and control:

Model-based LQR. When the model is linear and is known,
the optimal control problem can be solved via approaches like
Algebraic Ricatti Equation [19] and dynamic programming
[47]. When the linear model has unknown parameters, various
system identification approaches have been proposed to
estimate the system parameter, e.g. classic results such as
[48], [49] or more recent ones with a focus on finite sample
complexity, e.g., [50]–[52]. In addition, there have been recent
efforts to provide end-to-end frameworks that combine system
identification and control design [20], sometimes in an online
setting, e.g. [21], [22], [53]–[57].

Control of nonlinear systems. There is a vast literature on
the control of nonlinear dynamical systems, see e.g. [58],
[59], including techniques like feedback linearization [60].
Specifically, our model is related to a practice in nonlinear
control where one first linearizes the nonlinear system and
design a controller based on the linear model [58, Sec. 3.3].
Our proposed approach goes beyond this by using model-free
policy search to improve the controller obtained from the
linear system. In addition, our problem is also related to

the Circle/Popov criterion in nonlinear control [61], which
certify the stability of an interconection of a linear system
and a nonlinear system with bounded sector. In contrast,
our approach not only certifies stability, but also designs a
stabilizing controller with optimal cost.

Robust control. The fact that our model is a summation of
a linear part and a small nonlinear part can be understood
from the robust control angle [62], where the linear model
can be viewed as the nominal plant and the nonlinear part
can be viewed as an uncertain perturbation [63]. However,
robust control methods like H∞ and H2/H∞ mixed design
[64] seek to design controllers with worst-case guarantees
against all possible perturbations [65, Sec 4], whereas our
work seeks to learn the best controller for the actual instance
of the perturbation (the non-linear part of the model).

II. MODEL

We consider a dynamical system with state xt ∈ Rn and
control input ut ∈ Rp,

xt+1 = Axt +But + f(xt), (1)

where A is n-by-n, B is n-by-p, and f : Rn → Rn satisfies
f(0) = 0 and is “small” compared to A and B. We focus on
the class of linear controllers, ut = −Kxt for K ∈ Rp×n
and we consider the following quadratic cost function C :
Rp×n → R,

C(K) = EK
∞∑
t=0

(
x>t Qxt + u>t Rut

)
, (2)

where the expectation is taken with respect to x0 that is drawn
from a fixed initial state distribution D, and the subscript
K in the expectation indicates the trajectory {xt}∞t=0 in the
expectation is generated by controller K.

The system in (1) is the sum of a linear part and a “small”
non-linear part f . Such a decomposition can be found in
many practical situations, as discussed in the introduction.
In such settings, f represents the error of the approximated
linear model, which is small if the linear approximations
are accurate in practice. Alternatively, (1) can be a result
of linearization of a non-linear model, with f capturing the
higher order residuals.

In this paper, we assume f is unknown while some estimate
(Â, B̂) of (A,B) is known, since in various engineering do-
mains, the linear model (A,B), or at least some approximation
of (A, B), is readily available. Alternatively, (Â, B̂) can also
be the result of system identification for the unknown system.

Combining model-based and model-free control. We
propose a framework that combines model-based and model-
free methods to find an optimal linear state feedback controller
that minimizes the cost (2). Concretely, the framework works
as follows:
• Compute model-based controller K̂lin to be the optimal

LQR controller for linear system (Â, B̂) and cost
matrices (Q,R).

• Use K̂lin as an initial point for model-free policy search.
There can be many variants of policy search, including
zeroth-order policy search [7] or actor-critic methods



[32]. In Section III we propose a concrete approach
(Algorithm 1).

Compared with a standard model-free approach, where the
initial point is unspecified and is usually obtained through
trial and error, this hybrid approach makes use of model-
based control to warm start the model-free policy search
algorithm. This intuitive idea is powerful given the complexity
of the cost landscape. To illustrate the importance of this
warm start approach, we provide two examples (Examples 1
and 2) showing that, even when f is small compared to
A,B, the landscape of C(K) may contain spurious local
minima (Example 1), and the set of stabilizing state feedback
controllers may not even be connected (Example 2). As such,
model-free approaches will likely fail to converge to the
global minimizer. In contrast, in the examples, the model-
based controller K̂lin (when (Â, B̂) = (A,B)) stays well
within the attraction basin of the global minimizer. Hence
the proposed hybrid approach with the model-based warm
start converges at least when (Â, B̂) is an accurate enough
estimate of (A, B). In the next section, we formalize this
intuition and provide theoretic results on the landscape of
C(K) as well as the convergence of the proposed approach.

Example 1 (Cost landscape may contain spurious local
minima). Consider the following one-dimensional dynamics
xt+1 = 0.5xt + ut + f(xt), and f(x) = 0.01x/(1 +
0.9 sin(x)), satisfying |f(x)| ≤ 0.1|x|. We set x0 = 50, Q =
10, R = 1. When using a linear state feedback controller
ut = −Kxt, the cost is given in Figure 1, which has many
local minima. However, K̂lin lies within the attraction basin
of the global minimizer K∗ and is in fact very close to K∗.

Example 2 (Finite-cost controllers may be disconnected).
Suppose n = 2 and p = 1. Let

A = 0.95

[
cos 0.2 − sin 0.2
sin 0.2 cos 0.2

]
, B =

[
0.2
0.15

]
,

Q =

[
1 −0.999

−0.999 1

]
, R = 0.5, x0 =

[
5
−6

]
,

f(x) =
0.1([ 30 ]− x)− (A− I)x−B

[
−1 −0.2

]
x

(‖x− [ 30 ]‖2 + 1)2

+
0.7(

[
4.5
−3

]
− x)− (A− I)x−B

[
0 0.7

]
x

(‖x−
[
4.5
−3

]
‖2 + 1)2

+
0.9(

[
5
−1

]
− x)− (A− I)x−B

[
−0.2 0.5

]
x

(‖x−
[

5
−1

]
‖2 + 1)2

+ f0,

where f0 is such that f([ 0
0 ]) = [ 0

0 ]. In this case, the set of
controllers K = [K1,K2] with finite cost is not connected,
as shown in Figure 2. Moreover, this phenomenon exists even
for very small f . Starting from the above values, we can
simultaneously make A closer to I , B closer to 0, and the
coefficients 0.1, 0.7, 0.9 in function f closer to 0 (with the
same factor) in order to maintain this phenomenon. A detailed
explanation of this example can be found in Appendix A.

Notation. We use ‖ · ‖ to denote the Euclidean norm
for vectors and the spectrum norm for matrices, and ‖ · ‖F
to denote the Frobenius norm. For matrices A,B of the

same dimension, 〈A,B〉 = Tr(A>B) denotes the trace inner
product. For symmetric matrices A,B, A � B means A−B
is positive semi-definite. Notation σmin(·) denotes the smallest
eigenvalue of a symmetric square matrix. Additionally, y1 .
y2 and y1 � y2 mean y1 ≤ cy2 and y1 = cy2 respectively
for some numerical constant c.

III. MAIN RESULTS

Our main technical result characterizes the landscape of
the cost function in order to prove the convergence of the
proposed approach combining model-based and model-free
techniques. For concreteness, we use a particular instance
of the policy search method and show its convergence, but
the approach is more general and can be extended to other
methods.

Before stating our results, we discuss their assumptions.
The first assumption is about the pair Q,R in the cost function
and is standard [21].

Assumption 1. Q and R are positive definite matrices
satisfying R+B>QB � σI for some σ > 0, and ‖Q‖ ≤ 1,
‖R‖ ≤ 1.

The assumption ‖Q‖ ≤ 1, ‖R‖ ≤ 1 in Assumption 1 is
for ease of calculation, and is without loss of generality as
we can always rescale the cost function to guarantee it is
satisfied. Our next assumption concerns the pair (A,B) and
is again standard [20].

Assumption 2. The pair (A,B) is controllable. Let K∗lin
be the optimal controller associated with the linear system
xt+1 = Axt + But, and we assume ‖(A − BK∗lin)t‖ ≤
clinρ

t
lin,∀t, for some ρlin ∈ (0, 1) and clin > 0. Further, we

assume max(‖A‖, ‖B‖, ‖K∗lin‖, 1) ≤ Γ for some Γ > 0.

The next assumption is on the initial state distribution.

Assumption 3. The initial state distribution D is supported
in a region with radious D0. Further, Ex0x

>
0 � σxI for

some σx > 0.

The requirement of bounded support is only for simplifi-
cation of the proof. It can be replaced with a bound on the
second and the third moment of the initial state if desired at
the expense of extra complexity. Finally, we assume that f
and the Jacobian of f are Lipschitz continuous or, in other
words, the first and second order derivatives of f are bounded.
This quantifies the “smallness” of f .

Assumption 4. We assume f is differentiable, f(0) = 0,
‖f(x)−f(x′)‖ ≤ `‖x−x′‖, and ‖∂f(x)

∂x −
∂f(x′)
∂x ‖ ≤ `

′‖x−
x′‖ for some `, `′ > 0, where ∂f(x)

∂x is the Jacobian of f(x).

Before we state our result, we must also define what
we mean by the “global” domain of C(K). One natural
definition for the domain of C is the set of (global or local)
stabilizing controllers for the nonlinear system (1). However,
to the best of our knowledge, the stabilization of nonlinear
systems is a challenging topic and such a set is not clearly
characterized. For this reason, we consider an alternative
domain Ω(c0, ρ0) = {K : ‖(A− BK)t‖ ≤ c0ρ

t
0} for some



Fig. 1: Cost landscape in Example 1, where K̂lin is computed

under (Â, B̂) = (A,B).

K∗
K̂lin

Fig. 2: Cost landscape in Example 2, where K̂lin is computed

under (Â, B̂) = (A,B).

c0 ≥ 1, ρ0 ∈ (0, 1) to be chosen later. We consider this

domain since it is clearly characterized and also because

when ρ0 → 1, c0 → ∞, this set captures the set of all

stabilizing controllers for the linear system (A,B).1

We now move to our results. Our first result characterizes

the landscape of the cost function. It shows that when � and �′

(the Lipschitz constant for f and Jacobian of f respectively)

are small enough, C(K) achieves its global minimum inside a

local neighborhood of K∗
lin, which as defined in Assumption 2

is the optimal LQR controller for the linear part (A,B) of

the system, or in other words K̂lin when (Â, B̂) = (A,B).
Further, within this local neighborhood, C(K) is strongly

convex and smooth. Theorem 1 is our most technical result

and a proof is provided in Appendix B.

Theorem 1. For any ρ0 ∈ [ρlin+1
2 , 1) and c0 ≥ 2clin, let

Ω = Ω(c0, ρ0). If � � (σσx)
2(1−ρ0)

8

Γ9c150 D4
0

, �′ � (σσx)
2(1−ρ0)

8

Γ9c180 D5
0

,
then:
(a) C(K) is finite in Ω and the trajectories satisfies ‖xt‖ ≤

2c0(
ρ0+1

2 )t‖x0‖ for any x0 ∈ R
n,K ∈ Ω;

(b) there exists a region Λ(δ) = {K : ‖K−K∗
lin‖F ≤ δ} ⊂

Ω with δ 	 σxσ(1−ρ0)
4

Γ5c70D
2
0

such that C(K) is μ-strongly
convex and h-smooth inside Λ(δ), with μ = σσx and
h 	 Γ4c40D

2
0

(1−ρ0)2
;

(c) the global minimum of C(K) over Ω is achieved at a
point K∗ ∈ Λ( δ3 ), which is also the unique stationary
point of C(K) inside Λ(δ).

We comment that, while our landscape result is a local

convexity result around the global minimum K∗, we are also

able to show that K∗
lin (which can be efficiently approximated

based on Â, B̂ provided that they are accurate enough) is

within the convex region around K∗ and, as such, within

the attraction basin of K∗. This is different than existing

landscape analysis for non-convex optimization in other

contexts like deep learning, where only local convexity is

shown without showing how to enter its attraction basin [66],

[67].

Given the landscape result, it is perhaps not surprising

1This is because for any stabilizing controller K of linear system (A,B),
there must exist c0 > 0, ρ0 ∈ (0, 1) s.t. ‖(A−BK)t‖ ≤ c0ρt0, ∀t ≥ 0.

that the model-free policy search method converges to the

global minimizer K∗ when warm starting with the model-

based optimal LQR controller K̂lin provided (Â, B̂) is an

accurate enough estimate of (A,B), because both K∗ and

K̂lin lie in the same convex region of the cost function.

In the following, we prove this formally by considering a

version of model-free policy search algorithm - the zeroth

order policy search with one point gradient estimator. The

proposed algorithm is stated in Algorithm 1 with the gradient

estimator subroutine given in Algorithm 2. To state the

convergence results of our algorithm, we first consider the

simpler case (Â, B̂) = (A,B) in Theorem 2. Theorem 2

shows that the landscape result in Theorem 1 ensures that

when (Â, B̂) = (A,B), Algorithm 1 converges to the global

minimum of C(K) over Ω, hence outperforming the model-

based controller and avoiding the non-convergence issue of

model-free approaches shown before.

Theorem 2. Suppose (Â, B̂) = (A,B). Under the conditions
in Theorem 1, for any ε > 0 and ν ∈ (0, 1), if the
step size η ≤ 1

h , the number of gradient descent steps
M ≥ 1

ημ log(δ
√

h/ε), and the gradient estimator parameters
satisfy r ≤ 1

3hegrad,

J ≥ 1

e2grad

d3

r2
log

4dM

ν
max(18(C(K∗) + 2hδ2)2, 72C2

max),

T ≥ 2

1− ρ0
log

6dCmax

egradr
,

where egrad = min(μ2
√

ε
h , μ

δ
3 ), d = pn, and Cmax =

40Γ2c20
1−ρ0

D2
0 , then with probability at least 1 − ν, C(KM ) −

C(K∗) ≤ ε.

The proof of Theorem 2 is provided in Appendix I.

The above Theorem 2 guarantees the convergence to the

optimal controller when (Â, B̂) = (A,B). We next present

Corollary 1, which shows that as long as (Â, B̂) is an accurate

enough estimate of (A,B), the same results as in Theorem 2

hold. Corollary 1 is a combination of Theorem 2 and a LQR

perturbation result in [21].

Corollary 1. There exists a perturbation constant cper
depending on A,B,Q,R such that when max(‖Â−A‖, ‖B̂−
B‖) ≤ min(δ,1)

6 cper
where δ is the constant defined in Theorem 1,



the same results in Theorem 2 hold with the same parameter
choice of η,M, r, J, T as Theorem 2.

The proof of Corollary 1 is provided in Appendix I. In
addition to the above theoretical guarantees, the hybrid ap-
proach numerically appears to have better sample complexity
even when the model-free methods do converge. We illustrate
such results in the next section.

Our result shows that the proposed hybrid approach is
guaranteed to converge to the global minimum only when
`, `′ are bounded. Such a requirement on `, `′ is intuitive
since when the “size” of f is much larger than the linear
part (A,B), a warm start based on the linear model does not
make much sense as the linear model is a poor estimation of
the dynamics. There should be a threshold on the “size” of
f , below which the hybrid approach will work. Our result
provides a (potentially conservative) lower bound on the
threshold. Tighter bounds are interesting goals for future
work.

Finally, we comment that Algorithm 1 with the gradient
estimator Algorithm 2 is but one of many possibilities for
policy search methods, e.g. two-point gradient estimator
[30], REINFORCE [6], actor-critic methods [68], and with
our landscape result (Theorem 1), similar versions of our
convergence result (Theorem 2) can be proven for these other
types of policy search methods. Further, there are various
results suggesting ways to reduce the variance of the gradient
estimator [69]–[71] that could also be incorporated into the
framework here.

Remark 1. In this paper, the search space is the class of
linear controllers ut = −Kxt. The focus on linear controllers
is in line with a common practice in nonlinear control that
first linearizes the nonlinear system and then designs a
linear controller for the linearized system. Compared to this
approach, we use the same class of controllers, but search
for the best one considering the nonlinear residual. Those
being said, for nonlinear systems, the optimal controller is in
general nonlinear. The idea in this paper can also be used to
search over nonlinear controllers, where one first warm-starts
from the optimal LQR controller for the linear system, and
then learns a nonlinear residual controller, but the analysis is
much more challenging because popular nonlinear controllers
include neural networks, whose analysis remains largely open.

Remark 2. The problem setting of this paper does not
consider process noise, and the only randomness in the system
arises from the initial state. The analysis and algorithm in
this paper can be generalized to the case with process noise.

IV. NUMERICAL EXPERIMENTS

To illustrate our approach, we contrast it with model-free
and model-based approaches using two sets of experiments: (i)
synthetic random instances and (ii) the cart inverted pendulum.

Algorithm 1: Model-Free Policy Search with Model-
Based Warm Start
Input: Linear Model (Â, B̂), cost matrix (Q,R),

parameters η,M, r, J, T
1 K̂lin ← OPT-LQR(Â, B̂, Q,R) // Find the

optimal controller for the linear system

2 K0 ← K̂lin // Warm start

3 for m = 0, 1, . . . ,M − 1 do
4 ∇̂C(Km)← GradientEstimator(Km, r, J, T )

5 Km+1 ← Km − η∇̂C(Km)

6 return KM

Algorithm 2: GradientEstimator
Input: Controller K, parameters r, J, T

1 for j = 1, 2, . . . , J do
/* Sample random direction Uj from sphere

with radius r in Frobenius norm */

2 Sample Uj ∼ Sphere(r)
/* Sample a trajectory under perturbed

controller K + Uj */

3 Sample x0 ∼ D
4 for t = 0, 1, . . . , T do
5 Set ut = −(K + Uj)xt
6 Receive the next point xt+1 from system

7 Calculate approximate cost
Ĉj =

∑T
t=0[x>t Qxt + u>t Rut]

8 return ∇̂C(K) = 1
J

∑J
j=1

d
r2 ĈjUj where d = pn

// One point gradient estimator

A. Synthetic experiments

Our first set of experiments focuses on random synthetic
examples. We set n (the dimension of state) and p (the
dimension of input) to be 2. We generate A and B randomly,
with each entry drawn from a Gaussian distribution N(0, 1),
where A is normalized so that the spectral radius of A is
0.5. The initial state distribution D is a uniform distribution
over a fixed set of 2 initial states, which are drawn from i.i.d.
zero-mean Gaussians with norm normalized to be 2. The cost
is set as Q = 2I,R = I . We set f(x) = `x/(1− 0.9 sin(x)),
where all operations here are understood as entry wise and
` is a parameter that we increase from ` = 0.005 to ` =
0.08. For each `, we run both our hybrid approach and the
model-free approach (starting from K = 0 as this system
is open loop stable) with algorithm parameters η = 0.01,
T = 50, r = 0.001, J = 10, and M = 200. We repeat the
above procedures for 50 times, each time with A,B and D
regenerated, and then plot the final cost achieved by both
approaches (normalized as the improvement over the model-
based LQR controller)2 as a function of ` in Figure 3a. We
also plot the sample complexity as a function of ` for both

2The improvement is counted as −∞ if a run fails to converge to a
stabilizing controller.



(a) (b)

Fig. 3: Simulation results for synthetic experiments. Solid lines represent the median and shaded regions represent the 25%
to 75% percentiles.

Fig. 4: Cart inverted pendulum model with M = 0.5 kg,

m = 0.2 kg, b = 0.1N sm−1, I = 0.006 kgm2, l = 0.3m.

approaches in Figure 3b, where sample complexity is the

number of state samples needed for the respective algorithm

to converge.3 The results show that both the proposed hybrid

approach and the model-free approach can outperform the

model-based LQR controller. Moreover, the proposed hybrid

approach consistently outperforms the model-free approach

in terms of the final cost achieved and the sample complexity.

B. Inverted Pendulum
Our second set of experiments focuses on the cart inverted

pendulum model (cf. Figure 4), where the goal is to stabilize
the pendulum in the upright position. This is a nonlinear
system with a widely accepted approximated linear model,
and we provide its dynamics and its linearization below in
continuous time [27],⎡
⎢⎢⎣
ẏ

φ̇
ÿ

φ̈

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ẏ

φ̇[
M +m −ml cosφ
−ml cosφ I +ml2

]−1 [−bẏ −ml(φ̇)2 sinφ+ F
mgl sinφ

]
⎤
⎥⎥⎦

≈

⎡
⎢⎢⎢⎣
0 0 1 0
0 0 0 1

0 m2gl2

I(M+m)+Mml2
−(I+ml2)b

I(M+m)+Mml2
0

0 mgl(M+m)

I(M+m)+Mml2
−mlb

I(M+m)+Mml2
0

⎤
⎥⎥⎥⎦

⎡
⎢⎣
y
φ
ẏ

φ̇

⎤
⎥⎦

+

⎡
⎢⎢⎣

0
0

I+ml2

I(M+m)+Mml2
ml

I(M+m)+Mml2

⎤
⎥⎥⎦F,

where the “≈” is obtained by setting sinφ ≈ φ, cosφ ≈ 1
and (φ̇)2 sinφ ≈ 0. We identify the state as x = [y, φ, ẏ, φ̇]�

3The sample complexity is counted as ∞ if a run doesn’t converge to a
stabilizing controller.

and the input as u = F . We discretize both the nonlinear

system and the linear approximation above using forward

discretization with the step size τ = 0.05s to obtain a discrete

time nonlinear system and its approximation, and we set f to

be the difference of the two. We also set Q = I, R = 1, and

the initial state distribution is a Dirac distribution centered

on x0 = [0.8, 0.8, 0.2, 0.2]�.

We run the proposed approach as well as the model-free

approach, where the model-free approach is initialized at

K = [k1, k2, k3, k3] which is generated randomly with k1, k2
drawn from [−15, 0], and k3, k4 drawn from [0, 15].4 For both

approaches, we set the algorithm parameters as η = 0.01,

r = 0.001, T = 2000, J = 3, M = 500. We do 50 runs

for both approaches, plot the learning processes in Figure 5a.

We also plot the histogram of the final cost achieved by

both approaches (normalized as the improvement over the

model-based LQR controller) in Figure 5b.

The results show that the model-free approach fails to find

a stabilizing controller in roughly 40% of the runs, whereas

almost all runs of the proposed approach can find a stabilizing

controller,5 even though the model-free approach always starts

from a stabilizing controller. Further, both the proposed hybrid

approach and the model-free approach outperform the model-

based LQR controller if they do reach a stabilizing controller.

However, the proposed hybrid approach consistently achieves

larger improvements than the model-free approach.

V. CONCLUSION

In this paper, we consider a dynamical system with a

(roughly) known linear component and a (small) nonlinear

component, and we propose an approach that combines model-

based LQR control with model-free policy search to achieve

the best of both worlds.

Our work represents an initial step towards making model-

free policy search methods more reliable by exploiting known

model information. An immediate next step is to relax the

4Such an initialization is obtained through trial and error with the goal of
ensuring a stabilizing initial controller with high probability. If the initial
controller is unstable, we resample until it is stable.

5We use a small number of trajectories for calculating the gradient (J = 3).
As such, the proposed approach has a small probability of not converging
when this gradient estimate is poor.



(a) (b)

Fig. 5: Simulation results for the inverted pendulum example. In (a), solid lines represent the median and shaded regions
represent the 10% to 90% percentiles.

bound on `, `′ in the landscape result (Theorem 1) and
understand how much “non-linearity” can be tolerated until
the linear model is no longer informative for control design.
Another important direction is to enlarge the search space to
nonlinear controllers (Remark 1), which is a challenging task
given that popular parameterizations of nonlinear controllers
involve neural networks, which are hard to analyze.
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APPENDIX

A. Explanation of Example 2

The intuition behind Example 2 is as follows. Let A be contractive (‖A‖ < 1), but very close to I . As a result, with f = 0
and K = 0, any starting point x will linearly converges to 0 (with a slow rate), thus incurring finite cost. We construct a new
contracting point close to xi by adding the following expression to function f :

αi(xi − x)− (A− I)x−BKix

(‖x− xi‖2 + 1)2
.

This contracting point has strength αi and is effective when the policy K is close to Ki. With such a function f , if we start
from certain states, the state will converge to this contracting point xi, thus incurring infinite cost.

In Example 2, we construct three such contracting points, taking effects around different policy K, so that the activated
policies (those incurring infinite cost) form a ring shape, leaving the center inactivated (incurring finite cost). To visualize
whether a policy is activated (incurring infinite cost), we compute the limit point to which the state converges under this
policy, as shown in Figure 6.

Fig. 6: The squared norm of the limit state (we use x100 for the plot) under different policies. For policies with infinite cost,
the state converges to a non-zero contracting point. Thus, the points with non-zero value in this figure are exactly those with
infinite value in Figure 2.

B. Proof of Theorem 1: Landscape Analysis of C(K)

The proof will be divided into three steps, corresponding to part (a), (b) and (c) of the Theorem respectively.
Step 1: We show in Lemma 1 that when K ∈ Ω and ` is bounded, then the system will be globally exponentially stable,

or in other words the state trajectory will geometrically decay to the origin regardless of the initial state. This also implies
boundedness of C within Ω. The proof of Lemma 1 is given in Appendix C.

Lemma 1. When ` ≤ 1−ρ0
4c0

and when K ∈ Ω, ∀x0 ∈ Rn, the system trajectory satisfies ‖xt‖ ≤ cρt‖x0‖, with c = 2ρ0 and
ρ = 1+ρ0

2 . As a consequence, we have C(K) is finite in Ω.

Step 2: We provide an explicit characterization of the cost function C(K) and its gradient ∇C(K), and show the following
Lemma 2, indicating the strong convexity and smoothness of the cost function. The proof of Lemma 2 is provided in
Appendix D.

Lemma 2. When δ, `, `′ satisfy,

δ ≤ σxσ(1− ρ)4

96Γ5c7D2
0

, ` ≤ σxσ(1− ρ)5

192Γ4c9D2
0

, `′ ≤ σxσ(1− ρ)5

192Γ4c12D3
0

,

then Λ(δ) = {K : ‖K −K∗lin‖F ≤ δ} ⊂ Ω, and for all, K,K ′ ∈ Λ(δ),

C(K ′)− C(K) ≥ Tr(K ′ −K)>∇C(K) +
µ

2
‖K ′ −K‖2F ,

C(K ′)− C(K) ≤ Tr(K ′ −K)>∇C(K) +
h

2
‖K ′ −K‖2F ,



where µ = σxσ, h = 5
Γ4c4D2

0

(1−ρ)2 . This implies C(K) is µ-strongly convex and h-smooth in the set Λ(δ).

Step 3: We show that when K is outside of the interior of Λ( δ3 ), C(K) is larger than C(K∗lin). The proof of Lemma 3 is
in Appendix H.

Lemma 3. Under the conditions of Lemma 2 and if further, `, `′ satisfies,

` ≤ δ σσx(1− ρ)4

96Γ4c8D2
0

, `′ ≤ δ σσx(1− ρ)4

96Γ4c11D3
0

,

then for all K ∈ Ω/Λ( δ3 ), C(K) > C(K∗lin).

The above lemma shows that C(K)’s minimum must be achieved in set Λ( δ3 ) which lies in the interior of Λ(δ). Since
C(K) is strongly convex in Λ(δ), C(K)’s minimum in Ω must be uniquely achieved at a point K∗ ∈ Λ( δ3 ), which is also
the unique stationary point of C(K) within Λ(δ).

Finally, we summarize the requirements for `, `′ and δ in the above three lemmas and provide a condition for `, `′ and an
estimate of δ below which satisfies all the conditions in Lemma 1, 2, 3,

` ≤ (σσx)2(1− ρ)8

962Γ9c15D4
0

, `′ ≤ (σσx)2(1− ρ)8

962Γ9c18D5
0

, δ =
σxσ(1− ρ)4

96Γ5c7D2
0

.

With this, the proof of Theorem 1 is concluded.

C. Proof of Lemma 1: Stability of the Trajectories

We in fact show a more general result in the following lemma, of which part (a) leads to Lemma 1.

Lemma 4. Assume K ∈ Ω and ` ≤ 1−ρ0
4c0

. Then we have the following holds.
(a) For any x0 ∈ Rn, ‖xt‖ ≤ cρt‖x0‖, where c = 2c0 and ρ = ρ0+1

2 .
(b) Let {xt} and {x′t} be the state tracjectories starting from x0 ∈ Rn and x′0 ∈ Rn respectively. Then, ‖xt − x′t‖ ≤

cρt‖x0 − x′0‖. A direct consequence is that ‖ ∂xt

∂x0
‖ ≤ cρt.

(c) Again let {xt} and {x′t} be the state tracjectories starting from x0 ∈ Rn and x′0 ∈ Rn. Then ‖ ∂xt

∂x0
− ∂x′t

∂x′0
‖ ≤

`′c3

1−ρρ
t−1‖x0 − x′0‖.

Proof. To prove part (a), we recursively expand the system trajectory as follows,

xt+1 = (A−BK)xt + f(xt) = (A−BK)t+1x0 +
t∑

k=0

(A−BK)t−kf(xk).

Taking the norm, and using K ∈ Ω and the Lipschitz property of f , we have,

‖xt+1‖ ≤ c0ρt+1
0 ‖x0‖+

t∑
k=0

c0ρ
t−k
0 `‖xk‖. (3)

We use the following simple proposition on nonnegative scalar sequences satisfying inequalities of the form in (3).

Proposition 1. If nonnegative sequence at is such that at+1 ≤ α0λ
t+1
1 +

∑t
k=0 α1λ

t−k
2 ak where λ0, λ1 ∈ (0, 1) and α0 ≥ a0

Then, at ≤ αλt where α, λ can be any positive constant satisfying λ > λ2, λ ≥ λ1, α0

α + α1

λ−λ2
≤ 1. In particular, we can

pick α = 2α0, and λ = max(λ1, λ2 + 2α1).

Proof. We use induction. The proposotion is clear true for t = 0 as α ≥ α0 ≥ a0. Assume it is true for t, then,

at+1

αλt+1
≤ α0

α
(
λ1

λ
)t+1 +

t∑
k=0

α1λ
t−k
2 λk−t−1

=
α0

α
(
λ1

λ
)t+1 +

α1

λ

1− (λ2

λ )t+1

1− λ2

λ

<
α0

α
+

α1

λ− λ2
≤ 1.

Applying Proposition 1 to (3), we have ‖xt‖ ≤ 2c0‖x0‖(ρ0 + 2c0`)
t ≤ cρt‖x0‖, where we have used ρ0 + 2c0` ≤

ρ0 + 2c0
1−ρ0
4c0

= ρ.
The proof of part (b) is identical. Notice that

xt+1 − x′t+1 = (A−BK)(xt − x′t) + f(xt)− f(x′t)



= (A−BK)t+1(x0 − x′0) +
t∑

k=0

(A−BK)t−k(f(xk)− f(x′k)).

As such,

‖xt+1 − x′t+1‖ ≤ c0ρt+1
0 ‖x0 − x′0‖+

t∑
k=0

c0ρ
t−k
0 `‖xk − x′k‖,

which leads to ‖xt − x′t‖ ≤ 2c0‖x0 − x′0‖(ρ0 + 2c0`)
t ≤ cρt‖x0 − x′0‖.

For part (c), we have

∂xt+1

∂x0
= (A−BK)

∂xt
∂x0

+
∂f(xt)

∂xt

∂xt
∂x0

,

and therefore,

∂xt+1

∂x0
−
∂x′t+1

∂x′0
= (A−BK)(

∂xt
∂x0
− ∂x′t
∂x′0

) +
∂f(xt)

∂xt
(
∂xt
∂x0
− ∂x′t
∂x′0

) + (
∂f(xt)

∂xt
− ∂f(x′t)

∂x′t
)
∂x′t
∂x′0

=
t∑

k=0

(A−BK)t−k
[∂f(xk)

∂xk
(
∂xk
∂x0
− ∂x′k
∂x′0

) + (
∂f(xk)

∂xk
− ∂f(x′k)

∂x′k
)
∂x′k
∂x′0

]
Taking the norm and using the Lipschitz continuity of ∂f(x)

∂x in Assumption 4, we get

‖∂xt+1

∂x0
−
∂x′t+1

∂x′0
‖ ≤

t∑
k=0

c0ρ
t−k
0

[
`‖∂xk
∂x0
− ∂x′k
∂x′0
‖+ `′‖xk − x′k‖‖

∂x′k
∂x′0
‖
]

≤
t∑

k=0

c0ρ
t−k
0 `‖∂xk

∂x0
− ∂x′k
∂x′0
‖+

t∑
k=0

c0ρ
t−k
0 `′(cρk)2‖x0 − x′0‖

≤
t∑

k=0

c0ρ
t−k
0 `‖∂xk

∂x0
− ∂x′k
∂x′0
‖+

t∑
k=0

c0`
′c2ρt+k‖x0 − x′0‖

<

t∑
k=0

c0ρ
t−k
0 `‖∂xk

∂x0
− ∂x′k
∂x′0
‖+ c0`

′c2‖x0 − x′0‖
ρt

1− ρ
.

With this, we can invoke Proposition 1 and show that,

‖ ∂xt
∂x0
− ∂x′t
∂x′0
‖ ≤ 2c0`

′c2

ρ(1− ρ)
ρt‖x0 − x′0‖ =

`′c3

1− ρ
ρt−1‖x0 − x′0‖.

With the trajectory geometrically converging to zero, we also provide the following two auxiliary lemmas that will be
used in the rest of the proof.

Lemma 5. For K ∈ Ω, define

ΣK = EK
∞∑
t=0

xtx
>
t , ΣfxK = EK

∞∑
t=0

f(xt)x
>
t .

Then, under the same conditions as in Lemma 1, we have,

‖ΣK‖ ≤ CΣ :=
c2D2

0

1− ρ
, ‖ΣfxK ‖ ≤ `CΣ.

Proof. As a direct consequence of Lemma 1,

‖ΣK‖ ≤ EK
∞∑
t=0

‖xt‖2 ≤
c2

1− ρ2
E ‖x0‖2 ≤

c2D2
0

1− ρ
.

Similarly, using the Lipschitz continuity of f ,

‖ΣfxK ‖ ≤ EK
∞∑
t=0

`‖xt‖2 ≤ `
c2D2

0

1− ρ
.



Lemma 6. For K ∈ Ω, let PK be the solution to the following Lyapunov equation,

(A−BK)>PK(A−BK)− PK +Q+K>RK = 0.

Then, under the conditions of Lemma 1, and further when K ∈ Λ(1), we have

‖PK‖ ≤ CP :=
c2

1− ρ
Γ2.

Proof. Note that PK =
∑∞
t=0((A−BK)>)t(Q+K>RK)(A−BK)t, we have

‖PK‖ ≤
c20

1− ρ2
0

‖Q+K>RK‖ ≤ c20
1− ρ0

(1 + ‖K‖2)

≤ c20
1− ρ0

5Γ2 <
c2

1− ρ
Γ2 := CP ,

where we have used ‖K‖ ≤ ‖K −K∗lin‖+ ‖K∗lin‖ ≤ ‖K −K∗lin‖F + ‖K∗lin‖ ≤ ‖K∗lin‖+ 1 ≤ 2Γ.

D. Proof of Lemma 2: Strong Convexity and Smoothness

First off, note that under the conditions of Lemma 2, the conditions in Lemma 1 are satisfied, and we can use all the
results in Appendix C, incluidng Lemma 4, Lemma 5 and Lemma 6. Further, it is easy to check that the conditions in this
lemma also guarantees Λ(δ) = {K : ‖K −K∗lin‖F ≤ δ} ⊂ Ω (which only requires δ ≤ 1−ρ0

c0Γ ).
In the following, we provide a characterization of the value function, the gradient, and provide a cost differential formula.

Here the value and Q function under a given controller K are defined as,

VK(x) = EK
[ ∞∑
t=0

x>t Qxt + u>t Rut

∣∣∣x0 = x
]
,

and

QK(x, u) = EK
[ ∞∑
t=0

x>t Qxt + u>t Rut

∣∣∣x0 = x, u0 = u
]

= x>Qx+ u>Ru+ VK(Ax+Bu+ f(x)).

The following lemma provides a characterization of the value function. The proof of Lemma 7 is given in Appendix E.

Lemma 7 (Value Function). When K ∈ Ω, we have,

VK(x) = x>PKx+ gK(x) (4)

where PK is the solution to the following Lyapunov equation,

(A−BK)>PK(A−BK)− PK +Q+K>RK = 0, (5)

and function gK is given by,

gK(x) = 2 TrPK(A−BK)
∞∑
t=0

xtf(xt)
> + TrPK

∞∑
t=0

f(xt)f(xt)
>, (6)

where {xt}∞t=0 is the trajectory generated by controller K with initial state x0 = x. Further, when K ∈ Λ(δ), and when
x, x′ ∈ Rn with ‖x‖, ‖x′‖ ≤ 2c2D0, we have,

‖∇gK(x)−∇gK(x′)‖ ≤ L‖x− x′‖,

where L = (`+ 2`′c3D0) 4CP c
4

(1−ρ)2 = (`+ 2`′c3D0) 4Γ2c6

(1−ρ)3 with CP being the upper bound on ‖PK‖ from Lemma 6.

Given that C(K) = Ex∼D VK(x), the formula for VK(x) in the preceding Lemma 7 also leads to a formula for the
gradient of C(K), which is formally provided in the following lemma, whose proof is postponed to Appendix E.

Lemma 8 (Gradient of C(K)). Recall the cost function is C(K) = Ex∼D VK(x). We have,

∇C(K) = 2EKΣK − 2B>PKΣfxK −B
>ΣgxK

where EK , ΣK , ΣfxK and ΣgxK are defined as:

EK = RK −B>PK(A−BK) = (R+B>PKB)K −B>PKA, (7)

ΣK = EK
∞∑
t=0

xtx
>
t , ΣfxK = EK

∞∑
t=0

f(xt)x
>
t , ΣgxK = EK

∞∑
t=0

∇xgK(xt+1)x>t . (8)



We also provide a formula for C(K ′)− C(K), whose proof can be found in Appendix E.

Lemma 9 (Cost differential formula). We have for any K,K ′ ∈ Ω,

C(K ′)− C(K)

= 2 Tr(K ′ −K)>EKΣK′ + Tr(K ′ −K)>(R+B>PKB)(K ′ −K)ΣK′ − 2 Tr(K ′ −K)>B>PKΣfxK′

+ EK′
∞∑
t=0

[
gK((A−BK ′)x′t + f(x′t))− gK((A−BK)x′t + f(x′t))

]
. (9)

With these preparations, we now proceed to prove Lemma 2, the strong convexity and smoothness of C(K) within Λ(δ).
Proof of Lemma 2: We first focus on the strong convexity. By Lemma 9, we have for K,K ′ ∈ Λ(δ),

C(K ′)− C(K)

= 2 Tr(K ′ −K)>EKΣK′ + Tr(K ′ −K)>[R+B>PKB](K ′ −K)ΣK′ − 2 Tr(K ′ −K)>B>PKΣfxK′

+ EK′
∞∑
t=0

[gK((A−BK ′)x′t + f(x′t))− gK((A−BK)x′t + f(x′t))]

(a)

≥ 2 Tr(K ′ −K)>EKΣK + 2 Tr(K ′ −K)>EK(ΣK′ − ΣK) + Tr(K ′ −K)>[R+B>PKB](K ′ −K)ΣK′

− 2 Tr(K ′ −K)>B>PKΣfxK + 2 Tr(K ′ −K)>B>PK(ΣfxK − ΣfxK′)

+ EK′
∞∑
t=0

[−Tr(K ′ −K)>B>∇gK(x′t+1)x′>t −
L

2
‖B(K ′ −K)x′t‖2]

= Tr(K ′ −K)>
[
2EKΣK − 2B>PKΣfxK − EK

∞∑
t=0

B>∇gK(xt+1)x>t

]
+ Tr(K ′ −K)>[R+B>PKB](K ′ −K)ΣK′

+ 2 Tr(K ′ −K)>EK(ΣK′ − ΣK) + 2 Tr(K ′ −K)>B>PK(ΣfxK − ΣfxK′)

+ Tr(K ′ −K)>B>[EK
∞∑
t=0

∇gK(xt+1)x>t − EK′
∞∑
t=0

∇gK(x′t+1)x′>t ]

− EK′
∞∑
t=0

L

2
‖B(K ′ −K)x′t‖2]

(b)

≥ Tr(K ′ −K)>∇C(K) + Tr(K ′ −K)>[R+B>PKB](K ′ −K)ΣK′

− 2‖K ′ −K‖F ‖EK‖‖ΣK′ − ΣK‖F − 2‖K ′ −K‖F ‖B‖‖PK‖‖ΣfxK − ΣfxK′‖F

− ‖K ′ −K‖F ‖B‖
∥∥∥EK ∞∑

t=0

∇gK(xt+1)x>t − EK′
∞∑
t=0

∇gK(x′t+1)x′>t

∥∥∥
F

− EK′
∞∑
t=0

L

2
‖B(K ′ −K)x′t‖2] (10)

where in step (b) we have used the gradient formula in Lemma 8, and in step (a) we have used,

gK((A−BK)x′t + f(x′t))

≤ gK((A−BK ′)x′t + f(x′t)) + 〈∇gK((A−BK ′)x′t + f(x′t)), B(K ′ −K)x′t〉+
L

2
‖B(K ′ −K)x′t‖2

= gK((A−BK ′)x′t + f(x′t)) + 〈∇gK(x′t+1), B(K ′ −K)x′t〉+
L

2
‖B(K ′ −K)x′t‖2

= gK((A−BK ′)x′t + f(x′t)) + Tr(K ′ −K)>B>∇gK(x′t+1)x′>t +
L

2
‖B(K ′ −K)x′t‖2.

In the above, we have used the second part of Lemma 7 on the Lipschitz continuity of ∇gK(x), which applies here as K ∈ Λ(δ)
and since ‖(A−BK ′)x′t+f(x′t)‖ = ‖x′t+1‖ ≤ cρt+1‖x′0‖ ≤ cD0, and ‖(A−BK)x′t+f(x′t)‖ ≤ ‖A−BK‖‖x′t‖+‖f(x′t)‖ ≤
(c+ `)cρt‖x′0‖ ≤ 2c2D0 (using ` ≤ 1 ≤ c).

Equation (10) can lead to strong convexity if we can show its first two terms dominates its last 4 terms. For this purposes,
we show the following Lemma 10 and 11 to control the last 4 terms in (10). The proofs of Lemma 10 and 11 can be found
in Section F and Section G respectively.



Lemma 10. For K ∈ Λ(δ), we have,

‖EK‖ ≤ CE‖K −K∗lin‖ ≤ CE‖K −K∗lin‖F ≤ CEδ,

where CE = 4 Γ4c4

(1−ρ)2 .

Lemma 11. There exists constant C1 =
2c3ΓD2

0

(1−ρ)2 , C2 = `C1, C3 = LC1 such that for all K,K ′ ∈ Λ(δ),

‖ΣK′ − ΣK‖F ≤ C1‖K ′ −K‖F , ‖ΣfxK′ − ΣfxK ‖F ≤ C2‖K ′ −K‖F ,

‖EK
∞∑
t=0

∇gK(xt+1)x>t − EK′
∞∑
t=0

∇gK(x′t+1)x′>t ‖F ≤ C3‖K −K ′‖F .

With the help of Lemma 10 and Lemma 11, we proceed with (10),

C(K ′)− C(K)

≥ Tr(K ′ −K)>∇C(K) + Tr(K ′ −K)>[R+B>PKB](K ′ −K)ΣK′

− 2C1‖EK‖‖K ′ −K‖2F − 2C2‖B‖‖PK‖‖K ′ −K‖2F − C3‖B‖‖K ′ −K‖2F − EK′
∞∑
t=0

L

2
‖B‖2‖x′t‖2‖K ′ −K‖2

≥ Tr(K ′ −K)>∇C(K) + Tr(K ′ −K)>[R+B>PKB](K ′ −K)ΣK′

−

[
2C1‖EK‖+ 2C2‖B‖‖PK‖+ C3‖B‖+ EK′

∞∑
t=0

L

2
‖B‖2‖x′t‖2

]
‖K ′ −K‖2F

≥ Tr(K ′ −K)>∇C(K) + µ‖K ′ −K‖2F

−
[
2C1CEδ + 2C2ΓCP + C3Γ +

L

2

Γ2c2D2
0

1− ρ

]
‖K ′ −K‖2F , (11)

where in the last inequality, µ = σxσ, and we have used since PK � Q and ΣK′ � Ex0x
>
0 � σxI ,

Tr(K ′ −K)>[R+B>PKB](K ′ −K)ΣK′ = Tr[(K ′ −K)Σ
1/2
K′ ]>[R+B>PKB](K ′ −K)Σ

1/2
K′

≥ Tr[(K ′ −K)Σ
1/2
K′ ]>[R+B>QB](K ′ −K)Σ

1/2
K′

≥ σTr[(K ′ −K)Σ
1/2
K′ ]>(K ′ −K)Σ

1/2
K′

= σTr(K ′ −K)ΣK′(K
′ −K)>

≥ σσx‖K ′ −K‖2F .

From (11), it is clear that if we can show,

2C1CEδ + 2C2ΓCP + C3Γ +
L

2

Γ2c2D2
0

1− ρ
≤ µ

2
, (12)

then the µ-strong convexity property is proven. It remains to check our selection of δ, `, `′ is such that (12) is true. Plug in
C2 = `C1 and C3 = LC1, we have,

2C1CEδ + 2C2ΓCP + C3Γ +
L

2

Γ2c2D2
0

1− ρ
≤ 2C1CEδ + 2`ΓC1CP + 2LΓC1

≤ 2C1CEδ + 16ΓC1[`+ `′c3D0]
CP c

4

(1− ρ)2

= 16
Γ5c7D2

0

(1− ρ)4
δ + 32

Γ4c9D2
0

(1− ρ)5
`+ 32

Γ4c12D3
0

(1− ρ)5
`′ ≤ µ

2
,

where in the last step, we have used,

δ ≤ σxσ

6

(1− ρ)4

16Γ5c7D2
0

=
σxσ(1− ρ)4

96Γ5c7D2
0

,

` ≤ σxσ

6

(1− ρ)5

32Γ4c9D2
0

=
σxσ(1− ρ)5

192Γ4c9D2
0

,

`′ ≤ σxσ

6

(1− ρ)5

32Γ4c12D3
0

=
σxσ(1− ρ)5

192Γ4c12D3
0

.



This concludes the proof for the strong convexity. The proof for the smoothness property is similar. We follow similar steps
as in (10) but reverse the direction of inequalities, getting,

C(K ′)− C(K)

= 2 Tr(K ′ −K)>EKΣK′ + Tr(K ′ −K)>[R+B>PKB](K ′ −K)ΣK′ − 2 Tr(K ′ −K)>B>PKΣfxK′

+ EK′
∞∑
t=0

[gK((A−BK ′)x′t + f(x′t))− gK((A−BK)x′t + f(x′t))]

≤ 2 Tr(K ′ −K)>EKΣK + 2 Tr(K ′ −K)>EK(ΣK′ − ΣK) + Tr(K ′ −K)>[R+B>PKB](K ′ −K)ΣK′

− 2 Tr(K ′ −K)>B>PKΣfxK + 2 Tr(K ′ −K)>B>PK(ΣfxK − ΣfxK′)

+ EK′
∞∑
t=0

[−Tr(K ′ −K)>B>∇gK(x′t+1)x′>t +
L

2
‖B(K ′ −K)x′t‖2]

≤ Tr(K ′ −K)>∇C(K) + Tr(K ′ −K)>[R+B>PKB](K ′ −K)ΣK′

+ 2‖K ′ −K‖F ‖EK‖‖ΣK′ − ΣK‖F + 2‖K ′ −K‖F ‖B‖‖PK‖‖ΣfxK − ΣfxK′‖F

+ ‖K ′ −K‖F ‖B‖
∥∥∥EK ∞∑

t=0

∇gK(xt+1)x>t − EK′
∞∑
t=0

∇gK(x′t+1)x′>t

∥∥∥
F

+ EK′
∞∑
t=0

L

2
‖B(K ′ −K)x′t‖2]

≤ Tr(K ′ −K)>∇C(K) + Tr(K ′ −K)>[R+B>PKB](K ′ −K)ΣK′ +
µ

2
‖K ′ −K‖2F

≤ Tr(K ′ −K)>∇C(K) +
1

2
(µ+ 2‖R+B>PKB‖‖ΣK′‖)‖K ′ −K‖2F . (13)

Using the upper bound on ‖PK‖ and ‖ΣK′‖ in Lemma 6 and Lemma 5 respectively, we get

µ+ 2‖R+B>PKB‖‖ΣK′‖ ≤ µ+ 2(1 + Γ2 c
2Γ2

1− ρ
)
c2D2

0

1− ρ
≤ 5

Γ4c4D2
0

(1− ρ)2
= h.

As such, the cost function C(K) is h smooth within Λ(δ). This concludes the proof of Lemma 2.

E. Proof of Lemma 7, 8, 9: Characterization of C(K) and its Gradient.

Proof of Lemma 7. Since K ∈ Ω, by Lemma 1, we have VK(x) ≤ ‖Q+K>RK‖ c2

1−ρ2 ‖x‖
2. As such, VK(x) is finite and

satisfies So VK(x)→ 0 as x→ 0.
By Bellman equation, the value function also satisfies,

VK(x) = x>(Q+K>RK)x+ VK((A−BK)x+ f(x)). (14)

Define gK(x) = VK(x)− x>PKx, we have

x>PKx+ gK(x) = x>(Q+K>RK)x+ ((A−BK)x+ f(x))>PK((A−BK)x+ f(x)) + gK(x1),

where x1 = (A−BK)x+ f(x). Since PK satisfies (5), we have,

gK(x) = 2f(x)>PK(A−BK)x+ f(x)>PKf(x) + gK(x1)

= 2 Tr(PK(A−BK)xf(x)>) + TrPKf(x)f(x)> + gK(x1)

= 2 TrPK(A−BK)
∞∑
t=0

xtf(xt)
> + TrPK

∞∑
t=0

f(xt)f(xt)
>,

where {xt}∞t=0 is the trajectory generated by controller K starting from x0 = x. In the last step in the above equation, we
have used gK(xt)→ 0 as t→∞, which is due to gK(x)→ 0 as x→ 0 and ‖xt‖ ≤ cρt‖x‖ → 0 as t→∞.

Next, we show the second part of the Theorem. We first compute the gradient of gK(x) as follows,

[∇gK(x)]>

= 2
∞∑
t=0

[
f(xt)

>PK(A−BK) + x>t (A−BK)>PK
∂f(xt)

∂xt

]∂xt
∂x

+ 2
∞∑
t=0

f(xt)
>PK

∂f(xt)

∂xt

∂xt
∂x

= 2
∞∑
t=0

[
f(xt)

>PK(A−BK) + x>t+1PK
∂f(xt)

∂xt

]∂xt
∂x

. (15)



To show that ∇gK(x) is Lipschitz in x when K ∈ Λ(δ) and ‖x‖ ≤ 2c2D0, we have for x, x′ satsfying ‖x‖, ‖x′‖ ≤ 2c2D0,

‖∇gK(x)−∇gK(x′)‖

≤ 2
∞∑
t=0

∥∥∥[f(xt)− f(x′t)]
>PK(A−BK) + x>t+1PK

∂f(xt)

∂xt
− x′>t+1PK

∂f(x′t)

∂x′t

∥∥∥‖∂xt
∂x
‖

+ 2
∞∑
t=0

∥∥∥f(x′t)
>PK(A−BK) + x′>t+1PK

∂f(x′t)

∂x′t

∥∥∥‖∂x′t
∂x′
− ∂xt
∂x
‖. (16)

Using ‖∂f(x)
∂x −

∂f(x′)
∂x′ ‖ ≤ `

′‖x−x′‖ (Assumption 4) and the fact that for any t, by Lemma 1, ‖x′t‖ ≤ c‖x′‖ ≤ 2c3D0 := D,
we have,

‖x>t+1PK
∂f(xt)

∂xt
− x′>t+1PK

∂f(x′t)

∂x′t
‖

≤ ‖(xt+1 − x′t+1)>PK
∂f(xt)

∂xt
‖+ ‖x′>t+1PK(

∂f(x′t)

∂x′t
− ∂f(xt)

∂xt
)‖

≤ `CP ‖xt+1 − x′t+1‖+DCP `
′‖xt − x′t‖

≤ CP (`+D`′)c‖x− x′‖, (17)

where in the second last inequality, we have used the bound on ‖PK‖ when K ∈ Λ(δ) (cf. Lemma 6), and in the last
inequality, we have used Lemma 4 (b). Further, we have,∥∥∥(f(xt)− f(x′t))

>PK(A−BK)
∥∥∥ ≤ `‖xt − x′t‖CP ‖A−BK‖ ≤ `CP c2‖x− x′‖, (18)

where we have used ‖A−BK‖ ≤ c0 ≤ c. Also notice,∥∥∥f(x′t)
>PK(A−BK) + x′>t+1PK

∂f(x′t)

∂x′t

∥∥∥ ≤ `‖x′t‖CP c+ ‖x′t+1‖CP ` ≤ 2`DCP c. (19)

Plugging in (17), (18), (19) into (16), and using ‖∂xt

∂x ‖ ≤ cρ
t (Lemma 4 (b)), ‖∂x

′
t

∂x′ −
∂xt

∂x ‖ ≤
`′c3

(1−ρ)ρ
t−1‖x− x′‖ (Lemma 4

(c)), we get,

‖∇gK(x)−∇gK(x′)‖

≤ 2

∞∑
t=0

[
`CP c

2‖x− x′‖+ CP (`+D`′)c‖x− x′‖
]
‖∂xt
∂x
‖+ 2

∞∑
t=1

2`DCP c‖
∂x′t
∂x′
− ∂xt
∂x
‖

≤ 2
[
`CP c

2‖x− x′‖+ CP (`+D`′)c‖x− x′‖
] c

1− ρ
+ 4`DCP c

`′c3

(1− ρ)2
‖x− x′‖

≤
[
(2`+ `′D)

2CP c
3

1− ρ
+ 4``′D

CP c
4

(1− ρ)2

]
‖x− x′‖

≤ (`+ `′D)
4CP c

4

(1− ρ)2
‖x− x′‖,

where in the last inequality, we have used 4` ≤ 2. This shows ∇gK(x) is L-Lipschitz continuous in x.

Proof of Lemma 8. In (14), we take derivative of VK(x) w.r.t. K, and have

∇KVK(x) = 2RKxx> +∇KV (x1) + (
∂x1

∂K
)>∇xVK(x1).

To proceed, note the directional derivative of x1 w.r.t. K in the direction of ∆ is x′1[∆] = −B∆x. Therefore,

(x′1[∆])>∇xVK(x1) = −x>∆>B>[2PKx1 +∇xgK(x1)] = Tr ∆>(−2B>PKx1x
> −B>∇gK(x1)x>)

This implies that

∇KVK(x) = 2RKxx> − 2B>PK [(A−BK)x+ f(x)]x> −B>∇xgK(x1)x> +∇KV (x1)

= (2RK − 2B>PK(A−BK))xx> − 2B>PKf(x)x> −B>∇xgK(x1)x> +∇KV (x1)

= 2EK

∞∑
t=0

xtx
>
t − 2B>PK

∞∑
t=0

f(xt)x
>
t −B>

∞∑
t=0

∇xgK(xt+1)x>t ,

where {xt} is the trajectory starting from x0 = x. Taking expectation w.r.t. x0 and we are done.



Proof of Lemma 9. By [7, Lemma 10], we have

VK′(x)− VK(x) =
∞∑
t=0

AK(x′t, u
′
t)

where {x′t, u′t} is the trajectory generated by x′0 = x and u′t = −K ′x′t, and AK(x, u) = QK(x, u)− VK(x) is the advantage
function [72].

Now, for given u = −K ′x, we have

AK(x, u) = QK(x, u)− VK(x)

= x>(Q+ (K ′)>RK ′)x+ VK((A−BK ′)x+ f(x))− VK(x)

= x>(Q+ (K −K +K ′)>R(K −K +K ′))x+ VK((A−BK ′)x+ f(x))− VK(x)

= x>(Q+K>RK)x+ x>(2(K ′ −K)>RK + (K ′ −K)>R(K ′ −K))x+ VK((A−BK ′)x+ f(x))− VK(x)

= x>(2(K ′ −K)>RK + (K ′ −K)>R(K ′ −K))x+ VK((A−BK ′)x+ f(x))− VK((A−BK)x+ f(x)). (20)

We next compute, using the formula for value function in Lemma 7,

VK((A−BK ′)x+ f(x))− VK((A−BK)x+ f(x))

= ((A−BK ′)x+ f(x))>PK((A−BK ′)x+ f(x))− ((A−BK)x+ f(x))>PK((A−BK)x+ f(x))

+ gK((A−BK ′)x+ f(x))− gK((A−BK)x+ f(x))

= 2(B(K −K ′)x)>PK((A−BK)x+ f(x)) + x>(K −K ′)>B>PKB(K −K ′)x
+ gK((A−BK ′)x+ f(x))− gK((A−BK)x+ f(x))

= 2x>(K −K ′)>B>PK(A−BK)x+ 2x>(K −K ′)>B>PKf(x) + x>(K −K ′)>B>PKB(K −K ′)x
+ gK((A−BK ′)x+ f(x))− gK((A−BK)x+ f(x)).

Plugging the above into (20), we have

AK(x, u) = 2 Tr(K ′ −K)>[RK −B>PK(A−BK)]xx> + Tr((K ′ −K)>[R+B>PKB](K ′ −K))xx>

− 2 Tr(K ′ −K)>B>PKf(x)x> + gK((A−BK ′)x+ f(x))− gK((A−BK)x+ f(x)).

As a result, we have,

C(K ′)− C(K)

= EK′
∞∑
t=0

AK(x′t,−K ′x′t)

= 2 Tr(K ′ −K)>EKΣK′ + Tr(K ′ −K)>[R+B>PKB](K ′ −K)ΣK′ − 2 Tr(K ′ −K)>B>PKΣfxK′

+ EK′
∞∑
t=0

[gK((A−BK ′)x′t + f(x′t))− gK((A−BK)x′t + f(x′t))].

F. Proof of Lemma 10: bounds on ‖EK‖
Note that K ∈ Λ(δ), EK = RK −B>PK(A−BK). Further, by [7], EK∗lin = 0. Then, we have ,

‖EK‖ = ‖EK − EK∗lin‖
≤ ‖R(K −K∗lin)‖+ ‖B>PK∗linB(K −K∗lin)‖+ ‖B>(PK − PK∗lin)(A−BK)‖

≤ (1 + Γ2CP )‖K −K∗lin‖+ Γc
2Γ3c3

(1− ρ)2
‖K −K∗lin‖

≤ 4
Γ4c4

(1− ρ)2
‖K −K∗lin‖,

where in the second inequality, we have used Lemma 12 which is provided below. This concludes the proof of Lemma 10

Lemma 12 (Perturbation of PK). When K ∈ Λ(δ), we have,

‖PK − PK∗lin‖ ≤
2Γ3c3

(1− ρ)2
‖K −K∗lin‖



Proof. Recall that PK =
∑∞
t=0((A−BK)>)t(Q+K>RK)(A−BK)t. We calculate the direction derivative of PK w.r.t.

K in the direction of ∆ when K ∈ Λ(δ),

P ′K [∆]

=
∞∑
t=0

(((A−BK)t)′[∆])>(Q+K>RK)(A−BK)t +
∞∑
t=0

((A−BK)t)>(Q+K>RK)((A−BK)t)′[∆]

+
∞∑
t=0

((A−BK)t)>(∆>RK +K>R∆)(A−BK)t.

Notice that

((A−BK)t)′[∆] =
t∑

k=1

(A−BK)k−1(−B∆)(A−BK)t−k.

Hence
‖((A−BK)t)′[∆]‖ ≤ ‖B‖‖∆‖c20tρt−1

0 ≤ ‖B‖c20
2

1− ρ0
(
1 + ρ0

2
)t‖∆‖,

where we have used the fact that tρt−1
0 ≤ 2

1−ρ0 ( 1+ρ0
2 )t. As such, we have

‖P ′K [∆]‖ ≤ 2
∞∑
t=0

‖B‖‖Q+K>RK‖c0ρt0c20
2

1− ρ0
(
1 + ρ0

2
)t‖∆‖+ 2

∞∑
t=0

c20ρ
2t
0 ‖K>R‖‖∆‖

< 8‖B‖‖Q+K>RK‖ c30
(1− ρ0)2

‖∆‖+ 2‖K>R‖ c20
(1− ρ0)

‖∆‖

≤ (8Γ + 8Γ‖K‖2 + 2‖K‖) c30
(1− ρ0)2

‖∆‖.

We further use that ‖K‖ ≤ ‖K∗lin‖+ δ ≤ 2Γ (using δ ≤ 1 ≤ Γ), then, we have,

‖P ′K [∆]‖ ≤ 44Γ3 c30
(1− ρ0)2

‖∆‖ ≤ 2Γ3c3

(1− ρ)2
‖∆‖.

Using a simple integration argument on the line between K∗lin and K, we have

‖PK − PK∗lin‖ ≤
2Γ3c3

(1− ρ)2
‖K −K∗lin‖.

G. Proof of Lemma 11: Bounds on C1, C2, C3

Before we start the proof, we first provide an auxiliary result on the perturbation of trajectories by a change of controller
K.

Lemma 13. For K ∈ Λ(δ), given x0, the directional derivative of xt w.r.t. K in the direction of ∆ satisfies,

‖x′t[∆]‖ ≤ c2Γ

1− ρ
ρt‖x0‖‖∆‖.

As a direct consequence, for K,K ′ ∈ Λ(δ), let {xt}∞t=0 and {x′t}∞t=0 be two trajectories starting from the same x0 = x′0
generated by K and K ′ respectively. Then, we have ‖xt − x′t‖ ≤ c2Γ

1−ρρ
t‖x0‖‖K ′ −K‖.

Proof. The dynamical system is given by

xt+1 = (A−BK)xt + f(xt).

Taking derivative w.r.t. K in the direction of ∆, we have

x′t+1[∆] = (A−BK)x′t[∆]−B∆xt +
∂f(xt)

∂xt
x′t[∆] =

t∑
k=0

(A−BK)t−k[−B∆xk +
∂f(xk)

∂xk
x′k[∆]].

Taking the norm and using the triangle inequality as well as the Lipschitz property of f , we get,

‖x′t+1[∆]‖ ≤
t∑

k=0

c0ρ
t−k
0 `‖x′k[∆]‖+

t∑
k=0

c0ρ
t−k
0 ‖B∆‖‖xk‖



≤
t∑

k=0

c0ρ
t−k
0 `‖x′k[∆]‖+

t∑
k=0

c0ρ
t−k
0 ‖B∆‖cρk‖x0‖

≤
t∑

k=0

c0ρ
t−k
0 `‖x′k[∆]‖+ c0‖B‖‖∆‖c‖x0‖

ρt+1 − ρt+1
0

ρ− ρ0
.

As such, by a simple induction argument (Proposition 1), we have

‖x′t[∆]‖ ≤ 2c0‖B‖‖∆‖c‖x0‖
ρt

ρ− ρ0
=

c2Γ

1− ρ
ρt‖x0‖‖∆‖.

We now proceed to prove Lemma 11.

Proof of Lemma 11. By definition, ΣK =
∑∞
t=0 Extx>t . For K ∈ Λ(δ), we take the directional derivative w.r.t. K in the

direction of ∆, getting, we have

Σ′K [∆] = E
∞∑
t=0

(
x′t[∆]x>t + xtx

′
t[∆]>

)
.

Then, using Lemma 13, we have,

‖Σ′K [∆]‖F ≤ E
∞∑
t=0

2‖x′t[∆]‖‖xt‖

≤ E
∞∑
t=0

2
c2Γ

1− ρ
ρt‖x0‖‖∆‖cρt‖x0‖

≤ 2c3ΓD2
0

(1− ρ)2
‖∆‖

≤ 2c3ΓD2
0

(1− ρ)2
‖∆‖F ,

which, after a simple integration argument, gives a bound for C1. Next, we consider the bound on C2. Note that

ΣfxK = E
∞∑
t=0

f(xt)x
>
t .

Again, taking the derivative, we have,

(ΣfxK )′[∆] = E
∞∑
t=0

[
∂f(xt)

∂xt
x′t[∆]x>t + f(xt)x

′
t[∆]>],

which leads to,

‖(ΣfxK )′[∆]‖F ≤ E
∞∑
t=0

2`‖xt‖‖x′t[∆]‖ ≤ `C1‖∆‖F .

So we will get C2 = `C1.
Finally, we proceed to bound C3. Recall the definition of C3 is such that for K,K ′ ∈ Λ(δ),

‖EK
∞∑
t=0

∇gK(xt+1)x>t − EK′
∞∑
t=0

∇gK(x′t+1)x′>t ‖F ≤ C3‖K −K ′‖F .

Fix x0 for now with ‖x0‖ ≤ D0, and consider the trajectories {xt}∞t=0 and {x′t}∞t=0 generated by controller K and K ′

starting from x′0 = x0. We have,

‖∇gK(xt+1)x>t −∇gK(x′t+1)x′>t ‖F
≤ ‖(∇gK(xt+1)−∇gK(x′t+1))x>t ‖F + ‖∇gK(x′t+1)(xt − x′t)>‖F
≤‖∇gK(xt+1)−∇gK(x′t+1)‖‖xt‖+ ‖∇gK(x′t+1)‖‖xt − x′t‖
(a)

≤ L‖xt+1 − x′t+1‖‖xt‖+ L‖x′t+1‖‖xt − x′t‖
(b)

≤ L
c2Γ

1− ρ
ρt+1cρt‖x0‖2‖K ′ −K‖+ Lcρt+1 c2Γ

1− ρ
ρt‖x0‖2‖K ′ −K‖



≤ L2c3ΓD2
0

1− ρ
ρt‖K ′ −K‖,

where in inequality (a), we have used the Lipschitz continuity of ∇gK(x) (Lemma 7), which holds here as K ∈ Λ(δ) and
‖xt+1‖ ≤ cD0, ‖x′t+1‖ ≤ cD0. In inequality (b), we have used the bound in Lemma 13. With the above bound, we can
proceed to obtain C3, getting,

‖EK
∞∑
t=0

∇gK(xt+1)x>t − EK′
∞∑
t=0

∇gK(x′t+1)x′>t ‖F

≤
∞∑
t=0

EK,K′ ‖∇gK(xt+1)x>t −∇gK(x′t+1)x′>t ‖F

≤ L 2c3ΓD2
0

(1− ρ)2
‖K ′ −K‖

≤ LC1‖K ′ −K‖F .

As a result, we can set C3 = LC1.

H. Proof of Lemma 3: Global Optimality

By Lemma 9, we have

C(K ′)− C(K) = 2 Tr(K ′ −K)>EKΣK′

+ Tr(K ′ −K)>(R+B>PKB)(K ′ −K)ΣK′ − 2 Tr(K ′ −K)>B>PKΣfxK′

+ EK′
∞∑
t=0

[
gK((A−BK ′)x′t + f(x′t))− gK((A−BK)x′t + f(x′t))

]
.

Setting K = K∗lin in the above equation and using EK∗lin = 0 (cf. [7]), we get ∀K ∈ Ω,

C(K)− C(K∗lin) = Tr(K −K∗lin)>(R+B>PK∗linB)(K −K∗lin)ΣK − 2 Tr(K −K∗lin)>B>PK∗linΣfxK

+ EK
∞∑
t=0

[
gK∗lin((A−BK)xt + f(xt))− gK∗lin((A−BK∗lin)xt + f(xt))

]
≥ µ‖K −K∗lin‖2F − 2‖K −K∗lin‖F ‖B‖‖PK∗lin‖‖Σ

fx
K ‖F

+ EK
∞∑
t=0

[
gK∗lin((A−BK)xt + f(xt))− gK∗lin((A−BK∗lin)xt + f(xt))

]
, (21)

where in the last inequality, we have used that by R+B>PK∗linB � σI , ΣK � σxI , we have,

Tr(K −K∗lin)>(R+B>PK∗linB)(K −K∗lin)ΣK ≥ σσx‖K −K∗lin‖2F = µ‖K −K∗lin‖2F .

Now we bound the last term in (21). Note that inside the expectation in the last term in (21), almost surely we have,
‖(A − BK)xt + f(xt)‖ = ‖xt+1‖ ≤ cD0, and ‖(A − BK∗lin)xt + f(xt)‖ ≤ (c + `)‖xt‖ ≤ 2c2D0 (using ` ≤ 1 ≤ c).
Therefore, we can invoke the second part of Lemma 7 on the smoothness of gK∗lin and get almost surely,

gK∗lin((A−BK)xt + f(xt))− gK∗lin((A−BK∗lin)xt + f(xt))

≥ −Tr(B(K −K∗lin)xt)
>∇gK∗lin((A−BK)xt + f(xt))−

L

2
‖B(K −K∗lin)xt‖2

≥ −‖K −K∗lin‖F ‖B‖‖xt‖L‖xt+1‖ −
L

2
‖B‖2‖K −K∗lin‖2F ‖xt‖2

≥ −‖K −K∗lin‖FLΓc2D2
0ρ

2t − ‖K −K∗lin‖2F
LΓ2c2D2

0

2
ρ2t.

Plugging the above into (21) and using the easy to check fact that as K ∈ Ω, ‖ΣfxK ‖F ≤ E
∑∞
t=0 `‖xt‖2 ≤ `

c2D2
0

1−ρ , we have
when K ∈ Ω/Λ( δ3 ),

C(K)− C(K∗lin) ≥
[
µ− 1

2
L

Γ2c2D2
0

1− ρ

]
‖K −K∗lin‖2F −

[
2`

Γ3c4D2
0

(1− ρ)2
+ L

Γc2D2
0

1− ρ

]
‖K −K∗lin‖F

> ‖K −K∗lin‖F
[(
µ− 1

2
L

Γ2c2D2
0

1− ρ

)δ
3
− 2`

Γ3c4D2
0

(1− ρ)2
− LΓc2D2

0

1− ρ

]
.



Therefore, it suffices to show that,

1

2
L

Γ2c2D2
0

1− ρ
= (`+ 2`′c3D0)

2Γ4c8D2
0

(1− ρ)4
≤ 1

2
µ,

2`
Γ3c4D2

0

(1− ρ)2
+ L

Γc2D2
0

1− ρ
< (`+ `′c3D0)

8Γ3c8D2
0

(1− ρ)4
≤ δµ

6
.

As such, it suffices to require

` ≤ δ σσx(1− ρ)4

96Γ4c8D2
0

, `′ ≤ δ σσx(1− ρ)4

96Γ4c11D3
0

.

I. Proof of Theorem 2 and Corollary 1: Convergence of Zeroth-Order Policy Search

We start with the following result regarding the accuracy of the gradient estimator, the proof of which is postponed to
Section J.

Lemma 14. Under the conditions of Theorem 1, when K ∈ Λ( 5
6δ), then given egrad, for any ν ∈ (0, 1), when r ≤

min( 1
6δ,

1
3hegrad),

J ≥ 1

e2
grad

d3

r2
log

4d

ν
max(18(C(K∗) + 2hδ2)2, 72C2

max), T ≥ 2

1− ρ0
log

6dCmax

egradr
,

where d = pn and Cmax =
40Γ2c20
1−ρ0 D

2
0 , then with probability at least 1− ν,

‖∇̂C(K)−∇C(K)‖F ≤ egrad.

With the bound on the gradient estimator, we proceed to the proof of Theorem 2.
Proof of Theorem 2. Let Fm be the filtration generated by {∇̂C(Km′)}m−1

m′=0. Then, we have Km is Fm measurable. We
define the following event,

Em = {Km′ ∈ Ball(K∗,
δ

2
),∀m′ = 0, 1, . . . ,m}

∩ {‖∇̂C(Km′)−∇C(Km′)‖F ≤ egrad,∀m′ = 0, 1, . . . ,m− 1},

where Ball(K∗, δ2 ) = {K : ‖K−K∗‖F ≤ δ
2}, i.e. the ball centered at K∗ with radius δ

2 . Clearly, Em is also Fm-measurable.
We now show that conditioned on Em is true, Em+1 happens with high probability, or in other words the following inequality,

E(1(Em+1)|Fm)1(Em) ≥ (1− ν

M
)1(Em). (22)

To show (22), we now condition on Fm. On event Em, we have by triangle inequality, ‖Km−K∗lin‖F ≤ ‖K∗−K∗lin‖F+ δ
2 ≤

5
6δ,

and hence Km ∈ Λ( 5
6δ). Therefore, by Lemma 14 and our selection of r, J, T , we have ‖∇̂C(Km)−∇C(Km)‖F ≤ egrad

with probability at least 1− ν
M (note we have replaced ν with ν/M in Lemma 14), which, as we show now, will further

imply Km+1 ∈ Ball(K∗, 1
2δ). To see this, as Km ∈ Λ( 5

6δ), we can use the µ-strong convexity and h-smoothness to get,

‖Km+1 −K∗‖F ≤ ‖Km − η∇C(Km)−K∗‖F + η‖∇̂C(Km)−∇C(Km)‖F
≤ (1− ηµ)‖Km −K∗‖F + ηegrad (23)

≤ max(
δ

2
,

1

µ
egrad) ≤

δ

2
,

where the second inequality is due to the contraction of gradient descent for strongly convex and smooth functions [73], and
in the last step, we have used egrad ≤ µ δ3 . As such, (22) is true, and taking expectation on both sides, we get,

P(Em+1) = P(Em+1 ∩ Em) = E[E(1(Em+1)|Fm)1(Em)] ≥ (1− ν

M
)P(Em).

As a result, we have, P(EM ) ≥ (1 − ν
M )MP(E0) > 1 − ν, where we have used E0 is true almost surely as K0 = K∗lin ∈

Ball(K∗, δ2 ).
Now, on the event EM , we have (23) is true for all m = 0, . . . ,M − 1. As such, we have,

‖KM −K∗‖F ≤ (1− ηµ)M‖K0 −K∗‖F + ηegrad

M−1∑
m=0

(1− ηµ)m

≤ (1− ηµ)M
δ

3
+

1

µ
egrad



≤
√

2ε

h
,

where we have used M ≥ 1
ηµ log(δ

√
h
ε ), egrad ≤ µ

2

√
ε
h . As such, by h-smoothness,

C(KM ) ≤ C(K∗) +
h

2
‖KM −K∗‖2F ≤ C(K∗) + ε,

which is the desired result. Note that the above is true only when conditioned on EM , as such the desired result is true with
probability at least 1− ν.

We next proceed to prove Corollary 1. Note that the only requirement on the initial point K0 in the proof of Theorem 2 is
that K0 ∈ Ball(K∗, δ2 ). In the setting of Corollary 1, K0 = K̂lin, the LQR controller based on Â, B̂. Note that as long as
‖K̂lin−K∗lin‖F ≤ δ

6 , then ‖K̂lin−K∗‖F ≤ ‖K̂lin−K∗lin‖F +‖K∗lin−K∗‖F ≤ δ
6 + δ

3 = δ
2 ⇒ K0 ∈ Ball(K∗, δ2 ). Therefore,

to prove Corollary 1, we only need to show ‖K̂lin −K∗lin‖F ≤ δ
6 under the conditions of Corollary 1. This is done in the

following lemma, which is a direct application of the LQR perturbation results in [21].

Lemma 15. There exists a LQR perturbation constant cper that depend on A,B,Q,R s.t. when max(‖A− Â‖, ‖B− B̂‖) ≤
min(δ,1)

6 cper
, we have ‖K̂lin −K∗lin‖F ≤ δ

6 .

Proof. Recall K∗lin is the optimal LQR controller based on (A,B), and K̂lin is the optimal LQR controller based on (Â, B̂).
We first recall the following LQR perturbation result in [21], which we rewrite using the notations in our paper.

Lemma 16. ( [21, Proposition 1]) When max(‖A− Â‖, ‖B − B̂‖) ≤ ε, then

‖K̂lin −K∗lin‖ ≤
7

σmin(R)
(1 + max(‖A‖, ‖B‖, ‖P ∗‖, ‖K∗lin‖))3 max(‖P̂ − P ∗‖, ε),

where P̂ and P ∗ are the solution to the Algebraic Ricatti Equation for the system (Â, B̂), (A,B) respectively, under cost
matrix (Q,R).

The above result bounds the difference ‖K̂lin −K∗lin‖ in terms of the difference in the solution to the Algebraic Ricatti
Equation ‖P̂ −P ∗‖. We review a separate result in [21, Proposition 3] that provides a bound on ‖P̂ −P ∗‖ in terms of ε. To
state the result in [21, Proposition 3], we need to define a few constants that is based on A,B. Firstly, define ρA and cA be
such that ‖At‖ ≤ cAρtA, ∀t ≥ 0. Further, as we have assumed the pair (A,B) is controllable in Assumption 2, there must
exist6 positive integer `con, and constant νcon > 0, such that

[
B,AB, . . . , A`con−1B

]


B>

(AB)>

...
(A`con−1B)>

 � ν2
conI.

With these definitions, we state the following result.

Lemma 17. ( [21, Proposition 3]) When max(‖A− Â‖, ‖B − B̂‖) ≤ ε, then

‖P̂ − P ∗‖ ≤ 32`5/2conτ
3
A(max(1, ετA + ρA))2(`con−1)(1 +

1

νcon
)(1 + ‖B‖)2‖P ∗‖ max(‖Q‖, ‖R‖)

min(σmin(Q), σmin(R))
ε,

as long as ε is small enough s.t. the right hand side of above is upper bounded by σmin(R).

Define

c̄per = 32`5/2conτ
3
A(max(1,

σmin(R)

‖P ∗‖
+ ρA))2(`con−1)(1 +

1

νcon
)(1 + ‖B‖)2‖P ∗‖ max(‖Q‖, ‖R‖)

min(σmin(Q), σmin(R))
,

and
cper =

7

σmin(R)
(1 + max(‖A‖, ‖B‖, ‖P ∗‖, ‖K∗lin‖))3 max(c̄per, 1)

√
n.

Now we set ε = min(δ,1)
6 cper

. As cper >
1

σmin(R) c̄per >
‖P∗‖
σmin(R)τA, we have ετA <

σmin(R)
‖P∗‖ . As a result, the right hand side of

the bound in Lemma 17 can be upper bounded by c̄per ε <
c̄per

cper
< σmin(R). Therefore, the bound in Lemma 17 holds, and

we have ‖P̂ − P ∗‖ ≤ c̄per ε. We then combine this with Lemma 16, getting,

‖K̂lin −K∗lin‖F ≤
√
n‖K̂lin −K∗lin‖ ≤

7

σmin(R)
(1 + max(‖A‖, ‖B‖, ‖P ∗‖, ‖K∗lin‖))3

√
nmax(c̄per ε, ε) ≤ cper ε ≤

δ

6
,

6For example, as (A,B) is controllable, one can choose `con = n, and νcon to be the smallest singular value of the controllability matrix.



which concludes the proof.

J. Proof of Lemma 14

Proof. As r ≤ 1
6δ we have K +Uj ∈ Λ(δ) for all j. As such, both K and K +Uj are inside Λ(δ), in which C is µ-strongly

convex and h-smooth.
We start with a standard result in zeroth order optimization [70]. Define a “smoothed” version of the cost, Cr(K) =

EU∼Ball(r) C(K +U), where Ball(r) is the Ball centered at the origin with radius r (in Frobenius norm). Then by [74, Lem.
2.1],

∇Cr(K) =
d

r2
EU∼Sphere(r) C(K + U)U. (24)

Further, denote Cj = C(K + Uj). With these definitions, we decompose the error in gradient estimation into three terms,

‖∇̂C(K)−∇C(K)‖F

≤ ‖∇Cr(K)−∇C(K)‖F︸ ︷︷ ︸
:=e1

+ ‖ 1

J

J∑
j=1

d

r2
CjUj −∇Cr(K)‖F︸ ︷︷ ︸

:=e2

+ ‖ 1

J

J∑
j=1

d

r2
ĈjUj −

1

J

J∑
j=1

d

r2
CjUj‖F︸ ︷︷ ︸

:=e3

. (25)

In what follows, we show that e1 ≤ 1
3egrad almost surely, e2 ≤ 1

3egrad with probability at least 1− ν
2 , and e3 ≤ 1

3egrad
with probability at least 1− ν

2 . These together will lead to the desired result.
Bounding e1. By the definition of Cr(·), we have ∇Cr(K) = EU∼Ball(r)∇C(K +U). As such, as ∇C(·) is h-Lipschitz,

e1 = ‖∇Cr(K)−∇C(K)‖F ≤ EU∼Ball(r) ‖∇C(K + U)−∇C(K)‖F ≤ hr ≤
1

3
egrad,

where in the last step, we have used r ≤ 1
3hegrad.

Bounding e2. For each j, d
r2CjUj is drawn i.i.d. from d

r2C(K + U)U with U ∼ Sphere(r) and its expectation is
ECj = ∇Cr(K) (cf. (24)). Further, almost surely,

‖ d
r2
CjUj‖F ≤

d

r
C(K + Uj) ≤

d

r

(
C(K∗) +

h

2
‖K + Uj −K∗‖2F

)
≤ d

r
(C(K∗) + 2hδ2).

As such, using Hoeffding’s bound, we have with probability at least 1− ν
2 ,

e2 = ‖ 1

J

J∑
j=1

d

r2
CjUj −∇Cr(K)‖F ≤

d1.5

r
(C(K∗) + 2hδ2)

√
2

J
log

4d

ν
≤ 1

3
egrad, (26)

where we have used J ≥ 18
e2grad

d3

r2 (C(K∗) + 2hδ2)2 log 4d
ν .

Bounding e3. We now condition on {Uj}Jj=1 and focus on the randomness in the initial point x0 of the trajectories
generated in the gradient estimator. Let C̃j = EK+Uj

∑T
t=0[x>t Qxt + u>t Rut], where the expectation is taken with respect

to the initial state and the trajectory is generated using K + Uj . We further decompose e3 into,

e3 ≤
d

r2

∥∥∥ 1

J

J∑
j=1

[ĈjUj − C̃jUj ]
∥∥∥
F︸ ︷︷ ︸

:=e4

+
d

r2

∥∥∥ 1

J

J∑
j=1

[ĈjUj − C̃jUj ]
∥∥∥
F︸ ︷︷ ︸

:=e5

.

To bound e4, we note that the expectation of ĈjUj is C̃jUj . Further, note that by Theorem 1(a), we have ‖xt‖ ≤ cρt‖x0‖ ≤
cρtD0, where c = 2c0 and ρ = ρ0+1

2 . As such,

|Ĉj | =
T∑
t=0

[x>t Qxt + u>t Rut] ≤ ‖Q+ (K + Uj)
>R(K + Uj)‖

c2

1− ρ2
D2

0

≤ 5Γ2c2

1− ρ
D2

0 := Cmax.

As such, when conditioned on {Uj}Jj=1, the summation in e4 is a summation of independent random variables with zero
mean and is bounded. As such, we have by Hoeffding bound, with probability at least 1− ν

2 ,

e4 ≤
d1.5

r
Cmax

√
2

J
log

4d

ν
≤ 1

6
egrad, (27)



where we have used that J ≥ 72d3

r2e2grad
C2

max log 4d
ν . Finally, we have,

|C̃j − Cj | =
∣∣∣E ∞∑

t=T+1

[x>t Qxt + u>t Rut]
∣∣∣

≤ ‖Q+ (K + Uj)
>R(K + Uj)‖

c2

1− ρ2
D2

0ρ
T+1

≤ Cmaxρ
T+1.

As such,

e5 ≤
d

r
Cmaxρ

T+1 ≤ 1

6
egrad, (28)

where we have used T ≥ 2
1−ρ0 log 6dCmax

egradr
. Combining (27) and (28), we have e3 ≤ 1

3egrad with probability at least 1− ν
2 .

This concludes the proof of Lemma 14.
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