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ABSTRACT
We present a new CUSUM procedure for sequential change-point detection in self- and mutually-exciting
point processes (speci!cally, Hawkes networks) using discrete events data. Hawkes networks have become
a popular model in statistics and machine learning, primarily due to their capability in modeling irregularly
observed data where the timing between events carries a lot of information. The problem of detecting
abrupt changes in Hawkes networks arises from various applications, including neuroengineering, sensor
networks, and social network monitoring. Despite this, there has not been an e"cient online algorithm for
detecting such changes from sequential data. To this end, we propose an online recursive implementation
of the CUSUM statistic for Hawkes processes, which is computationally and memory-e"cient and can be
decentralized for distributed computing. We !rst prove theoretical properties of this new CUSUM procedure,
then show the improved performance of this approach over existing methods, including the Shewhart
procedure based on count data, the generalized likelihood ratio statistic, and the standard score statistic.
This is demonstrated via simulation studies and an application to population code change-detection in
neuroengineering.
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1. Introduction

Point processes are widely used for modeling discrete events
data, which consists of a series of event times and additional
associated information. Recently, a class of mutually-exciting
nonhomogeneous point processes called Hawkes processes
(Hawkes 1971) has gained much popularity in the statistics
and machine learning literature. The intensity function of the
Hawkes process consists of a deterministic part and a stochastic
part, which captures the triggering or inhibiting e!ects of
past events on future events. For example, each earthquake
is usually followed by a sequence of a"ershock activities and
the occurrence rate of a"ershocks can be represented in the
stochastic part of the intensity function (Ogata 1988). Hawkes
processes provide a #exible model for capturing spatio-temporal
correlations, and have been successfully applied in a wide
range of domains including seismology (Ogata 1988, 1998),
criminology (Mohler et al. 2011), epidemiology (Rizoiu et al.
2018), social networks (Yang and Zha 2013), $nance (Hawkes
2018), and neural activity (Reynaud-Bouret et al. 2013).

Detection of abrupt changes in the Hawkes process is a fun-
damental problem, which aims to detect the change as quickly as
possible subject to false alarm constraints. For instance, in sen-
sor network monitoring, we would like to detect any change as
soon as possible using a stream of event data; such changes may
represent a shi" in system status or event anomalies. There are,
however, key challenges for detecting changes in Hawkes pro-
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cesses; this includes the complex spatial and temporal depen-
dence of the event data and long-term dependencies. To address
such challenges, we need to develop computationally e%cient
online detection algorithms with performance guarantees.

A motivating application for our work is the change-point
detection of biological neural networks. This is a fundamental
topic in neuroengineering (Eliasmith and Anderson 2003), an
emerging area at the intersection of physical and biological sci-
ences. The goal is to detect neural states and state changes from
experimental spike train data, which records the sequence of
times when a neuron $res an action potential. Hawkes processes
provide an appealing model for such data: its mutually exciting
property naturally mimics neuron-to-neuron in#uence’s elec-
trochemical dynamics. The model’s probabilistic nature can
also capture noisy in#uences on the network, resulting from
unobserved neurons or external stimuli. There has been much
work on applying Hawkes processes for neuroscience problems,
for example, for inferring functional connectivity (Lambert
et al. 2018) and uncertainty quanti$cation (Wang et al. 2020b).
Change-points over a biological network o"en arise from sparse
population code changes (Tang et al. 2018; Reynaud-Bouret and
Roy 2007). Figure 1 illustrates an example of this change. Here,
each dot represents a neuron in the visual cortex. Colored dots
show neurons that respond to seeing a cat or a dog, and shared
dots represent common features between both animals (e.g.,
mammal, pet). The sequential detection of this change-point
sheds light on the relationship between stimulus and response

© 2021 American Statistical Association and the American Society for Quality
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Figure 1. Visualizing sparse population coding for neuronal networks. Each dot represents a neuron, and colored dots show neurons which respond to seeing a cat or a
dog.

timing, providing a better understanding of each neuron’s role in
the population code, which can then be used for rehabilitation
of neuronal networks.

Other applications include detecting the existence of hot
topics over social networks which are of interest for the social
media (Li et al. 2017). Change-point detection of the distribu-
tion of crime cases can help the police department to take quick
reaction and reallocate patrols (Mohler et al. 2011). Detecting
changes in the spread of COVID cases will enable people to
recognize a threatening new-born variant (Chiang et al. 2021).

While there has been much work on $tting Hawkes processes
in the literature (see Reinhart 2018 for a recent survey), change-
point detection for Hawkes processes is le" an important topic
with only very little attention and much less studied. In Wang
et al. (2020a), the o&ine change-point detection problem for
high-dimensional Hawkes processes was studied, and the goal is
to estimate (multiple) change-points. In Rambaldi et al. (2018), a
model selection scheme was proposed to identify the presence of
exogenous events that increase the intensity of the Hawkes pro-
cess for a given time period. A cumulant-based multi-resolution
segmentation algorithm was proposed in Zhou et al. (2020) to
$nd the optimal partition of the nonstationary Hawkes pro-
cess into several nonoverlapping segments. On the contrary, we
focus on the sequential detection problem, which aims to detect
the change as quickly as possible. Online change-point detec-
tion for Hawkes processes was considered in Li et al. (2017),
where the generalized likelihood ratio (GLR) test was used to
detect the change with unknown post-change parameters. In
that work, the expectation-maximization (EM) algorithm was
used to estimate unknown post-change parameters, which does
not allow for an e%cient recursive implementation and could be
time-consuming. For the target problem of neuronal network
detection, we would like to detect the change in real-time from
streaming data, using a more computationally e%cient proce-
dure.

In this article, we present a novel CUSUM procedure for
sequential change detection in Hawkes processes. The recursive
CUSUM is based on a log-likelihood ratio statistic, which is
further modi$ed to improve computational e%ciency with the
practical consideration of removing historical data with long
lags. The new CUSUM procedure is computationally and mem-
ory e%cient as a recursive procedure, which is crucial for its
online implementation in practice, such as sensor network and
social network monitoring problems. We study the theoretical
properties of this new CUSUM procedure, including an analysis
of its average run length (ARL) and expected detection delay

(EDD). We then compare the proposed CUSUM procedure
with existing change detection algorithms based on the GLR
statistic (Li et al. 2017) and the score statistic in a compre-
hensive simulation study. Finally, we apply our method to the
aforementioned motivating neuroengineering problem on pop-
ulation code change-detection for biological neural networks.
Numerical results show that the proposed CUSUM procedure
outperforms existing alternative methods.

The rest of the article is organized as follows. Section 2
introduces the basics for Hawkes processes. Section 3 sets up
the change-point detection problem, outlines the proposed
CUSUM procedure, discusses algorithmic developments for
computational and memory e%ciency, and presents its theoret-
ical properties. Section 4 discusses some alternative detection
methods. Sections 5 and 6 compares the proposed CUSUM
approach with existing methods for a simulation study and a
real-world application using neural spike train data. Section 7
concludes the article with some discussions.

2. Preliminaries

We $rst provide some background on point processes and
Hawkes processes, which will be used in later sections.

A temporal point process is a random process whose real-
ization consists of a sequence of discrete events occurring at
times {ti, i = 1, 2, . . .}, with ti ∈ R+. Let the history Ht−
be the sequence of times of events {t1, t2, . . . , tn} up to but not
including time t. Let Nt represents the number of events before
time t, then Nt is a counting process which can be de$ned
as: dNt = ∑

ti∈Ht δ(t − ti)dt, where δ is the Dirac function.
The sequence of discrete event times {ti, i = 1, 2, . . .} can be
regarded as when the counting process Nt has jumped.

A point process can be characterized by its conditional inten-
sity function, denoted as λ(t). This conditional intensity func-
tion is also known as the hazard function (Rasmussen 2011), and
is de$ned as λ(t) = f ∗(t)/(1 − F∗(t)). Here, f ∗(t) is the proba-
bility density function of the next event time conditional on the
past, and F∗(t) = P{tn+1 < t|Ht−} is the associated conditional
cumulative distribution function capturing the probability of
the (n+1)th event happening before time t. Thus, if we consider
a small time interval [t, t + dt), we have

λ(t)dt = f ∗(t)dt
1 − F∗(t) = P(tn+1 ∈ [t, t + dt))

P(tn+1 ≥ t)
= P{tn+1 ∈ [t, t + dt)|Ht−}.
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2.1. One-Dimensional Point Processes

For one-dimensional Hawkes process, the intensity function
takes the form (Hawkes 1971):

λ(t) = µ(t) + α

∫ t

0
ϕ(t − τ )dNτ , (1)

where µ(t) is the base intensity, α is the in#uence parameter,
and ϕ(t) is a normalized kernel function satisfying

∫
ϕ(t)dt =

1. A commonly used kernel function is the exponential kernel
ϕ(t) = βe−βt with β > 0. We assume 0 ≤ α < 1 to ensure a
stationary process.

Given event times {t1, t2, . . . , tn} which happened before a
given time t < ∞, the log-likelihood function for the Hawkes
process can be written as follows (see Daley and Vere-Jones 2003
for details):

't =
n∑

i=1
log



µ(ti) + α
∑

tj<ti

ϕ(ti − tj)



 −
∫ t

0
µ(s)ds

− α

n∑

i=1

∫ t

ti
ϕ(s − ti)ds. (2)

In case of the exponential kernel ϕ(t) = βe−βt and a constant
base intensity µ, (2) reads

't =
n∑

i=1
log



µ + α
∑

tj<ti

βe−β(ti−tj)



−µt−α

n∑

i=1

[
1 − e−β(t−ti)

]
.

As we will see in the following, this log-likelihood plays a key
role in sequential change detection procedures.

2.2. Network Point Processes

The multivariate Hawkes process on a network with D nodes
is represented by a series of event times together with their
location {(ti, ui), i = 1, 2, . . .}, where ti ∈ R+ is the event time
and ui ∈ [D] is the node on which the ith event occurs. Here we
use [D] to represent the set {1, . . . , D}. The intensity function
for node i at time t is

λi(t) = µi(t) +
∑

j∈[D]
αij

∫ t

0
ϕij(t − s)dNj

s,

where µi(t) is the base intensity at node i, αij is the in#uence
parameter from node j to node i, ϕij(t) is a normalized kernel
function, and Nj

t is a counting process on node j: dNj
t =∑

k:tk<t,uk=j δ(t − tk)dt. The log-likelihood function for the
network setting up to time t is given by:

't(A) = −
∑

i∈[D]

∫ t

0
λi(s)ds +

∑

i∈[D]

∫ t

0
log(λi(s))dNi

s, (3)

where A = (αij)i,j∈[D] ∈ RD×D is the matrix representation for
the in#uence parameters.

The log-likelihood expression in Equation (3) reveals a useful
property which we later exploit for distributed change-point
detection. Note that this log-likelihood can be decoupled as the
summation over D nodes, in that it consists of the sum of the

log-likelihood at each node. Furthermore, the intensity function
λi(·) only involves events observed on the neighbors of i, that
is, the nodes which in#uence node i. This property allows us to
develop a distributed change-point detection procedure, where
each node can compute their likelihood in parallel, and only
needs to communicate with neighboring nodes and not over
the entire network (assuming such neighborhood information
is known beforehand).

3. Proposed CUSUM Detection Framework

3.1. Problem Set-up

The problem of change-point detection for Hawkes networks
can be set-up as follows. Assume there exists a true change-
point time κ > 0, and the event data follows one point pro-
cess before the change-point and follows another point process
a"erward. We consider in this work two speci$c cases: (a) the
null (pre-change) point process is a Poisson process, whereas
the alternative (post-change) point process is a Hawkes point
process; (b) the null point process is a Hawkes point process,
whereas the alternative point process is a di!erent Hawkes point
process, for example, the in#uence parameter A has been shi"ed.
Note that the $rst scenario can be seen as a speci$c case of
the second, since a Poisson process can be viewed as a speci$c
Hawkes process with in#uence parameters set as 0.

Consider now a hypothesis test for detecting temporal pat-
tern shi"s in the Hawkes process. Assuming the Hawkes process
is stationary and the change-point κ is an unknown variable, this
test can be formulated as:

H0 : λ∗
i (s) = µi(s) +

∑

j∈[D]
αij,0

∫ s

0
ϕij(s − v)dNj

v;

i ∈ [D], s ≥ 0,

H1 : λ∗
i (s) = µi(s) +

∑

j∈[D]
αij,0

∫ s

0
ϕij(s − v)dNj

v;

i ∈ [D], 0 ≤ s ≤ κ ,

λ∗
i (s) = µi(s) +

∑

j∈[D]
αij,1

∫ s

κ
ϕij(s − v)dNj

v;

i ∈ [D], s > κ . (4)

Here, λ∗
i (s) denotes the true intensity for node i at time s. The

pre-change parameters {αij,0}i,j∈[D] can typically be elicited from
prior knowledge of the process or estimated from reference data.
The post-change parameters {αij,1}i,j∈[D] are known in some sce-
narios, but more o"en it corresponds to an unexpected anomaly
and we may not have enough data to estimate this in advance.
Alternatively, we can treat the post-change parameters as the
targeted smallest change to be detected. A change detection
procedure resolves the two hypotheses using a stopping time T,
which is a function of the event sequence, as explained next.

3.2. A Recursive CUSUM Statistic

We now present the cumulative sum (CUSUM) statistics based
on the log-likelihood ratio. The CUSUM procedure was $rst
proposed in Page (1954), assuming both pre- and post-change
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parameters are provided (or estimated). The CUSUM is known
to be computationally e%cient since it can be computed recur-
sively. The CUSUM procedure is most commonly de$ned for iid
observations, but there is much recent development in extend-
ing CUSUM for non iid observations (Tartakovsky et al. 2015;
Tartakovsky 2020; Xie et al. 2021).

We $rst de$ne the log-likelihood ratio function which will
be used as the main building block of our procedure. For a
hypothesized change-point τ , the log-likelihood ratio of the
model (4) up to time t can be derived as:

't,τ =
∑

i∈[D]

∫ t

τ
log

(
λi,τ (s)
λi,∞(s)

)
dNi

s −
∑

i∈[D]

∫ t

τ
(λi,τ (s) − λi,∞(s))ds,

(5)

where

λi,τ (t) =
{

µi(t) + ∑
j∈[D] αij,1

∫ t
τ ϕij(t − s)dNj

s, t > τ ,
λi,∞(t), 0 ≤ t ≤ τ ,

is the intensity for node i if the change-point happens at τ , and
λi,∞(t) = µi(t) + ∑

j∈[D] αij,0
∫ t

0 ϕij(t − s)dNj
s is the intensity

under the null hypothesis. Here, ∞ is used to indicate that the
event that the change never happens.

Given assumed post-change parameters, {αij,1}i,j∈[D], the
stopping time for CUSUM is given by

TC = inf{t : sup
τ<t

't,τ > b}, (6)

where 't,τ is the log-likelihood ratio statistic de$ned in Equation
(5), and b > 0 is a prespeci$ed threshold. The procedure stops
when the log-likelihood ratio from some hypothesized change-
point τ exceeds threshold b.

In contrast to the original CUSUM procedure (Page 1954)
where the samples are taken in a discrete-time fashion, here the
CUSUM statistic is continuous-time and has memory. In partic-
ular, due to the memory of the Hawkes process, the observations
are non-iid and have complex temporal dependence. Because
of this dependence, the simple recursive approach for standard
CUSUM does not extend to the current (more complex) Hawkes
process setting, and further developments are needed.

To derive an computationally e%cient recursive algorithm
for CUSUM in the network Hawkes process, we start with a
lemma for the log-likelihood ratio 't,τ . This lemma shows that,
although the supremum of the log-likelihood ratio statistic over
the unknown change-point appears to be on a continuum, it will
be obtained at the observed event times.

Lemma 1. Given the event times {ti, i = 1, 2, . . .}, for any
$xed t and k, t > tk, it follows that sup

tk<τ≤min{tk+1,t}
't,τ =

limτ→t+k
't,τ =: 't,t+k

, and sup
0≤τ≤t1

't,τ = 't,0.

The proof of this lemma is provided in the supplementary
materials. Lemma 1 says that we only need to consider the values
of the log-likelihood evaluated as the past event times, rather
than a continuum of possible values for τ . As we show later, this
will greatly simplify the computation of the log-likelihood ratio
statistic.

For computational e%ciency, we can further simplify the
calculation in (6) (which involves supτ<t 't,τ ) by considering t

on a discretized grid with a prespeci$ed grid size γ > 0. In
this case, we would only need to calculate the detection statistic
supτ<nγ 'nγ ,τ for n ∈ Z.

Finally, with the discretization for both τ and t, the log-
likelihood ratio 'nγ ,t+k

and '(n+1)γ ,t+k
have the following rela-

tionship, given nγ ≥ tk,

'(n+1)γ ,t+k
= 'nγ ,t+k

+
∑

i∈[D]

∫ (n+1)γ

nγ
log

(
λi,t+k

(s)
λi,∞(s)

)

dNi
s

−
∑

i∈[D]

∫ (n+1)γ

nγ
(λi,t+k

(s) − λi,∞(s))ds. (7)

Equation (7) provides a recursive procedure for computing the
log-likelihood ratios 'nγ ,t+k

, as long as the one-dimensional
integrals can be evaluated or approximated numerically. If
we have additional access to the cumulative kernels *ij(t) =∫ t

0 ϕij(s)1(s ≥ 0)ds, where 1(·) is the indicator function, this
recursion can be computed without numerical integration as
follows:

'(n+1)γ ,t+k
= 'nγ ,t+k

+
∑

i∈[D]

∫ (n+1)γ

nγ
log

(
λi,t+k

(s)
λi,∞(s)

)

dNi
s

+
∑

i,j∈[D]

∫ (n+1)γ

0
αij,0(*ij((n + 1)γ − s)

− *ij(nγ − s))dNj
s

−
∑

i,j∈[D]

∫ (n+1)γ

t+k
αij,1(*ij((n + 1)γ − s)

− *ij(nγ − s))dNj
s. (8)

Algorithm 1 summarizes the key steps in the proposed
CUSUM procedure. We provide a further remark on the choice
of the grid size γ > 0. Note that di!erent choices of γ

Algorithm 1: CUSUM for network Hawkes processes
Input: event times {(ti, ui), i = 1, 2, . . .}; pre-change
parameters {αij,0}i,j∈[D]; post-change parameters
{αij,1}i,j∈[D]; threshold b; grid size γ ;
Initialization: n ← 0, S0 ← 0, '0,0 ← 0;
while Snγ < b do

n ← n + 1;
for τ ∈ {t+k : tk < nγ } ∪ {0} do

if τ < (n − 1)γ then
calculate 'nγ ,τ using (7) or (8);

else
calculate 'nγ ,τ using (5);

end
end
Snγ ← maxτ 'nγ ,τ ;
if Snγ > b then

Output: stopping time TC ← nγ ,
τ̂ ← arg maxτ 'nγ ,τ ;

end
end
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Figure 2. Illustration of the memory-e!cient CUSUM algorithm. At time t = nγ , only one of the log-likelihood ratios 'nγ ,τ for potential change-points τ < (n − 1)γ − B
is kept in memory (in this example, the one immediately after the second event). When updating the statistics to t = (n+1)γ , all log-likelihood ratios 'nγ ,τ for τ ≤ nγ −B
are compared and again only the largest one is kept for future updates.

corresponds to di!erent updating frequencies for the CUSUM
statistics, hence, γ is an important parameter for the algorithm.
There is a performance tradeo! in choosing the parameter γ :
a very large choice of γ may result in a large detection delay,
whereas a very small γ may leads to unnecessary computational
complexity. The e!ect of γ on the algorithm is investigated
further in numerical studies, and it would be interesting to
develop a method for choosing γ adaptively.

3.3. Modi!cation for Memory E"ciency

We now present a modi$cation of Algorithm 1 to improve mem-
ory e%ciency of the procedure. Note that the “exact” CUSUM
algorithm (Algorithm 1) requires keeping track of the entire
history of events, since all past events in#uence the intensity
function. However, in practice, events which happened long
ago will have little bearing on the current intensity, since its
mutually-exciting property diminishes over time. One way to
improve memory e%ciency is to simply remove such events,
since their in#uence on the present and the future (and thereby
the performance of the method) would be small.

Consider the following truncated kernel with a width B > 0:

ϕ̃ij(t) =
{

ϕij(t), t ≤ B,
0, t > B.

Under the truncated kernel, an event has no in#uence over the
whole process a"er B into the future, and we only need to keep
events during [t − B, t] in our memory for computation. With
the truncated kernel ϕ̃ij, the intensity for node i can then be
approximated by

λ̃i,τ (t) =






µi(t) + ∑
j∈[D] αij,1

∫ t
t−B ϕij(t − s)dNj

s, τ < t − B,
µi(t) + ∑

j∈[D] αij,1
∫ t
τ ϕij(t − s)dNj

s, t − B ≤ τ ≤ t,
µi(t) + ∑

j∈[D] αij,0
∫ t

t−B ϕij(t − s)dNj
s, τ > t.

(9)
Here for all τ ≥ 0, λ̃i,τ (t) only depends on event data during
[t − B, t]. Moreover, the intensity for τ < t − B does not
depend on τ , which enables us to update the log-likelihood ratio
recursively for small τ . If we also have access to the cumulative

kernels *ij, i, j ∈ [D], the recursion step in Equation (8) can be
approximated by

'(n+1)γ ,t+k
= 'nγ ,t+k

+
∑

i∈[D]

∫ (n+1)γ

nγ
log

(
λ̃i,t+k

(s)

λ̃i,∞(s)

)

dNi
s

+
∑

i,j∈[D]

∫ (n+1)γ

nγ−B
αij,0(*̃ij((n + 1)γ − s)

− *̃ij(nγ − s))dNj
s

−
∑

i,j∈[D]

∫ (n+1)γ

max{t+k ,nγ−B}
αij,1(*̃ij((n + 1)γ − s)

− *̃ij(nγ − s))dNj
s, (10)

where *̃ij(t) = *ij(min{t, B}), and the summation is taken only
for event times during [nγ − B, (n + 1)γ ].

Figure 2 shows an illustration of the memory-e%cient
CUSUM procedure. The details are summarized in Algorithm 2.

The computing and memory resources required for this pro-
cedure depend on both the network size and the number of
events observed while monitoring. Each time we update the
CUSUM statistics from t = (n − 1)γ to nγ , we track the log-
likelihood ratios '(n−1)γ ,· for potential change-points τ that are
event times from (n − 2)γ − B to nγ , along with a summary
of the log-likelihood ratios for τ < (n − 2)γ − B. For each
'·,τ , when updating from t = (n − 1)γ to t = nγ by (10),
each λ̃·,·(·) is calculated using at most Nnγ − N(n−1)γ−B events,
and the integral over counting measure is the summation over
at most (Nnγ − N(n−1)γ−B)D terms. Overall, the computation
complexity for one update is O((Nnγ − N(n−2)γ−B)3D). Under
the stability condition ‖A‖ < 1 (where ‖·‖ is the spectral norm),
a multi-dimensional Hawkes process can be shown to have a
$nite third-order moment and is ergodic (Achab et al. 2017). In
this case, the computation complexity of the memory-e%cient
CUSUM is linear in the time t.

Note that the dependency of the computation complexity on
network size D can be eliminated if, for each j ∈ [D], (*̃ij)i∈[D]
are identical. When adding the term on the second and third



TECHNOMETRICS 49

Algorithm 2: Memory-e%cient CUSUM for network
Hawkes processes

Input: event times {(ti, ui), i = 1, 2, . . .}; pre-change
parameters {αij,0}i,j∈[D]; post-change parameters
{αij,1}i,j∈[D]; threshold b; grid size γ ;
Initialization: n ← 0, S0 ← 0, '0,0 ← 0, τ̂ ← 0;
while Snγ < b do

n ← n + 1;
for τ ∈ {t+k : (n − 1)γ ≤ tk < nγ } do

calculate 'nγ ,τ using (5) with (9);
end
for τ ∈ {t+k : (n − 1)γ − B ≤ tk < (n − 1)γ do

calculate 'nγ ,τ using (7) with (9) or (10);
end
for τ ∈ {t+k : (n − 2)γ − B ≤ tk < (n − 1)γ − B} do

if '(n−1)γ ,τ > '(n−1)γ ,τ̂ then
τ̂ ← τ ;

end
end
update 'nγ ,τ̂ from '(n−1)γ ,τ̂ using (7) with (9) or (10);
Snγ ← maxτ 'nγ ,τ ;
if Snγ > b then

Output: stopping time
TC ← nγ , τ̂ ← arg maxτ 'nγ ,τ ;

end
end

row in (10), the summation over i can be precomputed by saving∑
i αij,0,

∑
i αij,1 for each j ∈ [D]. Thus, it only takes O((Nnγ −

N(n−2)γ−B)3) steps to perform the nth update.
Regarding memory usage of the procedure, note that for the

updates up until time (n − 1)γ , we only need to keep track of
event data with an occurrence time a"er (n − 1)γ − B. Hence,
the memory usage for the nth update (apart from loading the
network parameters) is O(Nnγ − N(n−1)γ−B), the average is a
constant with respect to time t.

We illustrate the e!ect of the truncation width B using a
numerical example. The model is described in Section 5, where
the kernel functions are all exponential ϕij(t) = βe−βt , t ≥
0, ∀i, j ∈ [D] with β = 1. Figure 3 shows the comparison
between CUSUM statistics with and without kernel truncation.
Both CUSUM statistics with the truncated kernel have the same
trend as the exact CUSUM statistic. When B = 1/β , 63.2% of
the cumulative in#uence (which corresponds to the integral of
the truncated kernel since the complete in#uence kernel inte-
grates to one) is preserved, and the truncated statistic deviates
from the exact CUSUM, which may result in a false alarm. When
B = 2/β , 86.5% of the cumulative in#uence is preserved, and
there appears to be little di!erence between the truncated and
exact CUSUM statistics.

Performance. We discuss the performance of the proposed
procedure via two widely used metrics for sequential change-
point detection: (a) Average Run Length (ARL), de$ned as the
expected value of the stopping time when there is no change,
that is, E∞[T], where P∞ is the probability measure on the
sequence of event times when the change never occurs, and E∞

is its corresponding expectation; (b) Expected Detection Delay
(EDD), de$ned as the expected delay between the stopping
time and the true change-point. Two common de$nitions for
EDD can be found in Lorden (1971) and Pollak (1985), both of
which consider the worst-case delay over all possible change-
point values. In particular, if the true change-point is κ , then
the EDD can be de$ned as Eκ [T − κ|T > κ], where Pκ denotes
the probability measure on the observations when the change
occurs at time κ , and Eκ denotes the corresponding expectation.
The theoretical properties of the ARL and EDD and be found in
Section B in the supplementary materials.

4. Alternative Detection Procedures

In practical problems, the post-change parameters are not
always known due to the lack of anomalous data (e.g., there
could be various types of anomalies, and one may not know
which anomaly to expect). This section discusses two alternate
approaches to change-point detection on the Hawkes process:
the score statistics and the GLR statistics. Neither method
requires any knowledge of the post-change parameters.

4.1. Score Statistics

We consider the score statistics for constructing a detection
procedure. The score statistic can detect any deviations from the
null hypothesis (Xie and Siegmund 2012). It is particularly suit-
able for detecting small deviations (i.e., locally most e%cient)
and does not require estimating post-change parameters. The
score function is de$ned as the derivative of the log-likelihood
as in (3) over the parameters αij,0, i, j ∈ [D], on which we would
like to detect the change. With αi = (αij)j∈[D] ∈ RD×1, the score
function on each node i is

∂'t
∂αi

= −
∫ t

0

∂λi,∞(s)
∂αi

ds +
∫ t

0
λ−1

i,∞(s)∂λi,∞(s)
∂αi

dNi
s, (11)

since λi,∞ only depends on the parameter αi. Then the full
score function has become ∂'t

∂vec(A) =
(

∂'t
∂αT

1
, . . . , ∂'t

∂αT
D

)T
where

A = (αij)ij∈[D] and vec(A) = (αT
1 , . . . , αT

D)T . In Theorem
3.4 of Ogata (1978), it is shown that the limiting distribution
of the score function at the true parameter A0 = (αij,0)i,j∈[D]

is normally distributed, that is, 1√
t

∂'t
∂vec(A)

∣∣∣∣
A=A0

→ N (0, I0),

where

I0 = lim
t→∞

1
t E

[
∂'t

∂vec(A)

∂'t
∂vecT(A)

] ∣∣∣∣
A=A0

= − lim
t→∞

1
t E

[
∂2't

∂vec(A)∂vecT(A)

] ∣∣∣∣
A=A0

is the Fisher information matrix. Note that the Fisher informa-
tion here is a diagonal block matrix, since for any i, j, i′, j′ ∈ [D],
i /= i′, λi,∞ is a constant with respect to αi′,j′ , and ∂2't

∂αi,j∂αi′ ,j′
=

0. Each block of I0 corresponds to αi, i ∈ [D], the in#u-
ence from all nodes to node i. The limiting distribution of the
score function at the true parameter can then be shown to be
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Figure 3. Comparison between CUSUM statistics with di"erent truncation level B. The change-point occurs at time 200.

1
t

∂'t
∂vecT(A)

I−1
0

∂'t
∂vec(A)

∣∣∣∣
A=A0

→ χ2
D2 , where χ2

ν is the Chi-squared

distribution with degrees-of-freedom ν.
For change-point detection, we adopt the conventional slid-

ing window approach, that is, calculating the score statistic
inside the sliding window [t−w, t) for a suitably chosen window
length w, and raise an alarm whenever the statistic exceeds the
threshold b. The corresponding stopping time can be written as:

TS = inf
{

t : 1
w

∂('t − 't−w)

∂vecT(A)
I−1
0

∂('t − 't−w)

∂vec(A)

∣∣∣∣
A=A0

≥ b
}

.

With a su%ciently large window length, the score statistic under
the null hypothesis should be around D2, the expected value of
the Chi-squared random variable χ2

D2 . A"er the change-point,
the expected score function at the pre-change parameters is no
longer 0. We would expect the score statistic to be noticeably
larger than D2, and thus, the change is detected.

Like CUSUM statistics, a memory-e%ciency problem arises
for the score statistics, since the intensity λi,∞ depends on the
whole history of events. We can again replace λi,∞ with λ̃i,∞
using the aforementioned truncated kernels (a similar approach
can also be used for the GLR statistics, discussed next). For
practical reasons, we would also need to choose a grid size γ

and compute the score statistics only on the resulting grid. We
discuss the relation between grid size and EDD for a $xed ARL
later in Section 5.

4.2. GLR Statistics

When the post-change parameters are unknown, another way to
perform change-point detection is via the generalized likelihood
ratio (GLR) statistic. The idea is to $nd the parameters which
best $t the data, then compare the likelihood ratio between
the $tted parameters and the pre-change ones. This GLR statis-
tics approach for multi-dimensional Hawkes processes was dis-
cussed in Li et al. (2017). Using a sliding window of $xed length
w, the log-likelihood ratio can be de$ned within each window
as

't,t−w,Â =
∑

i∈[D]

∫ t

t−w
log

(
λ̂i,t−w(s)
λi,∞(s)

)

dNi
s

−
∫ t

t−w
(λ̂i,t−w(s) − λi,∞(s))ds,

Figure 4. Visualizing the simulated network Hawkes model. Here, the background
intensity is proportional to the size of each node, with edges indicating directed
in#uences between nodes. Orange edges show the topological change after the
change-point.

where λ̂i,t−w is the intensity assuming t − w is the change-
point and Â is the post-change parameter estimates. λ̂i,t−w(s) =
µi(s) + ∑

j∈[D] α̂ij
∫ s

t−w ϕij(s − v)dNj
v, and Â = (α̂ij)i,j∈[D] is the

parameter that maximizes the likelihood in the current window
[t − w, t]:

Â = arg max
A

∑

i∈[D]

∫ t

t−w
log λi,t−w(s)dNi

s −
∫ t

t−w
λi,t−w(s)ds.

A change is detected when the log-likelihood ratio exceeds
certain threshold b:

TG = inf{t : 't,t−w,Â ≥ b}.

For each window, a convex optimization problem is solved to
$nd the maximum likelihood estimate Â that best $ts the data.
However, this operation makes the GLR statistic computation-
ally more expensive than CUSUM and the score statistic. To
address this issue, we can use Â from the previous window
as an initialization for the gradient descent algorithm to $nd
the MLE in the next step—this “warm-start” may lead to faster
convergence for $nding the MLE.

Compared with the score statistic, the GLR statistic is com-
putationally more expensive, and it does not necessarily have
better performance (which can be partly due to the optimization
error in computing MLE), as shown in our example in Section 5.
However, the GLR statistic is numerically more stable than the
score statistic, especially for large networks. The reason is that
we usually may not estimate the Fisher information with high
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Figure 5. Examples of detection statistics. The $rst row is generated on the small network of size 8, with window length w = 80 for both GLR and score statistics. The
second row is generated on the large network of size 100, with window length w = 40. Both rows use the same sequence of events, and the window length is chosen
numerically to optimize performance (see discussions in 5.1). The vertical dashed line is the time of the true change-point κ . Column (b) shows the di"erence of CUSUM
between time t and t − w.

accuracy. Even provided with the exact pre-change parameter
A0, there is no close-form solution for the Fisher information,
and it can only be estimated by simulation or real data. The
score statistic also involves inverting the Fisher information,
which can su!er from a high condition number and numerical
instability.

5. Numerical Experiments

In this section, we compare several change-point detection pro-
cedures using simulated examples on a small network with 8
nodes and a larger one with 100 nodes. The small network is
shown in Figure 4. The base intensity is proportional to the size
of the node ranging from 0.5 to 1, and the edges indicate the
asymmetrical in#uences between nodes. The edges in black are
the pre-change parameters, while the edges in orange show a
topological change between nodes 1, 2, and 3. There are two
emerging edges a"er the change-point, while all other edges
remain the same. For the 100-node network, the background
intensity is set to be 0.05 for all nodes. All nodes work inde-
pendently in the pre-change scenario, while the post-change
network consists of 200 directed edges with weight 0.2 chosen
at random.

Throughout this section, we use the exponential decaying
kernel ϕij(t) = e−t , ∀i, j to generate event data. The kernel
functions are truncated at B = 5 to leverage the computational
and memory e%cient procedures in Section 3.2. The update rate
is set at γ = 5.

Figure 5 visualizes the CUSUM, GLR, and score statistics on
the same sequence of events for both networks. As expected,
CUSUM grows steadily larger a"er the change-point for both
network settings. The di!erenced CUSUM, GLR and score
statistics show similar post-change #uctuations, as they can
be understood as various measurements of how the process
within the sliding window di!ers from the pre-change scenario.
The proposed CUSUM procedure appears to be the least noisy
before the change-point, which may be another explanation of
why CUSUM has the best performance (see later), apart from
its cumulative nature.

5.1. Performance Comparison

We investigate the performance of these detection statistics by
comparing a plot of its EDD versus log(ARL). From theoretical
analysis, we expect such plot of the CUSUM statistic to be close
to linear. We $rst introduce a simple baseline: the Shewhart
control chart (Shewhart 1925, 1931), which counts the number
of events in a sliding window and stops when the number of
events falls out of a speci$c range:

TSh = inf
{

t :
∑

i∈[D]
(Ni

t − Ni
t−w) /∈ [b1, b2]

}
.

This Shewhart chart can detect changes in average intensity.
Note that it does not take into account the network structure or
the location of events. In this example, we only consider the case
where the average intensity will be increased a"er the change-
point, and thus, choose a one-sided interval by letting b1 = 0.

Figure 6 shows the comparison results. For both networks,
the CUSUM procedure with exact post-change parameters
achieves the best performance, followed by the score statistic
and the GLR. All three methods are better than the baseline
Shewhart chart. Window lengths are chosen numerically for
the latter three procedures, such that the performance is
(approximately) optimal for an ARL between 500 and 50,000.
The details are shown in Table 1. When simulating the EDD,
we set the change-point κ to be slightly larger than the window
length w so that it is possible for the EDD to be less than w.

Running time. Table 1 also summarizes the average time in
seconds needed to compute the selected procedures over a time
horizon 50,000, with no change-point on a personal computer
(Apple M1 chip). The base intensity of the networks are scaled
such that the two networks have similar average number of
events. Clearly apart from the Shewhart chart, CUSUM enjoys
the quickest running time and remains computationally e%cient
as the network size increases, thus, demonstrating the scalability
of the proposed approach.

Misspeci!cation in post-change parameters. We also consider
the CUSUM procedure when the assumed post-change param-
eter di!ers from the true parameters in Figure 6, indicating a
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Figure 6. Performance comparison of di"erent detection statistics on (a) network of size 8, (b) network of size 100.

Table 1. Optimal window length and running time of selected procedures.

CUSUM GLR Score Shewhart

Network size = 8 w NA 80 80 120
time 1.508 37.14 3.013 0.046

Network size = 100 w NA 40 40 60
time 1.304 54.89 12.71 0.030

model mismatch. For the small network of size 8, while the real
change occurs on two pairs of nodes making the in#uence factor
both 0.4, we consider a CUSUM procedure which assumes a
correct post-change network topology, but with magnitudes of
the post-change parameters on the edges to be 200% (Magn1)
and 50% (Magn2) of the true magnitudes, respectively. We
also consider a CUSUM procedure which assumes the correct
magnitude of the post-change parameter, but an incorrect post-
change network topology. In one case, a change in the in#uence
from 2 → 1, 1 → 3, 6 → 1, 1 → 7 is expected (Topo1),
and in another, only the change in the in#uence from 2 → 1 is
expected (Topo2). For the large network of size 100, we consider
the case when the magnitudes of the post-change parameters
are 200% (Magn1) and 50% (Magn2) of the true ones. For the
topological model mismatch, recall that the true change hap-
pens on 200 edges, we select 200 more edges (Topo1) or drop 50
edges (Topo2), both at random as the misspeci$ed cases. Even
with misspeci$ed post-change parameters in either in#uence
magnitude or network topology, the CUSUM procedure can
still achieves better performance than the GLR and the score
procedures for both network settings. This demonstrates that
the proposed CUSUM procedure is reasonably robust to the
misspeci$cation of the post-change parameters.

Though misspeci$ed, the cases provided above still partly
capture the true change. When the estimated post-change
parameters deviate greatly from the true parameters, the
CUSUM procedure can fail to achieve an EDD linear in
log(ARL), as shown in Figure 7. For the network of size 8, the
post-change parameters is estimated to perceive a change in the
in#uence from 6 → 1, 1 → 7, with a magnitude of 0.4. For the
network of size 100, the misspeci$ed post-change parameters
select 200 edges randomly (independent of the true topology of
the change) with a magnitude of 0.2.

In real scenarios, the abrupt change may represent an unex-
pected anomaly, and we do not have enough data to estimate the
post-change parameters. In such cases, we may choose a targeted

topology of the post-change parameters to detect a certain type
of structural change and choose the magnitude to re#ect a mini-
mum size of the change to be detected. For certain applications,
it is also possible to enumerate the potential changes and run
several detection procedures in parallel, each responsible for
monitoring the process against one type of change. We can also
see which type of change causes an alarm to help identify the
change pattern and location. Alternatively, there are also adap-
tive CUSUM procedures (Xie et al. 2020), which use “future”
samples to estimate a potential post-change parameter and use
as a plug-in estimator in the CUSUM statistics. However, such
methods may incur an additional delay in detection.

5.2. E#ect of Grid Size γ

As mentioned earlier, the choice of the grid size γ involves
a tradeo! between algorithm performance and computational
complexity. To investigate this tradeo!, we compare the pro-
posed CUSUM, the GLR, and the score statistics with a grid
size γ ranging from 0.1 to 50 on the network of size 8. For the
EDD, we assume that the change-point is uniformly distributed
between two grid points. Figure 8 shows the e!ect of the grid
size on CUSUM, the GLR, and the score procedure. We see that
a large grid size γ results in both a larger ARL and EDD. If we
instead tune the threshold b to $x the ARL, the EDD may still
increase with a larger γ .

To understand the e!ect of γ on computation complexity,
we will consider the GLR statistic as the computation for the
GLR is the most expensive. To solve the convex optimization
problem for each window, we use the EM algorithm as described
in Li et al. (2017), and terminate when the update in the log-
likelihood is less than 10−4. Figure 8(c) shows the average iter-
ations needed per window for di!erent grid sizes. We see that,
as γ increases, the computation required (in terms of number of
iterations) increases as well, which matches intuition.

6. Detecting Neuronal Network Population Code
Change

We now return to the motivating problem of detecting popu-
lation code changes in neuronal networks. The data considered
are neural spike trains, which record the sequence of times when
a neuron $res an action potential. The multivariate Hawkes
processes from Section 2.2 have been used for modeling spike
train data (Lambert et al. 2018; Wang et al. 2020b), and capture
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Figure 7. Examples when CUSUM fails to detect under misspeci$ed post-change parameters. (a) The EDD versus log(ARL) plot. (b and c) Examples of the CUSUM procedure
under misspeci$cation for the network of size 8 and 100, using the same sequence of events with Figure 5, respectively.

Figure 8. E"ect of the grid size γ on CUSUM, GLR, and score statistics. The window length for the GLR and the score statistics is 60 and for Shewhart is 120, which
are optimized for better EDD performance. (a) shows the e"ect of γ on the ARL at $xed threshold b = 6.319, 37.66, 148.2 for CUSUM, the GLR and the score statistics,
respectively, making ARL = 5000 at γ = 0.1. (b) shows the e"ect of γ on the performance by tuning b so that ARL is 5000. (c) shows the average number of iterations per
window needed in the GLR statistic for the optimization problem to converge.

Figure 9. (Left) A plausible network topology for “Cat” and “Dog”; (Right) Spike train data for each neuron under a population code change.

two appealing features for neuronal networks. First, the base
intensities µi capture noisy in#uences on neuron i, resulting
from either unobserved neurons or external stimuli. Second, the
in#uence parameters αij capture the functional in#uence from
neuron j to neuron i due to electrochemical dynamics.

We are interested in detecting the change-point in the
underlying population code from neural data. These are
abrupt changes, as the behavior of populations of neurons
respond quickly (usually in just a few ms) to changing input.
Population codes are a distributed representation of information
used widely across many neural architectures and have been
most widely documented in the cortex. As opposed to dense
representations, population codes consist of sparsely activated
subsets of neurons in which the information is distributed
amongst the entire subset. Figure 9 illustrates this idea. The

le" plots show a plausible neuronal network topology for the
population coding of seeing a cat or a dog. The right plots show
the corresponding spike train data on the neuronal network,
as one changes states from a cat to a dog. Identifying this
population code change-point from experimental data provides
scientists a better understanding of the role of each neuron,
which can be used for repairing neuronal networks.

Here, the sequential nature of change-point detection can be
advantageous for practical implementation. Real-time detection
of biological neural networks is known as “continuous detec-
tion” in the neuroscience literature (see e.g., Goense and Ratnam
2003). This is in contrast to the more standard “trial-based” (or
$xed-sample) testing, where the beginning and duration of the
testing interval are predetermined. A key advantage of contin-
uous detection over trial-based testing is a reduction in experi-
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Figure 10. (a), (b) shows the estimated pre-change and post-change parameters. The size of the nodes are proportional to their background intensities ranging from 0 to
0.016. The opacity of the unlabeled edges are proportional to their weights, ranging from 0 to 0.06. (c) shows a case of post-change topology misspeci$cation in CUSUM
statistic.

Figure 11. The CUSUM, score, and GLR statistics for the neuronal network application with D = 14 nodes. The true change-point is indicated by the dashed line.

Figure 12. CUSUM statistics under di"erent misspeci$cations of post-change parameters. The red line shows the CUSUM statistic under an “exact” speci$cation of post-
change parameters, and the dash line indicates the change-point.

Figure 13. The CUSUM, score, and GLR statistics for the neuronal network application with D = 80 nodes. The true change-point is indicated by the dashed line.

mental sample size (Goense and Ratnam 2003): the experiment
terminates a"er a change-point is detected, and does not need
to run for the full testing period. This yields considerable cost
savings for experiments, and speeds up the decision-making

procedure. Continuous change-point detection is a capability
vital to the success of neural interfaces, devices that monitor
and decode the activity of a subject’s brain. These neural inter-
faces being widely used in modern neuroengineering problems
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to restore capabilities to patients, for example, manipulating a
robotic hand or even typing on a virtual keyboard. Underlying
the use of real-time neural interfaces is the ability to detect
changes in population codes in real time.

While there have been signi$cant advances in neuroimaging
technology, it can still be quite costly to record $ne-scale spiking
data through in-vivo (i.e., physical) experiments. To illustrate
the proposed method, we instead simulate the spike train data
using the PyNN package with the NEURON simulator, which
implements the neuronal model in Brette and Gerstner (2005).
We build o! previous work in neural simulation and use a
network of exponential integrate-and-$re neurons with spike
triggered and sub-threshold adaptation currents. This can be
viewed as a computer experiment surrogate for the expensive
physical experiments, which we cannot obtain due to high costs.

The simulation set-up is as follows. We $rst simulate several
small networks of neurons in a balance of 80–20 excitatory to
inhibitory neurons, with network size $xed at D = 14 neurons.
From this, we obtain a continuous readout of each neuron
spiking data. Each neuron then receives a small Gaussian noise
current, representing random external in#uence on the net-
work. In addition, a select few neurons receive inputs from an
external source, which represents the phenomenon of sparse
population coding. The neurons that spike at higher rates form
a distributed representation of the network state.

We then randomly selected two such subsets of neurons,
representing two di!erent states. We simulate the network in the
$rst state for a long time (from t = 0–20,000 ms) to learn network
dynamics and structure under the $rst population code. The
pre-change Hawkes process parameters are obtained via maxi-
mum likelihood estimation (MLE) on the pre-change spike train
data. A"er κ = 20,000 ms, we then simulate a change from the
$rst to the second state. The goal is to quickly detect the change-
point κ in a sequential fashion from the simulated spike trains.
For CUSUM, the post-change Hawkes process parameters are
estimated via MLE on the post-change spike trains. For the score
statistic, the pre-change Fisher information matrix I0 is highly
ill-conditioned when estimated from spike trains, so we instead
use a slightly regularized estimate I0 + λI, where λ = 1 and I is
an identity matrix. The estimated pre-change and post-change
models are shown in Figure 10.

Figure 11 shows the CUSUM, GLR, and score statistics,
respectively, with the dashed line indicating the change-point
in population code. Both the score and GLR statistics use a
window size of 1000 and an update rate of γ = 5. As in numerical
experiments, we see that the CUSUM statistic increases rapidly
a"er the change-point, which shows it is quite e!ective at detect-
ing the underlying neuronal network changes. The score and
GLR statistics are also noticeably larger a"er the change-point,
with the increase in GLR more prominent than the increase for
the score statistic. The increases in GLR and score statistics are
noticeably lower than that for the proposed CUSUM procedure,
which suggests that our method can better detect population
code changes in neuronal networks.

Next, we consider the case where post-change parameter
estimates are misspeci$ed for the CUSUM statistic. This may
arise, for example, when there is a lack of spike train data for
post-change parameter estimation. We consider three scenarios
for misspeci$cation: (a) the post-change topology is correct, but

the in#uence parameters are scaled at 200%, (b) the in#uence
parameters are correct, but there are spurious edges on neuron
1 for the topology (see Figure 12(b)), (c) the post-change in#u-
ence parameters are correct, but all the edges to neuron 13 are
missing for the topology. Figure 12 shows the CUSUM statis-
tics for these three scenarios, along with the “exact” CUSUM
statistics, which use exact post-change MLEs. We see that the
CUSUM is quite robust: its CUSUM statistics are quite close to
the exact CUSUM for both in#uence and topology misspeci$-
cations. Hence, our method appears to e%ciently detect pop-
ulation code changes, even under uncertainties in post-change
parameter estimation.

Finally, we investigate the scalability of these methods by
increasing the network size to D = 80 neurons, with all simula-
tion and experimental settings $xed as before. Due to the inac-
curacies in estimating the pre-change parameters, the CUSUM
procedure has a positive dri" in the pre-change scenario, which
disagrees with the theoretical property needed for CUSUM—
before the change, the expected dri" should be negative; oth-
erwise, there will be constant false alarms raised. To address
this issue, as a common practice, we subtract a positive constant
0.2 from the increment when forming the CUSUM procedure
from all 'nγ ,·, which will ensure the dri" term has a negative
expected value. Figure 13 shows the corresponding CUSUM,
GLR, and score statistics, with the dashed line indicating the
change-point in population code. We see similar observations as
before: the CUSUM statistic increases rapidly a"er the change-
point, whereas the increases in the GLR and score statistics are
much more subtle, thus, indicating our approach can provide
better detection of population codes. As in simulation experi-
ments, the computation time favors our method: the proposed
CUSUM procedure requires 0.44 sec on the 80-node network,
whereas the GLR and score procedures require 32.48 and 4.63
sec, respectively. This shows the improved performance and
e%ciency of our recursive CUSUM approach.

7. Conclusion and Discussions

We have presented a new sequential CUSUM procedure for
detecting change-point in the multi-dimensional self- and
mutual-exciting point processes, that is, network Hawkes
processes. By tackling the complex and long-term dependence
between event times, we develop the CUSUM procedure that
enjoys e%cient recursive computation and memory e%ciency
if we employ truncation. Using numerical experiments, we
showed that the CUSUM procedure yields improved perfor-
mance over existing detection procedures (Shewhart-type)
based on score statistics and generalized likelihood ratio (GLR)
statistics. Moreover, we found that, although the CUSUM
procedure requires specifying the post-change distribution
parameters, it is fairly robust to parameter misspeci$cation
when it is possible to estimate the topology and magnitude of
a potential abrupt change and outperforms existing methods
in that setting. This can be partly explained by that these
alternative methods are the Shewhart-type approaches (based
on evaluating a detection statistic using a sliding window),
which does not accumulate information from the past. We also
demonstrated a realistic neuroengineering application of our
procedure for neuronal network change-point detection.
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Supplementary Materials

supplementary.pdf: Proofs and theoretical properties of the CUSUM pro-
cedure. (PDF $le)

code.zip: Code reproducing detecting statistics examples and ARL versus
EDD plots in the numerical experiments (Figures 5, 6, and Table 1.)
(MATLAB code)
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