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in network point processes
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ABSTRACT ARTICLE HISTORY
We consider online monitoring of the network event data to detect Received 21 June 2022
local changes in a cluster when the affected data stream distribution Revised 18 November 2022
shifts from one point process to another with different parameters. ~ Accepted 11 December 2022
Specifically, we are interested in detecting a change point that causes
a shift of the underlying data distribution that follows a multivariate h . ..

. . ange point detection;
Hawkes process WIth exponentlal decay temporal kgrnel, whereby the graph scanning statistics;
Hawkes process is considered to account for spatiotemporal correl- score statistics
ation between observations. The proposed detection procedure is
based on scan score statistics. We derive the asymptotic distribution of SUBJECT
the statistic, which enables the self-normalizing property and facilitates CLASSIFICATIONS
the approximation of the instantaneous false alarm probability and the ~ Primary 62L10; Secondary
average run length. When detecting a change in the Hawkes process 62G10; 62G32
with nonvanishing self-excitation, the procedure does not require esti-
mating the postchange network parameter while assuming the tem-
poral decay parameter, which enjoys computational efficiency. We
further present an efficient procedure to accurately determine the false
discovery rate via importance sampling, as validated by numerical
examples. Using simulated and real stock exchange data, we show the
effectiveness of the proposed method in detecting change while
enjoying computational efficiency.

KEYWORDS

1. INTRODUCTION

Network Hawkes point processes recently became a popular model for sequential events
data over networks, a widely encountered data type in modern applications (Hawkes
1971). Such data usually capture the temporal and spatial information of the events; that is,
a sequence of event times, the corresponding event location, and additional information. A
multivariate Hawkes process can model the influence of previous events on subsequent
events; for instance, triggering the subsequent events or making them more likely to hap-
pen. Hawkes processes have been widely used in many areas such as finance (Hawkes
2018), social media (Rizoiu et al. 2017), epidemiology (Rizoiu et al. 2018), and seismology
(Ogata 1998).

Change point detection is a fundamental problem in statistics, aiming to detect a transi-
tion in the distribution of the sequential data, which often represents a state transition
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(see, e.g., Moustakides 2008; Poor and Hadjiliadis 2008; Y. Xie and Siegmund 2013;
Veeravalli and Banerjee 2014; Tartakovsky 2019; L. Xie et al. 2021). For example, in water
quality monitoring, a change point can be due to a water contamination event (Chen, Kim,
and Xie 2020); in public health, it may represent a disease outbreak (Christakis and Fowler
2010). The goal is to develop a procedure that can raise the alarm as soon as possible after
the change point while controlling the false alarm rate.

Detecting change points for Hawkes processes is an important problem for monitoring
large-scale networks using discrete events data. Online detection of change point detection
in Hawkes processes is considered challenging due to the asynchronous nature of discrete
events and temporal dependence, which is far from the traditional independent and identi-
cally distributed setting considered in change point detection literature. In H. Wang et al.
(2022), the authors proposed an adapted version of the cumulative sum procedure to
account for the dynamic behavior assuming known postchange parameters. When post-
change parameters are unknown, a classic method is the generalized likelihood ratio
(GLR) procedure, and Li et al. (2017) use the expectation-maximization type of algorithm
to estimate the postchange parameters of Hawkes processes and then compute the GLRs.
This method requires large memory and computation time to obtain the maximum likeli-
hood estimates at each time instance. An alternative to GLR is the score test (Rao 2005),
which does not require computing the maximum likelihood estimation. The score test is
well studied and widely applied. In the univariate case, the score test is the most powerful
test for small deviation from the null hypothesis. For multistream network data, a strategy
is needed to combine the high-dimensional statistic; L. Xie and Xie (2021) proposed a
graph scanning statistic by computing the statistics for subgraphs that is helpful to detect
and identify local changes. In addition to online change point detection, recent work by D.
Wang, Yu, and Willett (2020) developed methods and established theoretical guarantees
for offline change point detection for Hawkes processes.

In this article, we present a graph scan score statistic for detecting local changes that
happen as a cluster in the network when observing sequential discrete event data that
can be modeled using point processes. The change causes an unknown shift in the
underlying parameter of the Hawkes process over a subnetwork. We assume that the
parameters of the prechange distributions are known because typically abundant
“normal” and “in-control” data can be used to estimate the prechange parameters with
good precision. We assume that the postchange parameters are unknown because they
are typically due to an unexpected anomaly. This motivates us to consider the score
statistic, which detects a departure from the “normal” data without having to estimate
the postchange parameters. We present the asymptotic distribution of the score statistic,
which enables us to develop the self-normalizing scan statistic over predefined candidate
scanning clusters. This also leads to an accurate approximation of the instantaneous
false alarm probability, the false alarm rate, the average run length, and an efficient pro-
cedure to accurately determine the false discovery rate via importance sampling, as vali-
dated by numerical examples. The good performance of our procedure compared with
the benchmarks is tested with numerical experiments with simulated and real stock
exchange data.

The rest of our article is organized as follows. Section 2 provides background know-
ledge on the multivariate Hawkes process. Section 3 presents the definition of our
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problem. Section 4 proposes our detection procedure and includes the analysis of our
scan score statistics. Section 5 presents experiments of a simulation study and real-world
data application. Section 6 concludes our article.

2. PRELIMINARIES

A multivariate Hawkes process is a self-exciting process over a network. Let M denote
the number of nodes in the network and [M] denote {1,...,M}. The data are of the
form {(uy,t1), (42, t2), ...}, where u; € [M] denotes the location of the ith event and #; €
(0,00) denotes the time of the ith event. A multivariate Hawkes process is actually a
special case of spatiotemporal counting process (Rathbun 1996). Let H; denote the his-
tory before time #; that is, the o-algebras of events before time t; {H;},-, is a filtration,
an increasing sequence of og-algebras. Let N,,(¢) denote the number of events on the ith
node up to time #; that is, a counting process,

Nm(t) = Zﬂ(tl <tu = m))

L<t

where [ denotes the indicator variable. Then, a multivariate Hawkes process can be
determined by the following conditional intensity function (Reinhart 2018):

In(t) = limIED{Nm(t +3s) > 0|Ht}.

s—0 S

(2.1)

For a multivariate Hawkes process, the conditional intensity function takes the form
Im(t) = 1, + Z J Gim( Ni(ds). (2.2)

Here p,, is the base intensity and g; ;(t) is the kernel function that characterized the
influence of the previous events. Specifically, we assume a commonly used exponential
kernel; that is,

(1) = o e, (2.3)

where f§ > 0 is a parameter that controls the decay rate. Let u = (u;, ..., 4y;) and A €
RM™*M " of which the (i, j)th entry is o;; > 0. A multivariate Hawkes process with expo-
nential kernel is parameterized by the base intensity g, influence matrix A, and decay

rate . Given all events in time window [0, T], the log likelihood function is given by

/T(A) Zlog :uuk + Z Oy, uk Plo— tl Znum

t; <t
ok k (2.4)
S e 10 1)
m= k=1

where K denotes the number of events before time T. Note that when A = 0, the pro-
cess becomes a multivariate Poisson process.
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3. PROBLEM SETUP

Consider a network with M nodes; we can observe a sequence of events on each node
over time. There may exist a change point in time t* > 0 if the following applies.
Before time t*, the events of the network follow a multivariate Hawkes process with
parameters u, Ag, and f. After time 7%, the events of the network follow a multivariate
Hawkes process in which the influence matrix changes from Ay to A;. The prechange
and postchange multivariate Hawkes processes are assumed to be stationary; that is,
[|Ao|| < 1 and ||A|| < 1, where || - || represents the spectral norm. To detect whether a
change point 7* exists in the given data, we consider the following hypothesis test:

Hy @ dm(t) =ty + D1 < oty moe P m € M), t > 0;
Hy  dn(t) = o + < S0 P07, m € [M],0 <t < o (3.1)
AWIO) = [y T+ Zr*ﬁtét (xu,,m,leiﬁ(titi)» me [M];t > T

where 4,,(t) is the true conditional intensity of node m at time t, and o j o and «;j are
the (i, j)th entries of Ay and A;, respectively. In particular, we refer to Ay and A; as
the network parameters because they describe the interactions (influences) between
nodes in the network.

4. SCAN SCORE STATISTICS DETECTION PROCEDURE

To perform the sequential hypothesis test (3.1), we proposed a detection procedure based
on scan score statistics. A score statistic corresponds to the first-order derivative of the log-
likelihood function. In a multivariate Hawkes network, we are interested in the influence
between multiple pairs of nodes (i.e., the entries in the influence matrix A). We can derive
the score statistics for each pair, which leads to a multidimensional vector of score statis-
tics. Based on that, we use a scanning strategy to compute our test statistics, similar to
Chen, Kim, and Xie (2020) and He et al. (2018). Specifically, we divide the network into
several clusters, compute the score statistics in each cluster at each time ¢, and then obtain
a detection statistic for each cluster by summing up the standardized score statistics in the
corresponding cluster. Finally, we take the maximum over all clusters to form the scan
score statistics at time ¢ for the entire network. More details will be discussed in this
section.

4.1. Score Statistics

Because the change in hypothesis test (3.1) is caused by the change of influence matrix,
we define the following score statistics, given data up to time T, with respect to o, , :

(p:9)
S (A)
0oy 4

(4.1)

Moreover, define Sr(A) as the vector of all elements in {SI(‘? 2 (A);p,q € [M]}.
According to theorem 1 in Rathbun (1996), we have the following lemma.
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Lemma 4.1. Under the assumptions in Rathbun (1996), assume that the influence matrix
of the multivariate Hawkes process is A. The score function St(A) satisfies that

T3Sr(A) 2N (0,Z(A)),

where Z(A) is the Fisher information.

4.1.1. Theoretical Characterization of Fisher Information Z(0)

When A =0, it is possible to compute Z(0) as shown in the following theorem. For
simplicity, let us define C(i,t) as the set of events at node i before time t; that
is, C(i, t) = {k T < Lug = i}.

Theorem 4.1. Assume the conditional intensity function has the form as in equation (2.2)
and the kernel function is exponential as in equation (2.3). According to equation (4.1),

, olr(A)
W=,
.4 —Bti—t;) (4.2)
_ ZieC(p,tk) e 1 Z [eB(T—t) _ 1] ‘

o T
ket ) Hg Dt <, % g€ Blti—t:) ﬁkeC(P’T)

Moreover, when A =0, as T — oo, the nonzero elements in the limit of variance (i.e.,
Z(A) in Lemma 4.1) are as follows:
1 I u
Var[T’ES(Tq’q) (o)] - E+B—§,
1 w (1 1
Var {T_ES(p’q) 0)] —-2 <— —l——p), 4.3
T ( :u“q 2ﬁ ﬂZ ( . )
_1a(ps 1P HpHp
ccv[T 15849 (0), T35 ‘1)(0)} eﬁ.
q

4.1.2. Estimation of Z(A)
When A # 0, it is difficult to compute the variance theoretically. According to Rathbun
(1996), we have the following approximation of Z(A).

Theorem 4.2. With the same assumption as in Theorem 4.1, we have the following esti-
mation of the Fisher information. Let

’ if j#q
(Ckeetin ¢ ") Ciecpn € ")

Lr(A)Gj), ) =

2 _keC(a, if j=gq.
e n (,uq + Zfi<tk a“f)qe_ﬁ(tk_ti))z
(4.4)
We have LT 1(A) — T(A); that is, Yi,j, p, q,
1.
7L .00 — A, .y (4.5)

where Z(A)(; ) 5,q) 1S the asymptotic (co)variance of T*I/zSg’j) (A) and T*I/ZS(TP”Z) (A).



SEQUENTIAL ANALYSIS @ 75

4.2. Scan Score Statistics

To combine all of the score statistics and complete the detection procedure, we compute
the scan statistics based on given clusters. A cluster is a directed subgraph, with the set
of nodes V; and the set of edges E;, i = 1,2,...,L, where L is the number of clusters. In
practice, to reduce the computation cost, we only compute the score statistics given
data in a time window of length w and update the statistics every ¢ time units, where
0 < w. Specifically, at time ¢, which is a multiple of J, for the ith cluster we compute
the score statistics on all edges in the cluster at the prechange parameter A, with data

in [t —w,t] and have a vector of score statistics denoted as S%(Ao) = (s¥ ’q)(AO)—

SE‘Z’?(AO))(P’ ger- Let R; and TW(Ay) denote the dimensions and Fisher information

corresponding to edges in E;, respectively. Then the detection statistic for cluster i at
time 7 with window length w is

T = (wR) 2170 (Ag) /281 (Ag) ~ N (0, 1). (4.6)

Note that the scan statistic has a “self-normalizing” property in that the asymptotic dis-
tributions are standard normal for multiple candidate clusters, which will facilitate con-
trol of the false alarm by choosing a threshold. For example, if we are interested in
detecting a shift from a Poisson process, we only need to evaluate Z(A,), which only
requires the prechange parameter without having to estimate the postchange parameter
A;. The estimation of A; can be difficult to perform online given limited postchange
observations, because we would like to detect the change quickly.
Then at each time ¢, we compute the scan score statistics over the candidate clusters:

— (i)
Tt = max [, |-
Given a threshold b >0, we stop our procedure and raise an alarm to detect a local

change point using the following rule:
Ty = inf{t : I'; > b}. (4.7)

In the following, we discuss the false alarm probability at any instant ¢ (Section 4.2.1)
and then provide the performance analysis of T}, (Section 4.2.2). Here the choice of the
threshold b controls the trade-off between the false alarm rate and average run length
versus the detection delay. The proposed method can also be used to localize the change
once an alarm is raised, and we briefly discuss the false discovery rate in Appendix A.

4.2.1. Instantaneous False Alarm Probability of Scan Statistics at a Given t

According to Lemma 4.1, the score T '/2S;(Ay) converges in distribution to
N(0,Z(Ag)) as T — oo. Because the Hawkes process is stationary, w™'/2(S,.(Aq) —
Sw(z—1)(Ag)) also converges to the same distribution as w — oo. The statistics FE'L, are

linear combinations of w/2(S;(Ag) — S;_,(A¢)), and after scaling the time by w!,

(i) . . .
the process (I'})) ).~ 1<i<; converges pointwise to a Gaussian process as w — oo, and

the covariance can be characterized by
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Cov(r') TV

wi, w> © w(tte), w

)=(1- e)+COV(r§i)l,r§{)l), for any 1 <i<j<L, for any € >0,
(4.8)

where the covariance between I' i’;)l and F@l can be found in closed form when A; =0

using Theorem 4.1 and estimated using historical data by Theorem 4.2. At time >0,
we want to control the instantaneous false alarm probability

i Lo (i
P(I' > b) = P(max |, > b) = P(U |}, | = b)

L . L .
=P(U{T}), > b} U{TY), < —b})

i=1 () i=1 () (49)
=P({max T, > b} U{min ', < —b})

< 2P(max FE”W > b).

1<i<L

Let I';,, denote the vector of FE’)W s. To control the upper bound of the instantaneous

false alarm probability, we compute (4.9) with the technique in Botev, Mandjes, and
Ridder (2015):

P( max T%, >b) =P(

1<i<L  © i

(), > 6.1y, >T0,.j# 1))

w w

I Ce=

1

I
[M]-

P(Ty), > 6,1, > T),.j#i}) (4.10)
1

P(BP,I;, >b),

I
-M’“

1 0 - 0
1 -1 0 0 g
B=|1 0 -1 . :|, b=].]. (4.11)
0 0
1 0 .0 -1

Here I';,, follows a Gaussian distribution where the covariance X can be computed
with (4.8) according to the network topology and the score statistics in the clusters. In
Botev, Mandjes, and Ridder (2015), the authors provided an importance sampling algo-
rithm to estimate (4.10). Figure 1 is an example of the cluster structure and the corre-
sponding ¥ when Ay = 0.

Remark 4.1. Because our scan statistics are standardized, determining the threshold b
with the method in equation (4.10) does not depend on the window length w. However,
with a larger w, the Gaussian process approximation would be better. In Table 1, we
can see that as the window length increases, the instantaneous false alarm probability is
better controlled.
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(c)

Figure 1. In this example, there are four clusters, and each cluster includes five locations. The four
clusters are (1,3,4,5,8), (2,4,5.6,9), (4,7,8,9,11), and (5,8,9,10,12). The light blue nodes are the
centers of each cluster and in each cluster we con5|der the four directions from the center to its
neighbors as shown in (b) and (c). S,L, ~ N (04, w(1/(28) + 1t (/B Na) and I'tw ~N(0,%). For the
case in (b), the Z; corresponding to the covariance between F and F equals 0. For the case in
(0 2 = 22 /(B + 2u). Therefore, = = ((1,0,0, 0'2) ,(0,1,6? 0) , (0, 2, 1 0) ,(62,0,0, 1) ).

Table 1. Accuracy of approximation of instantaneous false alarm probability through (4.10).

w b ZIP’(max,-l"iy'L, > b) P(I'; > b)
50 3 0.01 0.0174
100 3 0.01 0.0146
200 3 0.01 0.0114
50 2.8 0.02 0.0282
100 2.8 0.02 0.0226
200 2.8 0.02 0.0210

4.2.2. Performance Metrics of the Stopping Time T,
In this part, we provide an upper bound of the false alarm rate (FAR) and average run
length (ARL) based on the Gaussian process approximation and the analysis of the
instantaneous false alarm probability. Then we discuss the detection delay and the
choice of the window length w and update interval 6.

The FAR is the conditional probability that the procedure will stop at the next
update, given that there has been no false alarm yet:

FAR = sup(T, = (n+ 1)0|T, > nd).

We have the following result on the FAR.
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Theorem 4.3. As b — oo, if w/0 is upper bounded by some constant C,

FAR

mﬁ 1+ o(1).

The ARL of T, is E[T}], the expected stopping time under Hy. To evaluate the ARL,
we are going to show that T, is an approximately exponential distribution with some

parameter o. The analysis is similar to Yakir (2009). Let f(b) = be’/2, such that 1/f(b)
is in the same order as the instantaneous false alarm probability. For any x>0 and
interval [0,xf(b)d], we decompose it into k subintervals with length mJ; that is, xf(b) =
km. For simplicity, we assume that k and m are integers.

Let indicator X; denote I{max_i)m<p<jmlns > b}, and define W = Z]kle] Then

we have
{W =0} ={T, > xf(b)o}.

To prove that T}, is approximately exponential, it is the same to prove that W is
approximately Poisson distributed. We herein apply the result from Arratia, Goldstein,
and Gordon (1989). According to theorem I in Arratia, Goldstein, and Gordon (1989),
we establish the following theorem.

Theorem 4.4. Let T, be the stopping time defined in equation (4.7), X; be the indicator

defined above, and W be the sum of the indicators. As b — oo, for any m = 0(f(b))

which also satisfies m% — 00, for any fixed x > 0,

limy_.oo [P(Ty > xf(b)6) — e =V = 0. (4.12)

The theorem above can be used to obtain an approximation of the ARL. According
to the construction of W, we have

EW = kP(X; = 1)
= xf(b)IP’{Ogagxm I'ys > b}/m

< xf(b)P{T, > b}.

By Theorem 4.4, E. (T}) ~ ;'S and

Ao < ]P’{Or<na<x Iy > b}/m (4.13)
<P(I; > b). (4.14)

Therefore, we can use our instantaneous false alarm probability approximation in
Section 4.2.1 to approximate (4.13). We can numerically verify that this is a reasonably
accurate approximation (see Section 5.1).

Remark 4.2. To evaluate the performance of our scanning statistics, we also need the
expected detection delay (EDD). Because we are using a Shewhart chart type of detect-
ing procedure, the EDD varies with the window length. In practice, the window length
w can be chosen by considering the smallest change we want to detect on each cluster.
Then w will be the smallest window length that has enough power to detect the change
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]E(FEOW)| > b if the change happens

successfully; that is, under the postchange scenario,
on the ith cluster.

Remark 4.3. The performance of our scanning statistic also depends on the update
interval 6, where a smaller 6 results in both a smaller ARL and a smaller EDD.
However, there seems to be little point in choosing J to be much smaller than w to
frequently check for a potential change point while sacrificing computational efficiency
because we expect that the change will not be too large and will not be reflected imme-
diately in the detection statistic I'.

5. EXPERIMENTS
5.1. Simulated Result of ARL and EDD

In this experiment, the network is set up as shown in Figure 1. The event in each node
follows a Poisson process with p=1, and we set f=1. The window length is set to be
200, and the statistics are computed for each 6 =10 time units. In Table 2 we show the
estimated ARL from simulation with the threshold estimated by (4.13) and (4.14) for
lgl > 1,000 and )ug‘ > 2,000, which corresponds to ARL > et

To obtain the simulated ARL, we generate events in the time window [0,60000] and
compute the run length when the statistics exceed the corresponding threshold. Note
that this approximation will always underestimate the ARL because we can only gener-
ate events in a finite time window. We can see that the thresholds computed from
(4.13) give us desired results. However, (4.14) tends to overestimate the threshold.

Now, let us compare the EDD of our proposed method with the GLR method in Li et al.
(2017). In the experiments for EDD, the distribution under Hjy is set as mentioned above. The
thresholds of our methods are set according to the estimate of equation (4.13) with m = 50, so
that our desired ARLs are 10,000 or 20,000 (see details in Table 2). As for the GLR, we compute
the log generalized likelihood ratio with frequency of 0.1 per time unit and window length
w =200 with and without the cluster structure. For the GLR with the cluster structure (GLR-
C), similar to the proposed method, we compute the statistic on each of the clusters and take
the maximum. For the vanilla GLR, we consider a change on the 16 edges in the union of the
four clusters. The maximum likelihood estimates for A; and pu, are computed by the expect-
ation-maximization method. The thresholds of the desired ARLs are estimated with simulation.

We compared the performance of our methods with GLR and GLR-C in different set-
tings, and the results are shown in Table 3. The EDDs are shown in columns 4 to 9 of
Table 4. The results show that our proposed method achieves better performance when
the change is within cluster and balanced on the edges (Cases 1-3). In Cases 4 and 5,

Table 2. Verification of approximated ARL in (4.13) and (4.14).

b Theoretic ARL Simulated ARL
Results of (4.13), m=100 3.3718 10,000 9,189
Results of (4.13), m=50 3.3859 10,000 9,561
Results of (4.14) 3.6625 10,000 21,773
Results of (4.13), m=100 3.5824 20,000 17,158
Results of (4.13), m=50 3.5867 20,000 17,655
Results of (4.14) 3.8352 20,000 41,701




80 @ R. ZHANG ET AL.

where the change happens on multiple clusters, and in Case 6, where the change happens
on only part of a cluster, the proposed method is comparable to GLR with or without the
cluster structure. Table 5 shows the advantage of our method: the computation time of
our proposed methods is much less than that for the GLR methods, because our method
does not require estimating the postchange distribution parameters. However, in Case 7,
if the change happens on a single edge—in other words, the clusters cannot accurately
capture the topology of the local change—the performance of the score-based method can
be worse than that of the GLR.

Finally, we can verify the exponentiality of the run length by comparing the empirical
cumulative distribution function over 500 experiments versus the theoretical one, as
shown in Figure 2.

5.2. Real-World Data

In this section, we apply our scan statistics on memetracker data and stock data.

e memetracker data: These data track texts and phrases, which are called “memes,”
over different websites. These data are used to study information diffusion via social
media and blogs. We used three meme data in Li et al. (2017). The first data was
“Barack Obama was elected as the 44th president of the United States.” We used
data from the top 40 news websites, which include Yahoo, CNN, NY Daily, The
Guardian, etc. We used data from 01 November 2008 to 02 November 2008 as the
training data and the data from 3 November 2008 to 5 November 2008 as the test
data. Our procedure detected a change at around 7 p.m. on 3 November, which was
a few hours before the votes. The second data was “the summer Olympics game in
Beijing.” We use data from 1 August 2008 to 3 August 2008 as the training data and
from 4 August 2008 to 15 August 2008 as the test set.

o  Stock price data: These data were downloaded from Yahoo Finance. We collect the
closing price and trading volume of stock tickers SPY, QQQ, DIA, EFA, and IWM,
which are all index-type stocks and can reflect the situation of the overall stock
market. For each ticker, we constructed three types of events. High return: a day
with a return over the 90th percentile. Low return: a day with a return below the
10th percentile. High volume: a day with trading volume over the 90th percentile.
Therefore, in these data, we have a network with 15 nodes. Such extreme trading
events are of interest in the study of finance (Embrechts, Liniger, and Lin 2011).
We used data from 4 January 2016 to 31 December 2018 as the training data and
from 1 January 2019 to 31 December 2020 as the test data.

Table 3. Setting of different cases in Table 4.

Changed parameters in postchange distribution

Case 1 Olg4,1 = 043 = Olg,5 = Olg, 8 = 0.2
Case 2 Olg,1 = 04,3 = Olg,5 = Olg 8 = 0.5
Case 3 Ola1 = 0.6, 0lg,3 = 0.4, Olg,5 = Olg, 8 = 0.5
Case 4 Olg,1 = 04,3 = Olg,;5 = Olg;g = 0.5
Case 5 Ol4,5 = Olg g = Olg g = Olg 5 = 0.5
Case 6 Olg,5 = Olg g = 0.5

Case 7 04,5 =0.5
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Table 4. Comparison of EDD.

Method Threshold ARL Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
Proposed 3.400 10,000 104.5 44.43 46.89 54.02 4534 81.92 159.0
GLR-C 7.705 10,000 108.9 48.77 47.77 51.38 39.61 68.71 97.91
GLR 11.35 10,000 119.1 52.36 51.73 52.20 41.06 74.23 105.6
Proposed 3.635 20,000 111.9 47.40 49.54 57.82 49.31 89.16 176.9
GLR-C 8.600 20,000 117.0 51.82 50.33 55.74 42.42 72.85 103.84
GLR 12.45 20,000 128.2 55.30 55.16 55.85 42.81 79.49 1125

The bold values mark the best performance under each experimental setup.

Table 5. Comparison of computation time (in seconds) for computing the detection statistic over
50,000 time units.

Method Proposed GLR-C GLR
Duration (s) 3.789 20.47 72.97
1 1
— — Theoretical — — Theoretical
0.8 Emperical 08¢ Emperical

10
t x10% t x10%
Figure 2. The probability P(7, < t) under Ho at ARL = 10,000 and ARL = 20, 000.

Table 6. Result of real data.

Data Training set Test set No. of cluster  Thresholds Change points

“Obama” 08.11.01-08.11.02  08.11.03-08.11.05 5 4 3 November, 7 a.m.

“Olympics”  08.08.01-08.08.03  08.08.04-08.08.08 4 4 4 August, 6 p.m.

Stock data  16.01.04-18.12.31  19.01.01-20.12.31 5 4 21 June 2019, 16 August 2019, 4
March 2020

For each data, we applied the Newton method to fit the maximum likelihood estima-
tion of the parameters for the training set. Then we use the fitted parameters to com-
pute the scan statistics on the test set. For memetracker data, we constructed the cluster
by applying community detection methods on the fitted A. For stock data, each cluster
included events related to a certain ticker. Details are shown in Table 6. The change
point detected from the “Obama” data was around 7 a.m. on 3 November 2008. The
result indicates that the public opinion of Barack Obama changed around 1 day before
the votes. For the “Olympic” data, our procedure detected a change on 4 August, 3 days
before the Olympic games. For the stock data, we detected three time intervals, of which
the start dates were 21 June 2019, 16 August 2019, and 4 March 2020. According to the
news, the first change point (21 June 2019) was the date that the S&P 500 hit a new
record high and the three major stock indexes surged on different scales. The second
change point (16 August 2019) was related to the U.S.-China trade war. In August
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2019, both the United States and China made multiple announcements about their tar-
iffs. The last change point was 4 March 2020, which was three business days before the
first circuit breaker in 2020. There were many change points after the first circuit
breaker (9 March 2020), which indicates a long-term change in the stock market caused
by the pandemic and trade war. Real data results show that our proposed scan statistics
achieve good performance in detecting the real change in different areas such as social
media and financial markets (Figure 3).
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Figure 3. Scan statistics procedure applied on real data. Left column: the blue line is the smoothed
frequency of all events in the network. Right column: the blue line is the scan statistics of proposed
procedure. First row: data of “Obama”. Second row: data of “Olympics”. Third row: Stock price data.
The dashed red lines indicate the detected change-points.
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6. CONCLUSION

In this article, we propose scan score statistics for detecting the change points of net-
work point processes. We use the multivariate Hawkes process to model the sequential
event data. Our proposed method is based on score statistics without the requirement
to estimate the postchange network parameters, which can be difficult to perform given
limited postchange samples because we would like to detect the change quickly. In this
sense, our method is more computationally efficient than the conventional GLR
method, which is essential in online detection. We derive the asymptotic properties of
the scan statistic, which enables us to provide further analysis of the instantaneous false
alarm probability, false alarm rate, and average run length and develop a computation-
ally efficient procedure to calibrate the threshold for false alarm control. In experiments,
we first use simulated data to verify our theoretical results. We also apply our method
using real-world data, and our method shows promising detection performance. Future
work includes providing a more detailed discussion of the false discovery rate of localiz-
ing the unknown change (some initial results are provided in Appendix A).

APPENDIX A: EXTENSION: FALSE DISCOVERY RATE OF CHANGE
LOCALIZATION

This section discusses an extension of the change point detection: false identification after the
change detection. After a change has been detected, it is sometimes also of interest to localize it
and find the cluster where it happens. This corresponds to multiple hypothe51s tests given all of
the information up to t. More specifically, at a given t, we check whether {|T" 5 w| > b} is true or
not, for i = 1 . L. Our procedure stops whenever there is at least one discovery; that is, 3i,

such that {|F : W| > b}. Let k denote the number of such discoveries. Among these « discoveries,
there are true discoveries and false discoveries. Let V denote the number of false discoveries.
Then the false discovery rate (FDR) is defined as

FDR = E(V/Kk;k > 0), (A1)

which is of interest in the study of scanning statistics.

Siegmund, Zhang, and Yakir (2011) provided an estimator for the FDR under the assumptions
(i) V is Poisson distributed with expected value p and (ii) the number of false discoveries V is
independent of the number of true discoveries k — V. The estimator is given by

FDR = p/ (i + 1).

In our procedure, assume that L and b are large; with similar proof of Theorem 4.4, we can also
show that the first assumption is satisfied; that is,

p ~ LP{|T\| > b}. (A2)

As for the second assumption, similar to the discussion in Siegmund, Zhang, and Yakir (2011), if
each cluster does not largely overlap, most of them are independent. In such a case, the false posi-
tives should be an approximately uniform distribution over all clusters. If the true signals do not fre-
quently occur, a false positive is close to a true signal with a very small probability. Therefore, the
second assumption is approximately satisfied, too. To control the FDR we only need to compute the
threshold b according to equation (A.2) for a desired p. Recall that l"t w~N(0,1).

Below we present several simulated examples to demonstrate that the simulated result of the
estimation in equation (A.2) provides an accurate approximation of the actual discovery rate. In
this experiment, the network contains 20 clusters as shown in Figure A.1. All of the clusters are
placed in a line. As in the previous simulated study, the prechange distribution is a Poisson
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°

Table 7. Simulated value of false discovery rate, t = w = 400, T, = 350, T; = 50.

Figure A.1. A network with 20 clusters in a line.

b E(V/(x+ 1)) E(V) E(x — V) 20P(ITY),| > b)
1.6 0.530 2.11 0.285 2.19
1.8 0.406 135 0.24 1.44
2 0.281 0.8 0.185 0.91
2.2 0.174 0.455 0.15 0.556
24 0.113 0.28 0.12 0.328
26 0.064 0.155 0.095 0.186
2.8 0.038 0.085 0.075 0.102
3.0 0.026 0.055 0.06 0.054
3.2 0.018 0.035 0.045 0.027
34 0.010 0.002 0.035 0.013

Notice that the average number of false discoveries E(V) is close to the number in the last column, which is the theoretical
result.

process with u=1. After T, the distribution of one cluster changes to a Hawkes process with all
the cross-excitation from the center to the neighboring nodes equal to 0.2. We generated the
data of total length equal to 400 with Ty = 350 and T; = 50. All of the clusters are scanned with
all the data up to 400. The experiments are repeated 200 times to compute the average number
of false discoveries and true discoveries and false discovery rates. Table 7 shows the result. Notice
that E(V) = p and is close to the numbers in the last column, which shows a good approxima-
tion of equation (A.2).

APPENDIX B: PROOF OF THEOREM 4.1

Proof.
(i)  Because under Hy, S(Tq’ q>(0) has the same the distribution as the univariate case,

Vary, (T287(0)) = T~'Var(S1(0))
_ ( T N auT —1 e 2T 3y pe 7 2ue’3T>

zﬁ 4ﬂ2 + 4ﬁ2 2ﬁ3 2ﬁ3 + 53

1
— ﬁ +% as T — oo.
(p>a)
(ii) To prove the variance of S(Tp’q), we use the fact that Varp, [S(T‘”q)(o)} = —Ep, {8851: 50)}.
Then '
a8 (0)
Ep, |-~~~
0ty 4
(B.1)

=E

1
L s ey
'uqkec(q)T) i€C(p, ti)
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—E HIZE{ > < > e ‘I) IN, H (B.2)
q keC(q, T) \i€C(p, ty)
N i ’
=E M—ZIE > Zite) | INps e (B.3)
2 :
QE |:ZZZ tk + ZZ |Np, tk]]
i= i#f
"N
— (NE[Z] (t)) 8] + Np(N, — DEi [Zi(1)Z, (%)M)} (B.4)
q
N N, oy Np(Np — 1) B2
uq(ZBT(l_e : t)+w(1—e )%)
T iy
- (2ﬁ+ﬁ ) +o(T), (B.5)

where N; and N, are the number of events in [0, T] on nodes q and p, respectively. In
equation (B.2), we use the fact that for Poisson processes, the arrival times follow an
independent and identically distributed uniform distribution when it is conditional on
the number of arrivals. With this fact, in equation (B.3), we define

Because t,-%dunif [0, T],

EZi(t) =

if 4>t
(t)_{e Bl=t) if ¢, < t.

lJt e Pengy — L o)
T, BT

t
EZZ(t) = %J ey — L e 2,
0

BT

which proves equation (B.4). Because N, and N, follow a Poisson distribution with mean Ty,
and Ty, respectively, equation (B.5) is proved.

(iii) Following a similar technique as in (ii), we can prove

APPENDIX C: PROOF

Koy

Covy, {T*%sgé”q) (0), T*%sg?"@(o)} 2y
HgP

OF THEOREM 4.2

Proof. Following the definition in Rathbun (1996), let us define the kernel function,

where s; € RM for i = 1,2.

g(s1,8,1) = szTAslef/“,

Then we can define the conditional intensity function:



86 @ R. ZHANG ET AL.

t

At = uls) + | | glsvut— rN(du x di)

0Jx
= pu(s) + Z u/ As - e P71,

i<t

where u = e, if u; = m, and e, is the vector where the mth entry is 1 and other entries are 0.
Further, define a measure with the delta function

v(x) = Zb‘e,. (x)

1 if x=g
0=}

o.w.

We can write the likelihood function as follows:

/2(4) = J

0

T T

JX log A(s, £ A)N(ds x df) — J

0

J A(s, t; A)v(ds)dt.

We can easily check that this defines the same multivariate Hawkes process in equations (2.2)-(2.4).
2 2
Define the matrix A € RM M 4

Nijpg=— 5 Vbipa €M),

where A;; is the partial derivative of A with respect to o; ;. Therefore, by the result in equation
(4.7) of Rathbun (1996), we have

1 E A(uk,tk) -
?;A(“k)tk) A

By direct computation, we have the result of equation (4.4). O

APPENDIX D: PROOF OF THEOREM 4.3

Proof. For every n > w/d — 1, let p, = P(Ty = (n+ 1)8| Ty, > nd). Then FAR = sup,, p,,. For the
smallest n, clearly there is p, = P(I',s > b) equal to the instantaneous false alarm probability.
Also, for every n, there is
P(T, = (n+1)0) < P(T, > (n+1)6 —w, L > b)

]P)(Tb > né) - ]P(Tb > 1’15) '

Because {T, > (n+1)6 — w} and {I'(,11)5-4} are independent, we have

Pn =

P(Ty > (n+1)6 — w) BT, >b)
PSR, s s > D) =T 0o
k=n+1-[w/d]

As b — oo, the instantaneous false alarm probability P(I', > b) goes to 0, and for large
enough b, there exists some p* >P(I'y > b), p* =P(I', > b)(1 +o0(1)), such that P(I'; >
b)(1 — p*)" "¢ = p*. Then by induction we can see that for every n,

P(T;, > b) P(T';, > b)
pn S = s(l_f e
(1= px) P

*

k=n+1-[w/?]
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APPENDIX E: PROOF OF THEOREM 4.4

Proof. According to theorem I in Arratia, Goldstein, and Gordon (1989), let us define the
“neighbor of dependence” for index j, J(j) = {(j — 1),j,j + 1}, with simple modification for j=1
and j=k, for m > w, where X; and X; are independent for i ¢ J(j). Therefore, the dependence of
elements not in the neighbor vanished; that is, b3 and b} equal 0.

k
b= PX =1)PX;=1)
=1 i) ()
< 3kP(X, = 1),
k
hy=» > PX=1X=1)
=1 i)\
< 2kP(X; = 1,X, = 1).

(E.1)

Note that the event {X; = 1} is the union of {maxXo,<u—w/sI'ns > b} and {max,, _,/s<n<mlns > b},
and the former is independent of X,. The same decomposition can be done to X,. Then b, can be upper
bounded by

by < 2k(P(X, = )P(X, =1) + P max T,s>b max T>b
m—w/d<n<m m<n<m+w/d (E 2)
<2kP(X, = 1)P(X; = 1) + 2kIP( max [, > b). ’

m—w/d<n<m

With the inequality of the tail probability of normal distribution in Feller (1957),

i = 2mL _p
P(X; =1)=P{ max [T |>b % <2mld(b) < e,
0<n_§rz, ’ b
1<i<

where @ is the tail probability of a standard normal random variable. With the same computa-
tion, we can show

2wL 2
IP’( max I,5 > b) < W—/ée_b?.
m—w/d<n<m b
Therefore, with theorem I in Arratia, Goldstein, and Gordon (1989),
IP(Ty > xf(b)d) — e =V (E.3)
=|P(W =0) —e =W (E.4)
<b + b, (E.5)
- 12km?L*  8km’L> 4kwL/d (E6)
=T el h2eb? bet/2 :
_ 12xmL*>  8xmL*  4xwL/d E7)
C bet/2 + bet?/2 + m ’
which becomes small when b — oo. O
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