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Tensor Kernel Recovery for Discrete
Spatio-Temporal Hawkes Processes

Heejune Sheen , Xiaonan Zhu , and Yao Xie , Member, IEEE

Abstract—We introduce a new discrete spatio-temporal Hawkes
process model by formulating the general influence of the Hawkes
process as a tensor kernel. Based on the low-rank structure assump-
tion of the tensor kernel, we cast the estimation of the tensor kernel
as a convex optimization problem using the Fourier transformed
nuclear norm. We provide theoretical performance guarantees for
our approach and present an algorithm to solve the optimization
problem. In particular, our upper bound of squared estimation
error has the convergence rate of O(lnK/

√
K), where K is

the number of samples in the time horizon. The efficiency of our
estimation is demonstrated with numerical simulations on synthetic
data and the analysis of real-world data from Atlanta burglary
incidents.

Index Terms—Hawkes process, spatio-temporal data, low-rank
tensor, transformed tensor nuclear norm, convex optimization.

I. INTRODUCTION

HAWKES processes, a type of self- (and mutual) excit-
ing point processes, have gained substantial attention in

machine learning and statistics due to their wide applicabil-
ity in capturing complex interactions of discrete events over
space, time, and possible networks. Such problem arises from
many applications such as seismology [27], criminology [36],
finance [17], [28], genomics [29], and social network [24], [35].
One advantage of Hawkes process modeling is that interactions
between the history and a current event can be represented in
the structure easily, as the Hawkes process, in general, has an
intensity function consisting of two parts, a baseline intensity,
and a triggering effect.

A central problem in Hawkes process modeling is to estimat-
ing the triggering effect through the so-called influence func-
tions, which capture how different locations interact with each
other. Estimating the triggering effects with Hawkes process
models has been conducted in several prior works [1], [16], [22],

Manuscript received 3 July 2022; revised 13 October 2022 and 22 November
2022; accepted 28 November 2022. Date of current version 28 December
2022. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Yuxin Chen. The work of Yao Xie was
supported by NSF CAREER under Grants CCF-1650913, CMMI-2015787,
DMS-1938106, and DMS-1830210. (Corresponding author: Heejune Sheen.)

Heejune Sheen is with the Department of Statistics and Data Science, Yale
University, New Haven, CT 06511 USA (e-mail: heejune.sheen@yale.edu).

Xiaonan Zhu is with the Department of Operations Research and Finan-
cial Engineering, Princeton University, Princeton, NJ 08544 USA (e-mail:
xz8451@princeton.edu).

Yao Xie is with the H. Milton Stewart School of Industrial and Systems
Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
yao.xie@isye.gatech.edu).

Digital Object Identifier 10.1109/TSP.2022.3229642

[23], [35]. Bacry et al. [1] and Zhou et al. [35] proposed a convex
optimization approach with sparse and low-rank assumptions
on the interaction adjacency matrix or tensor to estimate an
influence in a social network. In particular, they assumed the
triggering function as a form of a product between the interaction
coefficients and the fixed kernel functions that decay exponen-
tially with continuous time.

Low-dimensional structures are very common in high-
dimensional data, such as low-rank matrices and low-rank ten-
sors. A recent motivation for studying low-rank matrices is due
to the matrix completion problem [6], [7], [8], [10], [25]. One
of the popular approaches is convex relaxations with a matrix
nuclear norm to estimate a low-rank matrix. There has been
much effort in modeling with low-rank tensors by extending the
results on low-rank matrices, including [2], [3], [5], [14], [15].
However, unlike matrices, the rank of a tensor is not uniquely
defined, and it can have multiple ranks such as the CP rank [11],
[18], Tucker rank [32], tubal rank, and multi-rank. The tubal
and multi-rank for the low-rank kernel tensor were proposed
by Kilmer & Martin [21] with the algebra for a tensor and the
corresponding Fourier-transformed tensor nuclear norm (TNN).

We are interested in a low-rank structure in this work
for the tensor kernel capturing the interaction, which can
be viewed as a low-rank approximation to capture the dom-
inant mode of the influence functions. In particular, we
consider the tubal and multi-rank for the low-rank kernel
tensor.

The main purpose of this paper is to propose a discrete
Hawkes process model, which is derived from the spatio-
temporal Hawkes process approximation. More precisely,
spatio-temporal influence functions for the Hawkes process are
first parameterized as a low-rank tensor kernel in our model.
Then, an approach to estimate the tensor kernel is presented us-
ing maximum likelihood with constrained Fourier transformed
nuclear norm on the tensor, which leads to a convex optimization
problem. We also prove theoretical performance guarantees for
the squared recovery error. It is shown that the squared recovery
error of our model converges to 0 at the rate of O(lnK/

√
K) as

the number of samples in time horizon K increases to infinity.
To solve the optimization problem, a computationally efficient
algorithm is designed based on the alternating direction method
of multipliers (ADMM). The computational efficiency of our
estimation procedure is illustrated with numerical simulations
of synthetic and real data. We emphasize that our approach is
different from the previous works [1], [35] since the influence
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function is considered as a tensor kernel in the discrete-time and
discrete location set-up.

The rest of the paper is organized as follows. Section II
presents our model and the problem setup. Section III con-
tains the main theoretical performance upper bound. Section IV
proposes an ADMM-based algorithm to solve the optimization
problem. Section V contains the numerical study, and finally,
Section VI concludes the paper. The proofs are delegated to the
Appendix.

II. MODEL

A. Discrete Hawkes Processes

We first describe continuous spatio-temporal Hawkes pro-
cesses to motivate our discrete model. Consider a spatio-
temporal point process whose events occur at time t ∈ [0, T ],
and the location (x, y) ∈ A ⊂ R2. Define a counting process
N : A× [0,∞) → Z>0, such that N(B,C) is the number of
events in the region B ∈ B and the time window C ∈ C, where
B and C are the Borel σ-algebras of A and [0,∞). Let Ht be the
σ-algebra generated by history of the process N up to time t.
The conditional intensity function of a point process is defined
as

λ(x, y, t) := lim
∆x,∆y,∆t↓0

E(N([x, x+∆x]× [y, y +∆y]× [t, t+∆t]|Ht)

∆x∆y∆t
. (1)

For Hawkes processes, we can define the conditional intensity
function with the following form:

λ(x, y, t) = µ(x, y)

+

∫ t

0

∫∫

B
g(x− u1, y − u2, t− u3)N(d(u1 × u2)× du3),

(2)

where µ(x, y) ≥ 0 is the base intensity at location (x, y) and
g : R2 × [0.∞) → R≥0 is the kernel function.

Suppose that the event data lie in bounded region [0, n1∆x]×
[0, n2∆y] and time [0,K∆t] for some n1, n2,K ∈ Z>0. To
discretize the process in both space and time, we define “bin
counts” over the discrete space

{i, j : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}

and time horizon

{k : −p+ 1 ≤ k ≤ K} :

Zijk = N([(i− 1)∆x, i∆x]× [(j − 1)∆y, j∆y]

×[(k − 1)∆t, k∆t]). (3)

Let ∆ = ∆x∆y∆t. For a given data preceding discrete time
k, the expected bin counts can be approximated as follows:

E[Zijk|Hk−1] ≈ ∆λ((i− 1)∆x, (j − 1)∆y, (k − 1)∆t)

≈ ∆µ((i− 1)∆x, (j − 1)∆y)

+∆
k−1∑

k′=k−p

n1∑

i′=1

n2∑

j′=1

g ((i− i′)∆x, (j − j ′)

× ∆y, (k − k′)∆t)Zi′j′k′

:= ∆



µij +
k−1∑

k′=k−p

n1∑

i′=1

n2∑

j′=1

Gi−i′+n1,j−j′+n2,k−k′Zi′j′k′



 ,

where µ ∈ Rn1×n2 and G ∈ R(2n1−1)×(2n2−1)×p are discretized
versions of the base intensity µ(x, y) and the kernel g(x, y, t),
respectively. For the first approximation above, E[Zijk|Hk−1] is
approximated using (1) with small ∆. For the second approxi-
mation, (2) and (3) are used to derive the discrete form.

It is commonly assumed in literature [1], [35] that g has the
following form:

g(x, y, t) = h(x, y)f(t), (4)

where f is a monotonically decreasing non-negative function,
and f(t) goes to zero for large t. An example of f(t) is the
class of exponential kernels, f(t) = αe−αt. For our model, we
relax these assumptions so that the kernel function does not need
to follow the form (4) and g is not necessarily monotonically
decreasing non-negative in time t. The history data with memory
depth p is instead exploited to approximate the expected current
bin counts. Thus, our model can be applied to more general
cases.

Now, we propose a discrete spatio-temporal Hawkes process
model with the conditional intensity function defined as follows:

λijk(µ,G) := λ((i− 1)∆x, (j − 1)∆y, (k − 1)∆t)

= µij +
k−1∑

k′=k−p

n1∑

i′=1

n2∑

j′=1

Gi−i′+n1,j−j′+n2,k−k′Zi′j′k′ ,

for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, and 1 ≤ k ≤ K.
Our model is derived from the spatio-temporal Hawkes pro-

cess. The structure of our model is different from that of Kirch-
ner’s approximation [22] of the temporal Hawkes process with
the model INAR(p). Thus, the proposed model has various ad-
vantages over Kirchner’s model when analyzing spatio-temporal
data. A more complex setting with higher dimensions (two
dimensions in location and one in time) is dealt with in our
model, and the location space and time-space are simultaneously
discretized with tensor G. Moreover, our interpretation of the
discretized version of the kernel function enables the presence
of space-time interactions. With constraints imposed on the rank
of the tensor and entry-wise bounds on the estimators, a better
estimation of the Hawkes process can be obtained when its
coefficients are low-rank. Consequently, a convex optimization
problem is constructed based on the likelihood function and our
corresponding regularization, while [22] employed the projec-
tion method on the approximated time series model INAR(p).

To estimate the base intensity matrix µ and the underlying
tensor G, the followings are assumed: First, we assume that each
entry of µ and G has the upper and the lower bound, i.e., there
exist non-negative constants a1, b1, a2, b2 such that a1 ≤ µij ≤
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Fig. 1. For any given (i, j) grid, it displays the case where the spatial influence
from (i, j) to (i,′ j′) follows a standard gaussian function.

b1, a2 ≤ Gijk ≤ b2 and a1 + a2 > 0. This assumption ensures
that our problem is well-posed.

Second, we also assume that the tensor G has a low multi-rank
(r1, . . . , rp), where rk = rank(G̃(k)) and G(k) is the kth frontal
slice of transformed tensor G̃ (i.e., G(k) := G(:, :, k) using
MATLAB notation). The transformed tensor G̃ is obtained by
applying the Discrete Fourier Transform (DFT) to the mode-3
fibers ofG (Lemma 1). In other words, a small sum of multi-rank
γ :=

∑p
i=1 rk is assumed. This assumption is based on the high

correlations that exist within locations and time. For instance, for
any given grid (i, j), suppose that the spatial influence from (i, j)
to (i,′ j ′) is proportional to a standard Gaussian function (i.e.,
∝ e−((i−i′)2+(j−j′)2)/2) as illustrated in Fig. 1, and the temporal
influence follows a decreasing function in time. Then, the tensor
G ∈ R(2n1−1)×(2n2−1)×p in our model has a low multi-rank at
most (1, . . . , 1) and a small sum of the multi-rank less or equal
to p.

Our problem considers a transformed multi-rank of a kernel
tensor and a TNN over other tensor ranks and norms. The rank of
a tensor can be defined in several ways, for instance, the CP rank,
the Tucker rank, and the multi-rank. Depending on the tensor
rank, the corresponding tensor nuclear norms should be utilized.
It is known that the computation of the CP rank is NP-hard [19]
and its relaxation is intractable in general. For this reason, the
tractable Tucker rank and its relaxation are usually used. One of
the popular relaxations is the sum of the matrix nuclear norms
of matrices obtained by unfolding a tensor [26]. It is, however,
not the tightest convex relaxation of the Tucker rank [30] and
the matrix norm may be inefficient when the unfolding matrices
have a significant difference in the number of rows and columns.
We use TNN since it is the convex envelope of the multi-rank
and can successfully interpret the low-rank structure of a kernel
tensor.

B. Low-Rank Tensor Regularization

In this section, we review the tensor nuclear norm (TNN),
which is used to guarantee the low-rankness of G. We be-
gin by introducing some notation. For matrix X , let ‖X‖ be
the matrix spectral norm, ‖X‖∗ the matrix nuclear norm, and
‖X‖F = (

∑
i,j X

2
ij)

1/2 the Frobenius norm. For 3-way tensor
G ∈ RN1×N2×N3 , MATLAB notation is used to denote k-th
horizontal, lateral, and frontal slice by G(k, :, :), G(:, k, :), and
G(:, :, k) respectively. Specifically, the k-th frontal slice of G

is denoted by G(k) := G(:, :, k) for k = 1, . . . , N3. The k-th
mode-3 fiber of a 3-way tensor is defined by holding the first
two indices fixed and varying the third, and denoted byG(k, k, :).
The norm of tensor is defined as ‖G‖1 =

∑
i,j,k |Gijk|, ‖G‖F =

(
∑

i,j,k G2
ijk)

1/2. The tensor spectral norm ‖G‖spec is defined
later in Definition 1.

We introduce the following operators for the tensor algebra:
the block circulation, the block diagonalization, and the fold and
unfold command of tensor G.

bcirc(G)=





G(1) G(N3) G(N3−1) · · · G(2)

G(2) G(1) G(N3) · · · G(3)

...
. . .

. . .
. . .

...
G(N3) G(N3−1) G(N3−2) · · · G(1)




,

blockdiag(G) =





G(1)

G(2)

. . .
G(N3)




,

unfold(G) =





G(1)

G(2)

...
G(N3)




, and fold(unfold(G)) = G.

For two tensors G1 ∈ RN1×N2×N3 and G2 ∈ RN2×N4×N3 , the
t-product is defined as

G1 ∗ G2 = fold(bcirc(G1)unfold(G2)) ∈ RN1×N4×N3 .

Note that Kilmer and Martin [21] proposed a singular value
decomposition (SVD) method for three-way tensors, and based
on the tensor SVD, TNN is proposed by Semerci et al. [31].
We first review some background materials on the tensor SVD
to introduce TNN. See [21] for more information. For a tensor
G ∈ RN1×N2×N3 , the block diagonalization property of block
circulant matrices is described in the following lemma.

Lemma 1: [21] For G ∈ RN1×N2×N3 , bcirc(G) ∈
RN3N1×N3N2 , we have

(FN3 ⊗ IN1)bcirc(G)(F ∗
N3

⊗ IN2) = blockdiag(G̃),

where ⊗ is the Kronecker product, IN1 and IN2 are identity
matrices in RN1×N1 and RN2×N2 , respectively, FN3 ∈ RN3×N3

is the normalized DFT matrix, which is unitary, and F ∗ denotes
its conjugate transpose. The matrix blockdiag(G̃) is the trans-
formation of bcirc(G) into the Fourier domain, and the tensor G̃
is obtained by performing the DFT to the mode-3 fibers of G as
mentioned earlier.

Based on the matrix SVD, we have

blockdiag(G̃) = blockdiag(Ũ)blockdiag(S̃)blockdiag(Ṽ),
(5)

in the Fourier domain, where G̃(k) = Ũ (k)S̃(k)(Ṽ(k))1 is the
SVD. The equivalent decomposition of three-way tensors to (5)
is characterized as a tensor-SVD [33]. The tensor-SVD for three-
way tensors is described as follows.
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Theorem 2 [21]: Any tensorG ∈ RN1×N2×N3 can be factored
as

G = U ∗ S ∗ V1 =
N1∧N2∑

i=1

U(:, i, :) ∗ S(i, i, :) ∗ V(:, i, :)1,

Combining Theorem 2 and (5), TNN can be defined as fol-
lows.

Definition 1 (Theorem 2.4.1 in [34]): The tensor nuclear norm
(TNN) of G is defined as the sum of the singular values of all
the frontal slices of G̃:

‖G‖TNN =
N1∧N2∑

i=1

N3∑

j=1

S̃i,i,j .

Note that the dual norm of the tensor nuclear norm is the tensor
spectral norm ‖G‖spec := ‖bcirc(G)‖.

C. Problem Formulation

We use the notation:

Zt := {Zijk, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2,−p+ 1 ≤ k ≤ t},

Zt
q := {Zijk, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, q ≤ k ≤ t}.

Assume that the discrete data follow the Poisson distribution:

Zijk|Hk−1 ∼ Poisson (∆λijk) .

Note that for fixed k, Zijk are conditionally independent for
all i, j given Hk−1, and λijk depends only on the history of
data before k, not on the data at time k. We also mention that
our analysis can be applied to the alternative, the Bernoulli
distribution assumption with slight modifications. Our goal is
to estimate the true parameters µ and G of the discrete Hawkes
process model. By our assumptions on the low-rank tensor G,
we have

‖G‖TNN = ‖bcric(G)‖∗ = ‖blockdiag(G̃)‖∗

≤ √
γ‖blockdiag(G̃)‖F =

√
γ‖blockdiag(G)‖F

≤ b2
√
γ(2n1 − 1)(2n2 − 1)p.

Accordingly, the candidate set D for the true value (µ,G) is
defined as:

D := {(µ,G)| a1 ≤ µij ≤ b1, a2 ≤ Gijk ≤ b2,

‖G‖TNN ≤ b2
√
γ(2n1 − 1)(2n2 − 1)p }.

We consider a formulation by maximizing the log-likelihood
function of the optimization variable µ and G given the obser-
vations ZK . The negative log-likelihood function is given by

F (µ,G) :=
K∑

k=1

n1∑

i=1

n2∑

j=1

(∆λijk(µ,G)−Zijk ln(∆λijk(µ,G))).

Therefore, the estimators (µ̂, Ĝ) can be obtained by solving the
following convex optimization problem:

(µ̂, Ĝ) = arg min
(µ,G)∈D

F (µ,G). (6)

Remark 1: Note that the convex optimization problem (6)
constrained in a candidate set D can also be formulated as
a regularized maximum likelihood function problem. Indeed,
there exists a constant τ ∈ R such that problem (6) equals

(µ̂, Ĝ) = arg min {F (µ,G) + τ‖G‖TNN}

with the natural constraint upon the entries:

a1 ≤ µij ≤ b1, a2 ≤ Gijk ≤ b2, ∀ i, j, k.

It follows from the duality theory in optimization [4]. We use
the regularized form to derive the algorithm in Section IV.

III. THEORETICAL GUARANTEE

We present an upper bound for the sum of squared errors of
the two estimators, which is defined by

R[(µ,G)||(µ̂, Ĝ)] := ‖µ− µ̂‖2F + ‖G − Ĝ‖2F ,

where µ̂ and Ĝ are the optimal solutions to (6).
To state our theoretical guarantee, we define the condition

number as in [20].
Definition 2: Given X ∈ Rd×d, X 5 0 and p ∈ [1,∞], the

condition number is defined by

δp[X] := max{δ ≥ 0 : g1Xg ≥ δ‖g‖2p, ∀g ∈ Rd},

where X 5 0 (X 6 0) denotes that X is a positive semidefi-
nite matrix (a positive definite matrix, respectively). Note that
δp[X] > 0 when X 6 0.

Now, we present our main theorem.
Theorem 3 (Estimation error driven by data): Assume that

(µ,G) ∈ D and (µ̂, Ĝ) are the optimal solution to (6). Let

J = a1 + a2 min
k

{||Zk−1
k−p ||1},

J̄ = b1 + b2
√
γ(2n1 − 1)(2n2 − 1)p max

1≤k≤K
{‖Zk−1

k−p‖spec},

and let A[·] : Rn1×n2×(K+p) → Rd×d be a mapping defined in
Appendix A. Then, for every ZK , α1,α2 ∈ (0, 1), it holds that

R[(µ,G)||(µ̂, Ĝ)]

≤ 16
√
2n1n2J̄2 ln(J̄/J)√

K(1− e−2J̄ )∆δ2[A[ZK ]]

√
ln

n1n2

α2

·max

{
2

√
∆J̄ ln

n1n2 K

α1
, 4 ln

n1n2 K

α1

}
(7)

with probability at least 1− 2α1 − 2α2.
Remark 2: If δ2[A[ZK ]] > 0, for large n1, n2, p and K, there

exists a constantC > 0 such that the following bound holds with
high probability.

R[(µ,G)||(µ̂, Ĝ)]≤C
n1n2J̄2 ln(J̄)

√
ln(n1n2) · ln(n1n2 K)√

K
.

Remark 3: From Remark 2, we observe that, for given data
ZK , the upper bound can be regarded as an increasing function
of J̄ . More precisely, the estimation error for the upper bound
increases with the upper bound on the tensor nuclear norm
b2[γ(2n1 − 1)(2n2 − 1)p]1/2. It implies that the upper bound
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Fig. 2. The simulation of maxk ‖Zk−1
k−p‖spec.

of the estimation error will be small if we have a small sum of
multi-rank γ. It is a characteristic that we can expect from the
low-rank tensor recovery.

Remark 4: We observe that by fixing, n1, n2, ∆, a1, a2,
b1, b2, and γ, the upper bound (7) tends to 0 as K →
∞ at the rate of O(lnK/

√
K). We experimentally show

that max1≤k≤K{‖Zk−1
k−p‖spec} is bounded above by O(lnK) in

Fig. 2.
The proof for Theorem 3 is presented in Appendix A. In

the proof, the Kullback-Leibler (KL) divergence and Hellinger
distance are defined between two Poisson distributions. For any
two Poisson mean p and q, the KL -divergence is defined as

D(p||q) := p ln(p/q)− (p− q),

and the Hellinger distance as

H2(p||q) := 2− 2 exp

(
−1

2
(
√
p−√

q)2
)
.

Then, a lower bound is derived for
∑K

k=1

∑n1
i=1∑n2

j=1 D(λijk(µ,G)||λijk(µ̂, Ĝ)) with the Hellinger distance
and Lemma 8 in [9]. Furthermore, we establish an upper bound
on the sum of the KL divergence using the Azuma Hoeffding’s
inequality. We then obtain the upper bound for the estimation
error by combining the lower and upper bound.

Corollary 1 immediately follows from Theorem 3. In partic-
ular, it demonstrates the data-driven upper bound for the sum
of KL divergence between the estimated and the true intensity
functions.

Corollary 1: Assume that (µ,G) ∈ D and (µ̂, Ĝ) are the
optimal solution to (6). With the notation defined in Theorem 3,
for every ZK , α1,α2 ∈ (0, 1), it holds that

K∑

k=1

n1∑

i=1

n2∑

j=1

D(λijk(µ,G)||λijk(µ̂, Ĝ))
n1n2 K

≤
√

2

K
ln

J̄

J
ln

n1n2

α2

·max

{
2

√
∆J̄ ln

n1n2 K

α1
, 4 ln

n1n2 K

α1

}

with probability at least 1− 2α1 − 2α2.

IV. ALGORITHM

For the proposed convex optimization problem (6), we apply
ADMM and the majorization-minimization (MM) algorithms.
Based on the ADM4 algorithm proposed by [35], we design our
algorithm for problem (6). To start with, the constraint sets for
µ and G are separated to the following two closed convex sets:

Γ1 := {µ | a1 ≤ µij ≤ b1, ∀(i, j) ∈ [[n1]]× [[n2]]},

Γ2 := {G | a2 ≤ Gijk ≤ b2,

∀(i, j, k) ∈ [[2n1 − 1]]× [[2n2 − 1]]× [[p]]},

where [[n]] := {1, 2, . . ., n}. Then, problem (6) can be written as

min F (µ,G) + τ‖G‖TNN

subject to µ ∈ Γ1, G ∈ Γ2. (8)

ADMM is employed to convert the above optimization problem
to several sub-problems that are easier to solve. More specifi-
cally, the problem is separated into the first term of the objective
function, the regularization term, and the constraints. To that
end, three auxiliary variables, m,G and R are introduced, and
(8) can be equivalently expressed as

min F (µ,G) + τ‖R‖TNN

subject to m ∈ Γ1, G ∈ Γ2,

µ = m, G = G, G = R. (9)

We then define the following augmented Lagrangian function of
(9):

Lρ(G, µ,R,G,m, Y1, Y2, Y3)

:= F (µ,G) + τ‖R‖TNN + ψΓ1(m) + ψΓ2(G)

+ ρ〈Y1,G −R〉+ ρ〈Y2,G −G〉+ ρ〈Y3, µ−m〉

+
ρ

2
‖G −R‖2F +

ρ

2
‖G −G‖2F +

ρ

2
‖µ−m‖2F ,

where Y1, Y2, and Y3 are the dual variables associated with
the constraints G = R, G = G, and µ = m, respectively. The
constant ρ is a penalty parameter, and the functions ψΓ1(m) and
ψΓ2(G) are defined as

ψΓ1(m) :=

{
0 if m ∈ Γ1,
+∞ otherwise,

ψΓ2(G) :=

{
0 if G ∈ Γ2,
+∞ otherwise.

Notice that two blocks of variables (Gt+1, µt+1) and
(Rt+1,mt+1, Gt+1) are separable in the augmented Lagrangian
function. Thus, ADMM can be applied as the following
iterations.
(
Gt+1, µt+1

)
=arg min

µ,G
Lρ(G, µ,Rt, Gt,mt, Y t

1 , Y
t
2 , Y

t
3 ),

(10)

(Rt+1,mt+1, Gt+1)

= arg min
R,m,G

Lρ(Gt+1, µt+1, R,G,m, Y t
1 , Y

t
2 , Y

t
3 ),

(11)
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Y t+1
1 = Y t

1 + (Gt+1 −Rt+1),

Y t+1
2 = Y t

2 + (Gt+1 −Gt+1),

Y t+1
3 = Y t

3 + (µt+1 −mt+1).

It has been shown in [13] that the above application of ADMM
on the two-block convex minimization problem converges.

It remains to solve (10) and (11) respectively. We start with
deriving the updating step for G and µ as follows. Note that for
(10), the following optimization problem is considered:

min
µ,G

g(µ,G) :=
K∑

k′=1

n1∑

i′=1

n2∑

j′=1

[∆λi′j′k′(µ,G)

−Zi′j′k′ ln(∆λi′j′k′(µ,G))] + ρ

2
‖G −Rt + Y t

1 ‖2F

+
ρ

2
‖G −Gt + Y t

2 ‖2F +
ρ

2
‖µ−mt + Y t

3 ‖2F . (12)

Since no closed-form solutions exist, we apply the MM algo-
rithm as in [35]. For any µ,G, letQ(µ,G;µ(q),G(q)) be a convex
function such that

g(µ,G) ≤ Q(µ,G;µ(q),G(q)) (13)

g(µ(q),G(q)) = Q(µ(q),G(q);µ(q),G(q)), (14)

where µ(q) and G(q) are estimates of µ and G. Then, we can
obtain the optimal solutions to convex problem (12) by using
the iterative procedure:

(
µ(q+1),G(q+1)

)
= arg min

µ,G
Q(µ,G;µ(q),G(q)).

Let

Ω = {k | Zijk 9= 0 for some i and j}

and

l(k) = {(i, j) | Zijk 9= 0}.

DefineQ(µ,G;µ(q),G(q)) that satisfies (13) and (14) as follows:

Q(G, µ;G(q), µ(q))

= −
∑

k′∈Ω

∑

(i′,j′)∈l(k′)

[
Zi′j′k′ ln∆+ Zi′j′k′

(
pi′j′k′ ln

µi′j′

pi′j′k′

+
k′−1∑

k=k′−p

∑

(i,j)∈l(k)

pijk,i′j′k′ ln
Gi′−i+n1,j′−j+n2,k′−kZijk

pijk,i′j′k′









+
K∑

k′=1

n1∑

i′=1

n2∑

j′=1

∆




k′−1∑

k=k′−p

∑

(i,j)∈l(k)

Gi′−i+n1,j′−j+n2,k′−kZijk





+
ρ

2
‖G −Rt + Y t

1 ‖2F +
ρ

2
‖G −Gt + Y t

2 ‖2F

+
ρ

2
‖µ−mt + Y t

3 ‖2F + n3∆
n1∑

i′=1

n2∑

j′=1

µi′j′ ,

where

pi′j′k′ =
µ(q)
i′j′

λ(q)i′j′k′

, and pijk,i′j′k′ =
G(q)
i′−i+n1,j′−j+n2,k′−kZijk

λ(q)i′j′k′

.

Let a = i′ − i+ n1, b = j ′ − j + n2, c = k′ − k, and l′(k) =
l(k) ∩ {i′ − i+ n1 = a, j ′ − j + n2 = b, k′ − k = c}. By tak-
ing derivative, a closed form solution to Q(µ,G;µ(q),G(q)) is

µ(q+1)
i′j′ =

−B +
√

B2 − 4ρC

2ρ
, (15)

G(q+1)
abc =

−U +
√

U2 − 8ρV

4ρ
, (16)

where

B = n3∆+ ρ
[
−(µt)i′j′ + (Y t

3 )i′j′
]
,

C = −
∑

k′∈Ω

∑

(i′,j′)∈l(k′)

Zi′j′k′pi′j′k′ ,

U =
K∑

k′=1

n1∑

i′=1

n2∑

j′=1




k′−1∑

k=k′−p

∑

(i,j)∈l′(k)

∆Zijk





+ ρ
[
−(Rt)abc + (Y t

1 )abc − (Gt)abc + (Y t
2 )abc

]
,

V = −
∑

k′∈Ω

∑

(i′,j′)∈l(k′)

k′−1∑

k=k′−p

∑

(i,j)∈l′(k)

Zi′j′k′pijk,i′j′k′ .

Recall that R,m, and G in the objective function of the
problem (11) are separable. Hence they can be calculated one
by one. We start with updating step R. The optimal solution to
(11) regarding R is given by

Rt+1 = arg min
R

τ‖R‖TNN +
ρ

2
‖ −R1 + Y t

1 + Gt+1‖2F

= Prox(τ/ρ)‖·‖TNN

(
Y t
1 + Gt+1

)

= U ∗ Sρ/τ ∗ V1,

where U ∗ S ∗ V1 is a tensor singular value decomposition
of Y t

1 + Gt+1, Sρ/τ = IFT(Ŝρ/τ , [ ], 3) for the third frontal
slices, and Ŝρ/τ := max{Ŝ − ρ/τ, 0}. Here, the operator IFT
corresponds to an inverse Fourier transform.

For updating G, an optimal solution to problem (11) for G is
obtained as

Gt+1 = arg min
G

ψΓ2(G) +
ρ

2
‖G− (Gt+1 + Y t

2 )‖2F

= PΓ2(Gt+1 + Y t
2 ),

where PΓ2 is a projection onto Γ2. Similarly, for m, we obtain
an optimal solution as follows.

mt+1 = arg min
m

ψΓ1(m) +
ρ

2
‖m− (µt+1 + Y t

3 )‖2F

= PΓ1(µ
t+1 + Y t

3 ),

where PΓ1 is a projection onto Γ1.
Finally, all the steps are summarized in Algorithm 1.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 22,2023 at 03:28:50 UTC from IEEE Xplore.  Restrictions apply. 



SHEEN et al.: TENSOR KERNEL RECOVERY FOR DISCRETE SPATIO-TEMPORAL HAWKES PROCESSES 5865

Algorithm 1: Algorithm for Solving (9).

Input: Given data ZK ∈ Rn1×n2×(K+p), ρ, τ, a1, a2, b1, b2
Output: Matrix µ̂ and tensor Ĝ

Initialize µ(0), G(0), R(0), m(0), G(0), Y (0)
1 , Y (0)

2 , Y (0)
3 ,

and set t = 1.
repeat

Update µt+1 and Gt+1 by the following steps:
while not converge do

Update µ,G by the (15) and (16).
end while
Update Rt+1, Gt+1, mt+1 by solving (11)
Update

Y t+1
1 = Y t

1 + (Gt+1 −Rt+1)

Y t+1
2 = Y t

2 + (Gt+1 −Gt+1)

Y t+1
3 = Y t

3 + (µt+1 −mt+1)

t = t+ 1.
until Termination criterion is met.

V. NUMERICAL EXAMPLES

A. Synthetic Data

We first experiment with Algorithm 1 on synthetic data
to see the performance of our method. We generate the true
G ∈ R(2n1−1)×(2n2−1)×p with multi-rank (r1, r2, . . . , rp) =

(1, 1, . . . , 1) by Gijk = u(1)
i u(2)

j u(3)
k , where u(1)

i , u(2)
j , and u(3)

k
are from uniform distribution U(0, 1). By our discrete approx-
imation to Hawkes processes with memory depth p, we use a
non-increasing function of k for the kth frontal slice G(k) for
k = 1, . . . , p. We also generate µ randomly from U(0, 1). The
µ and G are rescaled for a well-defined point process. With the
true µ, G, we generate the synthetic data by

Zijk|H(k−1) ∼ Poisson (∆λijk)

for i ∈ [[n1]], j ∈ [[n2]] and k ∈ [[K]]with given initial dataZ0
1−p.

The initialization µ(0) and G(0) are randomly generated with
similar scales to their true values. To ensure that the error terms
in different cases are at the same scale, we use the relative error

Merr :=
‖µ− µ̂‖F
‖µ‖F

and Gerr :=
‖G − Ĝ‖F
‖G‖F

to evaluate the estimation of µ and G, respectively.
We test the performance of our method with different n1, n2

and p, and compare it with the model without the low-rank
constraint on G, and a widely used Hawkes process model
with an exponential temporal decay function (e.g., [35]). We
denote the proposed method as “TNN,” the maximum likelihood
estimation method without the low-rank constraint as “MLE,”
the estimation method with the exponential decay function (i.e.,
αe−αk, where k = 1, . . . p and α > 0 is a decay parameter.) as
“EXP,” and the estimation method with the matrix nuclear norm
and the exponential decay function as “MNN”.

TABLE I
EVALUATION OF TNN, MLE, EXP AND MNN WITH THE ATLANTA

CRIME DATASET

The parameters for each method are chosen based on the
dataset that is disjoint from the training dataset. For parameter
ρ in Algorithm 1, it is set to 0.002 for TNN, 0.001 for MLE,
0.06 for EXP and MNN. Since ρ serves as a dual step-size
in ADMM, the performance of methods is robust to the mild
change of ρ. For hyper-parameter τ on the regularized terms, a
cross-validation-like method is exploited to tune the parameter
and it is set to 0.5 for TNN and 0.1 for MNN. Two cases of
experiments are carried out, and the representative results are
shown in Fig. 3. The results of each case are averaged over five
runs. Table II in Appendix B shows the detailed estimation errors
for each case.

In the experiments, we observe that both the relative error
of the matrix estimation and the tensor estimation decrease
as the sample number grows and becomes close to zero. We
notice that the numerical results correspond to our theoretical
result on the upper bound of the estimation error mentioned
in Remark 4. Moreover, TNN outperforms MLE, EXP, and
MNN. It shows the computational efficiency of implementing
the Fourier-transformed TNN when the tensor kernel has a
low-rank structure, which commonly occurs in the real world
due to high correlations between locations and time. It can be
observed that TNN has advantages over EXP and MNN for
data with unknown or non-exponential temporal decay func-
tions. Moreover, TNN can capture more general spatio-temporal
correlations than MNN, where the kernel is decomposed into a
matrix and a temporal decay function. We note that our model,
TNN, can be easily applied to a wide range of discrete data.

B. Real Data

We next apply our method to real-world data, the crime dataset
in Atlanta, USA. The dataset contains 47,245 burglary incidents
in Atlanta from January 1, 2015, to February 28, 2017. The
events in the region where the latitude is from 33.71 to 33.76
and the longitude are from −84.43 to −84.38 are considered. In
the region, 9937 burglary incidents occurred during 789 days.
We discretize the area into 5× 5 discrete space and the time
with a 4-hour interval unit.

We use p = 5 as a memory depth for the data, and the
parameter τ is set to 3.5 for TNN and 0.4 for MNN. The model
is trained and tested with 80% and 20% of the data sequence,
respectively.

To evaluate our model, two metrics are employed: First, the
metric FRQ, defined as the sum of the absolute difference in
frequency of events between the predicted data and the true
test data, is used. It is the frequency difference of burglary
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Fig. 3. The relative errors of the estimated tensor kernel (left) and base intensity matrix (right) under different n1, n2, p, and sample size K.

TABLE II
THE NUMERICAL ESTIMATION ERROR WITH DIFFERENT n1, n2, p AND K

incidents in 25 subregions. Second, the metric NLR, the sum
of the negative log-likelihood function, is compared.

Table I shows numerical results on TNN, MLE, EXP and
MNN. The numbers in the columns of FRQ (1) and FRQ (60)
represent one instance of FRQ and the average FRQ over 60 runs,
respectively. In all metrics, TNN provides better results than
MLE, EXP and MNN. We observe again the clear advantage of
exploiting a low-rank structure of the tensor kernel. We note that
TNN is implemented without any predefined decay parameter,
whereas it is necessary for EXP and MNN.

VI. CONCLUSION

We have studied the recovery of the base intensity matrix and
the tensor of the discretized version of the kernel function for
spatio-temporal Hawkes processes. Using TNN, a formulation
of the maximum likelihood estimation with the constraints has
been proposed. Specifically, a precise theoretical upper bound
for the sum of square errors of the proposed estimators has
been presented. We have also applied the ADMM and MM
algorithms to solve the proposed convex optimization problem.
The numerical experiments demonstrate the efficiency of our

method and support the theoretical results. For future work,
non-convex optimization techniques will be investigated to es-
timate the matrix and the tensor kernel in the problem. It will
be interesting to study whether the convex relaxation gap can be
estimated and reduced by employing non-convex optimization
methods.

APPENDIX A
PROOF OF THEOREM 3

We prove Theorem 3. For the simplicity of analysis, we let
η := (µ,G). Then, the problem is expressed as:

minF (η) :=
K∑

k=1

n1∑

i=1

n2∑

j=1

[∆λijk(η)− Zijk ln(∆λijk(η))]

subject to η ∈ D := {(µ,G)| a1 ≤ µij ≤ b1, a2 ≤ Gijk ≤ b2,

‖G‖TNN ≤ b2
√
γ(2n1 − 1)(2n2 − 1)p

}
, (17)

where λ, Z ∈ Rn1×n2×K .
We now define the KL-divergence between two Poisson dis-

tributions. For any two Poisson mean p and q, the KL divergence
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is defined as follows:

D(p||q) := p ln(p/q)− (p− q).

Similarly, the Hellinger distance for Poisson distributions is
defined:

H2(p||q) := 2− 2 exp

{
−1

2
(
√
p−√

q)2
}
.

Let θ be a true parameter that we aim to estimate. For any η ∈ D,
we have

F (η)− F (θ)

=
K∑

k=1

Fk(η)− Fk(θ)

=
K∑

k=1

{Fk(η) + Ek−1[Fk(η)]− Ek−1[Fk(η)]− Fk(θ)

+Ek−1[Fk(θ)]− Ek−1[Fk(θ)]}

=
K∑

k=1

{Ek−1[Fk(η)− Fk(θ)] + Fk(η)− Ek−1[Fk(η)]

−Fk(θ) + Ek−1[Fk(θ)]} , (18)

where Fk(η) :=
∑n1

i=1

∑n2
j=1(∆λijk(η)− Zijk ln(∆λijk(η)))

andEk−1 denotes the conditional expectation taken with respect
to Zk given Hk−1.

Observe that
K∑

k=1

Ek−1[Fk(η)− Fk(θ)]

=
K∑

k=1

n1∑

i=1

n2∑

j=1

∆λijk(θ) ln
λijk(θ)

λijk(η)
−∆(λijk(θ)− λijk(η))

=
K∑

k=1

n1∑

i=1

n2∑

j=1

∆D(λijk(θ)||λijk(η)). (19)

Since our estimator θ̂ is the optimal solution to the problem (17),
we obtain that F (θ̂)− F (θ) ≤ 0. From (18) and (19), we have

K∑

k=1

n1∑

i=1

n2∑

j=1

∆D(λijk(θ)||λijk(θ̂))

≤
K∑

k=1

−Fk(θ̂) + Ek−1[Fk(θ̂)] + Fk(θ)− Ek−1[Fk(θ)]

=
K∑

k=1

n1∑

i=1

n2∑

j=1

{−(∆λijk(θ)− Zijk) ln(∆λijk(θ̂))

+ (∆λijk(θ)− Zijk) ln(∆λijk(θ))}

=
K∑

k=1

n1∑

i=1

n2∑

j=1

(∆λijk(θ)− Zijk) ln

(
λijk(θ)

λijk(θ̂)

)
. (20)

We first derive the lower bound and then the upper bound for
the inequality (20).

A. Lower Bound for KL-Divergence

For a fixed ZK , we describe how to obtain the lower bound
for

K∑

k=1

n1∑

i=1

n2∑

j=1

∆D(λijk(θ)||λijk(θ̂)).

From the information theory, we know that

D(λijk(θ)||λijk(θ̂)) ≥ H2(λijk(θ)||λijk(θ̂)).

To obtain the lower and upper bound for any λijk(θ)
with ZK , we define the mapping W ij(·) : Rn1×n2×p →
R(2n1−1)×(2n2−1)×p as follows:

(W ij(Zk−1
k−p))i′j′k′

!
=






Zn1−(i′−i),n2−(j′−j),k−k′ , if i ≤ i′ ≤ i+ n1 − 1,
j ≤ j ′ ≤ j + n2 − 1,
1 ≤ k′ ≤ p

0, otherwise.

Then, we can express λijk(θ) as

λijk(θ) = µij + 〈W ij(Zk−1
k−p),G〉,

where 〈·, ·〉 is an inner product for tensors.
LetE ∈ R(2n1−1)×(2n2−1)×p be a tensor of all ones. We define

l := min
k

{〈E,W ij(Zk−1
k−p)〉} = min

k
{‖Zk−1

k−p‖1}

and

u := max
1≤k≤K

{‖W ij(Zk−1
k−p)‖spec} = max

1≤k≤K
{‖Zk−1

k−p‖spec}.

For any λijk(θ|Hk−1), the lower bound is

λijk(θ) ≥ a1 + a2〈E,W ij(Zk−1
k−p)〉 ≥ a1 + a2 l,

and the upper bound is

λijk(θ) ≤ b1 + 〈G,W ij(Zk−1
k−p)〉

≤ b1 + ‖W ij(Zk−1
k−p)‖spec‖G‖TNN

≤ b1 + ub2
√
γ(2n1 − 1)(2n2 − 1)p

by Cauchy-Schwartz inequality and the assumptions. As a result,
given ZK ,

J := a1 + a2 l ≤ λijk(θ)

≤ b1 + ub2
√
γ(2n1 − 1)(2n2 − 1)p := J̄ , ∀i, j, k,∀θ ∈ D.

By Lemma 8 in [9], for all T ≥ 1
2 (
√
λijk(θ)−

√
λijk(θ̂))2, it

holds that

H2(λijk(θ)||λijk(θ̂)) ≥
1− e−T

4J̄T
[λijk(θ)− λijk(θ̂)]

2.

Taking T = 2J̄ , we have

H2(λijk(θ)||λijk(θ̂)) ≥
1− e−2J̄

8J̄2
[λijk(θ)− λijk(θ̂)]

2.
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For the subsequent discussion, we need the following nota-
tion. Let Eij ∈ Rn1×n2 be a matrix whose ijth entry is one
and all the other entries are zero. We also denote the number of
parameters as d := n1n2 + (2n1 − 1)(2n2 − 1)p. Let

β := [vec(µ); vec(G)] ∈ Rd,

cij(Z
k−1
k−p) := [vec(Eij); vec(W ij(Zk−1

k−p))] ∈ Rd,

Aij(Z
k−1
k−p) := cij(Z

k−1
k−p)cij(Z

k−1)1k−p ∈ Rd×d,

A[ZK ] :=
1

K

K∑

k=1

n1∑

i=1

n2∑

j=1

Aij(Z
k−1
k−p) ∈ Rd×d,

where vec is a vectorization operator.
Then, we can represent λijk(θ) as follows.

λijk(θ) = cij(Z
k−1
k−p)

1β.

Thus,

H2(λijk(θ)||λijk(θ̂))

≥ 1− e−2J̄

8J̄2
[λijk(θ)− λijk(θ̂)]

2

=
1− e−2J̄

8J̄2
[cij(Z

k−1
k−p)

1β − cij(Z
k−1
k−p)

1β̂]2

=
1− e−2J̄

8J̄2
(β − β̂)1(cij(Z

k−1
k−p)cij(Z

k−1
k−p)

1)(β − β̂)

=
1− e−2J̄

8J̄2
(β − β̂)1Aij(Z

k−1
k−p)(β − β̂).

Note that for given data Zk−1
k−p , Aij(Z

k−1
k−p) is positive semidefi-

nite (Aij(Z
k−1
k−p) 5 0). We use the condition number in Defini-

tion 2 to obtain the lower bound for (20):

K∑

k=1

n1∑

i=1

n2∑

j=1

∆D(λijk(θ)||λijk(θ̂))

≥
K∑

k=1

n1∑

i=1

n2∑

j=1

∆H2(λijk(θ)||λijk(θ̂))

≥ ∆K
K∑

k=1

n1∑

i=1

n2∑

j=1

1− e−2J̄

8J̄2 K
(β − β̂)1Aij(Z

k−1
k−p)(β − β̂)

≥ ∆K
1− e−2J̄

8J̄2
δ2[A[Z

K ]]‖β − β̂‖22

= ∆K
1− e−2J̄

8J̄2
δ2[A[Z

K ]](‖µ− µ̂‖2F + ‖G − Ĝ‖2F ). (21)

The last inequality follows from Definition 2.

B. Upper Bounds for the Random Term

We next derive the upper bound on (20). The upper bound can
be written as

K∑

k=1

n1∑

i=1

n2∑

j=1

(∆λijk(θ)− Zijk) ln

(
λijk(θ)

λijk(θ̂)

)

=
K∑

k=1

〈
E, (∆λ(k)(θ)− Z(k)) ◦ ln

(
λ(k)(θ)

λ(k)(θ̂)

)〉

≤ sup
η∈D

K∑

k=1

〈
E, (∆λ(k)(θ)− Z(k)) ◦ ln

(
λ(k)(θ)

λ(k)(η)

)〉
, (22)

where E ∈ Rn1×n2 is a matrix of all ones, λ(k), Z(k) are kth
frontal slice of tensor λ and Z, respectively, ◦ is the Hadamard
product, and ln

(
λ(k)(θ)

λ(k)(θ̂)

)
∈ Rn1×n2 is a matrix whose ijth entry

is equal to ln
(
λijk(θ)

λijk(θ̂)

)
. For the analysis of (22), we define

ξk := vec

[
(∆λ(k)(θ)− Z(k)) ◦ ln

(
λ(k)(θ)

λ(k)(η)

)]
∈ Rn1n2 .

Note that ξk is a martingale difference vector.
In the subsequent discussion, we will apply the Azuma-

Hoeffding inequality and union bound property to derive an
upper bound. We need the condition, |(ξk)s| ≤ bs for all s =
1, . . . , n1n2, to apply the Azuma-Hoeffding inequality. The
bounds can be obtained by applying the following Poisson
concentration inequality.

Lemma 4: For Y ∼ Pois(λ), for all t > 0, it holds that

P{|Y − λ| ≥ t} ≤ 2e−
t2

2(λ+t) .

By Lemma 4, for ε > 0,

P{|∆λijk(θ)− Zijk)| ≥ ε|Hk−1} ≤ 2e
− ε2

2(λijk(θ)+ε)

≤ 2e−
ε2

2(∆J̄+ε) .

By the tower property for conditional expectations,

E [P{|∆λijk(θ)− Zijk)| ≥ ε|Hk−1}]

= P{|∆λijk(θ)− Zijk| ≥ ε} ≤ 2e−
ε2

2(∆J̄+ε) .

Therefore, by applying the union bound property,

|∆λijk(θ)− Zijk| ≤ ε, ∀i, j, k,

with probability 1− 2n1n2Ke−
ε2

2(∆J̄+ε) . Since θ, η ∈ D, we
have

∣∣∣∣(∆λijk(θ)− Zijk) ln

(
λijk(θ)

λijk(η)

)∣∣∣∣ ≤ ε ln
J̄

J
:= ε,′

with probability 1− 2n1n2Ke−
ε2

2(∆J̄+ε) . Note that this shows
each entry in ξk is not upper bounded by ε′ with a small
probability.

Now we apply the following Theorem.
Theorem 5 (Theorem 32, 33 in [12]): Consider a random vari-

able X and a filtration {F0, . . .Fn}. Suppose X0, X1, . . . Xn

is a martingale sequence such that Xi = E[X|Fi]. For t > 0, it
holds that

P (|X − EX| ≥ t) ≤ 2e
− t2

2
∑

i
c2
i +

∑

i

P (|Xi −Xi−1| ≥ ci),

where c1, . . . , cn are non-negative values.
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For fixed s, we define “bad events” as a set such that |(ξk)s| >
ε′ for any k = 1 . . .K. By Theorem 5, the generalized Azuma-
Hoeffding inequality can be applied to the sum of unbounded
martingale difference with a probability of the “bad events”.

For t > 0, we obtain

P

{∣∣∣∣∣

(
K∑

k=1

ξk

)

s

∣∣∣∣∣ ≥ t

}
≤ 2e−

t2

2Kε′2 + P (“bad events”)

and it implies that for x > 0,

P

{∣∣∣∣∣

(
K∑

k=1

ξk

)

s

∣∣∣∣∣ ≥
√
2ε′2xK

}
≤ 2e−x + 2Ke−

ε2

2(∆J̄+ε) .

By the union bound, we have
∥∥∥∥∥

K∑

k=1

ξk

∥∥∥∥∥
∞

≤
√
2ε′2xK

with probability 1− 2n1n2Ke−
ε2

2(J̄+ε) − 2n1n2e−x.

Let α1 = n1n2Ke−
ε2

2(∆J̄+ε) and α2 = n1n2e−x, where J̄ =
b1 + u

√
γ(2n1 − 1)(2n2 − 1)p and x > 0. By simple compu-

tation, we have

ε = ln
n1n2 K

α1
+

√
ln2

n1n2 K

α1
+ 2∆J̄ ln

n1n2 K

α1

≤ max

{
2

√
∆J̄ ln

n1n2 K

α1
, 4 ln

n1n2 K

α1

}
.

Hence, it follows that
∥∥∥∥∥

K∑

k=1

ξk

∥∥∥∥∥
∞

≤
√

2K ln
J̄

J

√
ln

n1n2

α2

·max

{
2

√
∆J̄ ln

n1n2 K

α1
, 4 ln

n1n2 K

α1

}

with probability 1− 2α1 − 2α2. Finally, the upper bound is

K∑

k=1

n1∑

i=1

n2∑

j=1

∆D(λijk(θ)||λijk(θ̂))

≤ sup
η∈D

K∑

k=1

〈
E, (∆λ(k)(θ)− Z(k)) ◦ ln

(
λ(k)(θ)

λ(k)(η)

)〉

≤ ‖vec(E)‖1‖
K∑

k=1

ξk‖∞

≤ n1n2

√
2K ln

J̄

J

√
ln

n1n2

α2

·max

{
2

√
∆J̄ ln

n1n2 K

α1
, 4 ln

n1n2 K

α1

}
(23)

with probability at least 1− 2α1 − 2α2. We obtain Theorem 3
by combining (21) and (23).

APPENDIX B
NUMERICAL RESULTS FOR SIMULATION

Table II demonstrates the results for the simulations in
Section V. “TNN” denotes our method, which involves low-
rank constraints using Fourier transformed nuclear norm, while
“MLE” denotes the maximum likelihood method without such
constraint, “EXP” denotes the estimation method with fixed
exponential temporary decay function, and “MNN” denotes
the estimation method with the matrix nuclear norm and the
exponential decay function. For each case and each sample size,
the experiment was repeated five times for each method. The
visualization is presented in Fig. 2 in Section V.
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